JP4344306B2 - Unknown system estimation method and apparatus for carrying out this method - Google Patents

Unknown system estimation method and apparatus for carrying out this method Download PDF

Info

Publication number
JP4344306B2
JP4344306B2 JP2004312907A JP2004312907A JP4344306B2 JP 4344306 B2 JP4344306 B2 JP 4344306B2 JP 2004312907 A JP2004312907 A JP 2004312907A JP 2004312907 A JP2004312907 A JP 2004312907A JP 4344306 B2 JP4344306 B2 JP 4344306B2
Authority
JP
Japan
Prior art keywords
input
signal
unknown system
vector
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312907A
Other languages
Japanese (ja)
Other versions
JP2006128947A (en
Inventor
末廣 島内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004312907A priority Critical patent/JP4344306B2/en
Publication of JP2006128947A publication Critical patent/JP2006128947A/en
Application granted granted Critical
Publication of JP4344306B2 publication Critical patent/JP4344306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、未知系推定方法およびこの方法を実施する装置に関し、特に、音響伝達特性の如き未知系に与える入力信号と入力信号を与えて得られた出力信号とを入力して未知系を模擬するFIRフィルタを推定し、或いは、未知系からの出力の予測、模擬を実現する未知系推定方法およびこの方法を実施する装置に関する。   The present invention relates to an unknown system estimation method and an apparatus for performing the method, and in particular, simulates an unknown system by inputting an input signal given to the unknown system such as acoustic transfer characteristics and an output signal obtained by giving the input signal. The present invention relates to an unknown system estimation method for estimating an FIR filter to be performed, or realizing prediction and simulation of an output from an unknown system, and an apparatus for implementing this method.

図3を参照して説明するに、インパルス応答を要素として持つ長さLのベクトルh*によって特徴付けられる未知系に対して入力信号x(k)を与え、得られた出力信号y(k)と当該入力信号x(k)とを入力して未知系の特性を推定する未知系推定装置1が知られている。ただし、kは離散時間を表す。ベクトルhはh*と表記する。ここで、未知系hに対する入力信号x(k)を電話回線を介して伝送された音声信号であるものとすると、未知系hの入力端に存在する受話器と、出力端に存在する送話器と、受話器と送話器との間に存在する諸々の環境をすべて含めたものの音響伝達特性を未知系hと表現している。 Referring to FIG. 3, an input signal x (k) is given to an unknown system characterized by a vector L * of length L having an impulse response as an element, and the resulting output signal y (k) And the input signal x (k) and the unknown system estimation apparatus 1 that estimates the characteristics of the unknown system are known. However, k represents discrete time. The vector h is expressed as h * . Here, assuming that the input signal x (k) for the unknown system h is a voice signal transmitted via a telephone line, a receiver present at the input end of the unknown system h and a transmitter present at the output end. And the acoustic transfer characteristics of all the environments existing between the handset and the handset are expressed as an unknown system h.

[非特許文献1]に示され学習同定法においては、未知系の推定フィルタh*’(k)を以下の様に逐次更新して推定する。以降、ベクトルxはx*と表記し、ベクトルzはz*と表記する。
*’(k+1)=h*’(k) +μ(e(k)/‖x*(k)‖2)x*(k) (式1)
ここで、x*(k)=[x(k),x(k−1),…,x(k−L+1)]T、Tはベクトルの転置、‖x*(k)‖はベクトルx*(k)のノルム、μは0から2の間の値をとる更新調整係数、誤差信号e(k)=y(k)−y’(k)、出力模擬信号y’(k)=h*’(k)T*(k)である。この手法には、入力信号x(k)が、音声の様に有色信号である場合、未知系の推定速度が遅くなるという問題があった。
In the learning identification method shown in [Non-Patent Document 1], the estimation filter h * '(k) of the unknown system is sequentially updated and estimated as follows. Hereinafter, the vector x is written as x *, and the vector z is written as z * .
h * '(k + 1) = h *' (k) + μ (e (k) / ‖x * (k) || 2) x * (k) (Equation 1)
Here, x * (k) = [x (k), x (k−1),..., X (k−L + 1)] T , T is a vector transposition, and ‖x * (k) ‖ is a vector x *. (K) norm, μ is an update adjustment coefficient that takes a value between 0 and 2, error signal e (k) = y (k) −y ′ (k), output simulation signal y ′ (k) = h * '(K) T x * (k). This method has a problem that the estimated speed of the unknown system becomes slow when the input signal x (k) is a colored signal like speech.

一方、[非特許文献2]に示されるアフィン射影アルゴリズムは、この問題を克服しており、未知系の推定フィルタh*’(k)を、以下の様に、逐次更新して推定する(次数が2の場合)。
*’(k+1)=h*’(k)+D(k)α(k)x*(k)+D(k)β(k)x*(k−1) (式2)
但し、

Figure 0004344306
であり、更新調整係数は、固定、時変の場合も含め、μ(k)と表記している。ここで、(式2)の場合は、(式1)の場合と比較して、未知系推定フィルタh*’(k)に2つベクトルを加えて更新するので、更新に要する計算量は、(式1)の場合の約2倍に増加する。この問題を克服する[非特許文献3]による更新方法は、未知系推定フィルタh*’(k)をz*(k)で置き換え、以下の様に更新する。 On the other hand, the affine projection algorithm shown in [Non-Patent Document 2] overcomes this problem, and estimates the estimation filter h * '(k) of the unknown system by updating it as follows (order). Is 2).
h * ′ (k + 1) = h * ′ (k) + D (k) α (k) x * (k) + D (k) β (k) x * (k−1) (Formula 2)
However,
Figure 0004344306
The update adjustment coefficient is expressed as μ (k), including fixed and time-varying cases. Here, in the case of (Expression 2), compared to the case of (Expression 1), two vectors are added to the unknown system estimation filter h * ′ (k) and updated. It increases about twice as much as in the case of (Formula 1). In the update method according to [Non-Patent Document 3] that overcomes this problem, the unknown system estimation filter h * ′ (k) is replaced with z * (k) and updated as follows.

*(k+1)=z*(k)+{D(k−1)α(k−1)+D(k)β(k)}x*(k−1) (式4)
ここで、
*’(k)=z*(k)+D(k−1)α(k−1)x*(k−1) (式4.1)
の関係があるところから、未知系推定フィルタz*(k)の出力である出力模擬信号y〜(k)=z*(k)T*(k)は、未知系推定フィルタh*’(k)による出力模擬信号y’(k)=h*’(k)T*(k)とは一致しないが、(式4.1)より、
y’(k)=y〜(k)+D(k−1)α(k−1)r1(k) (式5)
と補正することができることがわかる。従って、[非特許文献3]の更新方法により、アフィン射影アルゴリズムと完全に一致する処理結果を得ることができ、(式4)は1つのベクトルによって未知系推定フィルタを更新しているので、(式2)より少ない計算量での更新を実現することができる。以下、図4を参照してこの未知系推定装置を具体的に説明する。
z * (k + 1) = z * (k) + {D (k-1) [alpha] (k-1) + D (k) [beta] (k)} x * (k-1) (Formula 4)
here,
h * ′ (k) = z * (k) + D (k−1) α (k−1) x * (k−1) (formula 4.1)
Therefore, the output simulation signal y˜ (k) = z * (k) T x * (k), which is the output of the unknown system estimation filter z * (k), is obtained from the unknown system estimation filter h * ′ ( The output simulation signal y ′ (k) = h * ′ (k) T x * (k) by k) does not match, but from (Equation 4.1),
y ′ (k) = y˜ (k) + D (k−1) α (k−1) r 1 (k) (Formula 5)
It can be seen that it can be corrected. Therefore, the update method of [Non-Patent Document 3] can obtain a processing result that completely matches the affine projection algorithm, and (Equation 4) updates the unknown system estimation filter by one vector. It is possible to realize the update with a smaller amount of calculation than Expression (2). Hereinafter, this unknown system estimation apparatus will be described in detail with reference to FIG.

この未知系推定装置100は、未知系h*への入力信号x(k)を有限個サンプルして蓄積し、ベクトル化し、入力信号ベクトルx*(k)として出力する入力信号ベクトル化部101と、入力信号ベクトルx*(k)の各要素の二乗和として入力パワーr0(k)を計算するパワー計算部102と、1ステップ過去の入力信号ベクトルx*(k−1)を得る遅延部103と、入力信号ベクトルx*(k)と1ステップ過去のx*(k−1)の内積として入力相関r1(k)を計算する相関計算部104と、入力信号ベクトルx*(k)を入力し、未知系h*からの出力信号y(k)を模擬する出力模擬信号y〜(k)=z*(k)T*(k)を出力する未知系推定フィルタz*(k)105と、(式5)に従い、出力模擬信号y〜(k)に対する補正出力模擬信号としてy’(k)を出力する出力補正部106と、未知系h*からの出力信号y(k)から補正出力模擬信号y’(k)を差し引いて誤差信号e(k)を出力する誤差計算部107と、重み付き遅延誤差信号eμ(k−1)=(1−μ(k−1))e(k−1)を出力する重み付き遅延部108と、時変或いは固定の更新調整係数μ(k)を持ち、入力パワーr0(k)と入力相関r1(k)と誤差信号e(k)と重み付き遅延誤差信号eμ(k−1)を入力し、(式3)に基づいて、(式4)における[D(k−1)α(k−1)+D(k)β(k)]をベクトル乗数v(k)として計算するベクトル乗数計算部109と、1ステップ過去の入力信号ベクトルx*(k−1)とベクトル乗数v(k)の積として、推定フィルタ更新ベクトルv(k)x*(k−1)を得、未知系推定フィルタz*(k)に加算することにより、次のステップで用いる未知系推定フィルタz*(k+1)を生成する未知系推定フィルタ更新部110と、を具備している。
J.Nagumo,A.noda;“A learning method for system identification”IEEE Trans.Automatic control,Vol.AC-12,No.3,June 1967. 尾関 和彦,梅田 哲夫:「アフィン部分空間への直行射影を用いた適応フィルタ・アルゴリズムとその諸性質」電子通信学会 論文誌(A),J67−A,pp126−132,1984. 丸山 唯介:「射影アルゴリズムの高速算法」1990年電子情報通信学会春季全国大会、B−744、1990.
This unknown system estimation apparatus 100 includes an input signal vectorization unit 101 that samples and accumulates a finite number of input signals x (k) to an unknown system h * , vectorizes them, and outputs them as input signal vectors x * (k). , a power calculation unit 102 for calculating the input power r 0 (k) as the sum of the squares of each element of the input signal vector x * (k), a delay unit to obtain a one-step past input signal vector x * (k-1) 103, a correlation calculation unit 104 that calculates an input correlation r 1 (k) as an inner product of the input signal vector x * (k) and x * (k−1) in the past by one step, and the input signal vector x * (k) , And an unknown system estimation filter z * (k) that outputs an output simulation signal y˜ (k) = z * (k) T x * (k) that simulates the output signal y (k) from the unknown system h *. ) 105 and the output simulation signals y to (k) according to (Equation 5). Y as a correction output simulation signal 'and the output correction unit 106 for outputting (k), the unknown system h * correction from the output signal y (k) from the output simulation signal y' (k) by subtracting the error signal e (k) , An error calculation unit 107 that outputs a weighted delay error signal eμ (k−1) = (1−μ (k−1)) e (k−1), and a time-varying or It has a fixed update adjustment coefficient μ (k), inputs an input power r 0 (k), an input correlation r 1 (k), an error signal e (k), and a weighted delay error signal eμ (k−1), Based on (Expression 3), a vector multiplier calculation unit 109 that calculates [D (k−1) α (k−1) + D (k) β (k)] in (Expression 4) as a vector multiplier v (k). If, as the product of one step past input signal vector x * (k-1) and the vector multipliers v (k), the estimated filter update vector Le v give (k) x * (k- 1), by adding the * unknown system estimation filter z (k), the unknown system to generate a * unknown system estimation filter z (k + 1) for use in the next step estimates A filter update unit 110.
J. Nagumo, A. noda; “A learning method for system identification” IEEE Trans. Automatic control, Vol. AC-12, No. 3, June 1967. Kazuhiko Ozeki, Tetsuo Umeda: "Adaptive filter algorithm using direct projection to affine subspace and its properties" IEICE Transactions (A), J67-A, pp126-132, 1984. Yusuke Maruyama: “Fast Algorithm of Projection Algorithm” 1990 IEICE Spring National Convention, B-744, 1990.

図4に示される未知系推定装置は、(式2)により定められるアフィン射影アルゴリズムと処理結果を完全一致させながら、効率的に更新を実現することができるものである。ところで、この発明は、(式2)により定められるアフィン射影アルゴリズムと処理結果を完全一致させるという拘束を外し、処理結果は近似的な一致にとどめることにより、図4により図示説明示される未知系推定装置よりも、更に計算量の少ない未知系推定装置を提供するものである。   The unknown system estimation apparatus shown in FIG. 4 can efficiently update the affine projection algorithm defined by (Equation 2) and the processing result while completely matching. By the way, the present invention removes the constraint that the processing result and the affine projection algorithm defined by (Equation 2) are completely coincident, and the processing result is only approximate coincidence, so that the unknown system estimation illustrated in FIG. It is an object of the present invention to provide an unknown system estimation apparatus that requires a smaller amount of calculation than the apparatus.

(式2)に示すアフィン射影アルゴリズムには、(式2)による処理結果と正確に一致する高速算法(計算量の少ない算法)として、(式4)、(式5)に基く方法があるが、この発明は、(式2)を(式9)で近似し、その上で、(式11)、(式12)に基く計算量削減を図ることにより、(式4)、(式5)に基く方法よりも少ない計算量で、未知系推定を達成することができる。
ここで、請求項1:離散時間領域における未知系への入力信号と、未知系からの出力信号とを入力し、未知系の伝達特性を推定する未知系推定方法において、未知系への入力信号を有限個サンプルして蓄積し、ベクトル化し入力信号ベクトルを出力し、入力信号ベクトルの各要素の二乗和として入力パワーを計算し、1ステップ過去の入力信号ベクトルを得、入力信号ベクトルと1ステップ過去の入力信号ベクトルの内積として入力相関を計算し、入力信号ベクトルを未知系推定フィルタに入力し、未知系からの出力信号を模擬する出力模擬信号を出力し、出力模擬信号を入力相関の値に応じて補正し補正出力模擬信号を出力し、未知系からの出力信号から補正出力模擬信号を差し引いて誤差信号を出力し、時変または固定の更新調整係数を持ち、入力パワーと入力相関と誤差信号とを入力し、入力相関と1ステップ過去に用いられた更新調整係数との積として重み付き入力相関を計算し、入力パワーと1ステップ過去の入力パワーとの積から重み付き入力相関と入力相関との積を差し引いて相関低減パワー積を計算し、相関低減パワー積で除した誤差信号と更新調整係数との積を重み付き正規化誤差信号として得、1ステップ過去に計算した重み付き正規化誤差信号と2ステップ過去の入力パワーとの積から重み付き正規化誤差信号と重み付き入力相関との積を差し引くことにより、ベクトル乗数を得、1ステップ過去の入力信号ベクトルとベクトル乗数との積として、推定フィルタ更新ベクトルを得、未知系推定フィルタに加算することにより、次のステップで用いる未知系推定フィルタを生成する、する未知系推定方法を構成した。
In the affine projection algorithm shown in (Expression 2), there is a method based on (Expression 4) and (Expression 5) as a high-speed algorithm (an algorithm with a small amount of calculation) that exactly matches the processing result of (Expression 2). In the present invention, (Equation 2) is approximated by (Equation 9), and further, by reducing the amount of calculation based on (Equation 11) and (Equation 12), (Equation 4), (Equation 5) The unknown system estimation can be achieved with a smaller amount of calculation than the method based on.
Claim 1: In an unknown system estimation method for inputting an input signal to an unknown system in the discrete time domain and an output signal from the unknown system and estimating the transfer characteristics of the unknown system, the input signal to the unknown system Are sampled and stored, vectorized and output as an input signal vector, input power is calculated as the sum of squares of each element of the input signal vector, an input signal vector of one step in the past is obtained, and an input signal vector and one step are calculated Calculates input correlation as inner product of past input signal vectors, inputs input signal vector to unknown system estimation filter, outputs output simulation signal to simulate output signal from unknown system, and outputs output signal to input correlation value And output a corrected output simulation signal, subtract the corrected output simulation signal from the output signal from the unknown system, output an error signal, and change the time-varying or fixed update adjustment coefficient That is, the input power, the input correlation, and the error signal are input, the weighted input correlation is calculated as the product of the input correlation and the update adjustment coefficient used in the previous step, and the input power and the input power in the previous step The product of the weighted input correlation and the input correlation is subtracted from the product of to calculate a correlation reduced power product, and the product of the error signal divided by the correlation reduced power product and the update adjustment coefficient is obtained as a weighted normalized error signal, A vector multiplier is obtained by subtracting the product of the weighted normalized error signal and the weighted input correlation from the product of the weighted normalized error signal calculated in the past one step and the input power in the past two steps. The estimated filter update vector is obtained as the product of the input signal vector and the vector multiplier, and is added to the unknown system estimation filter. Generating a filter constituted the unknown system estimation method of.

そして、請求項2:離散時間領域における未知系への入力信号と、未知系からの出力信号とを入力し、未知系の伝達特性を推定する未知系推定装置において、未知系への入力信号を有限個サンプルして蓄積し、ベクトル化し入力信号ベクトルを出力する入力信号ベクトル化部101と、入力信号ベクトルの各要素の二乗和として入力パワーを計算するパワー計算部102と、1ステップ過去の入力信号ベクトルを得る遅延部103と、入力信号ベクトルと1ステップ過去の入力信号ベクトルの内積として入力相関を計算する相関計算部104と、入力信号ベクトルを入力し、未知系からの出力信号を模擬する出力模擬信号を出力する未知系推定フィルタ105と、出力模擬信号を、入力相関の値に応じて補正し補正出力模擬信号を出力する出力補正部202と、未知系からの出力信号から補正出力模擬信号を差し引いて誤差信号を出力する誤差計算部107と、時変または固定の更新調整係数を持ち、入力パワーと入力相関と誤差信号とを入力し、入力相関と1ステップ過去に用いられた更新調整係数との積として重み付き入力相関を計算し、入力パワーと1ステップ過去の入力パワーとの積から重み付き入力相関と入力相関との積を差し引いて相関低減パワー積を計算し、相関低減パワー積で除した誤差信号と更新調整係数との積を重み付き正規化誤差信号として得、1ステップ過去に計算した重み付き正規化誤差信号と2ステップ過去の入力パワーとの積から重み付き正規化誤差信号と重み付き入力相関との積を差し引くことにより、ベクトル乗数を得るベクトル乗数計算部201と、1ステップ過去の入力信号ベクトルとベクトル乗数との積として、推定フィルタ更新ベクトルを得、未知系推定フィルタに加算することにより、次のステップで用いる未知系推定フィルタを生成する未知系推定フィルタ更新部110と、を有する未知系推定装置を構成した。   Claim 2: In an unknown system estimation device that inputs an input signal to an unknown system in the discrete time domain and an output signal from the unknown system, and estimates the transfer characteristics of the unknown system, the input signal to the unknown system is An input signal vectorization unit 101 that samples and accumulates a finite number of samples, vectorizes them, and outputs an input signal vector; a power calculation unit 102 that calculates input power as the sum of squares of each element of the input signal vector; A delay unit 103 that obtains a signal vector, a correlation calculation unit 104 that calculates an input correlation as an inner product of the input signal vector and the input signal vector of one step in the past, and an input signal vector are input to simulate an output signal from an unknown system The unknown system estimation filter 105 that outputs the output simulation signal and the output simulation signal are corrected according to the value of the input correlation to output the corrected output simulation signal. A correction unit 202; an error calculation unit 107 that outputs an error signal by subtracting a correction output simulation signal from an output signal from an unknown system; and a time-varying or fixed update adjustment coefficient, and includes input power, input correlation, and error signal. , And calculates the weighted input correlation as the product of the input correlation and the update adjustment coefficient used in the past by one step, and calculates the weighted input correlation and the input correlation from the product of the input power and the input power in the previous step. The product of the correlation reduction power product is calculated by subtracting the product of, and the product of the error signal divided by the correlation reduction power product and the update adjustment coefficient is obtained as a weighted normalization error signal, and the weighted normalization error calculated one step in the past A vector multiplier calculation unit 2 that obtains a vector multiplier by subtracting the product of the weighted normalized error signal and the weighted input correlation from the product of the signal and the input power of two steps in the past. An unknown system estimation generating an unknown system estimation filter used in the next step by obtaining an estimated filter update vector as a product of 1 and the input signal vector of the previous step and the vector multiplier and adding it to the unknown system estimation filter An unknown system estimation device including the filter update unit 110 is configured.

(式2)に示すアフィン射影アルゴリズムには、(式2)による処理結果と正確に一致する高速算法(計算量の少ない算法)として、(式4)、(式5)に基く方法があるが、この発明は、(式2)を(式9)で近似し、その上で、(式11)、(式12)に基く計算量削減を図ることにより、(式4)、(式5)よりも少ない計算量で、未知系推定を達成することができる。未知系推定フィルタの更新にかかる計算量を、未知系推定フィルタのタップ数をLとして比較すると、(式4)、(式5)による方法が、加算:2L+9回、乗算:2L+15回、除算:1回で実行するのに対して、この発明による、(式11)、(式12)による方法は、加算:2L+7回、乗算:2L+12回、除算:1回で実行することができ、フィルタリング処理等、フィルタのタップ数Lに依存しない部分で、約20%の計算量の削減をすることができる。そして、有色性の入力信号に対して、この発明の推定フィルタの推定速度は、アフィン射影アルゴリズムと同等で、学習同定法よりも速い。   In the affine projection algorithm shown in (Expression 2), there is a method based on (Expression 4) and (Expression 5) as a high-speed algorithm (an algorithm with a small amount of calculation) that exactly matches the processing result of (Expression 2). In the present invention, (Equation 2) is approximated by (Equation 9), and further, by reducing the amount of calculation based on (Equation 11) and (Equation 12), (Equation 4), (Equation 5) The unknown system estimation can be achieved with less computational complexity. Comparing the amount of calculation required for updating the unknown system estimation filter with the number of taps of the unknown system estimation filter as L, the method according to (Expression 4) and (Expression 5) is added: 2L + 9 times, multiplication: 2L + 15 times, and division: The method according to (Equation 11) and (Equation 12) according to the present invention can be executed at once: addition: 2L + 7 times, multiplication: 2L + 12 times, division: once. For example, the calculation amount can be reduced by about 20% in a portion that does not depend on the number of taps L of the filter. The estimation speed of the estimation filter of the present invention for a colored input signal is equivalent to the affine projection algorithm and is faster than the learning identification method.

この発明は、(式2)におけるα(k),β(k)の計算に用いられる、重み付き遅延誤差信号eμ(k−1)=(1−μ(k−1))e(k−1)を、以下の近似値で置き換えることを考える。

Figure 0004344306
これは以下の考えに基く。誤差信号e(k)を生成する入力信号ベクトルx*(k)を、以下の様に、
Figure 0004344306
と表し、1ステップ過去の入力信号ベクトルx*(k−1)と直交する方向(式7右辺第一項)と、1ステップ過去の入力信号ベクトルx*(k−1)の方向(式7右辺第二項)の2つのベクトルに直交展開し、それぞれのベクトル成分のノルムの二乗に応じて誤差信号e(k)を分配する際に、1ステップ過去の入力信号ベクトルx*(k−1)の方向のベクトル成分に起因する誤差は、1ステップ過去の推定フィルタ更新によって、(1−μ(k−1))倍小さくなったとみなすことにより得られる。即ち、誤差信号e(k)は、
Figure 0004344306
と分解され、この式の右辺第二項が、1ステップ過去の入力信号ベクトルx*(k−1)の方向のベクトル成分、即ち、
(r1(k)/r0(k−1))x*(k−1)に起因すると、近似的にみなされる誤差信号である。そこで、x*(k−1)に起因する誤差(1−μ(k−1))e(k−1)に相当する誤差は、(式8)右辺第二項をr0(k−1)/r1(k)倍することにより、(式6)の様に近似される。(式6)近似を(式2)に適用し、記号の標記を改めると、
Figure 0004344306
となる。更に、(式9)に対して、未知系推定フィルタh*’(k)を以下の様に、z*(k)で置き換える。
*(k+1)=z*’(k)+{E(k−1)r0(k−2)−E(k)rμ(k)}x*(k−1)
(式11)
ここで、
*’(k)=z*(k)+E(k−1)r0(k−2)x*(k−1) (式11.1)
の関係があるため、未知系推定フィルタz*(k)の出力である出力模擬信号
y〜(k)=z*(k)T*(k)は、未知系推定フィルタh*’(k)による出力模擬信号y’(k)=h*’(k)T*(k)とは一致しないが、(式11.1)より、
y’(k)=y〜(k)+E(k−1)r0(k−2)r1(k) (式12)
と補正できることがわかる。 In the present invention, the weighted delay error signal eμ (k−1) = (1−μ (k−1)) e (k−) used in the calculation of α (k) and β (k) in (Equation 2). Consider replacing 1) with the following approximate values:
Figure 0004344306
This is based on the following idea. An input signal vector x * (k) that generates an error signal e (k) is expressed as follows:
Figure 0004344306
And it represents one step of the past input signal vector x * (k-1) orthogonal to the direction (7 first term on the right side), one step past input signal vector x * (k-1) direction (Equation 7 When the error signal e (k) is distributed orthogonally to the two vectors in the second term on the right side) and the error signal e (k) is distributed according to the square of the norm of each vector component, the input signal vector x * (k−1) The error due to the vector component in the direction) is obtained by assuming that the estimation filter has been reduced by (1−μ (k−1)) times by updating the estimation filter in one step. That is, the error signal e (k) is
Figure 0004344306
And the second term on the right side of the equation is a vector component in the direction of the input signal vector x * (k−1) in the past of one step, that is,
(R 1 (k) / r 0 (k−1)) x * (k−1) is an error signal that can be regarded approximately. Therefore, the error corresponding to the error (1-μ (k−1)) e (k−1) due to x * (k−1) is expressed by (Equation 8) where the second term on the right side is represented by r 0 (k−1). ) / R 1 (k) times, it is approximated as (Equation 6). (Equation 6) Applying the approximation to (Equation 2) and revising the symbol,
Figure 0004344306
It becomes. Further, for (Equation 9), the unknown system estimation filter h * ′ (k) is replaced with z * (k) as follows.
z * (k + 1) = z * ′ (k) + {E (k−1) r 0 (k−2) −E (k) rμ (k)} x * (k−1)
(Formula 11)
here,
h * ′ (k) = z * (k) + E (k−1) r 0 (k−2) x * (k−1) (Formula 11.1)
Therefore, the output simulation signal y to (k) = z * (k) T x * (k), which is the output of the unknown system estimation filter z * (k), is represented by the unknown system estimation filter h * ′ (k ) Output simulation signal y ′ (k) = h * ′ (k) T x * (k) does not match, but from (Equation 11.1),
y ′ (k) = y˜ (k) + E (k−1) r 0 (k−2) r 1 (k) (Formula 12)
It can be seen that it can be corrected.

(式11)、(式12)に基くこの発明による方式は、(式4)、(式5)に基く方式より、少ない計算量で、未知系推定を実現することができる。
図1を参照してこの発明による未知系推定装置の実施例を具体的に説明する。
この実施例は、図4により図示説明された未知系推定装置の従来例と比較すると、入力信号ベクトル化部101、パワー計算部102、遅延部103、相関計算部104、未知系推定フィルタ105、誤差計算部107、未知系推定フィルタ更新部110を共通に有している。ところが、この実施例は、(1−μ)により重み付けされた1ステップ過去の誤差信号(1−μ)e(k−1)を得る重み付き遅延部108を不要としている。その代わりに、入力パワーr0(k)と入力相関r1(k)と誤差信号e(k)とを入力し、(式10)、(式11)に従い、重み付き入力相関rμ(k)=μ(k−1)r1(k)を計算し、相関低減パワー積として計算した[r0(k)r0(k−1)−rμ(k)r1(k)]で除した誤差信号e(k)と更新調整係数μ(k)との積を重み付き正規化誤差信号E(k)として得、ベクトル乗数v(k)を
v(k)=E(k−1)r0(k−2)−E(k)rμ(k)として得るベクトル乗数計算部201と、(式12)に従い、出力模擬信号y〜(k)を入力相関r1(k)と1ステップ過去の重み付き正規化誤差信号E(k−1)と2ステップ過去の入力パワーr0(k−2)との積を加えることにより補正し、補正出力模擬信号としてy’(k)を出力する出力補正部202と、を独自に有している。
The method according to the present invention based on (Expression 11) and (Expression 12) can realize unknown system estimation with a smaller amount of calculation than the methods based on (Expression 4) and (Expression 5).
An embodiment of the unknown system estimation apparatus according to the present invention will be specifically described with reference to FIG.
Compared with the conventional example of the unknown system estimation apparatus illustrated and described with reference to FIG. 4, this embodiment has an input signal vectorization unit 101, a power calculation unit 102, a delay unit 103, a correlation calculation unit 104, an unknown system estimation filter 105, The error calculation unit 107 and the unknown system estimation filter update unit 110 are shared. However, this embodiment eliminates the need for the weighted delay unit 108 for obtaining the error signal (1-μ) e (k−1) of one step past weighted by (1-μ). Instead, the input power r 0 (k), the input correlation r 1 (k), and the error signal e (k) are input, and the weighted input correlation rμ (k) according to (Equation 10) and (Equation 11). = Μ (k−1) r 1 (k) is calculated and divided by [r 0 (k) r 0 (k−1) −rμ (k) r 1 (k)] calculated as a correlation reduction power product. The product of the error signal e (k) and the update adjustment coefficient μ (k) is obtained as a weighted normalized error signal E (k), and the vector multiplier v (k) is v (k) = E (k−1) r. The vector multiplier calculation unit 201 obtained as 0 (k−2) −E (k) rμ (k), and according to (Equation 12), the output simulation signals y to (k) are input to the input correlation r 1 (k) and one step past. and a correction by adding the product of the weighted normalized error signal E (k-1) and two steps past input power r 0 (k-2), to output the y '(k) as a corrected output simulation signal An output correction unit 202, a is independently a.

[実施例2]
非負のパラメータδを導入し、(式10)に示す重み付き正規化誤差信号E(k)を
E(k)=μ(k)e(k)/{r0(k)r0(k−1)−rμ(k)r1(k)+δ}
と置き換えれば、加算1回の増加を伴うものの、この発明の効果を維持しながら、更に、零除算による数値の不安定化を防ぐことができる。ここで、0<μ(k)<2の範囲において、[r0(k)r0(k−1)−rμ(k)r1(k)]0が常に成り立つことは自明である。
[Example 2]
A non-negative parameter δ is introduced, and the weighted normalized error signal E (k) shown in (Equation 10) is expressed as E (k) = μ (k) e (k) / {r 0 (k) r 0 (k− 1) −rμ (k) r 1 (k) + δ}
If this is replaced, it is possible to prevent the numerical value from becoming unstable due to division by zero while maintaining the effect of the present invention, although it involves an increase of one addition. Here, it is obvious that [r 0 (k) r 0 (k−1) −rμ (k) r 1 (k)] > 0 always holds in the range of 0 <μ (k) <2.

[実施例3]
(式10)に示す重み付き正規化誤差信号E(k)の零除算防止のための別の形態の実施例として、[r0(k)r0(k−1)−rμ(k)r1(k)]=0または、r0(k)=0または、r0(k−1)=0のとき、μ(k)=0とおき、(式11)の更新を停止させてもよい。また、μ(k)=0とおく条件を、[r0(k)r0(k−1)−rμ(k)r1(k)]<εまたは、r0(k)<εまたは、r0(k−1)<εなどとして、完全に0と一致する場合だけでなく、0の近傍において、μ(k)=0としてもよい。
[Example 3]
As another embodiment for preventing the division by zero of the weighted normalized error signal E (k) shown in (Expression 10), [r 0 (k) r 0 (k−1) −rμ (k) r When 1 (k)] = 0, r 0 (k) = 0, or r 0 (k−1) = 0, μ (k) = 0 is set, and updating of (Equation 11) is stopped. Good. Further, the condition for setting μ (k) = 0 is [r 0 (k) r 0 (k−1) −rμ (k) r 1 (k)] <ε or r 0 (k) <ε or As r 0 (k−1) <ε, etc., μ (k) = 0 may be set in the vicinity of 0 as well as when it completely matches 0.

この発明は以上の通りであり、(式2)に示すアフィン射影アルゴリズムには、(式2)による処理結果と正確に一致する高速算法(計算量の少ない算法)として、(式4)、(式5)に基く方法があるが、(式2)を(式9)で近似し、その上で、(式11)、(式12)に基く計算量削減を図ることにより、(式4)、(式5)よりも少ない計算量で、未知系推定を達成することができる。未知系推定フィルタの更新にかかる計算量を、未知系推定フィルタのタップ数をLとして比較すると、(式4)、(式5)による方法が、加算:2L+9回、乗算:2L+15回、除算:1回で実行するのに対して、この発明による、(式11)、(式12)による方法は、加算:2L+7回、乗算:2L+12回、除算:1回で実行することができ、フィルタリング処理等、フィルタのタップ数Lに依存しない部分で、約20%の計算量の削減をすることができる。   The present invention is as described above. In the affine projection algorithm shown in (Expression 2), (Expression 4), (Expression 4), (Expression 4), There is a method based on (Equation 5), but (Equation 4) is approximated by (Equation 9), and further, by reducing the amount of calculation based on (Equation 11) and (Equation 12), (Equation 4) The unknown system estimation can be achieved with a smaller amount of calculation than (Equation 5). Comparing the amount of calculation required for updating the unknown system estimation filter with the number of taps of the unknown system estimation filter as L, the method according to (Expression 4) and (Expression 5) is added: 2L + 9 times, multiplication: 2L + 15 times, and division: The method according to (Equation 11) and (Equation 12) according to the present invention can be executed at once: addition: 2L + 7 times, multiplication: 2L + 12 times, division: once. For example, the calculation amount can be reduced by about 20% in a portion that does not depend on the number of taps L of the filter.

そして、図2に示す様に、有色性の入力信号に対して、この発明の推定フィルタの推定速度は、アフィン射影アルゴリズムと同等で、学習同定法よりも速い。図2は、音声の平均スペクトルを周波数特性として持つ定常信号を入力信号として与え、512タップの推定フィルタ係数ベクトルと同じく512タップの未知系のフィルタ係数ベクトルの差のノルムを「フィルタ係数誤差」として、dB単位で、各推定ステップ毎にプロットしたものである。比較した推定方式は、この発明と、アフィン射影アルゴリズム、学習同定法である。また、未知系の出力には、白色雑音を加え、「フィルタ係数誤差」が定常状態で等しくなる様に、更新調整係数μを、この発明は0.65に、アフィン射影アルゴリズムは0.22に、学習同定法は1.0に設定した。   As shown in FIG. 2, the estimation speed of the estimation filter of the present invention is the same as that of the affine projection algorithm for the colored input signal, and is faster than the learning identification method. In FIG. 2, a stationary signal having an average spectrum of speech as a frequency characteristic is given as an input signal, and the norm of the difference between the 512-tap unknown filter coefficient vectors as well as the 512-tap estimated filter coefficient vector is defined as “filter coefficient error”. , DB plotted for each estimation step. The comparison estimation methods are the present invention, the affine projection algorithm, and the learning identification method. In addition, white noise is added to the output of the unknown system, and the update adjustment coefficient μ is set to 0.65 in the present invention, and the affine projection algorithm is set to 0.22 so that the “filter coefficient error” becomes equal in the steady state. The learning identification method was set to 1.0.

音響エコーキャンセラにおける、スピーカとマイクロホン間の伝達特性を推定するために、この発明を利用できる、また回線エコーキャンセラについても同様である。   The present invention can be used to estimate the transfer characteristic between the speaker and the microphone in the acoustic echo canceller, and the same applies to the line echo canceller.

未知系推定装置の実施例を説明する図。The figure explaining the Example of an unknown system estimation apparatus. この発明と従来例の未知系推定速度の比較をする図。The figure which compares this system and the unknown system estimated speed of a prior art example. 未知系推定装置の適用概念を説明する図。The figure explaining the application concept of an unknown system estimation apparatus. 未知系推定装置の従来例を説明する図。The figure explaining the prior art example of an unknown system estimation apparatus.

符号の説明Explanation of symbols

101 入力信号ベクトル化部
102 パワー計算部 103 遅延部
104 相関計算部 105 未知系推定フィルタ
106 出力補正部 107 誤差計算部
108 重み付き遅延部 109 ベクトル乗数計算部
110 未知系推定フィルタ更新部 201 ベクトル乗数計算部
202 出力補正部
DESCRIPTION OF SYMBOLS 101 Input signal vectorization part 102 Power calculation part 103 Delay part 104 Correlation calculation part 105 Unknown system estimation filter 106 Output correction part 107 Error calculation part 108 Weighted delay part 109 Vector multiplier calculation part 110 Unknown system estimation filter update part 201 Vector multiplier Calculation unit 202 Output correction unit

Claims (2)

離散時間領域における未知系への入力信号と、未知系からの出力信号とを入力し、未知系の伝達特性を推定する未知系推定方法において、
未知系への入力信号を有限個サンプルして蓄積し、ベクトル化し入力信号ベクトルを出力し、
入力信号ベクトルの各要素の二乗和として入力パワーを計算し、
1ステップ過去の入力信号ベクトルを得、
入力信号ベクトルと1ステップ過去の入力信号ベクトルの内積として入力相関を計算し、
入力信号ベクトルを未知系推定フィルタに入力し、未知系からの出力信号を模擬する出力模擬信号を出力し、
出力模擬信号を入力相関の値に応じて補正し補正出力模擬信号を出力し、
未知系からの出力信号から補正出力模擬信号を差し引いて誤差信号を出力し、
時変または固定の更新調整係数を持ち、入力パワーと入力相関と誤差信号とを入力し、入力相関と1ステップ過去に用いられた更新調整係数との積として重み付き入力相関を計算し、入力パワーと1ステップ過去の入力パワーとの積から重み付き入力相関と入力相関との積を差し引いて相関低減パワー積を計算し、相関低減パワー積で除した誤差信号と更新調整係数との積を重み付き正規化誤差信号として得、1ステップ過去に計算した重み付き正規化誤差信号と2ステップ過去の入力パワーとの積から重み付き正規化誤差信号と重み付き入力相関との積を差し引くことにより、ベクトル乗数を得、
1ステップ過去の入力信号ベクトルとベクトル乗数との積として、推定フィルタ更新ベクトルを得、未知系推定フィルタに加算することにより、次のステップで用いる未知系推定フィルタを生成する、
ことを特徴とする未知系推定方法。
In the unknown system estimation method that inputs the input signal to the unknown system in the discrete time domain and the output signal from the unknown system and estimates the transfer characteristics of the unknown system,
Sample and store a finite number of input signals to the unknown system, vectorize and output the input signal vector,
Calculate the input power as the sum of squares of each element of the input signal vector,
Obtain the input signal vector of one step past,
Calculate the input correlation as the inner product of the input signal vector and the input signal vector of one step past,
Input the input signal vector to the unknown system estimation filter, and output the output simulation signal that simulates the output signal from the unknown system,
Correct the output simulation signal according to the input correlation value and output the corrected output simulation signal,
Subtract the correction output simulation signal from the output signal from the unknown system to output the error signal,
Has a time-varying or fixed update adjustment coefficient, inputs input power, input correlation, and error signal, calculates a weighted input correlation as the product of the input correlation and the update adjustment coefficient used in the previous step, and inputs Subtract the product of the weighted input correlation and the input correlation from the product of the power and the input power of one step in the past to calculate the correlation reduced power product, and calculate the product of the error signal divided by the correlation reduced power product and the update adjustment coefficient Obtained as a weighted normalized error signal, by subtracting the product of the weighted normalized error signal and the weighted input correlation from the product of the weighted normalized error signal calculated in the past one step and the input power in the past two steps. Get the vector multiplier,
An unknown filter estimation vector used in the next step is generated by obtaining an estimated filter update vector as a product of the input signal vector of the previous step and the vector multiplier and adding it to the unknown filter.
An unknown system estimation method characterized by this.
離散時間領域における未知系への入力信号と、未知系からの出力信号とを入力し、未知系の伝達特性を推定する未知系推定装置において、
未知系への入力信号を有限個サンプルして蓄積し、ベクトル化し入力信号ベクトルを出力する入力信号ベクトル化部と、
入力信号ベクトルの各要素の二乗和として入力パワーを計算するパワー計算部と、
1ステップ過去の入力信号ベクトルを得る遅延部と、
入力信号ベクトルと1ステップ過去の入力信号ベクトルの内積として入力相関を計算する相関計算部と、
入力信号ベクトルを入力し、未知系からの出力信号を模擬する出力模擬信号を出力する未知系推定フィルタと、
出力模擬信号を、入力相関の値に応じて補正し補正出力模擬信号を出力する出力補正部と、
未知系からの出力信号から補正出力模擬信号を差し引いて誤差信号を出力する誤差計算部と、
時変または固定の更新調整係数を持ち、入力パワーと入力相関と誤差信号とを入力し、入力相関と1ステップ過去に用いられた更新調整係数との積として重み付き入力相関を計算し、入力パワーと1ステップ過去の入力パワーとの積から重み付き入力相関と入力相関との積を差し引いて相関低減パワー積を計算し、相関低減パワー積で除した誤差信号と更新調整係数との積を重み付き正規化誤差信号として得、1ステップ過去に計算した重み付き正規化誤差信号と2ステップ過去の入力パワーとの積から重み付き正規化誤差信号と重み付き入力相関との積を差し引くことにより、ベクトル乗数を得るベクトル乗数計算部と、
1ステップ過去の入力信号ベクトルとベクトル乗数との積として、推定フィルタ更新ベクトルを得、未知系推定フィルタに加算することにより、次のステップで用いる未知系推定フィルタを生成する未知系推定フィルタ更新部と、
を有することを特徴とする未知系推定装置。
In the unknown system estimation device that inputs the input signal to the unknown system in the discrete time domain and the output signal from the unknown system, and estimates the transfer characteristics of the unknown system,
An input signal vectorization unit that samples and accumulates a finite number of input signals to an unknown system, vectorizes them, and outputs an input signal vector;
A power calculator that calculates input power as the sum of squares of each element of the input signal vector;
A delay unit for obtaining an input signal vector of one step in the past;
A correlation calculation unit that calculates an input correlation as an inner product of the input signal vector and the input signal vector of one step in the past;
An unknown system estimation filter that inputs an input signal vector and outputs an output simulation signal that simulates an output signal from the unknown system;
An output correction unit that corrects the output simulation signal according to the value of the input correlation and outputs a corrected output simulation signal;
An error calculator that outputs an error signal by subtracting the corrected output simulation signal from the output signal from the unknown system;
Has a time-varying or fixed update adjustment coefficient, inputs input power, input correlation, and error signal, calculates a weighted input correlation as the product of the input correlation and the update adjustment coefficient used in the previous step, and inputs Subtract the product of the weighted input correlation and the input correlation from the product of the power and the input power of one step in the past to calculate the correlation reduced power product, and calculate the product of the error signal divided by the correlation reduced power product and the update adjustment coefficient Obtained as a weighted normalized error signal, by subtracting the product of the weighted normalized error signal and the weighted input correlation from the product of the weighted normalized error signal calculated in the past one step and the input power in the past two steps. A vector multiplier calculation unit for obtaining a vector multiplier;
An unknown system estimation filter update unit for generating an unknown system estimation filter to be used in the next step by obtaining an estimation filter update vector as a product of an input signal vector and a vector multiplier of one step in the past, and adding it to the unknown system estimation filter When,
An unknown system estimation device comprising:
JP2004312907A 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for carrying out this method Expired - Fee Related JP4344306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312907A JP4344306B2 (en) 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for carrying out this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312907A JP4344306B2 (en) 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for carrying out this method

Publications (2)

Publication Number Publication Date
JP2006128947A JP2006128947A (en) 2006-05-18
JP4344306B2 true JP4344306B2 (en) 2009-10-14

Family

ID=36723174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312907A Expired - Fee Related JP4344306B2 (en) 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for carrying out this method

Country Status (1)

Country Link
JP (1) JP4344306B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089004B (en) * 2018-08-14 2020-10-09 西南交通大学 Collective member self-adaptive echo cancellation method based on correlation entropy induction
CN109151237B (en) * 2018-08-23 2020-10-09 西南交通大学 Affine projection self-adaptive echo cancellation method based on zero attraction

Also Published As

Publication number Publication date
JP2006128947A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
Ciochină et al. An optimized NLMS algorithm for system identification
EP2327156B1 (en) Method for determining updated filter coefficients of an adaptive filter adapted by an lms algorithm with pre-whitening
Benesty et al. On regularization in adaptive filtering
US9805734B2 (en) Signal processing device, signal processing method and signal processing program for noise cancellation
US11894010B2 (en) Signal processing apparatus, signal processing method, and program
JP5958341B2 (en) Signal processing apparatus, signal processing method, and signal processing program
WO2006049260A1 (en) Signal processing method, signal processing device, and signal processing program
CN111199748B (en) Echo cancellation method, device, equipment and storage medium
JP6987509B2 (en) Speech enhancement method based on Kalman filtering using a codebook-based approach
US20090043588A1 (en) Sound-source separation system
Malik et al. Double-talk robust multichannel acoustic echo cancellation using least-squares MIMO adaptive filtering: transversal, array, and lattice forms
Carini et al. Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences
JP4344306B2 (en) Unknown system estimation method and apparatus for carrying out this method
Ciochina et al. An optimized proportionate adaptive algorithm for sparse system identification
JPWO2005015737A1 (en) System estimating method, program, recording medium, and system estimating device
JPH08250982A (en) Estimaton device for filter coefficient
US9443503B2 (en) Signal processing device, signal processing method and signal processing program
Stanciu et al. A proportionate affine projection algorithm using dichotomous coordinate descent iterations
JP4344305B2 (en) Unknown system estimation method and apparatus for implementing the same
Zhang et al. Kernel estimation of truncated volterra filter model based on dfp technique and its application to chaotic time series prediction
Ciochină et al. An optimized affine projection algorithm for acoustic echo cancellation
Hosseini et al. A novel noise cancellation method for speech enhancement using variable step-size adaptive algorithm
JP6343585B2 (en) Unknown transmission system estimation device, unknown transmission system estimation method, and program
Griffiths et al. Convergence properties of an adaptive noise cancelling lattice structure
Rusu et al. A Data-Reuse Approach for an Optimized LMS Algorithm

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees