JP4344528B2 - Medical container and method for manufacturing medical container - Google Patents

Medical container and method for manufacturing medical container Download PDF

Info

Publication number
JP4344528B2
JP4344528B2 JP2003103419A JP2003103419A JP4344528B2 JP 4344528 B2 JP4344528 B2 JP 4344528B2 JP 2003103419 A JP2003103419 A JP 2003103419A JP 2003103419 A JP2003103419 A JP 2003103419A JP 4344528 B2 JP4344528 B2 JP 4344528B2
Authority
JP
Japan
Prior art keywords
fusion
blood
container body
fused
medical container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103419A
Other languages
Japanese (ja)
Other versions
JP2004305439A (en
Inventor
充 平吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2003103419A priority Critical patent/JP4344528B2/en
Publication of JP2004305439A publication Critical patent/JP2004305439A/en
Application granted granted Critical
Publication of JP4344528B2 publication Critical patent/JP4344528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、遠心分離器、ダイアライザー、輸液フィルター、白血球除去フィルター、人工肺、熱交換器、リザーバー等の血液処理用容器やケーシングのような各種の医療用容器およびその製造方法に関する。
【0002】
【従来の技術】
採血を行う場合、現在では、血液の有効利用および供血者の負担軽減などの理由から、採血血液を遠心分離などにより各血液成分に分離し、輸血者に必要な成分だけを採取し、その他の成分は供血者に返還する成分採血が行われている。
【0003】
このような成分採血において、血小板製剤を得る場合、供血者から採血した血液を血液成分分離回路に導入し、該血液成分分離回路に設置された遠心ボウルと呼ばれる遠心分離器により、血漿、白血球、血小板および赤血球の4成分に分離し、そのうちの血小板をバッグに回収して血小板製剤とし、残りの血漿、白血球および赤血球は、供血者に返血することが行われる。そして、目標とする血小板数を確保するために、上記採血、採血血液の遠心分離、血小板の回収および返血よりなる一連の血液処理工程が複数回行われる。
【0004】
遠心ボウル(遠心分離器)は、血液の流入口と血液成分の排出口とを有するステーターと、内部に円環状の貯血空間を有し、ステーターに対し回転可能に支持されたローターとで構成されており、前記流入口より貯血空間内へ血液を供給しつつ、ローターを高速回転させることにより、前記貯血空間内の血液が遠心分離され、回転中心に近い側から血漿層、バフィーコート層および赤血球層に分離されるよう構成されている(例えば、特許文献1参照)。
【0005】
この場合、ローターは、貯血空間を画成する容器(医療用容器)を構成するものであり、頂部側に血液成分の流出部を有する釣り鐘状(ベル状)の容器本体と、該容器本体の底部開口を塞ぐ円板状の底板(遮蔽部材)とを備え、容器本体と底板とは、いずれも、硬質樹脂で構成されている。そして、容器本体の側壁の端部と底板の外周部とが液密に融着されて固着されている。
【0006】
この容器本体と底板との融着は、熱融着または超音波融着により行われているが、熱融着による方法では、融着部の形状に依存した熱の伝搬性にムラが生じることから、均一な融着が困難で、融着強度が部分的に低下する部位が生じるという欠点がある。さらに、ピンホール、部分剥離、気泡の混入等の融着欠陥が生じることもある。
【0007】
また、超音波融着による方法では、前記のような融着欠陥が生じ易いという欠点がある他、融着部の超音波振動により、かすが発生するので、融着完了後、容器内を洗浄してかすを取り除かねばならず、洗浄や洗浄後の乾燥等の操作が煩雑であるという欠点がある。
【0008】
【特許文献1】
特開平9−108594号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、均一で効率の良い融着ができ、融着強度が高く、また、融着時にかすが生じない医療用容器および医療用容器の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
このような目的は、下記(1)〜(9)の本発明により達成される。
【0011】
(1) 貯血空間を有し、該貯血空間内の血液を遠心分離する機能を有する遠心分離器またはそのローターを構成する医療用容器であって、
硬質の樹脂材料で構成された周壁を有する容器本体と、硬質の樹脂材料で構成され、前記容器本体の端部開口を遮蔽する遮蔽部材とを備え
前記容器本体の周壁の端部と前記遮蔽部材の外周付近の内面とが、光吸収材を介在させた状態でレーザ光を照射することにより融着されており、
前記レーザ光の照射により形成された融着部の内周側に、前記融着部の内周の全周に渡って凹凸嵌合部が形成されていることを特徴とする医療用容器。
【0012】
(2) 前記凹凸嵌合部は、前記遮蔽部材の前記融着部の内周部に全周に渡って形成された円環状の溝で構成された凹部と、前記容器本体の側壁の下端内周部に全周に渡って形成された円環状の突起で構成され、前記凹部に嵌合し得る凸部とで構成されている上記(1)に記載の医療用容器。
【0019】
貯血空間を有し、該貯血空間内の血液を遠心分離する機能を有する遠心分離器またはそのローターを構成する医療用容器の製造方法であって、
前記医療用容器は、硬質の樹脂材料で構成された周壁を有する容器本体と、硬質の樹脂材料で構成され、前記容器本体の端部開口を遮蔽する遮蔽部材とを備え
前記医療用容器の融着すべき部位の内周側に、この融着すべき部位の内周の全周に渡って凹凸嵌合部が形成されており、
前記容器本体の周壁の端部と前記遮蔽部材の外周付近の内面とを、それらの間に光吸収材を介在させた状態でレーザ光を照射することにより融着することを特徴とする医療用容器の製造方法。
【0020】
(4) 前記凹凸嵌合部は、前記遮蔽部材の前記融着部の内周部に全周に渡って形成された円環状の溝で構成された凹部と、前記容器本体の側壁の下端内周部に全周に渡って形成された円環状の突起で構成され、前記凹部に嵌合し得る凸部とで構成されている上記(3)に記載の医療用容器の製造方法。
【0022】
(5) 前記容器本体を保持具により保持した状態で前記融着を行う上記(3)または(4)に記載の医療用容器の製造方法。
【0024】
(6) 加圧具により融着すべき部位を加圧しつつ前記融着を行う上記(3)ないし(5)のいずれかに記載の医療用容器の製造方法。
【0025】
(7) 前記加圧具の融着部に対応する部位は、レーザ光透過性を有する材料で構成され、融着の際、レーザ光を該部位を透過させて照射する上記(6)に記載の医療用容器の製造方法。
【0026】
(8) 前記容器本体および前記遮蔽部材を回転させつつ前記レーザ光の照射を行い、全周に渡って融着する上記(3)ないし(7)のいずれかに記載の医療用容器の製造方法。
【0030】
(9) 前記レーザ光の照射は、前記遮蔽部材の全周に対しほぼ等しい照射角度で行われる上記(3)ないし(8)のいずれかに記載の医療用容器の製造方法。
【0033】
【発明の実施の形態】
以下、本発明の医療用容器および医療用容器の製造方法を添付図面に示す好適実施例に基づいて詳細に説明する。
【0034】
図1は、本発明の医療用容器を遠心分離器(遠心ボウル)に適用した場合の実施形態を示す縦断面図である。まず、図1に基づき、本発明の医療用容器である遠心分離器の構成について説明する。なお、以下の説明では、図1中の上側を「上」、「上部」または「上端」、下側を「下」、「下部」または「下端」と言う。
【0035】
遠心分離器4は、ステーター40と、ステーター40に対し回転可能なローター50とで構成されている。ステーター40の上部には、ボウルヘッド41が設けられ、該ボウルヘッド41には、互いに反対方向へ向けて突出する流入口43および流出口44が形成されている。ボウルヘッド41の長手方向中央部付近には、後述するシール機構48を収納するスカート状のカバー42が形成されている。
【0036】
ボウルヘッド41の下端部には、下方へ向けて拡開する上部流出管45が液密に嵌入されている。また、ボウルヘッド41の内腔および上部流出管45の内腔には、下部流入管46が挿入されており、2重管構造をなしている。
【0037】
下部流入管46の上端461は、流出口44より上方へ突出し、流入口43に連通している。また、下部流入管46の途中には、上部流出管45の下面に対面する形状のフランジ部462が形成されている。
【0038】
上部流出管45とフランジ部462との間には、幅狭の流路463が形成され、この流路463は、ボウルヘッド41の内面と下部流入管46の外面との間に形成される流路464を介して、流出口44に連通している。
【0039】
下部流入管46の下端には、鉛直方向に延出する直管状の流入管47が接続されている。流入管47の下端は、ローター50内の底部付近に位置している。
【0040】
シール機構48は、ローター50の上端部を液密にシールするものであり、リング481と、内周縁部がボウルヘッド41に固着されたシール部材482と、シール部材482の外周縁部をリング481との間で挟持固定する押え部材483とで構成されている。
【0041】
リング481は、ローター50の回転時に、ローター50側に固定された摺動部材58と接触して摺動する凸部484を有している。シール部材482は、例えば、天然ゴム、イソプレンゴム、シリコーンゴム、スチレン−ブタジエンゴム、ウレタンゴム等の各種ゴムや各種熱可塑性エラストマー等の弾性材料よりなる膜で構成されている。
【0042】
一方、ローター50は、釣り鐘状(または俵状でもよい)をなす容器本体(ボウル本体)51と、容器本体51の下端開口を遮蔽する底板(板状の遮蔽部材)52と、容器本体51内に位置する釣り鐘状(ベル状)の外核53と、外核53の内側に嵌合された筒状の内核54とで構成され、これらを組み立てたものである。容器本体51および底板52は、いずれも回転体形状をなしており、底板52は、容器本体51に対し、融着により液密に固着されている。これについては、後に詳述する。
【0043】
内核54の内側には、前記流入管47が挿通され、ローター50は、流入管47の管軸(回転中心軸500)を中心として回転する。
【0044】
容器本体51の側壁511の内周面と、外核53の外周面との間には、円環状の貯血空間(懸濁液貯留空間)55が形成されている。また、容器本体51の肩部内面と、外核53の上部外面との間には、貯血空間55の上部に連通し、そこからローター50の回転中心軸500方向に向かう幅狭の流路56が形成されている。
【0045】
底板52は、ほぼ円板状の部材であり、その中心部には、流入管47を流下した血液を受ける凹部521が形成されている。また、内核54の下面と底板52の上面(内面)との間には、ほぼ円盤状の流路57が形成されている。この流路57の内周側は、凹部521および流入管47内に連通し、外周側は、貯血空間55の下部に連通している。
【0046】
これにより、貯血空間55の下部は、流路57、流入管47の内腔および下部流入管46の内腔を介して、流入口43に連通し、貯血空間55の上部は、流路56、流路463および流路464を介して、流出口44に連通する。
【0047】
容器本体51の上部には、縮径部515が形成されており、該縮径部515内に、前記上部流出管45およびフランジ部462が収納されている。また、縮径部515の上端部には、例えばセラミックスで構成されたリング状の摺動部材58が嵌入固定されている。
【0048】
貯血空間55は、図1中上方へ向かってその内外径が漸減するような形状(テーパ状)をなしている。特に、貯血空間55の上部は、ローター50の回転中心軸500へ向かって湾曲し、幅狭の流路56に至っている。この湾曲部分を肩部59といい、流路56の最内周の部分をダム部60という。ダム部60は、遠心分離操作時に血液成分がこれを越える(回転中心軸500側へ移行する)と、縮径部515の内面に沿って流れ、さらに流路463、464を経て流出口44より流出し、これを越えなければローター50の回転数を下げること等により血液成分を貯血空間55内に戻すことが可能な境界部である。
【0049】
また、このローター50において、貯血空間55の容積Vは、特に限定されないが、通常、50〜1000[ml]程度とするのが好ましく、100〜300[ml]程度とするのがより好ましい。
【0050】
容器本体51、底板52、外核53および内核54は、それぞれ、硬質の樹脂材料で構成されている。この硬質の樹脂材料としては、例えば、ポリカーボネート、ポリエチレン、ポリスチレンが挙げられる。
【0051】
容器本体51および底板52の構成材料(硬質の樹脂材料)の融点は、特に限定されないが、200〜400℃程度のものが好ましく、250〜350℃程度のものがより好ましい。このような材料を用いることにより、融着後の固定が早くなり、融着部5の融着性、融着の均一性がより向上する。
【0052】
また、容器本体51、底板52、外核53および内核54のうちの少なくとも容器本体51は、貯血空間55の視認性を確保するために、実質的に透明な材料で構成されているのが好ましい。
【0053】
特に、容器本体51と底板52とは、後述する融着部の融着強度を高めるために、同一または同種の材料、あるいは相溶性に優れる材料であるのが好ましい。
【0054】
以上のようなローター50は、回転駆動装置7(図2参照)により予め設定された所定の遠心条件(回転速度および回転時間)で回転される。この遠心条件により、ローター50内の血液の分離パターン(例えば、分離する血液成分数)を設定することができる。本実施形態では、血液が貯血空間55内で内層より血漿層、バフィーコート層および赤血球層に分離されるように遠心条件を設定することができる。バフィーコート層は、血小板と白血球とを含んでいる。このバフィーコート層は、血漿層および赤血球層に比べて少量であるが、ローター50が前述したような寸法条件を満たすことにより、バフィーコート層が貯血空間55から流路56内へ移行したとき、十分に広げられるので、血小板と白血球とをより明確に分離することができる。
【0055】
図4〜図6は、それぞれ、ローター50の容器本体51と底板52との融着部5を拡大して示す縦断面図である。底板52は、容器本体51に対し、融着されて固定される。すなわち、図4に示す構成では、容器本体51の側壁511の下端面513と、底板52の外周付近の内面(上面)522とが、ローター50の全周に渡って融着され、底板52の外面(下面)523側から見て円環状の融着部5を形成している。
【0056】
この場合、融着部5の幅(半径方向の長さ)は、特に限定されないが、必要かつ十分な融着強度を得ることを考慮して、1.5〜4mm程度が好ましく、2〜3mm程度がより好ましい。
【0057】
また、底板52の融着部5付近の厚さは、特に限定されないが、底板52の強度とレーザ光Lの透過性の両立を考慮して、0.05〜0.3mm程度が好ましく、0.1〜0.2mm程度がより好ましい。
【0058】
底板52の外周面は、内面522側から外面523側に向けて回転中心軸500(容器本体51の中心軸)に近づくように傾斜したテーパ面524で構成されている。このようなテーパ面524を形成することにより、回転駆動装置7への装着を確実かつ容易にすることができる。
【0059】
このテーパ面524と回転中心軸500とのなす角度(テーパ角度)は、特に限定されないが、通常、1〜40°程度とされる。なお、本発明では、このテーパ面524が形成されていないもの(テーパ角度=0)であってもよいことは、言うまでもない。
【0060】
融着部5の内周側には、凹凸嵌合部501が形成されている。この凹凸嵌合部501は、底板52側に形成された凹部502と、容器本体51側に形成され、前記凹部502に嵌合し得る凸部503とで構成されている。このような凹凸嵌合部501を設けることにより、融着部5の接合強度をより高めることができる。
【0061】
図4に示す構成では、凹部502は、底板52の融着部5の内周部に全周に渡って形成された円環状の溝で構成されており、凸部503は、容器本体51の側壁511の下端面513の内周部に全周に渡って形成された円環状の突起で構成されている。すなわち図4に示す構成では、凹凸嵌合部501は、融着部5の内周の全周に渡って形成されたものである。なお、容器本体51の側壁511の内周面には、複数のリブ512が、周方向に沿って間欠的(断続的)に形成されている。このリブ512は、容器本体51の補強効果、または貯血空間55内の血液の攪拌作用を与えるものである。
【0062】
図5に示す構成では、容器本体51の側壁511の内周面に、前記と同様のリブ512が形成されており、凸部503は、リブ512の下端に形成され、凹部502は、凸部503に対応する位置に形成されている。すなわち図5に示す構成では、凹凸嵌合部501は、融着部5の内周に沿って間欠的(断続的)に形成されている。
【0063】
図6に示す構成では、凹部502は、底板52の融着部5より内周側に全周に渡って形成された円環状の溝で構成されている。一方、容器本体51の側壁511の下端部そのものが、凸部503を構成し、この凸部503が前記凹部502に嵌合する。そして、融着部5は、凸部503の外周面(側面)および先端面に形成される。すなわち図6に示す構成では、凹凸嵌合部501は、融着部5の内周の全周に渡って形成されたものである。なお、前記図4の構成と同様に、容器本体51の側壁511の内周面には、複数のリブ512が、周方向に沿って間欠的(断続的)に形成されている。
【0064】
融着部5は、底板52の外面523側またはテーパ面524側(図6の場合)からレーザ光Lを照射することにより形成されたものである。より詳しくは、レーザ光Lをスポット状に照射し、この照射スポットを底板52の半径方向(図6の場合、テーパ面524の板厚方向)および周方向に連続的または断続的に移動するようにして、融着部5全体を形成する。
【0065】
また、図4および図6に示す構成では、凹凸嵌合部501が融着部5の内周の全周に渡って、形成されていることにより、貯血空間55と融着部5が凹凸嵌合部501によって完全に仕切られている。このため、貯血空間55内の血液が後述する光吸収材505に接することがないので、安全性の観点から優れている。
【0066】
このように、本発明では、レーザ光Lの照射により融着するので、熱融着に比べて、融着ムラが少なく、周方向に沿って均一な融着が可能となり、ピンホール、部分剥離、気泡の混入等の融着欠陥も生じ難い。その結果、融着部5は、高い融着強度(接合強度)が得られる。また、超音波融着のように、融着の際にかすが生じることがないので、遠心分離器4の製造に際し、かすを取り除くために遠心分離器4を洗浄する工程(洗浄や洗浄後の乾燥等を含む)を行わずに済み、簡単かつ少ない工程で製造することができる。
【0067】
照射するレーザ光Lの種類としては、特に限定されず、例えば、半導体レーザ、COレーザ、YAGレーザ、エキシマレーザ等が挙げられるが、その中でも特に、半導体レーザがエネルギー効率が良く、寿命が長いという理由で好ましい。
【0068】
照射するレーザ光Lの波長は、概ね、前記レーザ光Lの種類に依存するが、半導体レーザの場合、波長は、800〜1000nm程度であるのが好ましい。
【0069】
融着部(融着すべき部位)5へのレーザ光Lの照射方向(照射角度)は、特に限定されないが、各図の構成では、融着部5の領域(面)に対しほぼ直交する方向とされる。すなわち、図4および図5の構成では、ローター50の回転中心軸500とほぼ平行な方向とされ、図6の構成では、底板52の外周面(テーパ面524)に対しほぼ直交する方向とされる。その他、レーザ光Lの照射方向は、融着部5の領域(面)に対し所定角度傾斜した方向であってもよい。
【0070】
なお、融着部5へのレーザ光Lの照射角度は、底板52の全周に対しほぼ等しい角度であるのが好ましい。これにより、融着部5は、周方向に沿ってより均一な融着がなされ、さらに高い融着強度(接合強度)が得られる。
【0071】
このような融着(融着部5の形成)は、容器本体51を保持具により保持した状態で行うのが好ましい。図3は、遠心分離器4の製造方法(組立方法)、すなわち容器本体51を保持具300により保持した状態で融着を行っている状態を示す縦断面図である。
【0072】
図3に示すように、保持具300は、有底筒状の外筒301と、この外筒301内に設置された筒状の内筒302とを有する2重筒構造をなしている。内筒302は、外筒301に対し固定的に設置されているのが好ましい。この場合、内筒302は、外筒301と同心的に設置されている。また、内筒302の長さは外筒301の長さより短く設定されている。
【0073】
外筒301の図3中上端部内面には、遠心分離器4を保持したとき、容器本体51の側壁(側板)511の下端部外周面が当接するテーパ状の当接面303が形成されている。
【0074】
保持具300を以上のような構成とすることにより、遠心分離器4を安定的に保持することができる。
【0075】
このような保持具300は、遠心分離器4を図1とは上下を逆にして挿入し、保持する。この場合、遠心分離器4は、容器本体51の側壁511の下端部外周面が当接面303に当接するとともに、容器本体51の肩部59付近の外面が内筒302の図3中上端に当接(または接近)し、流入口43および流出口44を含むボウルヘッド41の頂部が外筒301内の底面に接触しないような状態で保持される。
【0076】
また、融着(融着部5の形成)は、容器本体51を保持具により保持した状態で行うとともに、加圧具350により融着すべき部位を加圧しつつ行うのが好ましい。図3に示すように、加圧具350は、中心部に軸352を有する円盤状の加圧具本体351と、この加圧具本体351の外周部に固着された加圧板353とで構成され、図3中の矢印Pで示す方向に加圧される。
【0077】
加圧板353は、遠心分離器4の融着部(融着すべき部位)5に対応する形状、すなわちリング状(図6に示す構成の場合、さらに加圧板353の外縁部が折れ曲がった形状)をなしている。これにより、融着部5の全周に渡って、均一な加圧力を作用させることができ、均一かつ強固な融着に寄与する。
【0078】
なお、図6に示す構成の加圧板353では、図3中の矢印P方向に加圧力が作用した場合、そのうちのテーパ面524に垂直な方向のベクトル成分に相当する加圧力が融着部5に作用する。
【0079】
また、加圧板353は、融着に用いるレーザ光Lの透過性を有する材料、例えば、各種ガラス、各種樹脂等の透明な材料で構成されている。そして、融着部(融着すべき部位)5へのレーザ光Lの照射は、この加圧板353を透過させて行う。
【0080】
このように、加圧板353で加圧しつつそこにレーザ光Lを照射して融着することができるので、融着作業を容易かつ確実に行うことができ、容器本体51と底板52との位置ズレも防止することができる。特に、加圧板353が透明な部材で構成されているので、加圧板353の上から遠心分離器4のレーザ光Lを照射する位置を容易に視認することができ、位置合わせが容易かつ正確に行えるとともに、レーザ光Lの照射後の融着点や融着状態を視認することもできるという利点がある。
【0081】
また、加圧板353による加圧力は、融着開始時および融着進行中の融着部5に伝達され、容器本体51の側壁511の下端面513と、底板52の外周付近の内面(上面)522とがそれぞれ光吸収材505に密着した状態で融着がなされるので、融着部5に気泡(ボイド)等が残存することもなく、より均一かつ強固に融着がなされる。
【0082】
加圧具350による加圧力(押え圧力)は、特に限定されないが、好ましくは0.1〜5MPa程度、より好ましくは0.3〜3MPa程度とされる。
【0083】
また、加圧板353を透過する際の吸収や反射によるレーザ光Lの損失は、できるだけ少ないほうがよいので、加圧板353におけるレーザ光Lの透過率は、好ましくは85%以上、より好ましくは90%以上とされる。
【0084】
このような融着(融着部5の形成)は、遠心分離器4を固定し、レーザ光Lの照射装置(光源)を回転させて行うこともできるが、装置の構成の簡素化、小型化を図ることができるという利点から、容器本体51および底板52を回転中心軸500を中心として回転させつつレーザ光Lの照射を行い、全周に渡って融着するのが好ましい。本実施形態では、遠心分離器4全体を保持具300毎回転させつつレーザ光Lの照射を行い、リング状の融着部5を形成する。
【0085】
この場合、図3に示すように、保持具300を回転中心軸500と同心的に回転するターンテーブル380の上に載置し、このターンテーブル380を図示しないモータ等の駆動源により回転駆動して、保持具300およびこれに保持された遠心分離器4ならびに加圧具350(また加圧具350の加圧具本体351および加圧板353)を回転する。
【0086】
底板52の全周に渡って融着部5へのレーザ光Lの照射角度がほぼ等しい角度であるのが好ましいことは既に述べたが、このように、容器本体51および底板52を回転させつつレーザ光Lの照射を行う構成では、レーザ光Lの照射装置(光源)側の角度を固定し、遠心分離器4側を回転させれば、全周に渡って等しい照射角度を容易に得ることができるので、好ましい。
【0087】
このような融着(融着部5の形成)に際し、本発明では、容器本体51の側壁511の下端面513と、底板52の外周付近の内面(上面)522との間に光吸収材(光吸収物質)505を介在させた状態で、レーザ光Lの照射を行う。これにより、照射されたレーザ光Lは、効率良く光吸収材505に吸収され、熱に変わるので、より低出力で効率的な融着が可能となる。また、ピンホール、部分剥離等の融着欠陥も生じ難い。その結果、さらなる融着強度(接合強度)の向上を図ることができる。
【0088】
特に、別途用意された光吸収材505を用いることにより、レーザ光を吸収させるために容器本体51や底板52そのものを着色する必要がなく、容器本体51や底板52を実質的に透明なものとすることができるので、内部(貯血空間55)の視認性を十分に確保することができる。
【0089】
光吸収材505としては、例えば、カーボンブラック等の粉末、該粉末や後述する染料を含むペースト状のもの、または該粉末や該染料を含むシート状(層状)のものが挙げられる。
【0090】
例えば、ペースト状の光吸収材505を用いる場合、側壁511の下端面513または底板52の外周付近の内面522の少なくとも一方に光吸収材505を均一に塗り、該光吸収材505を介して側壁511の下端面513と底板52の外周付近の内面522とを接合し、好ましくは加圧具350による加圧状態(例えば押え圧力:0.3〜3MPa程度)で、レーザ光Lを前記の条件で照射してこれらを融着する。
【0091】
ペースト状の光吸収材505は、その形状が自由に変えられるため、例えば図6に示すような、融着部5が湾曲、屈曲した異形の場合に適している。
【0092】
また、例えば、シート状の光吸収材505を用いる場合、融着部5の形状と同形状(円環状)に打ち抜かれた(切り取られた)シート状の光吸収材505を用意し、これを側壁511の下端面513と底板52の外周付近の内面522との間に挟み、好ましくは加圧具350による加圧状態(例えば押え圧力:0.3〜3MPa程度)で、レーザ光Lを前記の条件で照射してこれらを融着する。
【0093】
シート状の光吸収材505を用いる場合、予め融着部5に対応する形状のものを用意(製造)しておき、それを目的部位に装着すればよいので、ペースト状の光吸収材505を用いる場合に比べ、その操作が簡単であるという利点がある。
【0094】
また、光吸収材505を構成する光吸収物質(レーザ光吸収物質)として、次に挙げるような、融着部5の透明度をできるだけ低下させないものを用いることができる。このような光吸収物質(レーザ光吸収物質)としては、可視光領域(0.4μm以上0.7μm未満)の吸収が少なく、0.7〜2.5μmのレーザ光波長領域において狭い吸収帯で高いモル吸光度係数を示すものが好ましく、例えば、シアニン染料、スクウォリリウム染料、クロコニウム染料等の染料が挙げられる。
【0095】
具体例を挙げて説明すると、例えば、シアニン染料としては、下記化学式1で示される化合物、スクウォリリウム染料としては、下記化学式2で示される化合物、クロコニウム染料としては、下記化学式3で示される化合物を用いることができる。
【0096】
【化1】

Figure 0004344528
【0097】
【化2】
Figure 0004344528
【0098】
【化3】
Figure 0004344528
【0099】
以上のような光吸収物質(レーザ光吸収物質)を用いることにより、融着部5の透明度の低下を極力抑えることができるので、透明な材料で構成される容器本体51および底板52に対し、融着部5が着色されて目立ってしまい、外観上の統一感を損なうということも防止される。
【0100】
図2は、図1に示す遠心分離器4を備えた血液成分採取回路の実施形態を示す構成図である。以下、この血液成分採取回路の構成について、図2を参照しつつ説明する。
【0101】
血液成分採取回路1は、血液成分採取装置に装着されて、血液(全血)から血小板(目的とする血液成分)を採取(回収)するための回路であって、遠心分離器(遠心ボウル)4と、遠心分離器4に血液または血液成分を導入する第1のライン(血液導入ライン)2と、遠心分離器4にて分離された血液成分を回収する第2のライン(血液成分回収ライン)3と、第3のライン(採血・返血ライン)10とにより構成されている。
【0102】
血液成分採取装置は、遠心分離器4のローター50を回転する回転駆動装置7と、光学センサー61、62と、第1のライン2に設置されるポンプ9と、第3のラインに設置されるポンプ107と、バルブ83、84、85、86と、光学センサー61、62からの検出信号等に基づいてポンプ9、回転駆動装置7および各バルブ83〜86の作動を制御する制御手段(図示せず)とを有する。
【0103】
図2に示すように、第3のライン10は、主に、チューブ101と、チューブ101の先端に接続された採血針104と、チューブ101の途中にY字状の分岐コネクタ102を介して接続されたチューブ103と、チューブ103の先端に接続された瓶針108と、チューブ103の途中に接続された点滴筒105および除菌フィルター106とで構成されている。チューブ103の途中には、ローラポンプよりなる送液用のポンプ107が設置されている。
【0104】
チューブ101の基端は、T字状の分岐コネクタ12を介してチューブ13および20の一端と接続されている。チューブ101の途中には、チューブ101の内部流路を遮断・解放し得る流路開閉手段であるバルブ83が設置されている。
【0105】
第1のライン2は、チューブ13およびその一端に接続された分岐コネクタ12により構成されている。チューブ13の他端は、遠心分離器4の流入口43に接続され、チューブ13の途中には、例えばローラポンプよりなる送血用のポンプ9が設置されている。
【0106】
遠心分離器4の流出口44には、チューブ14の一端が接続され、チューブ14の他端は、T字状の分岐コネクタ15を介してチューブ16および18の一端と接続されている。
【0107】
チューブ16の他端は、血小板を貯留する血小板バッグ17に接続され、チューブ16の途中には、チューブ16内の流路を開閉するバルブ85が設置されている。
【0108】
また、チューブ18の他端は、血漿バッグ21に接続され、チューブ18の途中には、チューブ18内の流路を開閉するバルブ86が設置されている。
【0109】
一端が分岐コネクタ12に接続されているチューブ20の他端は、血漿バッグ21に接続され、チューブ20の途中には、チューブ20内の流路を開閉するバルブ84が設置されている。
【0110】
このような構成において、チューブ14、16、18、20、分岐コネクタ15、血小板バッグ17および血漿バッグ21により、第2のライン3が構成されている。このうち、チューブ14、18および血漿バッグ21は、血漿を回収するための血漿回収用分岐ラインを構成し、チューブ14、16および血小板バッグ17は、血小板を回収するための血小板回収用分岐ラインを構成する。
【0111】
回転駆動装置7は、例えば、遠心分離器4を収納するハウジングと、遠心分離器4のローター50を保持する円盤状の固定台と、この固定台を回転駆動するモータ(いずれも図示せず)とで構成されている。
【0112】
光学センサー61は、ローター50内の分離された血液成分の界面、すなわち、バフィーコート層と赤血球(濃厚赤血球)層との界面の位置を光学的に検出するもので、ローター50の外周面に対面するように設置されている。
【0113】
この光学センサー61は、LEDのような発光素子とフォトダイオードのような受光素子とを有し、発光素子から発っせられた光の血液成分での反射光を受光素子により受光し、その受光光量を光電変換するように構成されている。分離されたバフィーコート層と赤血球層とで反射光の強度が異なるため、受光光量すなわち出力電圧が変化した受光素子に対応する位置が、界面の位置として検出される。
【0114】
チューブ14の流出口44と分岐コネクタ15との間には、チューブ14内を流れる血液成分中の血小板の濃度を検出し得る光学センサー62が設置されている。この光学センサー62は、チューブ14を介して対向配置された投光部(光源)63および受光部(フォトダイオード)64で構成されている。投光部63から発せられた光(例えばレーザ光)は、チューブ14を透過して受光部64で受光され、その受光光量に応じた電気信号に変換されるが、チューブ14内を流れる血液成分中の血小板濃度に応じて透過率が変化し、受光部64での受光光量が変動するため、この変動を受光部64からの出力電圧の変化として検出することができる。
【0115】
前記各バルブ83〜86は、例えば、ソレノイド、電動モータ、またはシリンダ(油圧または空気圧)等の駆動源で作動し、該駆動源は、後述する制御手段からの信号に基づいて作動する。
【0116】
なお、血液成分採取回路1は、図2に示す構成のものに限定されないことは、言うまでもない。
【0117】
次に、図2に示す血液成分採取回路1の作用の好適例について説明する。
[1] 血液成分採取回路1を血液成分採取装置に装着する。そして、ドナー(供血者)の血管に採血針104を穿刺し、チューブ103をクレンメで閉塞し、バルブ83、85を開、その他のバルブを閉とした状態で、ポンプ9を作動(正転)する。これにより、ドナーからの血液は、チューブ101および13を介して移送され、遠心ボウル4の流入口43より流入し、流入管47および流路57を経て貯血空間55内に導入される。なお、ポンプ9の回転速度は、血液吐出量(血液供給速度)が例えば20〜100ml/min 程度となるように設定される。
【0118】
[2] また、前記工程[1]の血液移送と同時に、ポンプ107を作動して瓶針108を介して抗凝固剤(例えばACD−A液)を添加するとともに回転駆動装置7を作動して、ローター50を好ましくは3000〜6000rpm(例えば、4800rpm)で回転する。流入管47の下端開口より流出した血液は、一旦凹部521で受けられ、ローター50の回転による遠心力により、流路57を外周方向へ向けて放射状に流れ、貯血空間55に集められ、該貯血空間55において回転中心軸500側より血漿層、バフィーコート層および赤血球層に分離される。
【0119】
なお、前述したように、ローター50の融着部5は、ピンホール等の融着欠陥がなく良好かつ均一に融着され、融着強度も高いため、前述のような高速でローター50を回転しても、融着部5に亀裂や破損等が生じることはなく、十分な耐久性が確保されている。
【0120】
[3] 前記工程[1]、[2]を継続しつつ、血漿層が肩部59に到達し、さらに流路56を経てダム部60に到達したら、バルブ85を閉じ、バルブ86を開く。流路56内の血漿は、ダム部60を越え、流路463、464を経て流出口44より流出し、チューブ14、18を介して血漿バッグ21内に回収される。
【0121】
[4] ローター50内からの血漿の排出に伴い、バフィーコート層と赤血球層との界面も徐々に回転中心軸500側へ移動する。この界面は、光学センサー61により随時検出されており、界面が所定レベル(サージ開始レベル)に到達したことが検出されると、制御手段は、その検出信号(界面位置検出情報)に基づき、ポンプ9の回転を停止するよう制御する。これにより、血液の移送および血漿の回収が終了する。
【0122】
なお、前記サージ開始レベルは、貯血空間55の容積Vに対する貯血空間55内に存在する赤血球層の体積の比率が好ましくは84〜97%、より好ましくは90〜95%に達したときのレベルとする。前記比率が84%未満であると、サージ工程において血小板の回収率が低くなる。また、前記比率が97%を超えると、作用する遠心力が小さ過ぎるため、サージ工程での血漿供給速度等の条件によっては、血小板が白血球を伴って浮上し、回収された血小板中の白血球の除去率が低下する。
【0123】
[5] 続いて、制御手段の制御により、バルブ84、85を開、その他のバルブを閉とし、かつ再度ポンプ9を作動(正転)するとともに、血漿バッグ21内の血漿を、所定の血漿供給速度で、チューブ20、13、流入口43、流入管47および流路57を介して貯血空間55の下部へ供給する。供給された血漿は、貯血空間55内を上昇し、さらに流路56を回転中心軸500方向へ向かって流れる。これにより、流路56内にあるバフィーコート層中の血小板が遠心力に抗して浮上し(舞い上がり)、流路463、464を経て流出口44より流出し、チューブ14および16を介して血小板バッグ17内に回収される(サージ工程)。
【0124】
このサージ工程において、制御手段は、ポンプ9の回転速度(血漿吐出量)を制御することにより、ローター50内への血漿の供給速度を好ましくは10〜90ml/min程度、より好ましくは25〜70ml/min程度に設定する。血漿供給速度が10ml/min未満では、血小板の回収に要する時間が長くなり、90ml/minを超えると、血小板とともに白血球の浮上量が増え、回収された血小板中の白血球の除去率が低下し易くなる。
【0125】
[6] ローター50内からの血小板の流出に伴い、光学センサー62により検出される血小板濃度は、上昇傾向を示し、その血小板濃度が所定値に達したら、制御手段の制御により、ポンプ9の回転数を例えば30〜85%程度に下げて、ローター50内への血漿の供給速度を低減させる。なお、血漿の低速供給の継続に従い、光学センサー62により検出される血小板濃度は増加し、ピークに達した後、減少に転じる。
【0126】
[7] 光学センサー62により検出される血小板濃度が予め設定された基準値以下となったら、血小板バッグ17への血小板の回収が終了したものとみなし、制御手段の制御により、ポンプ9を停止してローター50内への血漿の供給を停止し、さらに回転駆動装置7を停止する。これにより、血小板の回収が終了する。
【0127】
[8] バルブ83、85を開、その他のバルブを閉とし、ポンプ9を逆回転する。これにより、遠心ボウル4内に残った赤血球、白血球および少量の血漿が、流入管47、流入口43、チューブ13、101を介して、ドナーに返血される。
【0128】
また、本工程の後またはその途中で、バルブ84、86を開、その他のバルブを閉としてポンプ9を作動(正転)し、血漿バッグ21内の血漿をチューブ20、13、流入口43、流入管47を介してローター50内に入れ、続いて、バルブ83、85を開、その他のバルブを閉としてポンプ9を逆回転し、血漿バッグ21から移したローター50内の血漿を、流入管47、流入口43、チューブ13、101を介して、ドナーに返血してもよい。
【0129】
[9] ポンプ9を作動(正転)して、前記工程[1]を行い、さらに前記工程[2]〜[8]を行う。これにより、採血血液に対し、血小板バッグ17への血小板の回収およびその他の血液成分のドナーへの返血がなされる。
【0130】
[10] 血小板バッグ17付近のチューブ16を例えば融着により封止し、さらにこの封止部を切断、分離することにより、血小板製剤入りの血小板バッグ17が得られる。
【0131】
なお、上記[5]のサージ工程に代わり、第3のライン10および第1のライン2を介して、より低速で貯血空間55の下部へ血液を供給し、血液成分の界面を回転中心軸500方向へ移動させて血小板をダム部60から流出させる操作を行ってもよい。
【0132】
以上のように、本実施形態の血液成分採取回路1では、血漿等の血液成分や血液を貯血空間55に下方より供給して、分離された血液成分の界面を緩徐に移動させるので、界面を乱すことなく、バフィーコート層中からの血小板の取り出しを確実に行うことができ、血小板の収率および回収された血小板中の白血球の除去率が向上する。
【0133】
特に、血小板排出時における血液成分の供給速度の設定により、血小板の排出条件が最適に調整され、よって、白血球の除去率が極めて高い高品質の血小板製剤が得られる。しかも、光学センサー61や62による検出値に基づいて、装置の諸動作、特に血液成分の供給開始のタイミングや供給速度等を制御するため、自動化とともにより高精度の制御が可能となり、血小板の回収率および回収された血小板中の白血球の除去率がさらに向上する。このようなことから、該血小板製剤を用いた場合、肝炎、エイズ、GVHD等の感染をより高い確率で防止することができ、安全性が高い。
【0134】
以上、本発明を図示の各実施形態に基づいて説明したが、本発明の医療用容器は、図示のものに限定されないことは言うまでもない。上述した医療用容器の各部の構成は、同様の機能を発揮し得る任意の構成のものと置換することができ、また任意の構成を付加することができる。
【0135】
また、上記では、本発明の医療用容器を、遠心分離器(遠心ボウル)を例にして説明したが、本発明の医療用容器は、これに限定されず、例えば、ダイアライザー、輸液フィルター、白血球除去フィルター等のフィルター類、人工肺、熱交換器、リザーバー等の血液処理用容器や医療用機器のケーシングのような各種の医療用容器に適用することができる。
【0136】
【発明の効果】
以上述べたように、本発明によれば、医療用容器の融着部を均一に融着することができ、ピンホール、部分剥離、気泡の混入等の融着欠陥が生じ難く、融着強度が高い。
【0137】
特に、容器本体や遮蔽部材とは別途の光吸収材を用いるので、容器本体や遮蔽部材自体を着色することなく、前述のような優れた融着部を得ることができる。
【0138】
また、融着時にかすが生じないため、洗浄工程等が不要であり、医療用容器を容易に(効率良く)組み立てまたは製造することができる。
【図面の簡単な説明】
【図1】本発明の医療用容器を遠心分離器に適用した場合の実施形態を示す縦断面図である。
【図2】図1に示す遠心分離器を備える血液成分採取回路の実施形態を模式的に示す構成図である。
【図3】図1に示す医療用容器(遠心分離器)の製造方法(融着方法)の一例を示す縦断面図である。
【図4】本発明の医療用容器における容器本体と底板との融着部付近の構成例を拡大して示す縦断面図である。
【図5】本発明の医療用容器における容器本体と底板との融着部付近の構成例を拡大して示す縦断面図である。
【図6】本発明の医療用容器における容器本体と底板との融着部付近の構成例を拡大して示す縦断面図である。
【符号の説明】
1 血液成分採取回路
2 第1のライン
3 第2のライン
4 遠心分離器(遠心ボウル)
40 ステーター
41 ボウルヘッド
42 カバー
43 流入口
44 流出口
45 上部流出管
46 下部流入管
461 上端
462 フランジ部
463、464 流路
47 流入管
48 シール機構
481 リング
482 シール部材
483 押え部材
484 凸部
5 融着部
50 ローター
500 回転中心軸
501 凹凸嵌合部
502 凹部
503 凸部
505 光吸収材
51 容器本体
511 側壁
512 リブ
513 下端面
515 縮径部
52 底板
521 凹部
522 内面(上面)
523 外面(下面)
524 テーパ面
53 外核
54 内核
55 貯血空間
56、57 流路
58 摺動部材
59 肩部
60 ダム部
61、62 光学センサー
63 投光部
64 受光部
7 回転駆動装置
83〜86 バルブ
9 ポンプ
10 第3のライン
101 チューブ
102 分岐コネクタ
103 チューブ
104 採血針
105 点滴筒
106 除菌フィルター
107 ポンプ
108 瓶針
12 分岐コネクタ
13、14 チューブ
15 分岐コネクタ
16 チューブ
17 血小板バッグ
18 チューブ
20 チューブ
21 血漿バッグ
300 保持具
301 外筒
302 内筒
303 当接面
350 加圧具
351 加圧具本体
352 軸
353 加圧板
380 ターンテーブル
L レーザ光
P 加圧力[0001]
BACKGROUND OF THE INVENTION
The present invention relates to various medical containers such as blood processing containers and casings such as a centrifugal separator, a dialyzer, an infusion filter, a leukocyte removal filter, an artificial lung, a heat exchanger, and a reservoir, and a method for producing the same.
[0002]
[Prior art]
At the time of blood collection, for the purpose of effective use of blood and reduction of burden on blood donors, the blood sample is separated into each blood component by centrifugation, etc., and only the components necessary for the transfuser are collected. Ingredients are collected to return the ingredients to the blood donor.
[0003]
In such a component blood collection, when obtaining a platelet preparation, blood collected from a blood donor is introduced into a blood component separation circuit, and a centrifuge called a centrifuge bowl installed in the blood component separation circuit is used for plasma, white blood cells, The platelets and red blood cells are separated into four components, and the platelets are collected in a bag to obtain a platelet preparation, and the remaining plasma, white blood cells and red blood cells are returned to the blood donor. In order to secure the target platelet count, a series of blood processing steps including the blood collection, the centrifugation of the collected blood, the collection of platelets, and the return of blood are performed a plurality of times.
[0004]
A centrifuge bowl (centrifugal separator) is composed of a stator having a blood inlet and a blood component outlet, and a rotor having an annular blood storage space and rotatably supported with respect to the stator. The blood in the blood storage space is centrifuged by rotating the rotor at high speed while supplying blood into the blood storage space from the inlet, and the plasma layer, the buffy coat layer, and the red blood cells are separated from the side near the rotation center. It is comprised so that it may isolate | separate into a layer (for example, refer patent document 1).
[0005]
In this case, the rotor constitutes a container (medical container) that defines a blood storage space, a bell-shaped (bell-shaped) container body having a blood component outflow portion on the top side, and the container body. A disk-shaped bottom plate (shielding member) that closes the bottom opening is provided, and both the container body and the bottom plate are made of hard resin. And the edge part of the side wall of a container main body and the outer peripheral part of a baseplate are fuse | melted liquid-tightly, and are adhering.
[0006]
The container body and the bottom plate are fused by thermal fusion or ultrasonic fusion. However, in the method using thermal fusion, unevenness in heat propagation depending on the shape of the fusion part occurs. Therefore, there is a disadvantage that uniform fusion is difficult and a part where the fusion strength is partially reduced is generated. Furthermore, fusing defects such as pinholes, partial peeling, and air bubbles may occur.
[0007]
In addition, the method using ultrasonic fusion has the disadvantage that the above-mentioned fusion defects are likely to occur, and debris is generated by the ultrasonic vibration of the fusion part. After the fusion is completed, the inside of the container is washed. There is a drawback in that the scraps must be removed, and operations such as washing and drying after washing are complicated.
[0008]
[Patent Document 1]
JP-A-9-108594
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a medical container capable of performing uniform and efficient fusion, high fusion strength, and no debris during fusion, and a method for producing the medical container.
[0010]
[Means for Solving the Problems]
  The purpose of this is as follows (1) to(9)This is achieved by the present invention.
[0011]
  (1)A centrifuge having a blood storage space and having a function of centrifuging blood in the blood storage space or a medical container constituting the rotor thereof,
  A container body having a peripheral wall made of a hard resin material, and a shielding member made of a hard resin material and shielding an end opening of the container body.,
  The end of the peripheral wall of the container body and the inner surface near the outer periphery of the shielding member are fused together by irradiating laser light with a light absorbing material interposed therebetween.And
  A concave-convex fitting portion is formed over the entire inner circumference of the fusion portion on the inner circumference side of the fusion portion formed by the laser light irradiation.A medical container characterized by that.
[0012]
  (2)The concave-convex fitting portion is formed on a concave portion formed of an annular groove formed on the inner peripheral portion of the fusion-bonding portion of the shielding member over the entire periphery, and a lower end inner peripheral portion of the side wall of the container body. It is composed of an annular protrusion formed over the entire circumference, and is composed of a convex portion that can be fitted into the concave portion.The medical container as described in said (1).
[0019]
  (3)A centrifuge having a blood storage space and having a function of centrifuging blood in the blood storage space or a method for producing a medical container constituting a rotor thereof,
  The medical container isA container body having a peripheral wall made of a hard resin material, and a shielding member made of a hard resin material and shielding an end opening of the container body.,
  On the inner peripheral side of the site to be fused of the medical container, an uneven fitting portion is formed over the entire inner circumference of the site to be fused,
  The medical body characterized in that the end of the peripheral wall of the container body and the inner surface near the outer periphery of the shielding member are fused by irradiating a laser beam with a light absorbing material interposed therebetween. Container manufacturing method.
[0020]
  (4)The concave-convex fitting portion is formed on a concave portion formed of an annular groove formed on the inner peripheral portion of the fusion-bonding portion of the shielding member over the entire periphery, and a lower end inner peripheral portion of the side wall of the container body. The method for producing a medical container according to the above (3), which is constituted by an annular protrusion formed over the entire circumference and a convex portion that can be fitted into the concave portion.
[0022]
  (5)  The fusion is performed in a state where the container body is held by a holder.(3) or (4)A method for producing the medical container according to 1.
[0024]
  (6)  The above-mentioned fusion is performed while pressurizing a portion to be fused by a pressure tool.(3) to (5)The manufacturing method of the medical container in any one of.
[0025]
  (7)  The part corresponding to the fusion part of the pressurizing tool is made of a material having laser beam transparency, and the laser beam is transmitted through the part and irradiated at the time of fusion.(6)A method for producing the medical container according to 1.
[0026]
  (8)  The laser beam is irradiated while rotating the container main body and the shielding member, and is fused over the entire circumference.(3) to (7)The manufacturing method of the medical container in any one of.
[0030]
  (9)  The laser beam irradiation is performed at an approximately equal irradiation angle with respect to the entire circumference of the shielding member.(3) to (8)The manufacturing method of the medical container in any one of.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the medical container and the method for producing the medical container of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
[0034]
FIG. 1 is a longitudinal sectional view showing an embodiment when the medical container of the present invention is applied to a centrifuge (centrifuge bowl). First, based on FIG. 1, the structure of the centrifuge which is a medical container of this invention is demonstrated. In the following description, the upper side in FIG. 1 is referred to as “upper”, “upper” or “upper end”, and the lower side is referred to as “lower”, “lower” or “lower end”.
[0035]
The centrifuge 4 includes a stator 40 and a rotor 50 that can rotate with respect to the stator 40. A bowl head 41 is provided on the upper portion of the stator 40, and an inlet 43 and an outlet 44 that protrude in opposite directions are formed in the bowl head 41. Near the center of the bowl head 41 in the longitudinal direction, a skirt-like cover 42 that houses a seal mechanism 48 described later is formed.
[0036]
An upper outlet pipe 45 that expands downward is liquid-tightly fitted into the lower end of the bowl head 41. A lower inflow tube 46 is inserted into the lumen of the bowl head 41 and the upper outflow tube 45 to form a double tube structure.
[0037]
An upper end 461 of the lower inlet pipe 46 projects upward from the outlet 44 and communicates with the inlet 43. Further, a flange portion 462 having a shape facing the lower surface of the upper outflow pipe 45 is formed in the middle of the lower inflow pipe 46.
[0038]
A narrow flow path 463 is formed between the upper outflow pipe 45 and the flange portion 462, and this flow path 463 is a flow formed between the inner surface of the bowl head 41 and the outer surface of the lower inflow pipe 46. It communicates with the outflow port 44 via a path 464.
[0039]
A straight tubular inflow pipe 47 extending in the vertical direction is connected to the lower end of the lower inflow pipe 46. The lower end of the inflow pipe 47 is located near the bottom in the rotor 50.
[0040]
The sealing mechanism 48 liquid-tightly seals the upper end portion of the rotor 50. The ring 481, the seal member 482 whose inner peripheral edge is fixed to the bowl head 41, and the outer peripheral edge of the seal member 482 are connected to the ring 481. And a presser member 483 that is sandwiched and fixed therebetween.
[0041]
The ring 481 has a convex portion 484 that slides in contact with the sliding member 58 fixed to the rotor 50 side when the rotor 50 rotates. The seal member 482 is made of a film made of an elastic material such as various rubbers such as natural rubber, isoprene rubber, silicone rubber, styrene-butadiene rubber, and urethane rubber, and various thermoplastic elastomers.
[0042]
On the other hand, the rotor 50 includes a container body (bowl body) 51 having a bell shape (or a bowl shape), a bottom plate (plate-shaped shielding member) 52 that shields the lower end opening of the container body 51, and the container body 51. A bell-shaped (bell-shaped) outer core 53 and a cylindrical inner core 54 fitted inside the outer core 53 are assembled. Both the container main body 51 and the bottom plate 52 have a rotating body shape, and the bottom plate 52 is fixed to the container main body 51 in a liquid-tight manner by fusion bonding. This will be described in detail later.
[0043]
The inflow pipe 47 is inserted inside the inner core 54, and the rotor 50 rotates about the pipe axis (rotation center axis 500) of the inflow pipe 47.
[0044]
An annular blood storage space (suspension storage space) 55 is formed between the inner peripheral surface of the side wall 511 of the container body 51 and the outer peripheral surface of the outer core 53. Further, a narrow flow path 56 that communicates with the upper part of the blood storage space 55 between the shoulder inner surface of the container main body 51 and the upper outer surface of the outer core 53, from there toward the rotation center axis 500 of the rotor 50. Is formed.
[0045]
The bottom plate 52 is a substantially disk-shaped member, and a concave portion 521 for receiving the blood flowing down the inflow tube 47 is formed at the center thereof. A substantially disc-shaped channel 57 is formed between the lower surface of the inner core 54 and the upper surface (inner surface) of the bottom plate 52. The inner peripheral side of the flow path 57 communicates with the recess 521 and the inflow pipe 47, and the outer peripheral side communicates with the lower part of the blood storage space 55.
[0046]
Thereby, the lower part of the blood storage space 55 communicates with the inflow port 43 through the flow path 57, the lumen of the inflow pipe 47 and the lumen of the lower inflow pipe 46, and the upper part of the blood storage space 55 is connected to the flow path 56, It communicates with the outflow port 44 via the flow path 463 and the flow path 464.
[0047]
A reduced diameter portion 515 is formed on the upper portion of the container body 51, and the upper outlet pipe 45 and the flange portion 462 are accommodated in the reduced diameter portion 515. A ring-shaped sliding member 58 made of, for example, ceramics is fitted and fixed to the upper end portion of the reduced diameter portion 515.
[0048]
The blood reservoir space 55 has a shape (tapered shape) whose inner and outer diameters gradually decrease upward in FIG. In particular, the upper part of the blood storage space 55 is curved toward the rotation center axis 500 of the rotor 50 and reaches a narrow flow path 56. This curved portion is referred to as a shoulder portion 59, and the innermost peripheral portion of the flow path 56 is referred to as a dam portion 60. The dam portion 60 flows along the inner surface of the reduced diameter portion 515 when the blood component exceeds this (when moving to the rotation center axis 500 side) during the centrifugation operation, and further flows from the outlet 44 through the flow paths 463 and 464. This is a boundary portion where the blood component can flow back into the blood storage space 55 by, for example, lowering the rotational speed of the rotor 50 if it does not exceed this.
[0049]
In the rotor 50, the volume V of the blood storage space 55 is not particularly limited, but is usually preferably about 50 to 1000 [ml], and more preferably about 100 to 300 [ml].
[0050]
The container main body 51, the bottom plate 52, the outer core 53, and the inner core 54 are each made of a hard resin material. Examples of the hard resin material include polycarbonate, polyethylene, and polystyrene.
[0051]
Although melting | fusing point of the constituent material (hard resin material) of the container main body 51 and the baseplate 52 is not specifically limited, The thing of about 200-400 degreeC is preferable, and the thing of about 250-350 degreeC is more preferable. By using such a material, the fixing after the fusion is accelerated, and the fusion property of the fusion part 5 and the uniformity of the fusion are further improved.
[0052]
Further, at least the container body 51 among the container body 51, the bottom plate 52, the outer core 53, and the inner core 54 is preferably made of a substantially transparent material in order to ensure the visibility of the blood storage space 55. .
[0053]
In particular, the container main body 51 and the bottom plate 52 are preferably the same or the same kind of material or a material excellent in compatibility in order to increase the fusion strength of the fusion part described later.
[0054]
The rotor 50 as described above is rotated under predetermined centrifugal conditions (rotation speed and rotation time) set in advance by the rotation drive device 7 (see FIG. 2). Under this centrifugal condition, the blood separation pattern (for example, the number of blood components to be separated) in the rotor 50 can be set. In the present embodiment, the centrifugal conditions can be set so that the blood is separated from the inner layer into the plasma layer, the buffy coat layer, and the red blood cell layer in the blood storage space 55. The buffy coat layer contains platelets and white blood cells. Although this buffy coat layer is a small amount compared to the plasma layer and the red blood cell layer, when the rotor 50 satisfies the dimensional conditions as described above, when the buffy coat layer moves from the blood storage space 55 into the flow path 56, Since it is sufficiently spread, platelets and leukocytes can be more clearly separated.
[0055]
4 to 6 are enlarged longitudinal sectional views showing the fused portion 5 between the container main body 51 and the bottom plate 52 of the rotor 50, respectively. The bottom plate 52 is fused and fixed to the container body 51. That is, in the configuration shown in FIG. 4, the lower end surface 513 of the side wall 511 of the container body 51 and the inner surface (upper surface) 522 near the outer periphery of the bottom plate 52 are fused over the entire periphery of the rotor 50. An annular fused portion 5 is formed as viewed from the outer surface (lower surface) 523 side.
[0056]
In this case, the width (the length in the radial direction) of the fused portion 5 is not particularly limited, but is preferably about 1.5 to 4 mm in view of obtaining necessary and sufficient fusion strength, and is preferably 2 to 3 mm. The degree is more preferable.
[0057]
Further, the thickness of the bottom plate 52 in the vicinity of the fused portion 5 is not particularly limited, but is preferably about 0.05 to 0.3 mm in consideration of both the strength of the bottom plate 52 and the transmittance of the laser light L. About 1 to 0.2 mm is more preferable.
[0058]
The outer peripheral surface of the bottom plate 52 includes a tapered surface 524 that is inclined so as to approach the rotation center axis 500 (the center axis of the container body 51) from the inner surface 522 side toward the outer surface 523 side. By forming such a tapered surface 524, it is possible to reliably and easily attach the rotary drive device 7.
[0059]
The angle (taper angle) formed by the tapered surface 524 and the rotation center axis 500 is not particularly limited, but is usually about 1 to 40 °. In the present invention, needless to say, the taper surface 524 may not be formed (taper angle = 0).
[0060]
A concave / convex fitting portion 501 is formed on the inner peripheral side of the fused portion 5. The concave / convex fitting portion 501 includes a concave portion 502 formed on the bottom plate 52 side and a convex portion 503 formed on the container body 51 side and capable of fitting into the concave portion 502. By providing such an uneven fitting portion 501, the bonding strength of the fused portion 5 can be further increased.
[0061]
In the configuration shown in FIG. 4, the concave portion 502 is formed of an annular groove formed on the inner peripheral portion of the fusion portion 5 of the bottom plate 52 over the entire circumference, and the convex portion 503 is formed on the container body 51. It is comprised by the annular | circular shaped protrusion formed in the inner peripheral part of the lower end surface 513 of the side wall 511 over the perimeter. That is, in the configuration shown in FIG. 4, the concave / convex fitting portion 501 is formed over the entire inner circumference of the fused portion 5. A plurality of ribs 512 are formed intermittently (intermittently) along the circumferential direction on the inner peripheral surface of the side wall 511 of the container body 51. The rib 512 provides a reinforcing effect for the container body 51 or a stirring action for blood in the blood storage space 55.
[0062]
In the configuration shown in FIG. 5, ribs 512 similar to those described above are formed on the inner peripheral surface of the side wall 511 of the container body 51, the convex portion 503 is formed at the lower end of the rib 512, and the concave portion 502 is a convex portion. It is formed at a position corresponding to 503. That is, in the configuration shown in FIG. 5, the concave-convex fitting portion 501 is formed intermittently (intermittently) along the inner periphery of the fused portion 5.
[0063]
In the configuration shown in FIG. 6, the concave portion 502 is formed by an annular groove formed over the entire circumference on the inner circumferential side from the fused portion 5 of the bottom plate 52. On the other hand, the lower end portion of the side wall 511 of the container body 51 itself forms a convex portion 503, and the convex portion 503 is fitted into the concave portion 502. The fused portion 5 is formed on the outer peripheral surface (side surface) and the front end surface of the convex portion 503. That is, in the configuration shown in FIG. 6, the concave / convex fitting portion 501 is formed over the entire inner circumference of the fused portion 5. 4, a plurality of ribs 512 are formed intermittently (intermittently) along the circumferential direction on the inner peripheral surface of the side wall 511 of the container main body 51.
[0064]
The fused portion 5 is formed by irradiating the laser beam L from the outer surface 523 side or the tapered surface 524 side (in the case of FIG. 6) of the bottom plate 52. More specifically, the laser beam L is irradiated in a spot shape, and this irradiation spot is moved continuously or intermittently in the radial direction of the bottom plate 52 (in the case of FIG. 6, the thickness direction of the tapered surface 524) and in the circumferential direction. Thus, the entire fused portion 5 is formed.
[0065]
Further, in the configuration shown in FIGS. 4 and 6, the concave / convex fitting portion 501 is formed over the entire inner circumference of the fusion portion 5, so that the blood reservoir space 55 and the fusion portion 5 are unevenly fitted. It is completely partitioned by the joint part 501. For this reason, since the blood in the blood storage space 55 does not contact the light absorbing material 505 described later, this is excellent from the viewpoint of safety.
[0066]
As described above, in the present invention, since fusion is performed by irradiation with the laser beam L, there is less unevenness of fusion compared to thermal fusion, and uniform fusion can be achieved along the circumferential direction. In addition, fusing defects such as air bubbles are hardly generated. As a result, the fusion part 5 can obtain a high fusion strength (bonding strength). Further, since there is no debris generated during fusion as in ultrasonic fusion, a process of washing the centrifuge 4 to remove debris during the manufacture of the centrifuge 4 (cleaning and drying after washing) Etc.) and can be manufactured with simple and few processes.
[0067]
The type of laser light L to be irradiated is not particularly limited, and for example, a semiconductor laser, CO2A laser, a YAG laser, an excimer laser, and the like can be given. Among them, a semiconductor laser is particularly preferable because of its high energy efficiency and long life.
[0068]
The wavelength of the laser beam L to be irradiated generally depends on the type of the laser beam L, but in the case of a semiconductor laser, the wavelength is preferably about 800 to 1000 nm.
[0069]
The irradiation direction (irradiation angle) of the laser beam L to the fusion part (site to be fused) 5 is not particularly limited, but in the configuration of each figure, it is substantially orthogonal to the region (plane) of the fusion part 5. The direction. That is, in the configurations of FIGS. 4 and 5, the direction is substantially parallel to the rotation center axis 500 of the rotor 50, and in the configuration of FIG. 6, the direction is substantially orthogonal to the outer peripheral surface (tapered surface 524) of the bottom plate 52. The In addition, the irradiation direction of the laser beam L may be a direction inclined by a predetermined angle with respect to the region (surface) of the fused portion 5.
[0070]
In addition, it is preferable that the irradiation angle of the laser beam L to the fused part 5 is substantially equal to the entire circumference of the bottom plate 52. Thereby, the fusion | melting part 5 is made more uniform fusion | bonding along the circumferential direction, and still higher fusion strength (joining strength) is obtained.
[0071]
Such fusion (formation of the fusion part 5) is preferably performed in a state where the container body 51 is held by a holder. FIG. 3 is a longitudinal sectional view showing a manufacturing method (assembly method) of the centrifuge 4, that is, a state in which the container main body 51 is fused while being held by the holder 300.
[0072]
As shown in FIG. 3, the holder 300 has a double cylinder structure having a bottomed cylindrical outer cylinder 301 and a cylindrical inner cylinder 302 installed in the outer cylinder 301. It is preferable that the inner cylinder 302 is fixedly installed with respect to the outer cylinder 301. In this case, the inner cylinder 302 is installed concentrically with the outer cylinder 301. The length of the inner cylinder 302 is set shorter than the length of the outer cylinder 301.
[0073]
A tapered contact surface 303 is formed on the inner surface of the upper end portion in FIG. 3 of the outer cylinder 301 to contact the outer peripheral surface of the lower end portion of the side wall (side plate) 511 of the container body 51 when the centrifuge 4 is held. Yes.
[0074]
By configuring the holder 300 as described above, the centrifuge 4 can be stably held.
[0075]
Such a holder 300 inserts and holds the centrifuge 4 upside down from FIG. In this case, the centrifuge 4 is configured such that the outer peripheral surface of the lower end portion of the side wall 511 of the container body 51 contacts the contact surface 303 and the outer surface near the shoulder portion 59 of the container body 51 is at the upper end in FIG. The top of the bowl head 41 including the inflow port 43 and the outflow port 44 is held so as not to contact the bottom surface in the outer cylinder 301.
[0076]
Further, it is preferable that the fusion (formation of the fusion part 5) is performed in a state where the container body 51 is held by the holding tool and the part to be fused is pressurized by the pressure tool 350. As shown in FIG. 3, the pressurizing tool 350 includes a disk-shaped pressurizing tool main body 351 having a shaft 352 at the center, and a pressurizing plate 353 fixed to the outer peripheral portion of the pressurizing tool main body 351. The pressure is applied in the direction indicated by the arrow P in FIG.
[0077]
The pressure plate 353 has a shape corresponding to the fused portion (site to be fused) 5 of the centrifuge 4, that is, a ring shape (in the case of the configuration shown in FIG. 6, the outer edge portion of the pressure plate 353 is bent). I am doing. As a result, a uniform pressure can be applied over the entire circumference of the fusion part 5, which contributes to uniform and strong fusion.
[0078]
In the pressure plate 353 having the configuration shown in FIG. 6, when a pressing force is applied in the direction of arrow P in FIG. 3, the pressing force corresponding to the vector component in the direction perpendicular to the tapered surface 524 is fused portion 5. Act on.
[0079]
Further, the pressure plate 353 is made of a transparent material such as various types of glass and various types of resin, such as various types of glass and resin, which are transparent to the laser light L used for fusion. Then, the laser beam L is irradiated to the fused portion (site to be fused) 5 through the pressure plate 353.
[0080]
As described above, the laser beam L can be irradiated and fused while being pressurized by the pressure plate 353, so that the fusion work can be easily and reliably performed, and the positions of the container main body 51 and the bottom plate 52 are determined. Misalignment can also be prevented. In particular, since the pressure plate 353 is made of a transparent member, the position of the centrifuge 4 where the laser light L is irradiated can be easily seen from above the pressure plate 353, and alignment is easy and accurate. There is an advantage that the fusion point and the fusion state after irradiation of the laser beam L can be visually recognized.
[0081]
Further, the pressure applied by the pressure plate 353 is transmitted to the fusion part 5 at the start of fusion and during fusion, and the lower end surface 513 of the side wall 511 of the container body 51 and the inner surface (upper surface) near the outer periphery of the bottom plate 52. Since the fusion is performed in a state where the 522 and the light absorbing material 505 are in close contact with each other, bubbles (voids) or the like do not remain in the fusion part 5 and the fusion is performed more uniformly and firmly.
[0082]
The pressing force (pressing pressure) by the pressurizing tool 350 is not particularly limited, but is preferably about 0.1 to 5 MPa, more preferably about 0.3 to 3 MPa.
[0083]
Further, the loss of the laser beam L due to absorption or reflection when passing through the pressure plate 353 should be as small as possible. Therefore, the transmittance of the laser beam L in the pressure plate 353 is preferably 85% or more, more preferably 90%. It is said above.
[0084]
Such fusion (formation of the fusion part 5) can be performed by fixing the centrifuge 4 and rotating the irradiation device (light source) of the laser light L. However, the structure of the device is simplified and reduced in size. From the advantage that it can be achieved, it is preferable to perform laser beam L irradiation while rotating the container main body 51 and the bottom plate 52 around the rotation center axis 500 and fuse them all around the circumference. In this embodiment, the laser beam L is irradiated while rotating the entire centrifugal separator 4 for each holder 300 to form the ring-shaped fused portion 5.
[0085]
In this case, as shown in FIG. 3, the holder 300 is placed on a turntable 380 that rotates concentrically with the rotation center shaft 500, and the turntable 380 is rotated by a drive source such as a motor (not shown). Then, the holder 300, the centrifugal separator 4 held by the holder 300, and the pressurizer 350 (and the pressurizer main body 351 and pressurizer plate 353 of the pressurizer 350) are rotated.
[0086]
As described above, it is preferable that the irradiation angle of the laser beam L to the fusion part 5 is substantially equal over the entire circumference of the bottom plate 52, while the container body 51 and the bottom plate 52 are rotated in this way. In the configuration in which the laser beam L is irradiated, if the angle of the laser beam L on the irradiation device (light source) side is fixed and the centrifuge 4 side is rotated, an equal irradiation angle can be easily obtained over the entire circumference. Is preferable.
[0087]
In the case of such fusion (formation of the fused portion 5), in the present invention, a light absorbing material (between the lower end surface 513 of the side wall 511 of the container body 51 and the inner surface (upper surface) 522 near the outer periphery of the bottom plate 52 is used. Irradiation with the laser beam L is performed with a light absorbing substance) 505 interposed. As a result, the irradiated laser light L is efficiently absorbed by the light absorber 505 and converted into heat, so that efficient fusion with a lower output becomes possible. In addition, fusion defects such as pinholes and partial peeling hardly occur. As a result, it is possible to further improve the fusion strength (bonding strength).
[0088]
In particular, by using a separately prepared light absorbing material 505, it is not necessary to color the container main body 51 and the bottom plate 52 itself in order to absorb the laser light, and the container main body 51 and the bottom plate 52 are substantially transparent. Therefore, the visibility of the inside (blood storage space 55) can be sufficiently ensured.
[0089]
Examples of the light absorbing material 505 include powders such as carbon black, pastes containing the powders and dyes described later, and sheets (layers) containing the powders and the dyes.
[0090]
For example, when the paste-like light absorbing material 505 is used, the light absorbing material 505 is uniformly applied to at least one of the lower end surface 513 of the side wall 511 or the inner surface 522 near the outer periphery of the bottom plate 52, and the side wall is interposed through the light absorbing material 505. The lower end surface 513 of 511 and the inner surface 522 in the vicinity of the outer periphery of the bottom plate 52 are joined, and the laser beam L is preferably applied under the above-described conditions in a pressurized state (for example, pressing pressure: about 0.3 to 3 MPa) by the pressurizing tool 350. Irradiate with and fuse these.
[0091]
Since the shape of the paste-like light absorbing material 505 can be freely changed, the paste-like light absorbing material 505 is suitable, for example, in the case where the fused portion 5 is curved or bent as shown in FIG.
[0092]
Further, for example, when using a sheet-shaped light absorbing material 505, a sheet-shaped light absorbing material 505 punched out (cut out) in the same shape (annular shape) as the fused portion 5 is prepared. The laser light L is sandwiched between the lower end surface 513 of the side wall 511 and the inner surface 522 near the outer periphery of the bottom plate 52, and preferably the laser beam L is applied in a pressurized state by the pressurizing tool 350 (for example, presser pressure: about 0.3 to 3 MPa). Irradiation is performed under these conditions to fuse these.
[0093]
When the sheet-like light absorbing material 505 is used, a paste-like light absorbing material 505 is prepared by preparing (manufacturing) a shape corresponding to the fused portion 5 in advance and attaching it to the target portion. Compared with the case of using, there is an advantage that the operation is simple.
[0094]
Further, as the light absorbing material (laser light absorbing material) constituting the light absorbing material 505, the following can be used which does not reduce the transparency of the fused portion 5 as much as possible. As such a light absorbing material (laser light absorbing material), there is little absorption in the visible light region (0.4 μm or more and less than 0.7 μm), and a narrow absorption band in the laser light wavelength region of 0.7 to 2.5 μm. What shows a high molar absorptivity coefficient is preferable, for example, dyes, such as a cyanine dye, a squarylium dye, a croconium dye, are mentioned.
[0095]
For example, as a cyanine dye, a compound represented by the following chemical formula 1, as a squarinium dye, a compound represented by the following chemical formula 2, and as a croconium dye, a compound represented by the following chemical formula 3. Can be used.
[0096]
[Chemical 1]
Figure 0004344528
[0097]
[Chemical formula 2]
Figure 0004344528
[0098]
[Chemical 3]
Figure 0004344528
[0099]
By using the light absorbing material (laser light absorbing material) as described above, it is possible to suppress the decrease in the transparency of the fusion bonding portion 5 as much as possible. Therefore, for the container body 51 and the bottom plate 52 made of a transparent material, It is also possible to prevent the fused portion 5 from being colored and conspicuous and impairing the appearance uniformity.
[0100]
FIG. 2 is a block diagram showing an embodiment of a blood component collection circuit including the centrifuge 4 shown in FIG. Hereinafter, the configuration of the blood component collection circuit will be described with reference to FIG.
[0101]
The blood component collection circuit 1 is a circuit that is mounted on a blood component collection device and collects (collects) platelets (target blood components) from blood (whole blood), and is a centrifuge (centrifuge bowl). 4, a first line (blood introduction line) 2 for introducing blood or blood components into the centrifuge 4, and a second line (blood component collection line) for collecting the blood components separated by the centrifuge 4 ) 3 and a third line (blood collection / return line) 10.
[0102]
The blood component collection device is installed in a rotary drive device 7 that rotates the rotor 50 of the centrifuge 4, optical sensors 61 and 62, a pump 9 installed in the first line 2, and a third line. Control means (not shown) for controlling the operation of the pump 9, the rotary drive device 7 and the valves 83 to 86 based on the detection signals from the pump 107, the valves 83, 84, 85 and 86, the optical sensors 61 and 62, and the like. Z).
[0103]
As shown in FIG. 2, the third line 10 is mainly connected to the tube 101, a blood collection needle 104 connected to the tip of the tube 101, and a Y-shaped branch connector 102 in the middle of the tube 101. The tube 103, the bottle needle 108 connected to the tip of the tube 103, and the drip tube 105 and the sterilization filter 106 connected in the middle of the tube 103 are configured. In the middle of the tube 103, a liquid feeding pump 107 made of a roller pump is installed.
[0104]
The base end of the tube 101 is connected to one end of the tubes 13 and 20 via the T-shaped branch connector 12. In the middle of the tube 101, a valve 83 is installed as a channel opening / closing means that can block and release the internal channel of the tube 101.
[0105]
The first line 2 includes a tube 13 and a branch connector 12 connected to one end thereof. The other end of the tube 13 is connected to the inlet 43 of the centrifuge 4, and in the middle of the tube 13, a blood feeding pump 9 made of, for example, a roller pump is installed.
[0106]
One end of the tube 14 is connected to the outlet 44 of the centrifuge 4, and the other end of the tube 14 is connected to one end of the tubes 16 and 18 via a T-shaped branch connector 15.
[0107]
The other end of the tube 16 is connected to a platelet bag 17 that stores platelets, and a valve 85 that opens and closes the flow path in the tube 16 is installed in the middle of the tube 16.
[0108]
The other end of the tube 18 is connected to the plasma bag 21, and a valve 86 that opens and closes the flow path in the tube 18 is installed in the middle of the tube 18.
[0109]
The other end of the tube 20 whose one end is connected to the branch connector 12 is connected to the plasma bag 21, and a valve 84 that opens and closes the flow path in the tube 20 is installed in the middle of the tube 20.
[0110]
In such a configuration, the tube 14, 16, 18, 20, the branch connector 15, the platelet bag 17 and the plasma bag 21 constitute the second line 3. Among these, the tubes 14 and 18 and the plasma bag 21 constitute a plasma collection branch line for collecting plasma, and the tubes 14 and 16 and the platelet bag 17 serve as a platelet collection branch line for collecting platelets. Constitute.
[0111]
The rotation drive device 7 includes, for example, a housing that houses the centrifuge 4, a disk-shaped fixed base that holds the rotor 50 of the centrifuge 4, and a motor that rotates the fixed base (all not shown). It consists of and.
[0112]
The optical sensor 61 optically detects the separated blood component interface in the rotor 50, that is, the position of the interface between the buffy coat layer and the red blood cell (concentrated red blood cell) layer, and faces the outer peripheral surface of the rotor 50. It is installed to do.
[0113]
The optical sensor 61 includes a light emitting element such as an LED and a light receiving element such as a photodiode. The optical sensor 61 receives reflected light from a blood component of light emitted from the light emitting element by the light receiving element, and receives the received light amount. Is photoelectrically converted. Since the intensity of the reflected light is different between the separated buffy coat layer and the red blood cell layer, the position corresponding to the light receiving element in which the amount of received light, that is, the output voltage is changed, is detected as the position of the interface.
[0114]
Between the outlet 44 of the tube 14 and the branch connector 15, an optical sensor 62 that can detect the concentration of platelets in blood components flowing in the tube 14 is installed. The optical sensor 62 includes a light projecting unit (light source) 63 and a light receiving unit (photodiode) 64 that are arranged to face each other via the tube 14. Light (for example, laser light) emitted from the light projecting unit 63 is transmitted through the tube 14 and received by the light receiving unit 64 and converted into an electrical signal corresponding to the amount of received light, but the blood component flowing in the tube 14 The transmittance changes according to the concentration of platelets therein, and the amount of light received by the light receiving unit 64 varies. Therefore, this variation can be detected as a change in the output voltage from the light receiving unit 64.
[0115]
Each of the valves 83 to 86 is operated by a drive source such as a solenoid, an electric motor, or a cylinder (hydraulic pressure or air pressure), for example, and the drive source is operated based on a signal from a control unit described later.
[0116]
Needless to say, the blood component collecting circuit 1 is not limited to the one shown in FIG.
[0117]
Next, a preferred example of the operation of the blood component collection circuit 1 shown in FIG. 2 will be described.
[1] The blood component collection circuit 1 is attached to the blood component collection device. Then, the blood collection needle 104 is inserted into the blood vessel of the donor (donor), the tube 103 is closed with a clamp, the valves 83 and 85 are opened, and the other valves are closed (forward rotation). To do. Thereby, blood from the donor is transferred through the tubes 101 and 13, flows in from the inlet 43 of the centrifuge bowl 4, and is introduced into the blood storage space 55 through the inflow pipe 47 and the flow path 57. The rotational speed of the pump 9 is set so that the blood discharge amount (blood supply speed) is, for example, about 20 to 100 ml / min.
[0118]
[2] Further, simultaneously with the blood transfer in the step [1], the pump 107 is operated to add an anticoagulant (for example, ACD-A solution) via the bottle needle 108 and the rotary driving device 7 is operated. The rotor 50 is preferably rotated at 3000 to 6000 rpm (for example, 4800 rpm). The blood that has flowed out from the lower end opening of the inflow pipe 47 is once received by the recess 521, and flows radially toward the outer peripheral direction by the centrifugal force due to the rotation of the rotor 50, and is collected in the blood storage space 55. In the space 55, the plasma layer, the buffy coat layer, and the red blood cell layer are separated from the rotation center axis 500 side.
[0119]
As described above, the fused portion 5 of the rotor 50 is well and uniformly fused without any flaws such as pinholes and has a high fusion strength. Therefore, the rotor 50 rotates at a high speed as described above. Even so, there is no occurrence of cracks or breakage in the fused portion 5, and sufficient durability is ensured.
[0120]
[3] While the steps [1] and [2] are continued, when the plasma layer reaches the shoulder portion 59 and further reaches the dam portion 60 via the flow path 56, the valve 85 is closed and the valve 86 is opened. The plasma in the flow path 56 passes through the dam portion 60, flows out of the outlet 44 through the flow paths 463 and 464, and is collected in the plasma bag 21 through the tubes 14 and 18.
[0121]
[4] As plasma is discharged from the rotor 50, the interface between the buffy coat layer and the red blood cell layer gradually moves toward the rotation center axis 500. This interface is detected at any time by the optical sensor 61. When it is detected that the interface has reached a predetermined level (surge start level), the control means performs pumping based on the detection signal (interface position detection information). 9 is controlled to stop the rotation. Thereby, the transfer of blood and the collection of plasma are completed.
[0122]
The surge start level is preferably a level when the ratio of the volume of the red blood cell layer existing in the blood storage space 55 to the volume V of the blood storage space 55 reaches 84 to 97%, more preferably 90 to 95%. To do. When the ratio is less than 84%, the platelet recovery rate is lowered in the surge process. If the ratio exceeds 97%, the acting centrifugal force is too small, and depending on conditions such as the plasma supply rate in the surge process, platelets float with leukocytes, and the leukocytes in the collected platelets The removal rate decreases.
[0123]
[5] Subsequently, under the control of the control means, the valves 84 and 85 are opened, the other valves are closed, the pump 9 is operated again (forward rotation), and the plasma in the plasma bag 21 is changed to a predetermined plasma. The blood is supplied to the lower part of the blood storage space 55 through the tubes 20 and 13, the inlet 43, the inflow pipe 47 and the flow path 57 at the supply speed. The supplied plasma rises in the blood storage space 55 and further flows in the direction of the rotation center axis 500 through the flow path 56. As a result, the platelets in the buffy coat layer in the flow path 56 float (swell) against the centrifugal force, flow out of the outlet 44 through the flow paths 463 and 464, and platelets via the tubes 14 and 16. It is collected in the bag 17 (surge process).
[0124]
In this surge process, the control means controls the rotation speed (plasma discharge amount) of the pump 9 so that the plasma supply speed into the rotor 50 is preferably about 10 to 90 ml / min, more preferably 25 to 70 ml. Set to about / min. When the plasma supply rate is less than 10 ml / min, the time required for platelet collection becomes longer. When the plasma supply rate exceeds 90 ml / min, the levitated amount of leukocytes increases together with the platelets, and the removal rate of leukocytes in the collected platelets tends to decrease. Become.
[0125]
[6] With the outflow of platelets from the rotor 50, the platelet concentration detected by the optical sensor 62 tends to increase, and when the platelet concentration reaches a predetermined value, the rotation of the pump 9 is controlled by the control means. The number is reduced to, for example, about 30 to 85%, and the supply rate of plasma into the rotor 50 is reduced. As the low-speed supply of plasma continues, the platelet concentration detected by the optical sensor 62 increases, reaches a peak, and then starts decreasing.
[0126]
[7] When the platelet concentration detected by the optical sensor 62 falls below a preset reference value, it is considered that the collection of platelets into the platelet bag 17 has been completed, and the pump 9 is stopped under the control of the control means. Then, the supply of plasma into the rotor 50 is stopped, and the rotation driving device 7 is further stopped. Thereby, the collection of platelets is completed.
[0127]
[8] The valves 83 and 85 are opened, the other valves are closed, and the pump 9 is rotated in the reverse direction. As a result, red blood cells, white blood cells, and a small amount of plasma remaining in the centrifuge bowl 4 are returned to the donor via the inflow tube 47, the inflow port 43, and the tubes 13 and 101.
[0128]
After or during this process, the valves 84 and 86 are opened, the other valves are closed and the pump 9 is operated (forward rotation), and the plasma in the plasma bag 21 is transferred to the tubes 20 and 13, the inlet 43, Then, the pump 9 is put into the rotor 50 through the inflow pipe 47, then the valves 83 and 85 are opened, the other valves are closed and the pump 9 is rotated in the reverse direction. 47, blood may be returned to the donor via the inlet 43 and the tubes 13 and 101.
[0129]
[9] The pump 9 is operated (forward rotation) to perform the step [1], and further to the steps [2] to [8]. As a result, the collected blood is returned to the platelet bag 17 and returned to the donor for other blood components.
[0130]
[10] The tube 16 in the vicinity of the platelet bag 17 is sealed by, for example, fusion, and the sealed portion is cut and separated to obtain the platelet bag 17 containing the platelet preparation.
[0131]
Instead of the surge process of [5] above, blood is supplied to the lower part of the blood storage space 55 at a lower speed via the third line 10 and the first line 2, and the interface of the blood components is rotated around the rotation center axis 500. You may perform operation which moves to a direction and makes platelets flow out of the dam part 60. FIG.
[0132]
As described above, in the blood component collection circuit 1 of the present embodiment, blood components such as plasma and blood are supplied to the blood storage space 55 from below, and the interface of the separated blood components is slowly moved. Without disturbing, it is possible to reliably remove platelets from the buffy coat layer, and the yield of platelets and the removal rate of leukocytes in the collected platelets are improved.
[0133]
In particular, the platelet discharge conditions are optimally adjusted by setting the blood component supply rate during platelet discharge, and thus a high-quality platelet preparation with an extremely high leukocyte removal rate can be obtained. In addition, since various operations of the apparatus, particularly the timing for starting the supply of blood components, the supply speed, and the like are controlled based on the detection values of the optical sensors 61 and 62, automation and higher precision control are possible, and platelet recovery is possible. Rate and the removal rate of leukocytes in the collected platelets is further improved. For this reason, when the platelet preparation is used, infections such as hepatitis, AIDS, and GVHD can be prevented with higher probability, and safety is high.
[0134]
As mentioned above, although this invention was demonstrated based on each embodiment of illustration, it cannot be overemphasized that the medical container of this invention is not limited to the thing of illustration. The configuration of each part of the medical container described above can be replaced with any configuration that can exhibit the same function, and any configuration can be added.
[0135]
In the above description, the medical container of the present invention has been described by taking a centrifuge (centrifugal bowl) as an example. However, the medical container of the present invention is not limited to this, and for example, a dialyzer, an infusion filter, a white blood cell The present invention can be applied to various medical containers such as filters such as removal filters, blood processing containers such as artificial lungs, heat exchangers, and reservoirs, and casings of medical devices.
[0136]
【The invention's effect】
As described above, according to the present invention, the fusion part of the medical container can be uniformly fused, and fusion defects such as pinholes, partial peeling, and air bubbles hardly occur, and the fusion strength Is expensive.
[0137]
In particular, since a light absorbing material that is separate from the container main body and the shielding member is used, the above-described excellent fused portion can be obtained without coloring the container main body and the shielding member itself.
[0138]
In addition, since no debris is generated at the time of fusion, a cleaning process or the like is unnecessary, and a medical container can be assembled or manufactured easily (efficiently).
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment when a medical container of the present invention is applied to a centrifuge.
FIG. 2 is a configuration diagram schematically showing an embodiment of a blood component collection circuit including the centrifuge shown in FIG.
3 is a longitudinal sectional view showing an example of a manufacturing method (fusion method) for the medical container (centrifuge) shown in FIG. 1. FIG.
FIG. 4 is an enlarged longitudinal sectional view showing a configuration example in the vicinity of a fusion portion between a container body and a bottom plate in the medical container of the present invention.
FIG. 5 is an enlarged longitudinal sectional view showing a configuration example in the vicinity of a fusion portion between a container main body and a bottom plate in the medical container of the present invention.
FIG. 6 is an enlarged longitudinal sectional view showing a configuration example in the vicinity of a fusion portion between a container main body and a bottom plate in the medical container of the present invention.
[Explanation of symbols]
1 Blood component collection circuit
2 First line
3 Second line
4 Centrifuge (centrifugal bowl)
40 stator
41 bowl head
42 Cover
43 Inlet
44 Outlet
45 Upper outlet pipe
46 Lower inlet pipe
461 Top edge
462 Flange
463, 464 channels
47 Inflow pipe
48 Sealing mechanism
481 ring
482 Seal member
483 Presser member
484 Convex
5 Fusion part
50 rotor
500 Center axis of rotation
501 Uneven fitting part
502 recess
503 Convex
505 Light absorber
51 Container body
511 side wall
512 ribs
513 Lower end surface
515 Reduced diameter part
52 Bottom plate
521 recess
522 Inner surface (upper surface)
523 outer surface (lower surface)
524 Tapered surface
53 outer core
54 inner core
55 Blood storage space
56, 57 channel
58 Sliding member
59 shoulder
60 Dam
61, 62 Optical sensor
63 Projector
64 Receiver
7 Rotation drive
83-86 valves
9 Pump
10 Third line
101 tubes
102 Branch connector
103 tubes
104 Blood collection needle
105 drip tube
106 Sanitization filter
107 pump
108 bottle needle
12 Branch connector
13, 14 tubes
15 Branch connector
16 tubes
17 Platelet bag
18 tubes
20 tubes
21 Plasma Bag
300 Holder
301 outer cylinder
302 inner cylinder
303 Contact surface
350 Pressurizing tool
351 Pressurizer body
352 axes
353 pressure plate
380 turntable
L Laser light
P Pressure

Claims (9)

貯血空間を有し、該貯血空間内の血液を遠心分離する機能を有する遠心分離器またはそのローターを構成する医療用容器であって、
硬質の樹脂材料で構成された周壁を有する容器本体と、硬質の樹脂材料で構成され、前記容器本体の端部開口を遮蔽する遮蔽部材とを備え
前記容器本体の周壁の端部と前記遮蔽部材の外周付近の内面とが、光吸収材を介在させた状態でレーザ光を照射することにより融着されており、
前記レーザ光の照射により形成された融着部の内周側に、前記融着部の内周の全周に渡って凹凸嵌合部が形成されていることを特徴とする医療用容器。
A centrifuge having a blood storage space and having a function of centrifuging blood in the blood storage space or a medical container constituting the rotor thereof,
A container body having a peripheral wall made of a hard resin material, and a shielding member that is made of a hard resin material and shields an end opening of the container body ,
The end of the peripheral wall of the container body and the inner surface near the outer periphery of the shielding member are fused by irradiating laser light with a light absorbing material interposed therebetween ,
A medical container , wherein a concave-convex fitting portion is formed over the entire inner circumference of the fusion portion on the inner circumference side of the fusion portion formed by the laser light irradiation .
前記凹凸嵌合部は、前記遮蔽部材の前記融着部の内周部に全周に渡って形成された円環状の溝で構成された凹部と、前記容器本体の側壁の下端内周部に全周に渡って形成された円環状の突起で構成され、前記凹部に嵌合し得る凸部とで構成されている請求項1に記載の医療用容器。 The concave-convex fitting portion is formed on a concave portion formed of an annular groove formed on the inner peripheral portion of the fusion-bonding portion of the shielding member over the entire periphery, and a lower end inner peripheral portion of the side wall of the container body. The medical container according to claim 1, which is composed of an annular protrusion formed over the entire circumference and a convex portion that can be fitted into the concave portion . 貯血空間を有し、該貯血空間内の血液を遠心分離する機能を有する遠心分離器またはそのローターを構成する医療用容器の製造方法であって、
前記医療用容器は、硬質の樹脂材料で構成された周壁を有する容器本体と、硬質の樹脂材料で構成され、前記容器本体の端部開口を遮蔽する遮蔽部材とを備え
前記医療用容器の融着すべき部位の内周側に、この融着すべき部位の内周の全周に渡って凹凸嵌合部が形成されており、
前記容器本体の周壁の端部と前記遮蔽部材の外周付近の内面とを、それらの間に光吸収材を介在させた状態でレーザ光を照射することにより融着することを特徴とする医療用容器の製造方法。
A centrifuge having a blood storage space and having a function of centrifuging blood in the blood storage space or a method for producing a medical container constituting a rotor thereof,
The medical container includes a container body having a peripheral wall made of a hard resin material, and a shielding member that is made of a hard resin material and shields an end opening of the container body ,
On the inner peripheral side of the site to be fused of the medical container, an uneven fitting portion is formed over the entire inner circumference of the site to be fused,
The medical body characterized in that the end of the peripheral wall of the container body and the inner surface near the outer periphery of the shielding member are fused by irradiating a laser beam with a light absorbing material interposed therebetween. Container manufacturing method.
前記凹凸嵌合部は、前記遮蔽部材の前記融着部の内周部に全周に渡って形成された円環状の溝で構成された凹部と、前記容器本体の側壁の下端内周部に全周に渡って形成された円環状の突起で構成され、前記凹部に嵌合し得る凸部とで構成されている請求項3に記載の医療用容器の製造方法。The concave-convex fitting portion is formed on a concave portion formed by an annular groove formed on the inner peripheral portion of the fused portion of the shielding member over the entire circumference, and a lower end inner peripheral portion of the side wall of the container body. The manufacturing method of the medical container of Claim 3 comprised by the annular protrusion formed over the perimeter, and comprised by the convex part which can be fitted to the said recessed part. 前記容器本体を保持具により保持した状態で前記融着を行う請求項3または4に記載の医療用容器の製造方法。The method for manufacturing a medical container according to claim 3 or 4 , wherein the fusion is performed in a state where the container body is held by a holder. 加圧具により融着すべき部位を加圧しつつ前記融着を行う請求項3ないし5のいずれかに記載の医療用容器の製造方法。The method for producing a medical container according to any one of claims 3 to 5, wherein the fusion is performed while a part to be fused is pressurized with a pressurizing tool. 前記加圧具の融着部に対応する部位は、レーザ光透過性を有する材料で構成され、融着の際、レーザ光を該部位を透過させて照射する請求項6に記載の医療用容器の製造方法。The medical container according to claim 6 , wherein a part corresponding to the fusion part of the pressurizing tool is made of a material having laser light permeability, and laser light is transmitted through the part during the fusion. Manufacturing method. 前記容器本体および前記遮蔽部材を回転させつつ前記レーザ光の照射を行い、全周に渡って融着する請求項3ないし7のいずれかに記載の医療用容器の製造方法。The method for manufacturing a medical container according to any one of claims 3 to 7, wherein the laser beam is irradiated while rotating the container body and the shielding member, and the container body and the shielding member are fused over the entire circumference. 前記レーザ光の照射は、前記遮蔽部材の全周に対しほぼ等しい照射角度で行われる請求項3ないし8のいずれかに記載の医療用容器の製造方法。The method of manufacturing a medical container according to any one of claims 3 to 8 , wherein the laser beam irradiation is performed at an approximately equal irradiation angle with respect to the entire circumference of the shielding member.
JP2003103419A 2003-04-07 2003-04-07 Medical container and method for manufacturing medical container Expired - Fee Related JP4344528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103419A JP4344528B2 (en) 2003-04-07 2003-04-07 Medical container and method for manufacturing medical container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103419A JP4344528B2 (en) 2003-04-07 2003-04-07 Medical container and method for manufacturing medical container

Publications (2)

Publication Number Publication Date
JP2004305439A JP2004305439A (en) 2004-11-04
JP4344528B2 true JP4344528B2 (en) 2009-10-14

Family

ID=33466529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103419A Expired - Fee Related JP4344528B2 (en) 2003-04-07 2003-04-07 Medical container and method for manufacturing medical container

Country Status (1)

Country Link
JP (1) JP4344528B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205538A1 (en) 2002-05-03 2003-11-06 Randel Dorian Methods and apparatus for isolating platelets from blood
US7832566B2 (en) 2002-05-24 2010-11-16 Biomet Biologics, Llc Method and apparatus for separating and concentrating a component from a multi-component material including macroparticles
US20060278588A1 (en) 2002-05-24 2006-12-14 Woodell-May Jennifer E Apparatus and method for separating and concentrating fluids containing multiple components
US7845499B2 (en) 2002-05-24 2010-12-07 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US7476209B2 (en) * 2004-12-21 2009-01-13 Therakos, Inc. Method and apparatus for collecting a blood component and performing a photopheresis treatment
US8567609B2 (en) 2006-05-25 2013-10-29 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US8328024B2 (en) 2007-04-12 2012-12-11 Hanuman, Llc Buoy suspension fractionation system
WO2008127639A1 (en) 2007-04-12 2008-10-23 Biomet Biologics, Llc Buoy suspension fractionation system
PL2259774T3 (en) 2008-02-27 2013-04-30 Biomet Biologics Llc Methods and compositions for delivering interleukin-1 receptor antagonist
WO2009111338A1 (en) 2008-02-29 2009-09-11 Biomet Manufacturing Corp. A system and process for separating a material
US8454548B2 (en) 2008-04-14 2013-06-04 Haemonetics Corporation System and method for plasma reduced platelet collection
US8187475B2 (en) 2009-03-06 2012-05-29 Biomet Biologics, Llc Method and apparatus for producing autologous thrombin
US8313954B2 (en) 2009-04-03 2012-11-20 Biomet Biologics, Llc All-in-one means of separating blood components
US9011800B2 (en) 2009-07-16 2015-04-21 Biomet Biologics, Llc Method and apparatus for separating biological materials
US8591391B2 (en) 2010-04-12 2013-11-26 Biomet Biologics, Llc Method and apparatus for separating a material
US9642956B2 (en) 2012-08-27 2017-05-09 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US10208095B2 (en) 2013-03-15 2019-02-19 Biomet Manufacturing, Llc Methods for making cytokine compositions from tissues using non-centrifugal methods
US20140271589A1 (en) 2013-03-15 2014-09-18 Biomet Biologics, Llc Treatment of collagen defects using protein solutions
US10143725B2 (en) 2013-03-15 2018-12-04 Biomet Biologics, Llc Treatment of pain using protein solutions
US9895418B2 (en) 2013-03-15 2018-02-20 Biomet Biologics, Llc Treatment of peripheral vascular disease using protein solutions
US9950035B2 (en) 2013-03-15 2018-04-24 Biomet Biologics, Llc Methods and non-immunogenic compositions for treating inflammatory disorders

Also Published As

Publication number Publication date
JP2004305439A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4344528B2 (en) Medical container and method for manufacturing medical container
US8449488B2 (en) Blood component collection apparatus and method
JP4050477B2 (en) Blood component collection device
JP4800617B2 (en) Method and apparatus for blood component separation
US7166217B2 (en) Methods and apparatuses for blood component separation
US5387174A (en) Centrifugal separator with disposable bowl assembly
JP3715338B2 (en) Blood component separator
JP4387715B2 (en) Manufacturing method of centrifuge
JP3850429B2 (en) Blood component separator
JP4402888B2 (en) Blood processing container and method for manufacturing blood processing container
JP4297757B2 (en) Adapter for fixing centrifuge
JP2001252350A (en) Red blood cell apheresis apparatus
JP4558401B2 (en) Blood component collection device
JPH09108594A (en) Centrifugal separator and component separation method
JPH0947505A (en) Blood component separator and method of extracting blood platelets
JP4344592B2 (en) Blood component collection device
JP4251933B2 (en) Blood component collection device
JPWO2016047332A1 (en) Centrifugal pump manufacturing method and centrifugal pump
JP2005199055A (en) Blood component sampler
JPH08117330A (en) Device for separating blood components and method for separating and transporting blood components
JP2006026101A (en) Blood component collecting apparatus
JPH11295302A (en) Tool for collecting serum or plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees