JP4346408B2 - Stainless steel corrosion resistance measurement method - Google Patents

Stainless steel corrosion resistance measurement method Download PDF

Info

Publication number
JP4346408B2
JP4346408B2 JP2003362641A JP2003362641A JP4346408B2 JP 4346408 B2 JP4346408 B2 JP 4346408B2 JP 2003362641 A JP2003362641 A JP 2003362641A JP 2003362641 A JP2003362641 A JP 2003362641A JP 4346408 B2 JP4346408 B2 JP 4346408B2
Authority
JP
Japan
Prior art keywords
stainless steel
corrosion resistance
measured
measurement method
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003362641A
Other languages
Japanese (ja)
Other versions
JP2005127813A (en
Inventor
宣博 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neos Co Ltd
Original Assignee
Neos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neos Co Ltd filed Critical Neos Co Ltd
Priority to JP2003362641A priority Critical patent/JP4346408B2/en
Publication of JP2005127813A publication Critical patent/JP2005127813A/en
Application granted granted Critical
Publication of JP4346408B2 publication Critical patent/JP4346408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、ステンレスの耐食性(劣化)の程度を測定する方法に関する。特定すれば、蒸着装置、溶射装置あるいはメッキ装置に使用されているステンレス製の治具等が、使用によりどの程度劣化しているか、つまり、耐食性がどの程度あるかを測定する方法に関する。   The present invention relates to a method for measuring the degree of corrosion resistance (deterioration) of stainless steel. Specifically, the present invention relates to a method of measuring how much a stainless steel jig or the like used in a vapor deposition apparatus, a thermal spray apparatus, or a plating apparatus is deteriorated by use, that is, how much corrosion resistance is present.

熱履歴等の影響を受けたステンレスは、不動態皮膜が劣化するとともに、内部は鋭敏化などの組成変化(劣化)が生じ、薬品等への耐食性が落ち腐食速度が速まるという危険性を持っている。例えば、ステンレスが多く用いられている蒸着装置、溶射装置またメッキ装置は、使用後付着した汚染物の洗浄等の処理が行われるが、使用中にどの程度耐食性が落ちているか測定することは、洗浄処理方法を決定するためにも重要である。従来、この耐食性の測定方法には、特許文献1のように自然電位を測定し、その電位による不動態皮膜の劣化を判別していた。   Stainless steel affected by heat history has the risk that the passive film will deteriorate and the inside will undergo composition changes (deterioration) such as sensitization, which will reduce the corrosion resistance to chemicals and increase the corrosion rate. Yes. For example, vapor deposition equipment, thermal spray equipment, and plating equipment, in which stainless steel is often used, are subjected to treatment such as cleaning of contaminants attached after use, but measuring how much corrosion resistance is reduced during use is It is also important for determining the cleaning method. Conventionally, in this method of measuring corrosion resistance, a natural potential is measured as in Patent Document 1, and deterioration of the passive film due to the potential is determined.

しかし、熱影響を受け、鋭敏化などの組成変化が生じていると、ステンレスには局部腐食が発生しやすいが、局部腐食が発生していると、自然電位測定では、100mV単位の誤差を生じ、その劣化の程度を正確に把握することができない。   However, when the composition changes such as sensitization due to heat influence, local corrosion is likely to occur in stainless steel. However, if local corrosion occurs, an error of 100 mV unit occurs in natural potential measurement. The degree of deterioration cannot be accurately grasped.

また、被測定物ステンレスに導電体(一般に汚染物質)が付着している場合に、被測定物全体を電解液に浸漬して測定するリニアスイープボルタンメトリーやサイクリックボルタンメトリーなどの電気化学測定方法を用いると、電位はステンレスだけでなく付着した導電体の影響を受けたものとして測定される。したがって、ステンレスのみの電位・電流を正確に測定できないという問題がある。
特開昭61−251762号
In addition, when a conductor (generally pollutant) adheres to the stainless steel to be measured, an electrochemical measurement method such as linear sweep voltammetry or cyclic voltammetry is used to measure by immersing the entire measured object in the electrolyte. The potential is measured as being affected by not only stainless steel but also the attached conductor. Therefore, there is a problem that the potential / current of only stainless steel cannot be measured accurately.
JP 61-251762 A

本発明は、上記従来の技術の問題点を解決するためになされたものであり、つまりステンレス基材の耐食性を正確に測定する方法を提供することである。   The present invention has been made to solve the above-described problems of the prior art, that is, to provide a method for accurately measuring the corrosion resistance of a stainless steel substrate.

上記目的を達成するために、被測定物であるステンレス表面に電解質を含浸させた部材を設置し、該部材にステンレスに対する対極を設け、この間に酸化電位を印加し、生じる電流を測定することによりステンレスの耐食性を測定する方法を提供する。   In order to achieve the above object, by installing a member impregnated with electrolyte on the surface of stainless steel as the object to be measured, providing a counter electrode for stainless steel on the member, applying an oxidation potential therebetween, and measuring the generated current A method for measuring the corrosion resistance of stainless steel is provided.

本発明の方法では、簡単な装置で、わずかの電流の使用で、基材への影響が少なく、再現性も良好に耐食性を測定できる。また、少量の測定面積でよく被測定物を小さく切断する必要もないという効果が有る。   According to the method of the present invention, the corrosion resistance can be measured with a simple apparatus and with a small amount of current, with little influence on the substrate and good reproducibility. In addition, there is an effect that it is not necessary to cut the object to be measured in a small amount with a small measurement area.

図1は本発明を実施するための装置の模式図を示す。4は、ポテンシオスタットである。被測定物ステンレス1の表面に電解液を含浸させた部材2を設置し、部材2の上に接して対極3を接地する。被測定物1−対極3間に酸化電位を印可することによって、電流は被測定物1−対極3間に流れる。被測定物のステンレスが熱影響を受けて組織が変化が生じている場合には、熱影響を受けていないものと比較して大きな電流が流れる。その電流の大小でステンレスの劣化程度を判別できる。また、劣化が大きいものほど電解質等の薬剤による腐食が大きくなる。   FIG. 1 shows a schematic view of an apparatus for carrying out the present invention. 4 is a potentiostat. A member 2 impregnated with an electrolytic solution is placed on the surface of the stainless steel 1 to be measured, and the counter electrode 3 is grounded in contact with the member 2. By applying an oxidation potential between the DUT 1 and the counter electrode 3, a current flows between the DUT 1 and the counter electrode 3. When the stainless steel of the object to be measured is affected by heat and the structure is changed, a larger current flows than that of the object not subjected to heat. The degree of deterioration of stainless steel can be determined by the magnitude of the current. In addition, the greater the deterioration, the greater the corrosion caused by chemicals such as electrolytes.

本発明に用いる電解液は特に問うものではないが、好ましくは、硫酸、フッ化水素酸、テトラフルオロホウ酸、塩酸、硝酸、リン酸、過酸化水素水およびこれらを2種類以上混ぜた混酸である。   The electrolyte used in the present invention is not particularly limited, but is preferably sulfuric acid, hydrofluoric acid, tetrafluoroboric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrogen peroxide water, or a mixed acid obtained by mixing two or more of these. is there.

電解液を含浸させる部材については、特に問うものではない。電解液と部材との間でお互いに実質的に影響を与えないものであればよい。例えば、綿、ガーゼ、ろ紙、スポンジ等を挙げることが出来る。ただし、含浸させた電解液が測定対象物に触れることが必要である。その大きさも特に問うものではない。実質的に電流が測定できる大きさであればよい。   The member impregnated with the electrolytic solution is not particularly limited. Any material that does not substantially affect each other between the electrolytic solution and the member may be used. Examples thereof include cotton, gauze, filter paper, and sponge. However, the impregnated electrolytic solution needs to touch the measurement object. The size is not particularly questioned. It is sufficient that the current can be measured substantially.

ステンレス表面に導電体を付着している場合には、電解液含浸部材が露出しているステンレス表面にのみに設置するようにし、導電体に接触していないように注意する必要がある。   When a conductor is attached to the stainless steel surface, it should be installed only on the stainless steel surface where the electrolyte-impregnated member is exposed, and care must be taken not to contact the conductor.

本発明の測定法では薬品を含浸させた部材が測定領域になるので、被測定物に凹凸があった場合でも電流値に変化なく安定した測定が可能である。   In the measurement method of the present invention, since the member impregnated with the chemical becomes the measurement region, even when the object to be measured has irregularities, the current value does not change and stable measurement is possible.

本発明で用いる対極3は特に限定せず、銀・塩化銀電極、飽和カロメル電極、白金電極などが挙げられる。この中で電位の再現性はよくないが、フッ酸などの酸で用いられる白金電極をよく用いられる。   The counter electrode 3 used in the present invention is not particularly limited, and examples thereof include a silver / silver chloride electrode, a saturated calomel electrode, and a platinum electrode. Of these, the potential reproducibility is not good, but a platinum electrode used with an acid such as hydrofluoric acid is often used.

一般的に印加する酸化電位は室温にて、0.6−1.0V(vs.SSE)である。   In general, the applied oxidation potential is 0.6 to 1.0 V (vs. SSE) at room temperature.

以下、実施例に基づき具体的に説明するが、本発明は、これにより制限を受けるものではない。   Hereinafter, although concretely demonstrated based on an Example, this invention is not restrict | limited by this.

[実施例1]
被測定物の材質として、SUS304を用いて試験片を作成した。試験片Aは、全く熱影響を与えてないもの、試験片Bは450℃2時間熱処理後、さらに650℃2時間熱処理を行った劣化させたもの、試験片Cは650℃2時間熱処理を行った劣化させたもの、試験片Dはスパッタ装置で使用され劣化した防着板、試験片Eは前記スパッタ装置においてチタンが付着した防着板である。電解液として1mol/lテトラフルオロホウ酸を吸水性布(10cm)に含浸させたものを、図1のように試験片に設置し、試験片‐対極(白金)間に電位差0.8Vを印加して、5分後の安定したときの電流値を測定した。結果を表1に示した。また、1mol/lテトラフルオロホウ酸に試験片A〜Dを24時間浸漬し、試験片の厚みの減少量を測定することにより、腐食量を測定した。腐食量は、電流値の結果と一致した順序になった。また、24時間浸漬した後の試験片を観察すると、電流値が100μA以上になった試験片では部分腐食がみられ、腐食が激しいことが(耐食性が低い)ことが判明した。
[Example 1]
A test piece was prepared using SUS304 as the material of the object to be measured. Specimen A is not thermally affected at all, Specimen B is heat-treated at 450 ° C. for 2 hours, and further subjected to heat treatment at 650 ° C. for 2 hours, and Specimen C is heat-treated at 650 ° C. for 2 hours. The test piece D is a deteriorated adhesion plate used in a sputtering apparatus, and the test piece E is an adhesion plate to which titanium is adhered in the sputtering apparatus. A solution obtained by impregnating a water-absorbing cloth (10 cm 2 ) with 1 mol / l tetrafluoroboric acid as an electrolytic solution is placed on a test piece as shown in FIG. 1, and a potential difference of 0.8 V is provided between the test piece and the counter electrode (platinum). After the application, the current value when stabilized after 5 minutes was measured. The results are shown in Table 1. Further, the amount of corrosion was measured by immersing the test pieces A to D in 1 mol / l tetrafluoroboric acid for 24 hours and measuring the decrease in the thickness of the test piece. The amount of corrosion was in the order consistent with the current value results. Moreover, when the test piece after being immersed for 24 hours was observed, it was found that the test piece having a current value of 100 μA or more showed partial corrosion and severe corrosion (low corrosion resistance).

Figure 0004346408
Figure 0004346408

[実施例2]
電解液として3mol/lテトラフルオロホウ酸に換えて、実施例1と同様に試験を行った。結果を表2に示した。
[Example 2]
The test was performed in the same manner as in Example 1 except that 3 mol / l tetrafluoroboric acid was used as the electrolytic solution. The results are shown in Table 2.

Figure 0004346408
Figure 0004346408

[実施例3]
電解液として1mol/l塩酸に換えて、実施例1と同様に試験を行った。結果を表3に示した。
[Example 3]
The test was performed in the same manner as in Example 1 except that 1 mol / l hydrochloric acid was used as the electrolytic solution. The results are shown in Table 3.

Figure 0004346408
Figure 0004346408

[比較例1]
電解液として1mol/lテトラフルオロホウ酸を用い、実施例1と同じ試験片及び装置を用い試験片に10cmの吸水性布を配置し、試験片−対極間の自然電位を測定した。結果を表4に示した。この自然電位の値は腐食量との相関が見られなかった。
[Comparative Example 1]
Using 1 mol / l tetrafluoroboric acid as the electrolytic solution, using the same test piece and apparatus as in Example 1, a 10 cm 2 water-absorbent cloth was placed on the test piece, and the natural potential between the test piece and the counter electrode was measured. The results are shown in Table 4. The value of this natural potential was not correlated with the amount of corrosion.

Figure 0004346408
Figure 0004346408

本発明のステンレス基材の耐食性(劣化程度)の判別法は、特に半導体製造装置およびフラットパネルディスプレイ製造装置のようなステンレス上に金属が付着した防着板の洗浄前検査、或いは、ステンレス上に多層に金属を付着させている製品のステンレスの耐食性検査に利用できる。   The method of distinguishing the corrosion resistance (degradation degree) of the stainless steel substrate of the present invention is in particular a pre-cleaning inspection of an adhesion-preventing plate with a metal adhering to stainless steel, such as a semiconductor manufacturing apparatus and a flat panel display manufacturing apparatus, or on the stainless steel. It can be used for stainless steel corrosion resistance inspection of products with metal layers.

測定装置の模式図Schematic diagram of the measuring device

符号の説明Explanation of symbols

1:被測定物(試験片、ステンレス製)
2:対極
3:吸水性の布(電解液を含浸)
4:ポテンシオスタット
1: Object to be measured (test piece, stainless steel)
2: Counter electrode 3: Absorbent cloth (impregnated with electrolyte)
4: Potentiostat

Claims (1)

被測定物であるステンレス表面に電解質を含浸させた部材を設置し、該部材にステンレスに対する対極を設け、この間に室温にて、0.6−1.0V(vs.SSE)の酸化電位を印加し、生じる電流を測定することによるステンレスの耐食性測定方法。         A member impregnated with an electrolyte is placed on the surface of the stainless steel to be measured, and a counter electrode for the stainless steel is provided on the member, and an oxidation potential of 0.6 to 1.0 V (vs. SSE) is applied at room temperature during this time. And measuring the corrosion resistance of stainless steel by measuring the resulting current.
JP2003362641A 2003-10-23 2003-10-23 Stainless steel corrosion resistance measurement method Expired - Fee Related JP4346408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362641A JP4346408B2 (en) 2003-10-23 2003-10-23 Stainless steel corrosion resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362641A JP4346408B2 (en) 2003-10-23 2003-10-23 Stainless steel corrosion resistance measurement method

Publications (2)

Publication Number Publication Date
JP2005127813A JP2005127813A (en) 2005-05-19
JP4346408B2 true JP4346408B2 (en) 2009-10-21

Family

ID=34642202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362641A Expired - Fee Related JP4346408B2 (en) 2003-10-23 2003-10-23 Stainless steel corrosion resistance measurement method

Country Status (1)

Country Link
JP (1) JP4346408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963161B2 (en) * 2017-09-28 2021-11-05 福井県 Corrosion sensor for stainless steel and its manufacturing method
WO2022149266A1 (en) * 2021-01-08 2022-07-14 三菱電機株式会社 Corrosion resistance diagnostic device, manufacturing method of corrosion resistance diagnostic device, and corrosion resistance diagnostic method

Also Published As

Publication number Publication date
JP2005127813A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
Zeng et al. EIS capacitance diagnosis of nanoporosity effect on the corrosion protection of DLC films
Zistler et al. Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids
Caldona et al. Surface electroanalytical approaches to organic polymeric coatings
Gao et al. Electrochemical behavior and nonlinear Mott-Schottky characterization of a stainless steel passive film
Dutta et al. Enabling long term monitoring of dopamine using dimensionally stable ultrananocrystalline diamond microelectrodes
Charoen-Amornkitt et al. Determination of constant phase element parameters under cyclic voltammetry conditions using a semi-theoretical equation
CN111879695A (en) Real-time monitoring method for coating failure and corrosion monitoring sensor
JP4346408B2 (en) Stainless steel corrosion resistance measurement method
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
Petrović et al. Barrier and semiconducting properties of thin anodic films on chromium in an acid solution
Dong-Ho et al. Electrochemical characteristics and damage behaviour of DLC-coated 316L stainless steel for metallic bipolar plates of PEMFCs
Jerkiewicz et al. Analysis of the mass response of the electrochemical quartz-crystal nanobalance in horizontal and vertical geometry
US20050016856A1 (en) Bath analysis
JP6540596B2 (en) Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device
US5964992A (en) Reference electrode for monitoring steel-in-concrete potentials
JP2020030187A (en) Hydrogen filling method and hydrogen embrittlement characteristics evaluation method
TWI666440B (en) Calibration-Free pH Strip And Manufacturing Method Thereof
US6563329B2 (en) Sensor for measuring resistivity
Sartorelli et al. Model-free capacitance analysis of electrodes with a 2D+ 1D dispersion of time constants
Ghoneim et al. Electrochemical properties of the anodic films formed on titanium and its Ti‐6Al‐4V alloy in HBr solution
Manjakkal et al. Electrochemical sensors with screen printed Ag| AgCl| KCl reference electrodes
Hunt et al. Determining conformal coating protection
US10996185B2 (en) In situ chemical sensing electrode reconditioning
Eftekhari Silver-selective electrode based on a direct modified electrode silver hexacyanoferrate (II) film
JP2020139818A (en) Oxygen electrode and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Ref document number: 4346408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees