JP4346253B2 - High current push-pull type booster circuit - Google Patents

High current push-pull type booster circuit Download PDF

Info

Publication number
JP4346253B2
JP4346253B2 JP2001096620A JP2001096620A JP4346253B2 JP 4346253 B2 JP4346253 B2 JP 4346253B2 JP 2001096620 A JP2001096620 A JP 2001096620A JP 2001096620 A JP2001096620 A JP 2001096620A JP 4346253 B2 JP4346253 B2 JP 4346253B2
Authority
JP
Japan
Prior art keywords
plate
electrode
plate electrode
electrodes
push
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001096620A
Other languages
Japanese (ja)
Other versions
JP2002300781A (en
Inventor
淳一 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Priority to JP2001096620A priority Critical patent/JP4346253B2/en
Publication of JP2002300781A publication Critical patent/JP2002300781A/en
Application granted granted Critical
Publication of JP4346253B2 publication Critical patent/JP4346253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直流低電圧を直流高電圧に昇圧する昇圧回路で使用されるプッシュプルタイプ昇圧回路の板状電極構造に関する。
【0002】
【従来の技術】
プッシュプルタイプ昇圧回路は、二次側における高電圧出力を確保するため、低電圧一次側は大電流が流れることとなる。このため、本願出願人による特許出願2000−218151号等の従来構成においては、一次側電流回路の大きなインダクタンスに起因して、スイッチング素子のオフ時に生じる逆起電力に起因するスパイク電圧が大きくなり、スイッチング損失の増加、スナバ回路の必要容量の増大、一次入力及び二次出力間の変換効率の低下が発生し、全体としての昇圧電源回路のパフォーマンス低下が生じていた。
【0003】
【発明が解決しようとする課題】
本願発明は、プッシュプルタイプ昇圧回路において、大電流となる一次側電流経路を最小化し、一次側電流回路のインダクタンスを最小化し、スイッチング素子のオフ時に生じる逆起電力に起因するスパイク電圧を削減し、スイッチング損失を削減し、スナバ回路の必要容量を削減し、一次入力及び二次出力間の変換効率を向上し、全体としての昇圧電源回路のパフォーマンスを向上し、二次側出力の大容量化を課題とする。
【0004】
【課題を解決するための手段】
上記の課題を解決するために、請求項1の発明では、中央にプッシュプルトランスを配置する領域及び両側部にコンデンサーを装着する端子部を備えほぼ矩形形状の第一の板状電極、一側部に電解効果トランジスタ、及びツェナーダイオードを接続する端子部を備えほぼ矩形形状であり第一の板状電極のほぼ半分の面積を備える一対の第二の板状電極、両側部に電解効果トランジスタ、コンデンサー、及びツェナーダイオードを接続する端子部を備えほぼ矩形形状であり第一の板状電極の板上部とほぼ等しい面積を備える第三の板状電極、及び電気絶縁シートを備え、第一の板状電極の下部に一対の第二の板状電極を配置し、第二の板状電極の下部に第三の板状電極を配置し、これら第一、第二、第三の各板状電極間は電気絶縁シートにより電気的に絶縁され、締結要素によりこれら第一、第二、第三の板状電極を一体に固定することを特徴とする大電流プッシュプルタイプ昇圧回路の板状電極構造とし、
【0005】
請求項2の発明では、前記第一、第二、第三の板状電極構造に配置される電子素子は、幾何学的対象位置に配置されることを特徴とし、
【0006】
請求項3の発明では、前記第一、第二、第三の板状電極を固定する締結要素は、電気絶縁性材から形成されることを特徴とする。
【0007】
【発明の実施の形態】
以下に述べる実施の形態は一実施例であり、本技術分野で通常の技術を有する技術者によれば、本願発明の技術範囲を逸脱することなく他の実施の形態を実施することは容易である。
【0008】
図1は本発明によるプッシュプルタイプ昇圧電源回路を示す。図1において、点線で囲まれる一次側回路100は、プッシュプルトランス20の一次側巻線20−2、一次側巻線の中間引き出し部B+に接続する12Vバッテリー等の電源30、B+ラインに関して電源30の両端に各々並列にm個(合計2m個)接続される電解コンデンサー7を備える。更に、一次回路100は、一次巻線のC1ライン及びB+ライン間に、電解効果トランジスタ5及びツェナーダイオード6がn個並列に接続される。電界効果トランジスタ5のソースSはB+ラインに、ドレインDはC1ラインに、及びゲートGは図示しない制御回路に接続され、ツェナーダイオード6のカソードはC1ラインに、アノードはB+ラインに各々接続される。図示されるように、一次巻線のC2ライン及びB+ライン間も同様である。なお、プッシュプルトランス20のコアー20−1を介した二次側巻線20−3の出力は、整流素子及びコンデンサーからなる整流平滑回路40を経由して負荷50に供給される。
【0009】
合計2m個の電解コンデンサー7は、バッテリー電源30の内部インピーダンスを下げると共にノイズ吸収を行い、大電流に対応するため2m個に分割される。実施例では、m=9である。合計2n個のツェナーダイオード6は、スナバー回路を構成する。更に、合計2n個の電界効果トランジスタ5は、図示しない制御回路により制御されスイッチングを行う。ツェナーダイオード6及び電界効果トランジスタ5は、共に大電流に対応するため2n個に分割される。実施例では、n=8である。
【0010】
図2及び図3は、電源回路構造を示す。図2及び図3を合わせて参照し説明する。電源回路を構成する板状電極構造は、上部板状電極1、一対の中間板状電極2、3、及び下部板状電極4から構成される。各板状電極間は、エポキシ樹脂等の電気絶縁シート8により絶縁され、アクリル樹脂等で形成される複数の絶縁ボルト10により一体に固定される。一対の中間板状電極2、3は、一側部の端子部2−1、3−1が板状電極の左右に露出するように配置される。
【0011】
電源30は、上部板状電極1を+電位、下部板状電極4を−電位とするように各端子部1−1及び4−2に、各端子部の孔部によりネジ等を使用し電気的及び機械的に接続される。プッシュプルトランス20は、一対のE型フェライトコアを対向し組み合わせ、中央部に一次巻線を巻層し、一次巻線の外周部を絶縁シート等で絶縁し、絶縁シート等の上層部に二次巻線を巻層する構成である。一次巻線の巻き線端部C1、C2は、各々ネジ止めが可能な端子が電気的及び機械的に接続される。一次巻線の中間引き出し部B+は、ネジ止めが可能な端子が電気的及び機械的に接続される。二次巻線の引き出し部20−3は、図示しない二次側平滑回路に電気的及び機械的に接続される。
プッシュプルトランス20は、一次巻線の中間引き出し部B+をボルトにより上部板状電極1の所定位置に電気的及び機械的に接続され、一次巻線の一端部C1はネジにより中間板状電極2の所定位置に電気的及び機械的に接続され、一次巻線の他端部C2も同様に中間板状電極3の所定位置に電気的及び機械的に接続される。
【0012】
図4は上部板状電極1の単体状態を、図5は一対の中間板状電極2、3の単体状態を、図6は下部板状電極4の単体状態を各々示す。上部板状電極1は、一側部に端子部1−1を備えると共に、トランス20の各一次巻線の端子部B+を電気的及び機械的に固定するネジ孔及び端子部C1、C2を挿通する矩形形状の貫通孔、三個の板状電極1、2、3を一体化固定するためのネジ孔等の円形及び矩形の貫通孔或いはネジ孔(ネジ部)を備える。一対の中間板状電極2或いは3は、共に同一形状であり、一側部に端子部2−1或いは3−1を備え、同様の貫通孔或いはネジ孔(ネジ部)を備える。下部板状電極4は、一側部に端子部4−2、及び両側部に端子部4−1を備え、同様の貫通孔或いはネジ孔(ネジ部)を備える。
【0013】
さて、図2及び図3に戻り説明する。先ず第2図において、板状電極の左右に配置する各端子は、左右共に図面に向かい上方より、下部板状電極端子4−1、中間板状電極2或いは3の端子2−1或いは3−1が交互に配列する。第2図、第3図に示される回路構造において、各端子及び以後に説明する各電子素子の配置は、左右対象に配置される(電界効果トランジスタ5のソースS、ドレインD、ゲートGの各足配置に起因して、図面に向かい、電子素子の配置が左右で上下に端子1個分ずれているが、本質的な問題ではなく左右対象配置と見なしうる)。以下の電子素子の配置接続は、第2図に向かい右側についてのみ説明するが、左側についても同様である。
【0014】
電界効果トランジスタ5は、板状電極の端子2−1、4−1の外部に配置され、ドレインDが中間板状電極2の端子2−1に、ソースSが下部板状電極4の端子4−1にハンダ等により電気的に接続されると共に機械的にも接続される。ゲートGは、図示しない制御回路に接続される。ツェナーダイオード6は、端子2−1及び4−1上に配置され、カソードがドレインDと共に端子2−1にハンダ付け等により電気的及び機械的に接続され、アノードはソースSと共に端子4−1に同様に接続される。電解コンデンサー7は、上部板状電極4上に配置され、上部板状電極4及び下部板状電極端子4−1間に同様に接続される。なお、電界効果トランジスタ5は、冷却のため、シリコン等の電気絶縁性且つ熱導電性樹脂を介して、ヒートシンクに接触及び/或いは固定される。
【0015】
以上の説明より明らかなように(特に図2に示されるよう)、三個の板状電極は、左右対象に構成され、また装着される複数の各電子素子は、電極中央に配置されるトランス20に対して対象に配置される。従ってほぼ矩形形状の平板電極上に配置される複数の各電子素子及びトランスの一次巻線間の幾何学的距離(例えば、端子C1と右側の複数の各電子素子間の距離)を最小とする配置構成である。
【0016】
【発明の効果】
以上の説明から明らかなように、請求項1の発明によれば、プッシュプルタイプ昇圧回路の一次側電流経路を上部板状電極1、一対の中間板状電極2或いは3、及び下部板状電極4からなる三個の板状電極(ブスバー)からなる積層構造とし、左右対象に各電子素子を配置することにより、一次電流経路が最小となり、一次電流回路に付随するインダクタンスが最小となり、スイッチング素子のオフ時スパイク電圧が削減され、スイッチング損失が削減され、効率が改善される。スナバー回路は、電界効果トランジスタ5のソースS、ドレインD間にツェナーダイード6を接続するのみで充分な効果を発揮し、従来構成の抵抗及びダイオードの並列接続にコンデンサーを直列接続する回路を電界効果トランジスタ5のソースS、ドレインD間に接続する構成は不要となる。この結果スナバー回路での電力消費は、著しく削減され、特に低負荷時での一次及び二次回路間の電力変換効率(全体としてのパフォーマンス)が改善される。
また請求項2の発明によれば、電子素子は幾何学対象性を持って配置され、インダクタンスを含む回路解析を容易に行うことが出来、回路設計の自由度が増加する。
更にまた、請求項3の発明によれば、電気絶縁性材から形成される締結要素により三個の板状電極を固定することにより、特別な固定要素及び板状電極間の電気的絶縁を考慮することなく、組み付け作業が容易に行え、連続製造ラインでの組み付けが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すプッシュプルタイプ昇圧電源回路の模式図である。
【図2】本発明の一実施例を示す、プッシュプルタイプ昇圧電源の構成図である。
【図3】図2で示される構成図の部分断面図である。
【図4】上部板状電極の正面図である。
【図5】中間板状電極の正面図である。
【図6】下部板状電極の正面図である。
【符号の説明】
100 プッシュプルタイプ昇圧電源回路の一次側回路
1 上部板状電極
2、3 中間板状電極
4 下部板状電極
5 電界効果トランジスタ
6 ツェダイオード
7 電解コンデンサー
8 電気絶縁シート
10 電気絶縁性締結要素
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plate-like electrode structure of a push-pull type booster circuit used in a booster circuit that boosts a DC low voltage to a DC high voltage.
[0002]
[Prior art]
Since the push-pull type booster circuit ensures a high voltage output on the secondary side, a large current flows on the low voltage primary side. For this reason, in the conventional configuration such as the patent application 2000-218151 by the applicant of the present application, the spike voltage due to the back electromotive force generated when the switching element is turned off increases due to the large inductance of the primary side current circuit, The switching loss increased, the required capacity of the snubber circuit increased, the conversion efficiency between the primary input and the secondary output decreased, and the performance of the boosting power supply circuit as a whole decreased.
[0003]
[Problems to be solved by the invention]
In the push-pull type booster circuit, the present invention minimizes the primary current path that becomes a large current, minimizes the inductance of the primary current circuit, and reduces the spike voltage caused by the counter electromotive force generated when the switching element is turned off. Reduce the switching loss, reduce the required capacity of the snubber circuit, improve the conversion efficiency between the primary input and secondary output, improve the performance of the boost power supply circuit as a whole, and increase the capacity of the secondary side output Is an issue.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the invention of claim 1, a first plate-like electrode having a substantially rectangular shape including a region where the push-pull transformer is arranged at the center and a terminal portion where a capacitor is mounted on both sides, one side A pair of second plate electrodes having a substantially rectangular shape with a terminal portion for connecting a field effect transistor and a Zener diode to the part and having an area approximately half of that of the first plate electrode, a field effect transistor on both sides, A first plate having a capacitor and a third plate electrode having a terminal portion for connecting a Zener diode and having a substantially rectangular shape and an area substantially equal to the upper portion of the first plate electrode; and an electric insulating sheet. A pair of second plate electrodes are disposed below the electrode plates, a third plate electrode is disposed below the second plate electrodes, and the first, second, and third plate electrodes. With an electrical insulation sheet Gas to be insulated, and these first, second, plate-shaped electrode structure of high current push-pull type booster circuit, characterized in that to fix the third plate electrodes together by a fastening element,
[0005]
The invention according to claim 2 is characterized in that the electronic elements arranged in the first, second, and third plate-like electrode structures are arranged at geometric object positions,
[0006]
The invention according to claim 3 is characterized in that the fastening element for fixing the first, second and third plate-like electrodes is made of an electrically insulating material.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment described below is only an example, and it is easy for an engineer who has ordinary skills in this technical field to implement other embodiments without departing from the technical scope of the present invention. is there.
[0008]
FIG. 1 shows a push-pull type step-up power supply circuit according to the present invention. In FIG. 1, a primary circuit 100 surrounded by a dotted line includes a power supply 30 such as a 12V battery connected to a primary winding 20-2 of the push-pull transformer 20 and an intermediate lead B + of the primary winding, and a power supply for the B + line. There are provided electrolytic capacitors 7 connected in parallel (m in total 2m) at both ends of 30 respectively. Further, in the primary circuit 100, n field effect transistors 5 and zener diodes 6 are connected in parallel between the C1 line and the B + line of the primary winding. The source S of the field effect transistor 5 is connected to the B + line, the drain D is connected to the C1 line, the gate G is connected to a control circuit (not shown), the cathode of the Zener diode 6 is connected to the C1 line, and the anode is connected to the B + line. . As shown, the same applies to the C2 line and B + line of the primary winding. The output of the secondary winding 20-3 via the core 20-1 of the push-pull transformer 20 is supplied to the load 50 via a rectifying / smoothing circuit 40 including a rectifying element and a capacitor.
[0009]
A total of 2 m electrolytic capacitors 7 are divided into 2 m pieces to reduce the internal impedance of the battery power supply 30 and absorb noise and to cope with a large current. In the example, m = 9. A total of 2n Zener diodes 6 constitute a snubber circuit. Further, a total of 2n field effect transistors 5 are controlled and switched by a control circuit (not shown). The Zener diode 6 and the field effect transistor 5 are both divided into 2n pieces to cope with a large current. In the example, n = 8.
[0010]
2 and 3 show the power supply circuit structure. A description will be given with reference to FIGS. The plate electrode structure constituting the power supply circuit includes an upper plate electrode 1, a pair of intermediate plate electrodes 2 and 3, and a lower plate electrode 4. Each plate-like electrode is insulated by an electrical insulating sheet 8 such as an epoxy resin and is integrally fixed by a plurality of insulating bolts 10 formed of an acrylic resin or the like. The pair of intermediate plate electrodes 2 and 3 are arranged such that the terminal portions 2-1 and 3-1 on one side are exposed to the left and right of the plate electrode.
[0011]
The power source 30 uses a screw or the like for each terminal portion 1-1 and 4-2 through a hole in each terminal portion so that the upper plate electrode 1 has a positive potential and the lower plate electrode 4 has a negative potential. Connected mechanically and mechanically. The push-pull transformer 20 has a pair of E-type ferrite cores facing each other, the primary winding is wound in the center, the outer periphery of the primary winding is insulated with an insulating sheet or the like, and the upper layer such as an insulating sheet is In this configuration, the next winding is wound. The winding ends C1 and C2 of the primary winding are electrically and mechanically connected to terminals that can be screwed respectively. A terminal that can be screwed is electrically and mechanically connected to the intermediate lead-out portion B + of the primary winding. The secondary winding lead 20-3 is electrically and mechanically connected to a secondary smoothing circuit (not shown).
In the push-pull transformer 20, the intermediate lead portion B + of the primary winding is electrically and mechanically connected to a predetermined position of the upper plate electrode 1 with a bolt, and one end portion C1 of the primary winding is connected to the intermediate plate electrode 2 with a screw. The other end portion C2 of the primary winding is also electrically and mechanically connected to a predetermined position of the intermediate plate electrode 3 in the same manner.
[0012]
4 shows the single plate state of the upper plate electrode 1, FIG. 5 shows the single plate state of the pair of intermediate plate electrodes 2 and 3, and FIG. 6 shows the single plate state of the lower plate electrode 4. The upper plate-like electrode 1 includes a terminal portion 1-1 on one side, and is inserted through screw holes and terminal portions C1 and C2 for electrically and mechanically fixing the terminal portion B + of each primary winding of the transformer 20. A rectangular through-hole, and a circular and rectangular through-hole or screw hole (screw portion) such as a screw hole for integrally fixing the three plate-like electrodes 1, 2, and 3. The pair of intermediate plate-like electrodes 2 or 3 have the same shape, and are provided with a terminal part 2-1 or 3-1 on one side part, and with a similar through hole or screw hole (screw part). The lower plate-like electrode 4 includes a terminal portion 4-2 on one side and a terminal portion 4-1 on both sides, and includes a similar through hole or screw hole (screw portion).
[0013]
Returning to FIG. 2 and FIG. First, in FIG. 2, the terminals arranged on the left and right sides of the plate-like electrode are arranged on the left and right sides of the drawing and from above, the lower plate-like electrode terminal 4-1, the intermediate plate-like electrode 2 or 3, and the terminals 2-1 or 3- 1 are arranged alternately. In the circuit structure shown in FIGS. 2 and 3, the terminals and the electronic elements described below are arranged in the left and right direction (each of the source S, drain D, and gate G of the field effect transistor 5). Due to the foot arrangement, the arrangement of the electronic elements is shifted by one terminal up and down on the left and right, but this is not an essential problem and can be regarded as the right and left target arrangement). The arrangement and connection of the following electronic elements will be described only on the right side facing FIG. 2, but the same applies to the left side.
[0014]
The field effect transistor 5 is disposed outside the terminals 2-1 and 4-1 of the plate electrode, the drain D is the terminal 2-1 of the intermediate plate electrode 2, and the source S is the terminal 4 of the lower plate electrode 4. -1 is electrically connected by solder or the like and mechanically connected. The gate G is connected to a control circuit (not shown). The Zener diode 6 is disposed on the terminals 2-1 and 4-1, the cathode is electrically and mechanically connected to the terminal 2-1 together with the drain D by soldering or the like, and the anode is connected to the terminal 4-1 together with the source S. Connected in the same way. The electrolytic capacitor 7 is disposed on the upper plate electrode 4 and similarly connected between the upper plate electrode 4 and the lower plate electrode terminal 4-1. The field effect transistor 5 is in contact with and / or fixed to a heat sink via an electrically insulating and thermally conductive resin such as silicon for cooling.
[0015]
As is clear from the above description (particularly as shown in FIG. 2), the three plate-like electrodes are configured for left and right objects, and a plurality of mounted electronic elements are arranged in the center of the electrodes. 20 is placed on the subject. Accordingly, the geometric distance between the plurality of electronic elements arranged on the substantially rectangular plate electrode and the primary winding of the transformer (for example, the distance between the terminal C1 and the plurality of electronic elements on the right side) is minimized. Arrangement configuration.
[0016]
【The invention's effect】
As is apparent from the above description, according to the invention of claim 1, the primary current path of the push-pull type booster circuit is divided into the upper plate electrode 1, the pair of intermediate plate electrodes 2 or 3, and the lower plate electrode. A laminated structure consisting of three plate electrodes (busbars) consisting of four, and by arranging each electronic element on the left and right objects, the primary current path is minimized, the inductance associated with the primary current circuit is minimized, and the switching element The off-time spike voltage is reduced, the switching loss is reduced, and the efficiency is improved. The snubber circuit exhibits a sufficient effect only by connecting the Zener diode 6 between the source S and drain D of the field effect transistor 5, and a circuit in which a capacitor is connected in series with a parallel connection of a resistor and a diode of a conventional configuration. The connection between the source S and the drain D of the effect transistor 5 is not necessary. As a result, the power consumption in the snubber circuit is significantly reduced, and the power conversion efficiency (overall performance) between the primary and secondary circuits, especially at low loads, is improved.
According to the second aspect of the present invention, the electronic elements are arranged with a geometric object, circuit analysis including inductance can be easily performed, and the degree of freedom in circuit design is increased.
Furthermore, according to the invention of claim 3, the electrical insulation between the special fixing element and the plate electrode is taken into consideration by fixing the three plate electrodes by the fastening element formed of the electrically insulating material. Therefore, the assembly work can be easily performed and the assembly on the continuous production line becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a push-pull type booster power supply circuit showing an embodiment of the present invention.
FIG. 2 is a configuration diagram of a push-pull type booster power supply according to an embodiment of the present invention.
FIG. 3 is a partial cross-sectional view of the configuration diagram shown in FIG. 2;
FIG. 4 is a front view of an upper plate electrode.
FIG. 5 is a front view of an intermediate plate electrode.
FIG. 6 is a front view of a lower plate electrode.
[Explanation of symbols]
100 Primary side circuit 1 of push-pull type step-up power supply circuit 1 Upper plate electrode 2, 3 Intermediate plate electrode 4 Lower plate electrode 5 Field effect transistor 6 Zener 7 Electrolytic capacitor 8 Electrical insulation sheet 10 Electrical insulation fastening element

Claims (3)

中央にプッシュプルトランス(20)を配置する領域及び両側部にコンデンサーを装着する端子部を備えほぼ矩形形状の第一の板状電極(1)、一側部に電解効果トランジスタ、及びツェナーダイオードを接続する端子部を備えほぼ矩形形状であり第一の板状電極のほぼ半分の面積を備える一対の第二の板状電極(2)、(3)、両側部に電解効果トランジスタ、コンデンサー、及びツェナーダイオードを接続する端子部を備えほぼ矩形形状であり第一の板状電極の板上部とほぼ等しい面積を備える第三の板状電極(4)、及び電気絶縁シート(8)を備え、第一の板状電極(1)の下部に一対の第二の板状電極(2)、(3)を配置し、第二の板状電極の下部に第三の板状電極(4)を配置し、これら第一、第二、第三の各板状電極間は電気絶縁シート(8)により電気的に絶縁され、締結要素によりこれら第一、第二、第三の板状電極を一体に固定することを特徴とする大電流プッシュプルタイプ昇圧回路の板状電極構造。An area where the push-pull transformer (20) is arranged in the center and a terminal part for mounting a capacitor on both sides, a first plate electrode (1) having a substantially rectangular shape, a field effect transistor and a Zener diode on one side A pair of second plate electrodes (2), (3) having a terminal portion to be connected and having a substantially rectangular shape and an area approximately half that of the first plate electrode; a field effect transistor, a capacitor; A third plate electrode (4) having a terminal portion for connecting a Zener diode and having a substantially rectangular shape and an area substantially equal to the upper portion of the first plate electrode; and an electrical insulating sheet (8); A pair of second plate electrodes (2) and (3) are arranged below one plate electrode (1), and a third plate electrode (4) is arranged below the second plate electrode. Between these first, second, and third plate electrodes A plate-like electrode structure for a high-current push-pull type booster circuit, wherein the plate-like electrode is electrically insulated by an insulating sheet (8), and the first, second and third plate-like electrodes are integrally fixed by a fastening element. . 請求項1において、前記第一、第二、第三の板状電極構造に配置される電子素子は、幾何学的対象位置に配置されることを特徴とする。In Claim 1, The electronic element arrange | positioned by said 1st, 2nd, 3rd plate-shaped electrode structure is arrange | positioned in a geometric object position, It is characterized by the above-mentioned. 請求項1において、前記第一、第二、第三の板状電極を固定する締結要素は、電気絶縁性材から形成されることを特徴とする。In Claim 1, The fastening element which fixes said 1st, 2nd, 3rd plate-shaped electrode is formed from an electrically insulating material, It is characterized by the above-mentioned.
JP2001096620A 2001-03-29 2001-03-29 High current push-pull type booster circuit Expired - Fee Related JP4346253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096620A JP4346253B2 (en) 2001-03-29 2001-03-29 High current push-pull type booster circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096620A JP4346253B2 (en) 2001-03-29 2001-03-29 High current push-pull type booster circuit

Publications (2)

Publication Number Publication Date
JP2002300781A JP2002300781A (en) 2002-10-11
JP4346253B2 true JP4346253B2 (en) 2009-10-21

Family

ID=18950518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096620A Expired - Fee Related JP4346253B2 (en) 2001-03-29 2001-03-29 High current push-pull type booster circuit

Country Status (1)

Country Link
JP (1) JP4346253B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611825A1 (en) * 1986-04-08 1987-11-12 Tucker Gmbh SWITCHING POWER SUPPLY FOR THE POWER SUPPLY OF STRONG CURRENT CONSUMERS, ESPECIALLY ELECTRICAL WELDING EQUIPMENT
JPH05268767A (en) * 1992-03-17 1993-10-15 Toyota Autom Loom Works Ltd Push-pull dc-dc converter

Also Published As

Publication number Publication date
JP2002300781A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
EP1760867B1 (en) Switching power supply unit
US8072305B2 (en) DC/DC converter
US20040223351A1 (en) Power conversion apparatus and solar power generation system
US9960683B2 (en) Electronic circuit device
US20100328833A1 (en) Power module with additional transient current path and power module system
CN105449987A (en) Power supply device
JP2011050160A (en) Isolated dc-dc converter
WO2013069415A1 (en) Power conversion apparatus, and method for disposing conductor in power conversion apparatus
US20190245433A1 (en) Water-cooling power supply module
JP6184507B2 (en) Driver board and power conversion device
EP2631921A1 (en) Transformer arrangement
JP5240529B2 (en) Switching power supply
JP2018085792A (en) Semiconductor device
JP5347565B2 (en) Power conversion unit
JP6436052B2 (en) Insulated power converter
JP2002369527A (en) Dc-dc converter and method of manufacturing the same
JP4346253B2 (en) High current push-pull type booster circuit
JP4120134B2 (en) Step-down power DC-DC converter and electronic circuit device
JP2020022239A (en) Power conversion device
JP2019004633A (en) Electric power conversion system
JP2011181570A (en) Transformer and switching power supply
JPS63157677A (en) Bridge type inverter
JP2011210863A (en) Capacitor unit
JP5785364B2 (en) Switching power supply
JP5451860B1 (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees