JP4345033B1 - High frequency brazing apparatus and high frequency brazing method - Google Patents

High frequency brazing apparatus and high frequency brazing method Download PDF

Info

Publication number
JP4345033B1
JP4345033B1 JP2008117323A JP2008117323A JP4345033B1 JP 4345033 B1 JP4345033 B1 JP 4345033B1 JP 2008117323 A JP2008117323 A JP 2008117323A JP 2008117323 A JP2008117323 A JP 2008117323A JP 4345033 B1 JP4345033 B1 JP 4345033B1
Authority
JP
Japan
Prior art keywords
time
brazing
temperature
base point
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117323A
Other languages
Japanese (ja)
Other versions
JP2009262217A (en
Inventor
一隆 石田
英男 石田
太 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Co Ltd
Original Assignee
Nichirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Co Ltd filed Critical Nichirin Co Ltd
Priority to JP2008117323A priority Critical patent/JP4345033B1/en
Application granted granted Critical
Publication of JP4345033B1 publication Critical patent/JP4345033B1/en
Publication of JP2009262217A publication Critical patent/JP2009262217A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】放射温度計を用いて信頼性のあるろう付け製品の製造を可能ならしめるようにしたアルミニウム材同士のろう付けを行う高周波ろう付け装置を提供する。
【解決手段】制御装置5に、放射温度計4の仕様に基づき設定した演算開始温度を含む基点から単位時間を経過する毎に、測定温度と演算開始温度の温度差を求め、基点から現時点までの経過時間中の各温度差の単位時間を加味する積分値を求める第1演算作業と、積分値を経過時間で除算して基点を始点とする単位時間を加味する一次関数の勾配を求める第2演算作業と、勾配を用いた一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3演算作業と、第1乃至第3演算作業を順次繰返す第4演算作業を行うと共に、基点からの加熱時間が設定温度到達予想時間に到達した場合に、所定時間の後熱後に高周波加熱コイル2への電力供給を停止させる電力停止指令信号発信機能を付与する。
【選択図】図1
To provide a high-frequency brazing apparatus that brazes aluminum materials so that a reliable brazed product can be manufactured using a radiation thermometer.
Each time a unit time elapses from a base point including a calculation start temperature set based on the specification of a radiation thermometer, the controller 5 obtains a temperature difference between the measured temperature and the calculation start temperature, and from the base point to the present time. A first calculation operation for obtaining an integral value that takes into account the unit time of each temperature difference during the elapsed time, and a gradient of a linear function that takes the unit time starting from the base point by dividing the integral value by the elapsed time. 2 calculation operations, a third calculation operation for obtaining an estimated time for reaching the set temperature reaching the brazing set temperature from a linear function using a gradient, and a fourth calculation operation for sequentially repeating the first to third calculation operations, and a base point When the heating time from the time reaches the set temperature arrival expected time, a power stop command signal transmission function for stopping the power supply to the high-frequency heating coil 2 after a predetermined time after heating is provided.
[Selection] Figure 1

Description

本発明は、高周波ろう付け装置および高周波ろう付け方法の改善に係り、より詳しくは、アルミニウム材同士のろう付けを行う高周波ろう付け装置および高周波ろう付け方法に関するものである。   The present invention relates to improvement of a high-frequency brazing apparatus and a high-frequency brazing method, and more particularly to a high-frequency brazing apparatus and a high-frequency brazing method for brazing aluminum materials.

高周波ろう付けでは、ろう付けする金属部材の一部を高周波加熱コイルで加熱するので、金属材料を均熱化することが難しい。通常、加熱量が一定であると仮定してタイマで加熱時間を制御する場合が多いが、このような方法では、当然、金属材料の周囲環境の影響や加熱装置の加熱量の変化に対応することができない。そこで、温度センサによりろう付けする金属部材のろう付け領域の温度を測定し、ろう付け領域が設定温度になったらろう付けが完了して、信頼性のあるろう付けを可能ならしめるようにしたろう付け装置が提案されている。以下、この従来例に係るろう付け装置の概要を、その装置を示すブロック図の図5を参照しながら説明する。   In high-frequency brazing, since a part of the metal member to be brazed is heated by a high-frequency heating coil, it is difficult to equalize the metal material. Usually, the heating time is often controlled by a timer assuming that the heating amount is constant, but such a method naturally copes with the influence of the surrounding environment of the metal material and the change in the heating amount of the heating device. I can't. Therefore, the temperature of the brazing area of the metal member to be brazed was measured by the temperature sensor, and the brazing was completed when the brazing area reached the set temperature, so that reliable brazing would be possible. Attachment devices have been proposed. Hereinafter, an outline of the brazing apparatus according to this conventional example will be described with reference to FIG. 5 of a block diagram showing the apparatus.

即ち、この従来例に係るろう付け装置は、銅パイプ51,52に対して相対的に位置決めされたトーチ55、加熱ガスの圧力、流量を制御したり、あるいはトーチ55の加熱位置を制御したりする加熱制御手段57、銅パイプ51に対して相対的に位置決めされた赤外線放射温度センサ(赤外線カメラ)54、検出された温度画像データを処理する画像データ処理手段56とから構成されている。前記画像データ処理手段56では、取り込まれた画像データをプリアンプ56a,メインアンプ56bによりまず温度と出力電圧との関係を求める。   That is, the brazing device according to this conventional example controls the torch 55 positioned relative to the copper pipes 51 and 52, the pressure and flow rate of the heating gas, or the heating position of the torch 55. A heating control means 57 for controlling the temperature, an infrared radiation temperature sensor (infrared camera) 54 positioned relative to the copper pipe 51, and an image data processing means 56 for processing the detected temperature image data. In the image data processing means 56, the relationship between the temperature and the output voltage is first obtained from the captured image data by the preamplifier 56a and the main amplifier 56b.

そして、前記関係を放射率補正56cにより設定された溶融時の銅パイプ51の放射率で補正し、リニアライザ56dでリニアライズして、温度分布データを求める。この温度分布データは温度判定処理56eで演算処理してろう溶融の判定をし、ろう付け完了信号を加熱制御手段57に出力するようにしたものである。なお、符号60は、リニアライザ56dから出力された温度分布データを画像として表示するモニタであり、また符号53はろう材である。   Then, the relationship is corrected by the emissivity of the copper pipe 51 at the time of melting set by the emissivity correction 56c, and linearized by the linearizer 56d to obtain temperature distribution data. This temperature distribution data is arithmetically processed by a temperature determination process 56e to determine brazing melting and output a brazing completion signal to the heating control means 57. Reference numeral 60 is a monitor that displays the temperature distribution data output from the linearizer 56d as an image, and reference numeral 53 is a brazing material.

従って、この従来例に係るろう付け装置によれば、赤外線放射温度センサ(赤外線カメラ)54の放射率を銅パイプ51のろうが広がる領域51bに設定することにより、容易にろう溶融の判断をすることができる。その結果、加熱制御手段57に対して適正なろう付け完了信号を出力することができるので、信頼性のあるろう付けができる。なお、この従来例に係るろう付け装置では、トーチろう付けを例として説明しているが、高周波ろう付けに対しても適応できると説明されている(例えば、特許文献1参照。)。
特開平06−285625号公報
Therefore, according to the brazing apparatus according to this conventional example, by setting the emissivity of the infrared radiation temperature sensor (infrared camera) 54 in the region 51b where the brazing of the copper pipe 51 spreads, it is easy to determine the melting of the brazing. be able to. As a result, an appropriate brazing completion signal can be output to the heating control means 57 , so that reliable brazing can be performed. In the brazing device according to the conventional example, torch brazing is described as an example, but it is also described that it can be applied to high-frequency brazing (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 06-285625

上記従来例に係るろう付け装置によれば、信頼性のあるろう付けができるので、それなりに優れていると考えられる。しかしながら、この従来例に係るろう付け装置によりろう付けし得る金属材料は、銅パイプのろう付けを例として説明されているように、放射率が高い金属材料に限られる。例えば、金属材料がアルミニウム材である場合には、放射率が低く、特に測定範囲の影響、より具体的には置きろう(ろう材)の影響を受け易く、測定温度が安定しないため、アルミニウム材同士のろう付けに対して適用することができないからである。   According to the brazing apparatus according to the above-described conventional example, since brazing with reliability can be performed, it is considered that it is excellent as such. However, the metal material that can be brazed by the brazing apparatus according to this conventional example is limited to a metal material having a high emissivity, as described in the case of brazing a copper pipe. For example, when the metal material is an aluminum material, the emissivity is low, and the aluminum material is particularly susceptible to the influence of the measurement range, more specifically, the wax (brazing material), and the measurement temperature is not stable. This is because it cannot be applied to brazing each other.

ところで、高周波加熱装置によれば、安定した性能を発揮することができるといわれている。しかしながら、アルミニウム材同士のろう付け部位にリング状のろう材を取付けるか否かによって、高周波加熱によるろう付け領域の放射温度計による測定温度の上昇状態は、縦軸に放射温度計による測定温度(単位:℃)をとり、横軸に加熱開始時からの加熱時間(単位:×10−1s)をとって示す、アルミニウム材の放射温度計による測定温度の上昇状態説明図の図4に示すように、大きく相違することを温度上昇状態確認試験によって確認した。 By the way, it is said that according to the high frequency heating device, stable performance can be exhibited. However, depending on whether or not a ring-shaped brazing material is attached to the brazing part between the aluminum materials, the rising state of the temperature measured by the radiation thermometer in the brazing region by high-frequency heating indicates the temperature measured by the radiation thermometer on the vertical axis ( As shown in FIG. 4 of an explanatory diagram of an increase in temperature measured by a radiation thermometer of an aluminum material, in which the horizontal axis represents the heating time from the start of heating (unit: × 10 −1 s) on the horizontal axis. Thus, it was confirmed by a temperature rise state confirmation test that the difference was large.

即ち、ろう付けするアルミニウム材同士のろう付け部位にリング状のろう材を取付けない場合(ろう材なし試料:2個)、図4において破線で示すように、放射温度計による測定温度はろう付け設定温度になるまでほぼ直線に近似した状態で上昇する。ところが、ろう材を取付けた場合(ろう材あり試料:2個)、放射温度計による測定温度は、高周波加熱による熱エネルギーの影響を受けて、ろう材の位置が変化したり、放射率の変化の影響を受けたりすることによって、図4において実線と一点鎖線とで示すように、上昇過程において上昇状態が大きく変動するのに加えて、たとえアルミニウム材同士の寸法形状が同じであっても、測定温度の上昇状態が相違している。   That is, when a ring-shaped brazing material is not attached to the brazing site between the aluminum materials to be brazed (two samples without brazing material), the temperature measured by the radiation thermometer is brazed as shown by the broken line in FIG. It rises in a state approximating a straight line until the set temperature is reached. However, when brazing material is attached (samples with brazing material: 2), the temperature measured by the radiation thermometer is affected by the heat energy due to high frequency heating, and the position of the brazing material changes or the emissivity changes. As shown by the solid line and the alternate long and short dash line in FIG. 4, the rising state greatly fluctuates in the rising process, and even if the dimensions and shapes of the aluminum materials are the same, The rise in measurement temperature is different.

つまり、高周波加熱装置による加熱は局所加熱であり、そしてアルミニウム材同士のろう付け領域にろう材が存在し、またろう材からのフラックスの噴出しや、ろう材の溶融等により放射率が変化し、一般的に使用されている放射温度計に影響を与えるためであると考えられる。従って、放射温度計による測定温度を、そのままアルミニウム材同士の高周波ろう付けの制御に使用すると大きな誤差が発生し、信頼性のあるろう付けができない。
しかしながら、信頼性のあるアルミニウム材からなるろう付け製品をより安価に製造するためには生産性の向上、品質安定の面から、放射温度計の測定温度を用いた高周波加熱装置を活用するのが好ましい。
In other words, the heating by the high-frequency heating device is local heating, and there is brazing material in the brazing region between the aluminum materials, and the emissivity changes due to the injection of flux from the brazing material or melting of the brazing material. It is thought that this is because the radiation thermometer that is generally used is affected. Therefore, if the temperature measured by the radiation thermometer is used as it is for the control of high-frequency brazing between aluminum materials, a large error occurs and reliable brazing cannot be performed.
However, in order to manufacture brazing products made of reliable aluminum materials at a lower cost, it is necessary to use a high-frequency heating device that uses the measurement temperature of a radiation thermometer from the viewpoint of improving productivity and stabilizing the quality. preferable.

従って、本発明の目的は、放射温度計を用いて信頼性のあるろう付け製品の製造を可能ならしめるようにしたアルミニウム材同士のろう付けを行う高周波ろう付け装置および高周波ろう付け方法を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-frequency brazing apparatus and a high-frequency brazing method for brazing aluminum materials so that reliable brazing products can be manufactured using a radiation thermometer. That is.

発明者らは、上記の課題を解決するために行った試験から得た下記の事項から、放射温度計により測定される測定温度の上昇状態が波状に変動しても、加熱量が安定しいていることを知見して、本発明に係る高周波ろう付け装置および高周波ろう付け方法を具現するに至ったものである。   From the following matters obtained from the tests conducted to solve the above problems, the inventors have found that the heating amount is stable even when the rising state of the measured temperature measured by the radiation thermometer fluctuates in a wavy manner. As a result, the high-frequency brazing apparatus and the high-frequency brazing method according to the present invention have been realized.

(1)加熱開始初期段階で通常より高い温度が測定された場合は、後の段階で通常より低い温度が測定される傾向があり、一方的に通常より高い温度が測定されたり、低い温度が測定されたりするようなことがない。
(2)アルミニウム材のろう付け部位にろう材を取付けない場合の温度は、上記のとおり、直線に近似した線を描いて上昇する。
(3)ろう材の質量は、ろう付けするアルミニウム材の質量と比較すると極僅かであるから、高周波加熱エネルギーの殆どが、アルミニウム材に供給されている。
従って、放射温度計による測定温度のすべての情報から、温度上昇直線の勾配を求めることにより、アルミニウム材のろう付け部位の温度を、目標とするろう付け設定温度にするのに必要な加熱時間を推測することができる。
(1) When a temperature higher than normal is measured at the initial stage of heating, a temperature lower than normal tends to be measured at a later stage. On the other hand, a temperature higher than normal is measured, or a temperature lower than normal is measured. There is no such thing as being measured.
(2) The temperature when the brazing material is not attached to the brazing portion of the aluminum material rises while drawing a line that approximates a straight line as described above.
(3) Since the mass of the brazing material is very small compared to the mass of the aluminum material to be brazed, most of the high frequency heating energy is supplied to the aluminum material.
Therefore, the heating time required to bring the temperature of the brazing part of the aluminum material to the target brazing set temperature is obtained by determining the slope of the temperature rise straight line from all the information of the temperature measured by the radiation thermometer. Can be guessed.

上記目的を達成するために、本発明の請求項1に係る高周波ろう付け装置が採用した手段は、高周波加熱装置からの電力の供給により、アルミニウム材同士のろう付け部位を加熱する高周波加熱コイルを備え、前記ろう付け部位の温度を測定する放射温度計を備えると共に、前記放射温度計で測定された測定温度に基づいて前記高周波加熱装置を制御する制御装置を備えてなる高周波ろう付け装置において、前記制御装置は、前記放射温度計の仕様に基づいて設定した演算開始温度基点から単位時間を経過する毎に、測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1演算作業と、前記積分値の2倍の値を前記経過時間の2乗の値で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2演算作業と、前記勾配を用いた前記一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3演算作業と、前記第3演算作業で求める設定温度到達予想時間に、実際の前記基点からの加熱時間が到達するまで、前記第1演算作業乃至第3演算作業を順次繰り返す第4演算作業を行うと共に、前記基点からの加熱時間が前記設定温度到達予想時間に到達した後に、前記高周波加熱装置に対して予め設定した所定時間の後熱処理を行い、その後に高周波加熱コイルへの電力の供給を停止させる電力停止信号を発する電力停止信号発信機能を備えてなるところにある。 In order to achieve the above object, the high-frequency brazing apparatus according to claim 1 of the present invention employs a high-frequency heating coil that heats a brazed portion of aluminum materials by supplying power from the high-frequency heating apparatus. A high-frequency brazing apparatus comprising a radiation thermometer that measures the temperature of the brazing region, and a control device that controls the high-frequency heating device based on the measured temperature measured by the radiation thermometer, wherein the control device, each time elapses unit time from the base point of the operation start temperature set based on the specification of the radiation thermometer, with determining the temperature difference between measured temperature and the operation starting temperature, from the base point to the current time A first calculation operation for obtaining an integral value that takes into account the unit time of each temperature difference during the elapsed time, and a value that is twice the integral value is divided by the square of the elapsed time. A second calculation operation for obtaining a gradient of a linear function taking the unit time from the base point as a starting point; and a third calculation operation for obtaining an estimated time for reaching a set temperature reaching the brazing set temperature from the linear function using the gradient. And performing a fourth calculation work that sequentially repeats the first calculation work to the third calculation work until the heating time from the base point reaches the set temperature arrival expected time obtained in the third calculation work, After the heating time from the base point reaches the set temperature arrival expected time, post-heat treatment is performed for a predetermined time with respect to the high-frequency heating device, and then the power for stopping the supply of power to the high-frequency heating coil There is a power stop signal transmission function for generating a stop signal.

また、本発明の請求項2に係る高周波ろう付け方法が採用した手段は、アルミニウム材同士のろう付け部位の温度を放射温度計で測定しながら、高周波加熱コイルにより加熱して前記ろう付け部位をろう付けする高周波ろう付け方法において、前記放射温度計の仕様に基づいて設定した演算開始温度基点から単位時間を経過する毎に、前記放射温度計による測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1工程と、前記積分値の2倍の値を前記経過時間の2乗の値で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2工程と、前記勾配を用いた一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3工程と、前記第3工程で求めた設定温度到達予想時間に、実際の前記基点からの加熱時間が到達するまで、前記第1工程乃至第3工程を順次繰り返す第4工程と、前記基点からの加熱時間が前記設定温度到達予想時間に到達した後に、前記高周波加熱装置に対して予め設定した所定時間の後熱処理を行い、その後に高周波加熱コイルへの電力の供給を停止させる電力停止信号を発する第5工程とからなるところにある。 Further, the means adopted by the high-frequency brazing method according to claim 2 of the present invention is that the brazing region is heated by a high-frequency heating coil while measuring the temperature of the brazing region between the aluminum materials with a radiation thermometer. In the high-frequency brazing method for brazing, every time a unit time elapses from the base point of the calculation start temperature set based on the specifications of the radiation thermometer, the temperature difference between the temperature measured by the radiation thermometer and the calculation start temperature is calculated. A first step of obtaining an integral value that takes into account the unit time of each temperature difference during the elapsed time from the base point to the present time, and a value that is twice the integral value as a square of the elapsed time. A second step of calculating a gradient of a linear function that takes into account the unit time starting from the base point by dividing, and when a set temperature is reached when the brazing set temperature is reached from the linear function using the gradient A fourth step that sequentially repeats the first to third steps until the actual heating time from the base point reaches the set temperature arrival expected time determined in the third step, After the heating time from the base point reaches the set temperature arrival expected time, post-heat treatment is performed for a predetermined time with respect to the high-frequency heating device, and then the power for stopping the supply of power to the high-frequency heating coil And a fifth step of issuing a stop signal.

本発明の請求項1に係る高周波ろう付け装置または請求項2に係る高周波ろう付け方法では、アルミニウム材同士のろう付け部位をろう付けするに当り、放射温度計の仕様に基づいて設定した演算開始温度基点から単位時間を経過する毎に、放射温度計による測定温度と演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値が演算される。前記積分値は、前記基点から現時点までの経過時間の間に、アルミニウム材のろう付け部位に対して供給された高周波加熱エネルギーに相当するものである。 In the high-frequency brazing apparatus according to claim 1 or the high-frequency brazing method according to claim 2 of the present invention, when brazing a brazed portion between aluminum materials, calculation starts set based on the specifications of the radiation thermometer. each time elapses unit time from the base point temperature, together with determining the temperature difference between measured temperature and the operation starting temperature by a radiation thermometer, for consideration of the unit time for each temperature difference in the elapsed time from the base point to the current time integral The value is calculated. The integral value corresponds to the high-frequency heating energy supplied to the brazing portion of the aluminum material during the elapsed time from the base point to the present time.

そして、前記高周波加熱エネルギーに相当する積分値の2倍の値を前記経過時間の2乗の値で除算して演算され、前記基点を始点とする前記単位時間を加味する一次関数の勾配は、各単位時間の測定温度の温度上昇直線毎の各勾配の平均的勾配となる。前記基点からの高周波加熱コイルによる加熱時間が、前記平均的勾配を用いた一次関数から求められた設定温度到達予想時間に到達すると、前記設定温度到達予想時間に到達した時点おける測定温度の如何に拘わらず、アルミニウム材のろう付け部位に対して、ろう付け設定温度になるのに必要な加熱エネルギーが供給されたことになるので、アルミニウム材のろう付け部位における実際の温度はろう付け設定温度に到達していることとなる。前記設定温度到達予想時間に到達した後、所定時間の後熱後に、高周波加熱コイルへの電力の供給が停止され、アルミニウム材同士のろう付けが終了する。 The gradient of the linear function is calculated by dividing a value twice the integral value corresponding to the high-frequency heating energy by the square value of the elapsed time, and taking into account the unit time starting from the base point. It becomes the average gradient of each gradient for each temperature rise line of the measured temperature for each unit time. Heating time by high-frequency heating coil from the base point reaches the said set determined from a linear function using an average gradient temperature estimated arrival time, whether the measured temperature of definitive to when it reaches the set temperature estimated arrival time Regardless of this, since the heating energy necessary to reach the brazing setting temperature is supplied to the brazing portion of the aluminum material, the actual temperature at the brazing portion of the aluminum material is the brazing setting temperature. Will be reached. After reaching the set temperature arrival expected time, after a predetermined time after heating, the supply of power to the high-frequency heating coil is stopped, and the brazing of the aluminum materials is completed.

従って、本発明の請求項1に係る高周波ろう付け装置または請求項2に係る高周波ろう付け方法によれば、放射温度計で測定される測定温度に基づいてアルミニウム材を高周波ろう付けするにも拘わらず、信頼性に優れたアルミニウム材からなるろう付け製品を製造することが可能になる。   Therefore, according to the high-frequency brazing apparatus according to claim 1 or the high-frequency brazing method according to claim 2 of the present invention, the aluminum material is also high-frequency brazed based on the measured temperature measured by the radiation thermometer. Therefore, it becomes possible to manufacture a brazed product made of an aluminum material having excellent reliability.

以下、本発明の高周波ろう付け方法を実施する本発明の実施の形態に係る高周波ろう付け装置を、添付図面を順次参照しながら説明する。図1は本発明の実施の形態に係る高周波ろう付け装置の模式的構成説明図であり、図2は縦軸に放射温度計による測定温度をとり、横軸に加熱開始時からの加熱時間をとって示す高周波ろう付け装置によるろう付け制御説明図である。   Hereinafter, a high-frequency brazing apparatus according to an embodiment of the present invention that performs the high-frequency brazing method of the present invention will be described with reference to the attached drawings. FIG. 1 is a schematic configuration explanatory view of a high-frequency brazing apparatus according to an embodiment of the present invention. FIG. 2 shows a measurement temperature by a radiation thermometer on the vertical axis and a heating time from the start of heating on the horizontal axis. It is brazing control explanatory drawing by the high frequency brazing apparatus shown.

図1に示す符号1は、本発明の実施の形態に係る高周波ろう付け装置である。この高周波ろう付け装置1は、アルミニウム材6aと、このアルミニウム材6aに設けられた、図示しない嵌合穴に直角に嵌合され、嵌合側にリング状のろう材7が嵌着されてなるアルミニウム材6bとからなる、形態がT字型の被ろう付け材6のろう付け領域6cを加熱する、周知の構成になる高周波加熱コイル2を備えている。この高周波加熱コイル2には、前記ろう付け領域6cの温度を測定する放射温度計4から送信され続ける測定温度(温度信号)を受取る制御装置5によって制御される高周波加熱装置3から電力が供給されるように構成されている。   Reference numeral 1 shown in FIG. 1 is a high-frequency brazing apparatus according to an embodiment of the present invention. The high-frequency brazing device 1 is fitted with an aluminum material 6a and a fitting hole (not shown) provided in the aluminum material 6a at a right angle, and a ring-shaped brazing material 7 is fitted on the fitting side. A high-frequency heating coil 2 having a well-known configuration for heating a brazing region 6c of a brazing material 6 having a T-shape and made of an aluminum material 6b is provided. The high-frequency heating coil 2 is supplied with electric power from a high-frequency heating device 3 controlled by a control device 5 that receives a measured temperature (temperature signal) continuously transmitted from a radiation thermometer 4 that measures the temperature of the brazing region 6c. It is comprised so that.

前記制御装置5は、後述する複数の演算機能を備えている。即ち、この制御装置5は、図2に示すように、前記放射温度計4の仕様(測定温度範囲)に基づいて設定した演算開始温度Fs基点Pから、予め設定された単位時間ΔXi(i=0〜n)を経過する毎に、単位時間ΔXiと、前記放射温度計4から入力される測定温度(温度サンプル)と演算開始温度Fsの温度差Fi(i=0〜n)とを順次乗算して乗算値(ΔXi・Fi)を演算すると共に、前記基点Pから現時点までの加熱時間Xi中に含まれる全ての乗算値(ΔXi・Fi)の積分値Si(i=0〜n)を求める第1演算作業を行う第1演算機能を備えている。前記積分値Siは、前記基点Pから現時点までの間に、被ろう付け材6のろう付け領域6cに供給される加熱エネルギーに相当するものである。 The control device 5 has a plurality of calculation functions to be described later. That is, as shown in FIG. 2, the control device 5 has a preset unit time ΔXi (i) from the base point P of the calculation start temperature Fs set based on the specification (measurement temperature range) of the radiation thermometer 4. = 0 to n), the unit time ΔXi and the temperature difference Fi (i = 0 to n) between the measurement temperature (temperature sample) input from the radiation thermometer 4 and the calculation start temperature Fs are sequentially obtained. Multiplication is performed to calculate a multiplication value (ΔXi · Fi), and integral values Si (i = 0 to n) of all multiplication values (ΔXi · Fi) included in the heating time Xi from the base point P to the present time are calculated. A first calculation function for performing the first calculation work to be obtained is provided. The integrated value Si corresponds to the heating energy supplied to the brazing region 6c of the brazing material 6 from the base point P to the present time.

なお、前記積分値Siを演算により求める演算手順を、下記のような演算手段に変えることができるので、この積分値Siを求める演算手段は、上記演算手順に限定されるものではない。即ち、前記基点Pから予め設定された単位時間ΔXiを経過する毎に、この単位時間ΔXi(例えば、0.1秒)が1であるとして、前記放射温度計4から入力される測定温度(温度サンプル)と演算開始温度Fsの温度差Fiを求める。次いで、前記基点Pから現時点までの温度差Fiの積分値を演算すると共に、演算により求められた温度差Fiの積分値に前記単位時間ΔXi(例えば、0.1秒)を乗算するようにしても、前記積分値Siと同値の被ろう付け材6のろう付け領域6cに供給される加熱エネルギーに相当する値を求めることができる。   The calculation procedure for obtaining the integral value Si by calculation can be changed to the following calculation means. Therefore, the calculation means for obtaining the integral value Si is not limited to the above calculation procedure. That is, every time a preset unit time ΔXi elapses from the base point P, the unit time ΔXi (for example, 0.1 second) is assumed to be 1, and the measured temperature (temperature) input from the radiation thermometer 4 A temperature difference Fi between the sample) and the calculation start temperature Fs is obtained. Next, the integral value of the temperature difference Fi from the base point P to the present time is calculated, and the integral value of the temperature difference Fi obtained by the calculation is multiplied by the unit time ΔXi (for example, 0.1 second). In addition, a value corresponding to the heating energy supplied to the brazing region 6c of the brazing material 6 having the same value as the integrated value Si can be obtained.

また、前記積分値Siの2倍の値を、前記基点Pから現時点までの経過時間Xi(=ΔXi×i)の2乗の値で除算して、前記基点Pを起点とする一次関数(F=aXi)の勾配aを求める第2演算作業を行う第2演算機能を備えている。この場合、前記積分値Siは、図2においてハッチングを施して示すように、時間軸である横軸側を底辺とする直角三角形の面積{(1/2)×Xi×Fi}に相当するため、前記一次関数の勾配aは(2Si/Xi )の算式から求められる。 Further, a value that is twice the integral value Si is divided by the square value of the elapsed time Xi (= ΔXi × i) from the base point P to the present time, and a linear function (F = AXi) is provided with a second calculation function for performing a second calculation work for obtaining the gradient a. In this case, the integrated value Si corresponds to the area {(1/2) × Xi × Fi} of a right triangle having the base on the horizontal axis side as the time axis, as shown by hatching in FIG. The slope a of the linear function is obtained from the formula (2Si / Xi 2 ).

前記勾配aを有する一次関数(F=aXi)を用いてろう付け設定温度Fnに達する設定温度到達予想時間Xkを求める第3演算作業を行う第3演算機能を備えている。さらに、前記基点Pからの高周波加熱コイル2による加熱時間Xiと前記設定温度到達予想時間Xkとの長短を比較し、加熱時間Xiが設定温度到達予想時間Xkになるまで(Xi≧Xk)、前記第1演算作業乃至第3演算作業を順次繰り返す第4演算作業を行う。また、前記基点Pからの高周波加熱コイル2による加熱時間Xiと前記設定温度到達予想時間Xkとの長短を比較し、加熱時間Xiが設定温度到達予想時間Xkになったに、前記高周波加熱装置3に対して予め設定した所定時間の後熱処理を行い、さらにその後に高周波加熱コイル2への電力の供給を停止させる電力停止信号を発する電力停止信号発信機能を備えている。 A third calculation function is provided that performs a third calculation operation for obtaining a set temperature arrival expected time Xk that reaches the brazing set temperature Fn using a linear function (F = aXi) having the gradient a. Further, the heating time Xi from the base point P by the high frequency heating coil 2 is compared with the expected temperature arrival time Xk, and until the heating time Xi reaches the setting temperature arrival time Xk (Xi ≧ Xk), A fourth calculation work is performed in which the first calculation work to the third calculation work are sequentially repeated . Moreover, the comparison with the heating time Xi by the high-frequency heating coil 2 from the base point P to the length between the set temperature estimated arrival time Xk, after heating time Xi becomes set temperature estimated arrival time Xk, the high-frequency heating apparatus for thermal treatment after a predetermined time set in advance for 3, and a further subsequent power stop signal transmitting function of generating power power stop signal for stopping the supply of the high-frequency heating coil 2.

ところで、本発明の実施の形態に係る高周波ろう付け装置1の場合は、放射温度計4として、放射率の影響をできるだけ少なくするために、300〜800℃の温度範囲を測定できる仕様のものを採用した。そこで、被ろう付け材6のろう付け領域6cの測定温度が300℃以下である場合には、測定温度は全て300℃と表示されると共に、300℃から320℃までの間の測定温度の指示値は必ずしも正確ではないため、基点Pの演算開始温度Fsを320℃と設定した。 By the way, in the case of the high frequency brazing apparatus 1 according to the embodiment of the present invention, the radiation thermometer 4 has a specification capable of measuring a temperature range of 300 to 800 ° C. in order to minimize the influence of emissivity. Adopted. Therefore, when the measured temperature of the braze region 6c of the brazing material 6 is 300 ° C. or less, measurement instructions temperatures between with displays all 300 ° C. The measurement temperature, up to 320 ° C. from 300 ° C. Since the value is not always accurate, the calculation start temperature Fs at the base point P is set to 320 ° C.

従って、前記基点Pの演算開始時間は、高周波加熱コイル2によるろう付け領域6cの加熱開始から、前記放射温度計4によるろう付け領域6cの測定温度が320℃に到達するまでの時間となる。なお、放射率の影響をそれなりに少なくすることができれば良い。
従って、測定温度範囲の仕様が300〜800℃の放射温度計でなければならないという訳ではないから、放射温度計の測定温度範囲の仕様に限定されるものではない。
Accordingly, the calculation start time of the base point P is the time from the start of heating of the brazing region 6c by the high frequency heating coil 2 until the measured temperature of the brazing region 6c by the radiation thermometer 4 reaches 320 ° C. It should be noted that the effect of emissivity can be reduced to some extent.
Therefore, the specification of the measurement temperature range does not necessarily have to be a radiation thermometer of 300 to 800 ° C., and is not limited to the specification of the measurement temperature range of the radiation thermometer.

以下、上記構成になる本発明の実施の形態に係る高周波ろう付け装置1の作用態様を説明する。即ち、この高周波ろう付け装置1によれば、被ろう付け材6の第1アルミニウム材6aと、この第1アルミニウム材6aに設けた嵌合穴への第2アルミニウム材6bの嵌合位置のろう材7を高周波加熱コイル2による加熱により溶融させてろう付け部位をろう付けするに当り、先ず制御装置5により制御される高周波加熱装置3から高周波加熱コイル2に加熱用の電力の供給が開始される。電力の供給開始と同時に、放射性温度計4から前記制御装置5に被ろう付け材6のろう付け領域6cの測定温度が温度信号として送られる。そして、電力の供給開始からの経過時間と、前記放射性温度計4から送られる前記経過時間に対応する測定温度が、前記制御装置5に設けられてなる図示しないモニタの画面に表示される。   Hereinafter, the operation mode of the high-frequency brazing apparatus 1 according to the embodiment of the present invention having the above-described configuration will be described. That is, according to the high-frequency brazing device 1, the brazing position of the first aluminum material 6a of the brazing material 6 and the fitting position of the second aluminum material 6b into the fitting hole provided in the first aluminum material 6a. When the brazing part is brazed by melting the material 7 by heating with the high-frequency heating coil 2, first, supply of heating power from the high-frequency heating device 3 controlled by the control device 5 to the high-frequency heating coil 2 is started. The Simultaneously with the start of power supply, the measured temperature of the brazing region 6c of the brazing material 6 is sent from the radioactive thermometer 4 to the control device 5 as a temperature signal. Then, an elapsed time from the start of power supply and a measured temperature corresponding to the elapsed time sent from the radioactive thermometer 4 are displayed on a monitor screen (not shown) provided in the control device 5.

前記高周波加熱コイル2による加熱の継続により、放射温度計4で測定される被ろう付け材6のろう付け領域6cの測定温度が演算開始温度Fsである320℃になると、制御装置3により下記のとおりの演算が開始される。即ち、320℃基点Pから単位時間ΔXiを経過する毎に、この単位時間ΔXiと、測定温度と前記演算開始温度の温度差Fiとが順次乗算されて乗算値(ΔXi・Fi)が演算されると共に、前記基点Pから現時点までの経過時間Xi中の各乗算値(ΔXi・Fi)の積分値Si(Si=ΣΔXi・Fi)が演算される。そして、この積分値Siを前記経過時間Xiで除算することにより、前記基点Pを始点とする一次関数(F=aXi)の勾配aが演算される。 When the measurement temperature of the brazing region 6 c of the brazing material 6 measured by the radiation thermometer 4 reaches 320 ° C., which is the calculation start temperature Fs, by the continuation of heating by the high-frequency heating coil 2, the control device 3 The operation is started. That is, every time the unit time ΔXi elapses from the base point P of 320 ° C., this unit time ΔXi is multiplied by the temperature difference Fi between the measured temperature and the calculation start temperature to calculate a multiplication value (ΔXi · Fi). In addition, an integral value Si (Si = ΣΔXi · Fi) of each multiplication value (ΔXi · Fi) during the elapsed time Xi from the base point P to the present time is calculated. Then, by dividing the integral value Si by the elapsed time Xi, a gradient a of a linear function (F = aXi) starting from the base point P is calculated.

前記勾配aを用いた一次関数(F=aXi)からろう付け設定温度Fnに達する設定温度到達予想時間Xkが演算されると共に、上記各演算が順次繰返される。そして、前記基点Pからの加熱時間Xiが前記設定温度到達予想時間Xkに到達すると、前記制御装置5は、前記加熱時間Xiが設定温度到達予想時間Xkに到達した時点における放射温度計4からの測定温度の如何に拘わらず、被ろう付け材6のろう付け部位における実際の温度がろう付け設定温度Fnに到達したと判定する。   A set temperature arrival expected time Xk that reaches the brazing set temperature Fn is calculated from a linear function (F = aXi) using the gradient a, and the above calculations are repeated sequentially. Then, when the heating time Xi from the base point P reaches the set temperature arrival expected time Xk, the control device 5 reads from the radiation thermometer 4 when the heating time Xi reaches the set temperature arrival expected time Xk. Regardless of the measured temperature, it is determined that the actual temperature at the brazing site of the brazing material 6 has reached the brazing set temperature Fn.

つまり、前記制御装置5はろう付け設定温度Fnに達するに必要な加熱エネルギーが被ろう付け材6のろう付け部位に供給されたということを認識し、この認識に基づいて被ろう付け材6のろう付け部位の実際の温度がろう付け設定温度Fnに到達したと判定する。
前記加熱時間Xiが前記設定温度到達予想時間Xkに到達したと判定した制御装置5により、高周波加熱装置3に対して予め設定した所定時間(例えば、2.5秒程度)の後熱後に、高周波加熱コイル2への電力の供給を停止させる電力停止指令信号が発せられる。
そして、前記高周波加熱装置3からの高周波加熱コイル2への電力の供給が停止されると、被ろう付け材6のろう付け部位のろう付が終了することとなる。なお、被ろう付け材6のろう付け部位を後熱するのは、このろう付け部位にろうを良く回らせることにより、ろう付け部位に瑕疵のない信頼性に優れたろう付け製品を製造するためである。
That is, the control device 5 recognizes that the heating energy necessary to reach the brazing set temperature Fn is supplied to the brazing portion of the brazing material 6, and based on this recognition, the control device 5 It is determined that the actual temperature of the brazing part has reached the brazing set temperature Fn.
The control device 5 that has determined that the heating time Xi has reached the set temperature arrival expected time Xk has a high frequency after a predetermined time (for example, about 2.5 seconds) preset for the high frequency heating device 3. A power stop command signal for stopping the supply of power to the heating coil 2 is issued.
When the supply of power from the high-frequency heating device 3 to the high-frequency heating coil 2 is stopped, the brazing of the brazed portion of the brazing material 6 is finished. The reason for post-heating the brazed part of the brazing material 6 is to produce a brazed product having excellent reliability with no defects in the brazed part by allowing the brazing part to rotate well. is there.

前記放射温度計4によって測定される被ろう付け材6のろう付け部位の測定温度は、その上昇過程において上昇状態が大きく変動するのに加えて、被ろう付け材6のアルミニウム材同士の寸法形状が同じであっても上昇状態が相違する。そのため、放射温度計4による測定温度がろう付け設定温度Fnに到達する加熱時間は大きくばらつく。   The measured temperature of the brazing portion of the brazing material 6 measured by the radiation thermometer 4 varies greatly in the rising process, and the dimensional shape of the aluminum materials of the brazing material 6 Even if are the same, the rising state is different. Therefore, the heating time for the temperature measured by the radiation thermometer 4 to reach the brazing set temperature Fn varies greatly.

しかしながら、本発明の実施の形態に係る高周波ろう付け装置1によれば、上記のとおり、ろう付け設定温度Fnに達するに必要な加熱エネルギーが被ろう付け材6のろう付け部位に供給されたという認識に基づいて、制御装置5によりろう付け部位の実際の温度がろう付け設定温度Fnに到達したと判定されて、高周波加熱装置3からの高周波加熱コイル2への電力の供給が停止される。従って、信頼性に優れたアルミニウム材からなるろう付け製品を製造することが可能になる。   However, according to the high-frequency brazing apparatus 1 according to the embodiment of the present invention, as described above, the heating energy necessary to reach the brazing set temperature Fn is supplied to the brazing portion of the brazing material 6. Based on the recognition, the control device 5 determines that the actual temperature of the brazing part has reached the brazing set temperature Fn, and the supply of power from the high-frequency heating device 3 to the high-frequency heating coil 2 is stopped. Therefore, it becomes possible to manufacture a brazed product made of an aluminum material having excellent reliability.

なお、本発明の実施の形態に係る高周波ろう付け装置1においては、加熱時間Xiが設定温度到達予想時間Xkに到達した場合に、被ろう付け材6のろう付け領域6cの温度がろう付け設定温度になったと判定するようにした。しかしながら、単位時間ΔXi毎に1つの測定温度の温度サンプルが取込まれるので、基点Pからの温度サンプル数が、演算で求められた温度サンプル数になった場合に、被ろう付け材6のろう付け領域6cの温度がろう付け設定温度になったと判定するようにすることができる。   In the high-frequency brazing device 1 according to the embodiment of the present invention, when the heating time Xi reaches the set temperature arrival expected time Xk, the temperature of the brazing region 6c of the brazing material 6 is brazed. It was determined that the temperature was reached. However, since a temperature sample of one measurement temperature is taken every unit time ΔXi, when the number of temperature samples from the base point P reaches the number of temperature samples obtained by calculation, the brazing material 6 is brazed. It can be determined that the temperature of the brazing region 6c has reached the brazing set temperature.

以下、添付図面の図3を参照しながら、本発明の実施の形態に係る高周波ろう付け装置1によって、被ろう付け材6のろう付け部位をろう付けした本発明の実施例を説明する。
図3は、モニタ画面に示されたものを図面化したもので、縦軸に放射温度計による測定温度(単位:℃)をとり、横軸に加熱開始時からの加熱時間(単位:×10−1s)をとって示すろう付け作業状況説明図である。この図3には、3個の被ろう付け材をろう付けした場合のろう付け部位の測定温度の上昇状態と、それぞれの測定温度の上昇状態に基づく、基点Pを起点とする一次関数が示されている。この場合、3個のろう付け部位の測定温度の上昇状態と一次関数は下記のとおりである。なお、この実施例における放射温度計による測定温度の単位時間ΔXiは0.1秒に設定されているが、特に0.1秒でなければならない訳ではなく、例えば0.1秒未満であっても、また0.2秒であっても良いので、単位時間ΔXiの設定秒間に限定されるものではない。
Hereinafter, with reference to FIG. 3 of the accompanying drawings, an embodiment of the present invention will be described in which the brazed portion of the brazing material 6 is brazed by the high-frequency brazing apparatus 1 according to the embodiment of the present invention.
FIG. 3 is a drawing of what is shown on the monitor screen. The vertical axis indicates the temperature measured by a radiation thermometer (unit: ° C.), and the horizontal axis indicates the heating time from the start of heating (unit: × 10). It is brazing work condition explanatory drawing which shows -1 s). FIG. 3 shows an increase state of the measured temperature of the brazed portion when three brazing materials are brazed, and a linear function starting from the base point P based on the increased state of each measured temperature. Has been. In this case, the measurement temperature rise state and the linear function of the three brazed parts are as follows. Incidentally, the unit time ΔXi of the temperature measured by the radiation thermometer in this embodiment is set to 0.1 seconds, but it does not have to be particularly 0.1 seconds, for example, less than 0.1 seconds. However, since it may be 0.2 seconds, it is not limited to the set seconds of the unit time ΔXi.

(1)被ろう付け材A
測定温度の上昇状態は黒丸印で示され、一次関数Aは実線で示されている。
(2)被ろう付け材B
測定温度の上昇状態は黒四角印で示され、一次関数Bは破線で示されている。
(3)被ろう付け材C
測定温度の上昇状態は黒三角印で示され、一次関数Cは一点鎖線で示されている。
(1) Brazing material A
The rising state of the measured temperature is indicated by a black circle, and the linear function A F is indicated by a solid line.
(2) Brazing material B
The rising state of the measured temperature is indicated by a black square, and the linear function BF is indicated by a broken line.
(3) Brazing material C
The rising state of the measured temperature is indicated by a black triangle, and the linear function CF is indicated by a one-dot chain line.

図3によれば、被ろう付け材Aの場合、放射温度計で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xaと、一次関数Aから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkはほぼ同じであるが、被ろう付け材B,Cの場合は相違している。即ち、被ろう付け材Bの場合は、放射温度計で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xbは、一次関数Bから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkよりも0.2秒程度短く、被ろう付け材Cの場合は、放射温度計で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xcは、一次関数Cから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkよりも0.8秒程度短くなっている。 According to FIG. 3, in the case of the brazing material A, it reaches the brazing set temperature Fn obtained from the heating time Xa when the measured temperature measured by the radiation thermometer reaches the brazing set temperature Fn and the linear function AF. Estimated set temperature arrival time Xk is substantially the same, but the cases of brazing materials B and C are different. That is, in the case of the brazing material B, the heating time Xb when the measured temperature measured by the radiation thermometer reaches the brazing set temperature Fn reaches the set temperature reaching the brazing set temperature Fn obtained from the linear function BF. 0.2 seconds than expected time Xk short, in the case of the brazing material C, the heating time Xc measured temperature measured by the radiation thermometer reaches the brazing temperature setting Fn, is determined from the linear function C F The estimated temperature arrival time Xk that reaches the brazing set temperature Fn is about 0.8 seconds shorter.

ところで、前記被ろう付け材Aの場合、上記のとおり、放射温度計4で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xaと、一次関数Aから求められたろう付け設定温度Fnに達する設定温度到達予想時間Xkとはほぼ同じである。しかしながら、これは全くの偶然であると理解することができる。このことが全くの偶然であるということは、放射温度計で測定された測定温度の上昇状態がほぼ直線に近似しているということから容易に想定することができる。 By the way, in the case of the brazing material A, as described above, the brazing set temperature Fn obtained from the heating time Xa in which the measured temperature measured by the radiation thermometer 4 reaches the brazing set temperature Fn and the linear function AF. Is approximately the same as the set temperature arrival expected time Xk. However, it can be understood that this is a complete coincidence. The fact that this is a complete coincidence can be easily assumed since the rising state of the measured temperature measured by the radiation thermometer approximates a straight line.

また、被ろう付け材A,Cの放射温度計で測定された測定温度のそれぞれがろう付け設定温度Fnに達する加熱時間Xaと加熱時間Xcとの相違は1.6秒程度であるのに対して、一次関数A,Cから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkの相違は0.7秒程度であり、加熱時間のばらつきが大幅(約0.9秒短縮)に改善されていることが分かる。 The difference between the heating time Xa and the heating time Xc at which the measured temperatures measured by the radiation thermometers of the brazing materials A and C reach the brazing set temperature Fn is about 1.6 seconds. Thus, the difference in the estimated temperature arrival time Xk reaching the brazing set temperature Fn obtained from the linear functions A F and C F is about 0.7 seconds, and the variation in the heating time is large (reduced by about 0.9 seconds). It can be seen that there is an improvement.

改善された約0.9秒という時間は極めて短時間であって、被ろう付け材のろう付けにそれほど悪影響を与えないようにも考えられる。しかしながら、図3から良く理解されるように、これら被ろう付け材A,B,Cの場合、加熱開始からろう付けが完了するまでのろう付け所要時間は13.5秒程度であって7%程度に相当するから、約0.9秒という加熱時間の相違はろう付け製品の品質に対して大きな影響を及ぼすということができる。   The improved time of about 0.9 seconds is very short, and it is considered that the brazing of the brazing material is not so badly affected. However, as is well understood from FIG. 3, in the case of these brazing materials A, B and C, the time required for brazing from the start of heating to the completion of brazing is about 13.5 seconds, which is 7%. It can be said that the heating time difference of about 0.9 seconds has a great influence on the quality of the brazed product.

即ち、本発明の実施例によれば、被ろう付け材のろう付け部位の加熱時間不足が改善され、また加熱時間のばらつきが少なくなるため、アルミニウムろう付け製品の信頼性の向上に対して大いに寄与し得る効果が得られることが分かる。因みに、被ろう付け材A,B,Cろう付け状況を目視検査した結果、加熱時間不足によるろう材の溶け不足、ろう付け領域の隙間への浸透不足や、加熱時間超過によるろう付け領域6cの第1アルミニウム材と第2アルミニウム材の表面溶け、ろう材の垂れ流れ等の外観上の不具合はなく、被ろう付け材A,B,Cのろう付け部位のろう付け状態は、何れも極めて良好であった。   That is, according to the embodiment of the present invention, the shortage of the heating time of the brazed portion of the brazing material is improved and the variation in the heating time is reduced, which greatly improves the reliability of the aluminum brazed product. It turns out that the effect which can contribute is acquired. Incidentally, as a result of the visual inspection of the brazing materials A, B, and C, the brazing material 6c is insufficiently melted due to insufficient heating time, the penetration of the brazing region is insufficient, and the brazing region 6c due to excessive heating time. There are no problems in appearance such as surface melting of the first aluminum material and second aluminum material, sagging flow of the brazing material, and the brazing state of the brazed portions of the brazed materials A, B, and C is extremely good. Met.

なお、以上の実施の形態においては、形態がT字型の被ろう付け材6のろう付けに適用した場合を例として説明した。しかしながら、形態がT字型の被ろう付け材に限らず、例えば、アルミニウム材同士を直状にろうウ付けする被ろう付け材に対しても、本発明の高周波ろう付け装置を適用することができる。従って、特に形態がT字型の被ろう付け材への適用限定されるものではない。また、本発明の実施の形態に係る高周波ろう付け装置によれば、放射温度計による測定温度が安定しないアルミニウム材同士のろう付けに多大な効果を発揮することができるが、アルミニウム材以外の金属材料同士のろう付けに対しても適用することができるのは勿論である。   In the above embodiment, the case where the embodiment is applied to the brazing of the T-shaped brazing material 6 has been described as an example. However, the high frequency brazing apparatus of the present invention can be applied not only to a T-shaped brazing material but also to a brazing material that brazes aluminum materials in a straight line. it can. Therefore, the application to the brazing material having a T-shape is not particularly limited. In addition, according to the high-frequency brazing apparatus according to the embodiment of the present invention, it is possible to exert a great effect on brazing between aluminum materials whose measurement temperatures by a radiation thermometer are not stable, but metals other than aluminum materials Of course, it can also be applied to brazing of materials.

本発明の実施の形態に係る高周波ろう付け装置の模式的構成説明図である。It is typical structure explanatory drawing of the high frequency brazing apparatus which concerns on embodiment of this invention. 縦軸に放射温度計による測定温度をとり、横軸に加熱開始時からの加熱時間をとって示す高周波ろう付け装置によるろう付け制御説明図である。It is brazing control explanatory drawing by the high frequency brazing apparatus which takes the measurement temperature by a radiation thermometer on a vertical axis | shaft, and takes the heating time from the heating start time on a horizontal axis. 縦軸に放射温度計による測定温度をとり、横軸に加熱開始時からの加熱時間をとって示すろう付け作業状況説明図である。It is brazing work condition explanatory drawing which takes the temperature measured by a radiation thermometer on the vertical axis, and shows the heating time from the start of heating on the horizontal axis. アルミニウム材の放射温度計による測定温度の上昇状態説明図である。It is explanatory drawing of the raise state of the measurement temperature by the radiation thermometer of aluminum material. 従来例に係るろう付け装置を示すブロック図である。It is a block diagram which shows the brazing apparatus which concerns on a prior art example.

符号の説明Explanation of symbols

1…高周波ろう付け装置
2…高周波加熱コイル
3…高周波加熱装置
4…放射温度計
5…制御装置
6…被ろう付け材,6a…第1アルミニウム材,6b…第2アルミニウム材,6c…ろう付け領域
7…ろう材
a…一次関数の勾配
Fi…温度差
Fn…ろう付け設定温度
Fs…演算開始温度(320℃)
P…基点
Si…積分値
Xi…加熱時間
Xk…設定温度到達予想時間
ΔXi…単位時間
DESCRIPTION OF SYMBOLS 1 ... High frequency brazing apparatus 2 ... High frequency heating coil 3 ... High frequency heating apparatus 4 ... Radiation thermometer 5 ... Control apparatus 6 ... Brazing material, 6a ... 1st aluminum material, 6b ... 2nd aluminum material, 6c ... Brazing Region 7: Brazing material a ... Linear function gradient Fi ... Temperature difference Fn ... Brazing set temperature Fs ... Calculation start temperature (320 ° C)
P ... Base point Si ... Integral value Xi ... Heating time Xk ... Estimated temperature reaching time ΔXi ... Unit time

Claims (2)

高周波加熱装置からの電力の供給により、アルミニウム材同士のろう付け部位を加熱する高周波加熱コイルを備え、前記ろう付け部位の温度を測定する放射温度計を備えると共に、前記放射温度計で測定された測定温度に基づいて前記高周波加熱装置を制御する制御装置を備えてなる高周波ろう付け装置において、
前記制御装置は、前記放射温度計の仕様に基づいて設定した演算開始温度基点から単位時間を経過する毎に、測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1演算作業と、
前記積分値の2倍の値を前記経過時間の2乗の値で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2演算作業と、
前記勾配を用いた前記一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3演算作業と、
前記第3演算作業で求める設定温度到達予想時間に、実際の前記基点からの加熱時間が到達するまで、前記第1演算作業乃至第3演算作業を順次繰り返す第4演算作業を行うと共に、
前記基点からの加熱時間が前記設定温度到達予想時間に到達した後に、前記高周波加熱装置に対して予め設定した所定時間の後熱処理を行い、その後に高周波加熱コイルへの電力の供給を停止させる電力停止信号を発する電力停止信号発信機能を備えてなることを特徴とする高周波ろう付け装置。
A high-frequency heating coil that heats a brazing region between aluminum materials by supplying electric power from a high-frequency heating device, a radiation thermometer that measures the temperature of the brazing region, and a measurement using the radiation thermometer In a high-frequency brazing device comprising a control device that controls the high-frequency heating device based on a measured temperature,
Wherein the control device, each time elapses unit time from the base point of the operation start temperature set based on the specification of the radiation thermometer, with determining the temperature difference between measured temperature and the operation starting temperature, from the base point to the current time A first calculation operation for obtaining an integral value that takes into account the unit time of each temperature difference during the elapsed time;
A second arithmetic operation for obtaining a gradient of a linear function taking the unit time starting from the base point by dividing a value twice the integral value by the square of the elapsed time;
A third calculation operation for obtaining an estimated time for reaching the set temperature to reach the brazing set temperature from the linear function using the gradient;
While performing the fourth calculation work to sequentially repeat the first calculation work to the third calculation work until the heating time from the base point reaches the set temperature arrival expected time obtained in the third calculation work,
After the heating time from the base point reaches the set temperature arrival expected time, post-heat treatment is performed for a predetermined time with respect to the high-frequency heating device, and then the power for stopping the supply of power to the high-frequency heating coil A high-frequency brazing apparatus comprising a power stop signal transmission function for generating a stop signal.
アルミニウム材同士のろう付け部位の温度を放射温度計で測定しながら、高周波加熱コイルにより加熱して前記ろう付け部位をろう付けする高周波ろう付け方法において、
前記放射温度計の仕様に基づいて設定した演算開始温度基点から単位時間を経過する毎に、前記放射温度計による測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1工程と、
前記積分値の2倍の値を前記経過時間の2乗の値で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2工程と、
前記勾配を用いた一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3工程と、
前記第3工程で求めた設定温度到達予想時間に、実際の前記基点からの加熱時間が到達するまで、前記第1工程乃至第3工程を順次繰り返す第4工程と、
前記基点からの加熱時間が前記設定温度到達予想時間に到達した後に、前記高周波加熱装置に対して予め設定した所定時間の後熱処理を行い、その後に高周波加熱コイルへの電力の供給を停止させる電力停止信号を発する第5工程とからなることを特徴とする高周波ろう付け方法。
In the high frequency brazing method of brazing the brazed part by heating with a high frequency heating coil while measuring the temperature of the brazed part between aluminum materials with a radiation thermometer,
Each time a unit time elapses from the base point of the calculation start temperature set based on the specifications of the radiation thermometer, the temperature difference between the measurement temperature by the radiation thermometer and the calculation start temperature is obtained, and from the base point to the present time A first step of obtaining an integral value taking into account the unit time of each temperature difference during the elapsed time;
A second step of determining a gradient of a linear function taking into account the unit time starting from the base point by dividing twice the integral value by the square of the elapsed time;
A third step of determining a set temperature arrival time to reach the brazing set temperature from a linear function using the gradient;
A fourth step of sequentially repeating the first to third steps until the actual heating time from the base point reaches the set temperature arrival expected time determined in the third step;
After the heating time from the base point reaches the set temperature arrival expected time, post-heat treatment is performed for a predetermined time with respect to the high-frequency heating device, and then the power for stopping the supply of power to the high-frequency heating coil A high-frequency brazing method comprising: a fifth step of issuing a stop signal.
JP2008117323A 2008-04-28 2008-04-28 High frequency brazing apparatus and high frequency brazing method Active JP4345033B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117323A JP4345033B1 (en) 2008-04-28 2008-04-28 High frequency brazing apparatus and high frequency brazing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117323A JP4345033B1 (en) 2008-04-28 2008-04-28 High frequency brazing apparatus and high frequency brazing method

Publications (2)

Publication Number Publication Date
JP4345033B1 true JP4345033B1 (en) 2009-10-14
JP2009262217A JP2009262217A (en) 2009-11-12

Family

ID=41253502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117323A Active JP4345033B1 (en) 2008-04-28 2008-04-28 High frequency brazing apparatus and high frequency brazing method

Country Status (1)

Country Link
JP (1) JP4345033B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949746A (en) * 2014-04-25 2014-07-30 南京航空航天大学 Inductor structure for special-shaped ultra-hard abrasive grinding wheel ultra-high frequency induction brazing and heating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101513B2 (en) 2012-12-27 2017-03-22 株式会社アマダミヤチ Metal foil lap joint method and joint structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235065A (en) * 1985-04-12 1986-10-20 Nippei Toyama Corp Control method for soldering by laser beam
JPH09234531A (en) * 1996-02-28 1997-09-09 Kobe Steel Ltd Production of aluminum honeycomb panel
JP3938845B2 (en) * 2001-02-20 2007-06-27 松下電器産業株式会社 Light beam heating method and apparatus
JP2004351503A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Method and device for brazing aluminum member
JP4830635B2 (en) * 2006-05-25 2011-12-07 株式会社デンソー Soldering method and soldering apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949746A (en) * 2014-04-25 2014-07-30 南京航空航天大学 Inductor structure for special-shaped ultra-hard abrasive grinding wheel ultra-high frequency induction brazing and heating method
CN103949746B (en) * 2014-04-25 2017-01-11 南京航空航天大学 Inductor structure for special-shaped ultra-hard abrasive grinding wheel ultra-high frequency induction brazing and heating method

Also Published As

Publication number Publication date
JP2009262217A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
EP2583773A2 (en) Additive manufacturing process comprising relieving stresses of the manufactured workpiece
CN101242926B (en) Method of computing the operating parameters of a forge welding machine
JP6615250B2 (en) Improved additive manufacturing
JP6289713B1 (en) Welding system and welding method
JP4345033B1 (en) High frequency brazing apparatus and high frequency brazing method
KR101006632B1 (en) Decompressing type heater, its heating method, and electronic product manufacturing method
CN108377583B (en) System and method for determining workpiece characteristics
JP2012011402A (en) Method for processing workpiece, device for emitting light for processing workpiece, and program used for the same
JP6050141B2 (en) Hardfacing welding apparatus and method
JP2010167450A (en) Reflow soldering method and apparatus
CN106984880A (en) A kind of stellite linear leaf automatic brazing system and method
KR200400924Y1 (en) High-frequency Welding Machine
KR20140131306A (en) Apparatus and method for friction stir welding
JP2002263879A (en) Brazing method and brazing device
JP4883773B2 (en) Pulse heat power supply
JPH1151780A (en) Heater temperature detector for pulse heat type bonding apparatus
KR20140088261A (en) Apparatus and method for friction stir welding
CN104014897A (en) Metal conduit welding technology control method
CN107378190B (en) Method and device for controlling the advance of a welding wire for arc ignition
EP3351334A1 (en) Methods and systems for visually displaying thermal duty cycles
JP4762758B2 (en) Linear heating method and linear heating control system
JP3540131B2 (en) Wire bonding apparatus and wire bonding method
CN109719413B (en) Zero-deformation defect-free welding control method
JP2676927B2 (en) Reflow equipment
JP2022175200A (en) Joining device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180724

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250