JP4347699B2 - 適応的な不整脈検出ウィンドウを有するペースメーカ - Google Patents

適応的な不整脈検出ウィンドウを有するペースメーカ Download PDF

Info

Publication number
JP4347699B2
JP4347699B2 JP2003570933A JP2003570933A JP4347699B2 JP 4347699 B2 JP4347699 B2 JP 4347699B2 JP 2003570933 A JP2003570933 A JP 2003570933A JP 2003570933 A JP2003570933 A JP 2003570933A JP 4347699 B2 JP4347699 B2 JP 4347699B2
Authority
JP
Japan
Prior art keywords
ventricular
interval
pacing
pav
atrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003570933A
Other languages
English (en)
Other versions
JP2005518256A (ja
Inventor
エリックセン,ジェイムズ・エイチ
コンディー,キャサリン・アール
スタッドラー,ロバート・ダブリュー
ジャクソン,トロイ・イー
ベッツォルド,ロバート・エイ
ギルバーグ,ジェフリー・エム
ストローベル,ジョン・シー
Original Assignee
メドトロニック・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メドトロニック・インコーポレーテッド filed Critical メドトロニック・インコーポレーテッド
Publication of JP2005518256A publication Critical patent/JP2005518256A/ja
Application granted granted Critical
Publication of JP4347699B2 publication Critical patent/JP4347699B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3621Heart stimulators for treating or preventing abnormally high heart rate
    • A61N1/3622Heart stimulators for treating or preventing abnormally high heart rate comprising two or more electrodes co-operating with different heart regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3682Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions with a variable atrioventricular delay

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Description

本発明は、包括的には心臓ペースメーカに関する。特に、本発明は、改良された不整脈の検出方法を有する心臓ペースメーカに関する。
〔背景技術〕
不整脈は、生命を維持する心臓の血液ポンピング作用を妨害する心調律の異常である。不整脈の例には、心室性頻脈および心房性頻脈がある。心室性頻脈は下側の心腔すなわち心室で生じ、心房性頻脈は上側の心腔すなわち心房で生じる。心室性頻脈は、心室内で始まる、3回以上の連続した心室性期外収縮を特徴とする速い心拍である。心室性頻脈は、心臓が体中に十分な血液をポンピングできなくなる可能性があるため、致命的となる可能性がある不整脈である。Medtronic社等の企業は、心室性頻脈が検出された場合に、心室ペーシングパルスを心臓に送出することによって心室性頻脈を上手く処置するために用いることができる埋め込み可能ペースメーカを開発している。
二腔ペーシングモードがペーシング治療に広く採用されている。二腔動作モードの中には、心房および心室にペーシングを行い、心房と心室の両方を検知し、両腔へのペーシング刺激を禁止またはトリガすることができる「DDD」モードがある。このモードは、「DDDR」と呼ばれる、センサにより増強される可変モードを有し、ここで「R」はレート適応的またはレート変調を表す。
DDDペースメーカは、心臓の心房脱分極を検出するための心房検知増幅器と、心臓の心室脱分極を検出するための心室検知増幅器とを含む。心臓の心房が、事前に定められた時間間隔(心房補充間隔)中に拍動しなかった場合、ペースメーカは、適切なリード線システムを介して心房へ心房刺激を供給する。(検知されたかまたはペーシングによる)心房事象および房室(A−VまたはA2V)間隔の後で、心室が独力で脱分極しなかった場合、ペースメーカは、適切なリード線システムを介して心室へ心室ペーシング刺激を供給する。この機能を行うペースメーカは、患者の自然な洞調律を追跡し、高範囲の心拍にわたる心房収縮の血行力学的な貢献を維持する能力を有する。
従来技術において様々なタイプのペースメーカが開示されており、現在広く使用されている。ペーシングの文献は、様々なタイプのペースメーカとその特性を広範囲にわたって記録してきた。ペースメーカの各タイプの進化および特性の概要、特に様々なタイプの二腔ペースメーカが、参照により本明細書中に援用される米国特許第4,951,667号に記載されている。
心臓ペーシングシステムの分野における別のより最近の進歩は、運動や他の身体的要求に応答して心拍出量を増加させるレート応答性ペースメーカに関するものである。このようなペースメーカは、身体活動量、血液pH、呼吸数、QT間隔、または心房活動の履歴等の様々な身体パラメータのいずれか1つまたはそれらの組み合わせの検知に基づいて、ペーシングレートを制御することができる。例えば、検知された患者の活動に応答してペーシングレートを変化させるペースメーカを開示する米国特許第4,428,378号(Anderson他)、およびQ−T間隔に応じたペーシングレートの制御を開示する米国特許第4,228,308号(Rickards)を参照のこと。さらに、レート応答制御は、二腔ペーシングシステム、例えばDDDRおよびDDIRシステムに統合されている。「Rate Responsive Dual Chamber Pacing」(PACE, vol.9, pp. 987-991)、米国特許第4,467,807号(Bornzin)、および上記の米国特許第4,951,667号を参照のこと。
本発明に直接関連する背景情報をさらに詳細に述べる。心房はA−pace(Aペース)によりペーシングされることができる。A−paceからのエネルギーは、心室増幅器によりV−sense(V検知)事象として検知される可能性がある。これはオーバーセンスまたは腔間(cross-chamber)検知と呼ばれる。これは実際には心室の収縮ではなく、心房の電気活動が心室内のセンサにより検出されたものである。この状況では、心室は実際には収縮していない可能性がある。V−sense事象がA−pace事象に近すぎる場合、V−senseが実際に、心室性頻脈として継続する可能性のある心室性期外収縮を示す場合に備えて、心室安全ペース(ventricular safety pace:VSP)刺激パルスが心室に与えられる。
多くの患者において、予期される自然な心室の収縮時間に近くなるまで待つことが望ましい。しかし、あまり長く待ちすぎると、VSPパルスがT波と略同時になってしまい、これは、T波の最中におけるペーシングは不整脈の原因となる可能性があるため望ましくない。VSPパルスは、実際の心室収縮を示すものではないと考えられている期外V−senseが原因で与えられる。V−senseが実際の心室収縮を反映すれば、次の自然な事象まで心室からは何も認められなくなる。したがって、長期間待ったところで何の得にもならない。V−senseがオーバーセンスであった場合、実際の心室収縮を反映するV−senseを待つことは、あまりに長時間待つことが必要となり、必要なV−paceがT波に近づき過ぎてしまう。したがって、この状況では、V−senseが実際の心室性期外収縮を反映したものであることは分からないが、心室が収縮することは望ましい。したがって、VSPパルスが生成され、心室が確実に収縮するようにする。
ペースメーカがDDDモードで動作している場合、心房は、自然な事象が検知されない場合にペーシングされる。A−paceの後には、V−senseを検出することのできる期間、すなわちトリガウィンドウがある。このウィンドウ中にV−senseが検出された場合、VSPパルスがVSPタイミングウィンドウまたは間隔の最後にスケジュールされる。
一例において、約120拍/分の所望のペーシングレートが望ましい場合、VSPは、仮に行われる場合、A−paceの約60ミリ秒後にスケジュールされる。約60拍/分のより遅い所望のペーシングレートが望ましい事例では、VSPは、仮に行われる場合、A−paceの約110ミリ秒後にスケジュールされる。VSPは通常、T波に近づき過ぎることを防ぐために、V−senseの遅くとも約80ミリ秒後にスケジュールされる。A−pace後のトリガウィンドウ中にV−sense事象がない場合、次にスケジュールされるV−paceは通常、より長い期間、例えば約150ミリ秒のあいだ行われない。このA−paceからV−paceまでの間隔は、PAV間隔に基づいたものとすることができる。
ペーシングされる心周期には、ペースメーカが不整脈を検知できないブランキング期間が3つある。1つ目のブランキング期間はA−paceの後である。2つ目のブランキング期間はV−senseの後である。これは、ペーシングデバイスがV−sense事象をダブルカウントすることが望ましくないためである。3つ目のブランキング期間はV−paceの後である。したがって、速いレートで生じている心室不整脈がある場合、ペーシングデバイスは、1拍おきの、通常の心拍に似たものしか検知できない。
以前の開示で提案されている手法よりも強力に、ペーシングよりも検出を優先させるアルゴリズムを提供することが望ましい。さらに、不整脈の兆候と同時に生じている検出ウィンドウが十分に長いシステムを提供することが望ましい。また、心室事象と次にスケジュールされる心房ペースとの間に長い間隔を設け、心房ペースが検出を妨害しないことが望ましい。
[発明の概要]
本発明は、他の方法では不整脈を検出するためのウィンドウがかなり短くなる、ペーシングレートが高いペーシングの状況、および/または不整脈を検出するための長いウィンドウを維持するために遅いペーシングレートを受け入れなくてはならないペーシングの状況に特に役立つ改良された心臓ペーシング方法を提供する。
本発明の改良された態様によれば、不整脈の検出または兆候があった場合、デバイスにより実施される(device-implemented)ソフトウェアシステムが検出ウィンドウを開く。その後、ソフトウェアシステムは、PAVを調整する必要があるかを確かめるためのチェックを行う。検出ウィンドウが十分な長さでない場合、ソフトウェアはPAVを最小に設定する。その後、検出ウィンドウをチェックして、その長さが十分であるかを確かめる。検出ウィンドウが必要であるよりも短いことが分かった場合、TLRI(一時的な低レート間隔)をそのペーシングレート用の一時的な低レート間隔に変える。
本発明のさらに別の態様は、ペーシングよりも検出を優先的に選択する。具体的には、不整脈の兆候がある場合、検出ウィンドウをチェックして、その長さが十分であるかを確かめる。これは、心室事象と次にスケジュールされる心房ペースとの間の時間を確実に長く保ち、心房ペースが検出を妨害しないようにするためである。
以下の詳細な説明は図面を参照して読むべきである。図面中、異なる図面の同様の要素には同一の番号を付した。必ずしも一定の縮尺で描かれていない図面は、選択された実施形態を示すものであり、本発明の範囲を限定することは意図していない。本発明のいくつかの形態を図示し説明してきたが、当業者には今や他の形態も明らかであろう。図面に示し上記で説明した実施形態は例示を目的としたものに過ぎず、添付の特許請求項に規定される本発明の範囲を限定することは意図していないことが理解されるだろう。
図1は、心室304および心房322を有する心臓302の断面図である。心臓302の心室304は左心室308および右心室320を含み、心臓302の心房322は左心房324および右心房326を含む。図1では、心臓302が、心房322と心室304との間に延びる伝達経路328を含むことが理解できる。心臓302において、伝達経路328は、房室(AV)結節330、ヒス束332、右脚334、および左脚336を含む。
心臓302はまた、洞房(SA)結節338を含む。健康な心臓では、SA結節は、生命を維持する心臓の血液ポンピング作用を制御する自然のペースメーカの役割を果たす。適切な時点で、SA結節から生じる電気インパルスが左右の心房腔へ伝達される。このインパルスは、心房を取り囲む筋肉組織を脱分極および収縮させ、これによりP波と呼ばれる電気信号が発生する。SA結節から生じる同じ電気インパルスは、房室(AV)結節を通じて右心室および左心室にも伝わる。AV結節が受け取ったインパルスは、ヒス束、右脚、左脚、および心室の心内膜表面の大部分を取り囲む複数のプルキンエ繊維を通じて伝達される。心室の筋肉組織は脱分極した後で収縮する。これにより、心室内に収容されていた血液が動脈を通じて身体の様々な場所へ送り出される。この活動がリズミカルな周期で繰り返され、その間に、心房腔および心室腔が交互に収縮してポンピングし、その後弛緩して充満する。
図2は、本発明によるペーシングシステム340の線図である。ペーシングシステム340は、複数のリード線344および電極346によって図1の心臓302につながれたペースメーカ342を含む。ペースメーカ342は、自然なペーシングシステムが正常に働かなくなった心臓を処置するために用いられることができる。ペースメーカ342は、ペーシング電流が電極346とペースメーカ342のハウジングとの間に流れる単一電極動作を有してもよい。ペースメーカ342はまた、ペーシング電流が2つ以上の電極間に流れる二電極動作を有してもよい。
本発明によるいくつかの方法は、心房322と心室304との間の伝導経路を切断するステップを含んでもよい。いくつかの方法において、伝導経路を切断するステップは、心臓のAV結節を焼灼するステップを含んでもよい。AV結節を焼灼するステップは、例えば電波源または他の形態の周波数エネルギー源に結合された焼灼電極を含むカテーテルを用いて達成することができる。図1と図2を比較することにより、図2の実施形態では心臓302のAV結節が焼灼されていることが理解できる。
図3は、心室安全ペーシング(VSP)機能を用いた標準的なペーシング方法を例示する。心室安全ペースは、心房ペース後の短いウィンドウ中に心室検知が検出された場合に、心房ペースの後に送出される心室ペース事象である。本方法では、一定の心房−心室(A2V)心室安全ペーシング(VSP)間隔がある。例示される方法では、A2V VSP間隔30の長さは110ミリ秒である。A2V間隔は、30ミリ秒の腔間ブランキングゾーン32と、80ミリ秒のトリガゾーン34とを含む。A2V VSP間隔30は心房ペース36とともに開始する。トリガゾーン中に心室検知事象が生じた場合、デバイスは、A2V VSP間隔33の最後に心室安全ペースを送出する。
図3はまた、Apace36から心室ペース(Vpace)31まで延びるペーシングによる心房−心室(PAV)間隔を37で示す。Vpace31の後にはVpaceブランキング間隔35が続き、その後にはV2A検出間隔38が続く。2回目のApace39で、1心周期が終わり、心臓A2A間隔ならびにV2V間隔を画定することができる。
不整脈の検出プロセスは、心房ペース36から、心室安全ペースで始まる心室ペースブランキング35の最後までブラインド化する(blind)ことができる。これは、33における心室安全ペースと次の心房ペース39との間の間隔が十分に長く、次の心房ペースの前に不整脈事象を検知できる限り問題にならない。心室検知事象の検出時に心室安全ペーシングの衝撃を最小にする一方法は、A2V VSP間隔を短くすることである。図3では、腔間ブランキング間隔32の長さは30ミリ秒である。
図4は、図3よりも短いA2V VSP間隔を利用する方法を例示する。ブランキング間隔42の長さはここでも30ミリ秒であり、本方法ではその後、より短い40ミリ秒の長さのトリガゾーン44が続く。ブランキングゾーン42とトリガゾーン44はともに、継続時間が約70ミリ秒であるA2V VSPタイミング間隔40を形成する。この方法に伴う1つの問題は、より遅いペーシングレートでは、110ミリ秒未満のA2V間隔は望ましくない可能性があることである。
それでもなお、患者は、より速いレートではより長いA2V VSP間隔を有するほうが良い可能性がある。VSPペースの回数が非常に少ない場合、検出はより長いVSPで上手くいく。これらの場合、高いペーシングレートにおいて、以下の図5のようなVSPに切り替わったアルゴリズムが、VSP事象の回数を減らす。所定の時間中に複数のVSP事象が発生した場合、デバイスは、図4において説明したVSP方法に切り替わる。
図5は、短いトリガゾーンを有する心室安全ペーシング方法を例示する。図5の心室安全ペーシング方法は、VSPペースポイント58で終了する110ミリ秒の長さのA2V VSPタイミング間隔50を含み、デバイスがトリガゾーン中に心室事象を検知した場合、VSPペースが送出される。30ミリ秒のブランキング間隔を52で示し、その後、54で示す40ミリ秒の長さのトリガゾーンが続く。ブランキング間隔は上記と同様に心房ペーシング事象56で始まる。
本発明による1方法を、図6を参照して簡単に説明する。ステップ60において高レートペーシングが望ましくない場合、図3の心室安全ペーシング方法61を用いる。ステップ60において高レートのペーシングが望ましい場合、ステップ62において、最後のM秒間にN回のVSPペースが行われたかどうかを判定しなければならない。言い換えれば、時間ウィンドウM中に制限数のN回のペースが行われたかどうかを判定する。時間ウィンドウ中に十分な回数のVSPペースが行われた場合、63において、図4のVSP方法を用いる。一方、時間ウィンドウ中に不十分な回数のVSPが行われていない場合、64において、図5のVSP方法を用いる。この方法全体により、VSP事象が高ペーシングレートにおける検出に及ぼす悪影響があれば、それを低減することができる。検出に対するこれらの悪影響は、デバイスが、VSP事象がある場合にペーシングレートを下げ、VSP事象がない場合にペーシングレートを上げれば排除することができる。
図7は、心室安全ペーシングがある場合にペーシングレートを適応させる方法を例示する。本明細書中で用いる場合、「V2V間隔」は、前の心室事象から現在の心室事象までの間の間隔として定義される。本明細書中で用いる場合、「心室事象」は、VsenseおよびVpaceを含むが、心室安全ペースは含まない。ステップ100において、方法は心室事象を待つ。VSPを除くVsenseまたはVpaceのいずれかの心室事象を検出すると、経路102を辿り、ステップ104を実行する。ステップ104において、心室事象がVsenseであり、かつトリガゾーン中であったかどうかの判定を行う。検出された心室事象がトリガゾーン中のVsenseであった場合、経路108を辿る。そうでない場合、検出された心室事象にペーシングを行い、経路106を辿る。経路106を辿る場合、ステップ124を実行する。
ステップ124において、動的上限活動間隔(dynamic upper activity interval:DUAI)が上限活動間隔(upper activity interval:UAI)よりも大きいかどうかの判定を行う。UAIは、徐脈ペーシングのためのプログラムされた最小V2V補充である。DUAIは動的上限活動レベルである。この間隔は、UAI以上であり、かつVSPV2V以下である。124においてDUAIがUAIよりも大きくない場合、DUAIは既に最小であるので、減少するDUAIに関してさらなるチェックを行う必要はない。この状況では、経路126を辿ってステップ100を再び実行し、次の心室事象を待つ。DUAIがUAIよりも大きい場合、経路128をステップ124からステップ130まで辿る。ステップ130において、最後のN回のV2V間隔が全てDV2V、すなわち検出を妨害しないほど十分に長い心室ペース中に終了する最小V2V間隔以上であるかどうかの判定を行う。130において、最後のN回のV2V間隔が全てDV2V以上でない場合、経路134を辿ってステップ120を実行する。
ステップ120において、現在のV2V補充を計算する際に動的上限活動間隔(DUAI)を上限活動間隔(UAI)として用いる。ステップ120を実行した後、経路122を辿り、制御をステップ100に戻して別の心室事象を待つ。
決定ステップ104において、心室事象がトリガゾーンにある場合、経路108を辿ってステップ110を実行する。ステップ110において、動的上限活動間隔(DUAI)を増分VSPIだけ増やす。ここでVSPIは、VSP事象が行われる場合のDUAIに対する増分である。DUAIを増加させた後、ステップ112を実行する。
決定ステップ112において、動的上限活動間隔(DUAI)がVSPV2V、すなわち心室安全ペースの後の、不整脈検出を妨害しない安全ペースを保証する最小V2V補充未満であるかどうかの判定を行う。112において、動的上限活動間隔(DUAI)がこの最小V2V補充すなわちVSPV2V未満でない場合、経路116を辿ってステップ118を実行する。ステップ118では、動的上限活動間隔(DUAI)を最小V2V補充すなわち上述のVSPV2Vに等しく設定する。ステップ118を実行した後、ステップ120を実行し、その後、上述のようなステップ100が続く。
再びステップ130を参照して、前のN回のV2V間隔が全て最小V2V間隔すなわちDV2V以上であった場合の実行を解析し、その場合、経路132を辿ってステップ136へ進む。いくつかの方法においてNは10である。ステップ130は、全ての最近の短いV2V間隔(正常な洞調律を意味する)があるかどうかの判定として考えることができる。最近正常な洞があった場合、DUAIを減らし、ペーシングレートを上げることができる。ステップ136において、動的上限活動間隔(DAUI)をVSPIの量だけ減らす。ステップ136においてDAUIを減らした後、実行は決定ステップ138へ進む。決定ステップ138において、動的上限活動間隔(DUAI)が、徐脈ペーシングのためのプログラムされた最小V2V補充である上限活動間隔UAIよりも大きいかどうかの判定を行う。動的上限活動間隔(DUAI)が上限活動間隔(UAI)よりも大きい場合、経路140を辿って、ステップ120を上述のように実行する。動的上限活動間隔が上限活動間隔よりも大きくない場合、経路142を辿り、ステップ144を実行する。ステップ144では、上限活動間隔(DUAI)を上限活動間隔(UAI)に等しく設定する。ステップ144を実行した後、経路146を辿り、実行をステップ100に戻して次の心室事象を待つ。
本発明の方法は、ペーシングレートを徐々に遅くして、不整脈の適正な検出を確実にする。不整脈および/または任意のクロストークがない場合、本方法は、ペーシングレートを所望の徐脈ペーシングレートに徐々に戻すことを可能にする。間隔を変更するレートは、パラメータVSPIおよびVSPDを設定することによって制御される。ここでVSPIは、VSP事象が行われる場合に加えられる増分である。VSPDは、VSPが行われない場合に差し引かれる減少である。
本発明の別の態様において、PAV間隔の長さは適応的に変化させることができる。ある種の状況では、心房ペースから次にスケジュールされる心室ペースまでの時間PAVを、速いペーシングレートであっても長い値に設定することが有利である。こうすることによって、患者は、心室収縮の伝達を受け取る可能性が高くなる。このことは不整脈の検出を難しくする可能性がある。検出では、短いV2V間隔を有する心室事象およびV2V間隔中の心房ペーシング事象を伝導された事象として扱うべきか、あるいは不整脈事象として扱うべきかが分からない場合がある。短いV2V間隔がある場合に、心室事象から心室ペースまでのV2V補充は維持されたまま、心房ペースから心室ペースまでのPAVが減った場合、デバイスは、心房ペースを行うことによって生じる一連の短いV2V間隔を防止することができる。したがって、VpaceではなくApaceを遅延させ、V2A間隔を増やす。
図8は上記の状況を例示する。図8は、一連の3回の心室事象V1(182)、V2(184)、およびV3(186)を有する時間線180を含む。時間線180はまた、第1の心房ペーシング事象A1(188)、および第2の心房ペーシング事象A2(190)を含む。図8を検討すれば分かるように、心室事象V2(184)と心室事象V3(186)の間の間隔は、前の心室事象から現在の心室事象までの補充時間(V2V)は維持したまま、心房ペースから次にスケジュールされる心室ペースまでの時間(PAV)を減らすことによって、心室事象V1(182)と心室事象V2(184)の間の間隔と比べて増えている。よって図8は、心房ペースから次にスケジュールされる心室ペースまでの時間(PAV)を短いV2V間隔に適応させる方法を示す。
図9は、A2V間隔を適応させる方法200を例示する。ステップ202において、方法は心室事象を待つ。VSPを除くVsenseまたはVpaceのいずれかの心室事象を検知すると、実行は経路204を辿ってステップ206へ進む。決定ステップ206において、前の心室事象から現在の心室事象までの時間、すなわちV2V間隔がDV2V未満であるかどうかの判定を行う。DV2Vは、検出を妨害しないほど十分に長い心室ペース中に終了する最小V2V間隔として定義される。V2V間隔が最小値すなわちDV2V未満である場合、実行は経路210を辿ってステップ212へ進む。ステップ212において、動的PAVすなわちDPAVをPAVD、すなわち長いV2V間隔が生じた場合に用いられる減少量の量だけ減らす。
実行は決定ステップ214へ進む。決定ステップ214では、動的PAV(DPAV)がMINPAVすなわち許容される最小(MIN)PAVの値未満であるかどうかの判定が行われる。動的PAVが許容される最小PAV未満でない場合、実行は経路218を辿ってステプ219へ進む。ステップ219では、動的PAV(DPAV)の値を、許容される最小PAVの値(MINPAV)に等しく設定する。次に実行はステップ220へ進む。
決定ステップ214において、動的PAV(DPAV)が最小PAV(MINPAV)未満であると判定された場合、実行は経路216を辿ってステップ220へ進む。ステップ220では、次の心房および心室ペースをスケジュールする際に、DPAVの値を現在のPAVとして用いる。ステップ220を実行した後、方法は経路222を辿ってステップ202へ進み、別の心室事象を待つ。
再びステップ206を参照して、決定ステップ206において、前の心室事象から現在の心室事象までの時間すなわちV2V間隔が最小V2V間隔すなわちDV2V未満でないと判定された場合、実行は経路208を辿ってステップ224へ進む。決定ステップ224では、動的PAV(DPAV)がPAV、すなわち心房ペースから次にスケジュールされる心室ペースまでの時間未満であるかどうかを判定する。動的PAVがPAV未満でない場合、実行は経路226を辿ってステップ202へ進み、心室事象を待つ。決定ステップ224において、DPAVの値がPAVの値未満であると判定された場合、実行は経路228を辿ってステップ230へ進む。
決定ステップ230では、最後のN回のV2V間隔が全て最小V2V間隔すなわちDV2V以上であるかどうかを判定する。ここでNはいくつかの方法において10とすることができる。最後のN回のV2V間隔のうちのいくつかがDV2V以上でない場合、実行は経路232を辿って、上述のステップ220を実行する。決定ステップ230において、最後のN回のV2V間隔の値が全てDV2V以上であると判定された場合、実行は経路234を辿ってステップ236へ進む。
ステップ236において、動的PAV(DPAV)の値をPAVIの量だけ増やす。ここでPAVIは、短いV2V間隔中に心房ペースが行われた場合にDPAVを増加させるために用いられる量である。実行は続いてステップ238へ進む。決定ステップ238において、動的PAVの値(DPAV)が心房ペースから次にスケジュールされる心室ペースまでの時間すなわちPAV以上であるかどうかについての判定を行う。DPAVの値がPAVの値以上でない場合、実行は経路242を辿って、上述のステップ220を実行する。決定ステップ238により、DPAVの値がPAVの値以上であると判定された場合、実行は経路240を辿ってステップ244を実行する。ステップ244では、動的PAVの値(DPAV)をPAVの値に等しく設定する。次に実行は経路246を辿ってステップ202に進み、次の心室事象を待つ。
図10は、本発明の例示的な実施形態によるペーシングシステム440のブロック図である。図10に示すように、ペーシングシステム440は、コントローラ476を含むペースメーカ442を備える。コントローラ476は、例えばマイクロプロセッサを備えてもよい。
ペースメーカ442の心室(V)パルス発生器478は、コントローラ476の制御下で生成され、心室パルス(VP)発生器のVPリード線480を介して1つまたは複数の心室電極446へ送出されるペーシングパルスを供給する。図10の実施形態において、心室電極446は、心臓402の右心室420に配置された状態で示される。本発明による方法および装置は、多腔ペーシングに用いることもできることが理解されるべきである。したがって、ある種の応用では、1つまたは複数の心室電極もまた、心臓402の左心室408内またはその近くに配置されることができる。ペースメーカ442の心房(A)パルス(AP)発生器486は、同じくコントローラ476の制御下で生成され、APリード線488を介して1つまたは複数の心房電極484へ送出される心房パルスを供給する。心房パルス発生器486および心室パルス発生器478はそれぞれ、1つまたは複数のコンデンサと、コンデンサ(複数可)をエネルギー源に結合することによってコンデンサ(複数可)を充電するとともに、電極によりコンデンサ(複数可)を放電させることが可能な切り替え回路とを含んでもよい。
ペースメーカ442はまた、心臓402からの自発性信号を検知および処理するために用いることができる信号プロセッサ490を含む。例えば、信号を右心房426から心房電極484を介して検知することができる。第2の例として、右心室420からの信号を心室電極446を介して検知することができる。本発明による方法は、心臓402からの自発的信号を検知するステップと、検知された心室信号に応じて所望の心室ペーシングレートを求めるステップとを含んでもよい。信号プロセッサ490は、例えば、1つまたは複数の増幅器と、1つまたは複数のフィルタとを備えてもよい。
ペースメーカ442はメモリ494も備える。メモリ494は、コントローラ476のための動作命令を記憶するために用いることができる。メモリ494はまた、本発明に従って値を記憶するために用いることができる。記憶することのできる値の例としては、選択されたレートおよび所望の心室ペーシングレートがある。ペースメーカ442はテレメトリアンテナ496も含む。テレメトリアンテナは、例えば、コントローラ476により命令および値をメモリ494にロードするために用いることができる。
ペーシングシステム440は、当業者に既知の標準的な方法を用いて本発明の方法を実施するために用いることができる。方法は、完全なプログラムまたは他の論理システム、例えばブール論理、ゲートおよびタイマの任意の組み合わせとして表すことができる。論理および/またはプログラムは、メモリ494に存在して、コントローラ476によって実行されることができる。
図11を参照すると、ソフトウェアシステム500は、心室事象の入力により開始される。決定ステップ502において、頻脈性不整脈の可能性を示す兆候をチェックする。頻脈性不整脈の可能性を示す兆候が確認された場合、論理は決定ステップ504へ進み、TLRI(心房ペースと次にスケジュールされる心房ペースとの間の時間)とDVAI(頻脈性不整脈の検出を妨害しない心房ペースを確実にするために必要な心室−心房間隔)との差がPAV(心房ペースとスケジュールされる心室ペースとの間の時間)以上である場合、PAVまたはTLRIの変更は推奨せず、ソフトウェアロジックは論理ステップ516において終了する。そうでない場合、論理ステップは決定ステップ508へ進むことができ、TLRIとDVAIとの差が最小PAV以上である場合、PAVをTLRIとDVAIとの差に設定し、論理ステップは516で終了する。さらに、TLRIとDVAIとの差が最小PAV以上である場合、PAVを最小PAVに設定する。その後、TLRIをDVAIとPAVとの和に等しく設定し、プロセスはステップ516において終了する。
したがって、本発明のアルゴリズムは、頻脈性不整脈の兆候が検出された場合に心房ペーシングの影響を最小にするようにPAVを調整する。PAVの変化が、頻脈性不整脈の検出を妨害しない心房ペーシングを確保するのに十分でない場合、アルゴリズムは、全体的なペーシングレートすなわちPLRIを調整する。さらに、頻脈性不整脈の可能性がある場合、ペーシングによるかまたは検知された心室事象と、次にスケジュールされる心房ペースとの間の時間VAIをチェックして、心房ペースが頻脈性不整脈の検出を確実に妨害しないようにする。これは、心房事象と次にスケジュールされる心房ペースとの間の時間を調整するだけでなく、心房ペースと次にスケジュールされる心室ペースとの間の時間すなわちPAVを調整することによって達成される。
心室および心房を有する心臓の断面図である。 本発明によるペーシングシステムの線図である。 一定のA2V VSP間隔および腔間ブランキング間隔とそれに続くトリガゾーンを有し、トリガゾーンがA2V VSP間隔と同時に終了する心臓ペーシングサイクルの概略的なタイミング図である。 図3と同様であるが、A2V VSP間隔およびトリガゾーンが短くなっており、トリガゾーンがA2V VSP間隔と同時に終了する心臓ペーシングサイクルの概略的なタイミング図である。 図3と同様であるが、トリガゾーンが短くなっており、A2V VSP間隔よりも早く終了するタイミング図である。 図3、図4、および図5の心臓ペーシング方法間で切り替えを行う方法の高次のフローチャートである。 VSPがある場合にペーシング間隔全体を適応させる方法のフローチャートである。 ペーシングによる心房−心室間隔(PAV)を短いV2V間隔に適応させる方法のタイミング図である。 VSPがある場合にペーシングによる心房−心室(PAV)間隔を適応させる方法のフローチャートである。 本発明の例示的な実施形態によるペーシングシステムのブロック図である。 本発明の改良された例示的な実施形態によるペーシングシステムのブロック図である。

Claims (3)

  1. 検出ウィンドウを監視、制御、および調整するためのペーシング・システム(340,440)であって、
    頻脈性不整脈の兆候をチェックする手段(502)と、
    一時的な低レート間隔(TLRI)と、頻脈性不整脈の検出を妨害しない心房ペースを確実にするために必要な心室−心房間隔(DVAI)の間の値を計算する手段であって、当該計算する手段が、TLRIとDVAIとの差を計算する手段を含むものと、
    ペーシングによる心房−心室間隔PAVを設定する手段であって、前記TLRIとDVAIとの差を分析して、当該差を当該PAVと比較する手段を含むものと、
    前記TLRIとDVAIとの差が、最小PAVより小さい場合に、前記ペーシングによる心房−心室間隔PAVを、最小PAVに設定する手段と、
    TLRIをDVAIとPAVの和に等しく設定する手段(514)と、
    を備え、
    前記チェックする手段、前記PAVを設定する手段、および前記TLRIを設定する手段は、該ソフトウェアシステムを作動論理により制御する、
    ペーシング・システム。
  2. 前記頻脈性不整脈の兆候をチェックする手段は、心室事象を入力する手段を含む請求項1に記載のシステム。
  3. 前記TLRIを設定する手段は、DVAIとPAVとの和をとる手段を含む請求項1に記載のシステム。
JP2003570933A 2002-02-25 2003-02-21 適応的な不整脈検出ウィンドウを有するペースメーカ Expired - Fee Related JP4347699B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/082,981 US6731983B2 (en) 2001-10-30 2002-02-25 Pacemaker having adaptive arrhythmia detection windows
PCT/US2003/005289 WO2003072190A2 (en) 2002-02-25 2003-02-21 Pacemaker having adaptive arrhythmia detection windows

Publications (2)

Publication Number Publication Date
JP2005518256A JP2005518256A (ja) 2005-06-23
JP4347699B2 true JP4347699B2 (ja) 2009-10-21

Family

ID=27765291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003570933A Expired - Fee Related JP4347699B2 (ja) 2002-02-25 2003-02-21 適応的な不整脈検出ウィンドウを有するペースメーカ

Country Status (6)

Country Link
US (1) US6731983B2 (ja)
EP (1) EP1480715B1 (ja)
JP (1) JP4347699B2 (ja)
CA (1) CA2477286A1 (ja)
DE (1) DE60329469D1 (ja)
WO (1) WO2003072190A2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844332B2 (en) * 2002-10-18 2010-11-30 Cardiac Pacemakers, Inc. Atrioventricular delay adjustment enhancing ventricular tachyarrhythmia detection
US7734346B2 (en) * 2003-04-25 2010-06-08 Medtronic, Inc. Identification of premature atrial contractions that trigger arrhythmia
US7477932B2 (en) 2003-05-28 2009-01-13 Cardiac Pacemakers, Inc. Cardiac waveform template creation, maintenance and use
US20060247693A1 (en) 2005-04-28 2006-11-02 Yanting Dong Non-captured intrinsic discrimination in cardiac pacing response classification
US7319900B2 (en) * 2003-12-11 2008-01-15 Cardiac Pacemakers, Inc. Cardiac response classification using multiple classification windows
US7774064B2 (en) 2003-12-12 2010-08-10 Cardiac Pacemakers, Inc. Cardiac response classification using retriggerable classification windows
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
US7392086B2 (en) 2005-04-26 2008-06-24 Cardiac Pacemakers, Inc. Implantable cardiac device and method for reduced phrenic nerve stimulation
US7574260B2 (en) * 2005-04-28 2009-08-11 Cardiac Pacemakers, Inc. Adaptive windowing for cardiac waveform discrimination
US7499751B2 (en) * 2005-04-28 2009-03-03 Cardiac Pacemakers, Inc. Cardiac signal template generation using waveform clustering
US8209013B2 (en) 2006-09-14 2012-06-26 Cardiac Pacemakers, Inc. Therapeutic electrical stimulation that avoids undesirable activation
US20080228093A1 (en) * 2007-03-13 2008-09-18 Yanting Dong Systems and methods for enhancing cardiac signal features used in morphology discrimination
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US20090149904A1 (en) 2007-12-11 2009-06-11 Cardiac Pacemakers, Inc. Lv unipolar sensing or pacing vector
CN101939051B (zh) 2008-02-14 2013-07-10 心脏起搏器公司 用于膈刺激检测的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228308A (en) 1979-05-09 1980-10-14 General Electric Company Dehydrochlorination of a dihydroxydiphenyl trichloroethane
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US4467807A (en) 1981-11-23 1984-08-28 Medtronic, Inc. Rate adaptive demand pacemaker
US4951667A (en) 1987-11-25 1990-08-28 Medtronic, Inc. Dual chamber activity responsive pacer
US5893882A (en) * 1996-12-17 1999-04-13 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias

Also Published As

Publication number Publication date
CA2477286A1 (en) 2003-09-04
JP2005518256A (ja) 2005-06-23
EP1480715B1 (en) 2009-09-30
DE60329469D1 (de) 2009-11-12
WO2003072190A2 (en) 2003-09-04
EP1480715A1 (en) 2004-12-01
US6731983B2 (en) 2004-05-04
US20030083705A1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
US6708062B2 (en) Pacemaker having adaptive arrhythmia detection windows
EP0536720B1 (en) System for terminating a pacemaker-mediated tachycardia during rate adaptive pacing
US8249703B2 (en) Apparatus and method for ventricular rate regularization
US5269299A (en) System and method for preventing atrial competition during sensor-driven operation of a dual-chamber pacemaker
EP2545961A1 (en) Apparatus for pacing mode switching during atrial tachyarrhythmias
US8565875B2 (en) Cardiac rhythm management system with maximum tracking rate (MTR) hysteresis
US5342405A (en) System and method for selecting a mode of operation of a dual-chamber pacemaker
US20020120298A1 (en) Apparatus and method for ventricular rate regularization
US7103411B1 (en) Methods and apparatus for preventing atrial arrhythmias by overdrive pacing multiple heart tissue sites using an implantable cardiac stimulation device
JP4347699B2 (ja) 適応的な不整脈検出ウィンドウを有するペースメーカ
CA2306708A1 (en) Implantable cardiac stimulator with rate-adaptive t-wave detection
US5301669A (en) System and method for preventing atrial competition during sensor-driven operation of a dual-chamber pacemaker
US7308306B1 (en) System and method for dynamic ventricular overdrive pacing
US7299094B1 (en) System and method for implementing autocapture within biventricular implantable cardiac stimulation systems
EP1347802B1 (en) Apparatus for ventricular rate regularization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090716

R150 Certificate of patent or registration of utility model

Ref document number: 4347699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees