JP4344305B2 - Unknown system estimation method and apparatus for implementing the same - Google Patents

Unknown system estimation method and apparatus for implementing the same Download PDF

Info

Publication number
JP4344305B2
JP4344305B2 JP2004312906A JP2004312906A JP4344305B2 JP 4344305 B2 JP4344305 B2 JP 4344305B2 JP 2004312906 A JP2004312906 A JP 2004312906A JP 2004312906 A JP2004312906 A JP 2004312906A JP 4344305 B2 JP4344305 B2 JP 4344305B2
Authority
JP
Japan
Prior art keywords
input signal
unknown system
vector
signal vector
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312906A
Other languages
Japanese (ja)
Other versions
JP2006128946A (en
Inventor
末廣 島内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004312906A priority Critical patent/JP4344305B2/en
Publication of JP2006128946A publication Critical patent/JP2006128946A/en
Application granted granted Critical
Publication of JP4344305B2 publication Critical patent/JP4344305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、未知系推定方法およびこれを実施する装置に関し、特に、音響伝達特性の如き未知系に与える入力信号と当該未知系から得られる出力信号とを入力して当該未知系を模擬するFIRフィルタを推定し、或いは、未知系から出力の予測、模擬を実現する未知系推定方法およびこれを実施する装置に関する。   The present invention relates to an unknown system estimation method and an apparatus for performing the method, and in particular, an FIR that simulates an unknown system by inputting an input signal given to the unknown system such as acoustic transfer characteristics and an output signal obtained from the unknown system. The present invention relates to an unknown system estimation method that estimates a filter or realizes output prediction and simulation from an unknown system, and an apparatus that implements the method.

図3を参照するに、その系のインパルス応答を要素として持つ長さLのベクトルh*によって特徴付けられる未知系hに対して入力信号x(k)を与えると共に、この未知系から得られた出力信号y(k)を与えて未知系hの特性を推定する未知系推定装置1が知られている。ただし、kは離散時間を表す。ベクトルhをh*と表記する。ここで、未知系hに対する入力信号x(k)を電話回線を介して伝送された音声信号であるものとすると、未知系hの入力端に存在する受話器と、出力端に存在する送話器と、受話器と送話器との間に存在する諸々の環境をすべて含めたものの音響伝達特性を未知系hと表現している。 Referring to FIG. 3, an input signal x (k) is given to an unknown system h characterized by a vector L * of length L having the impulse response of the system as an element, and obtained from this unknown system. There is known an unknown system estimation apparatus 1 that gives an output signal y (k) to estimate the characteristics of an unknown system h. However, k represents discrete time. The vector h is expressed as h * . Here, assuming that the input signal x (k) for the unknown system h is a voice signal transmitted via a telephone line, a receiver present at the input end of the unknown system h and a transmitter present at the output end. And the acoustic transfer characteristics of all the environments existing between the handset and the handset are expressed as an unknown system h.

[非特許文献1]に示され学習同定法は、未知系hの推定フィルタh*’(k)を、以下の様に、逐次更新して推定する。以降、ベクトルxをx*、と表記する。
*’(k+1)=h*’(k) +μ(e(k)/‖x*(k)‖2)x(k) (式1)
ここで、x*(k)=[x(k),x(k−1),…,x(k−L+1)]T、Tはベクトルの転置、‖x*(k)‖はベクトルx*(k)のノルム、μは0から2の間の値をとる更新調整係数、e(k)=y(k)−y’(k),y’(k)=h*’(k)T*(k)である。
In the learning identification method shown in [Non-Patent Document 1], the estimation filter h * ′ (k) of the unknown system h is sequentially updated and estimated as follows. Hereinafter, the vector x is expressed as x * .
h * '(k + 1) = h *' (k) + μ (e (k) / ‖x * (k) || 2) x (k) (Equation 1)
Here, x * (k) = [x (k), x (k−1),..., X (k−L + 1)] T , T is a vector transposition, and ‖x * (k) ‖ is a vector x *. Norm of (k), μ is an update adjustment coefficient that takes a value between 0 and 2, e (k) = y (k) −y ′ (k), y ′ (k) = h * ′ (k) T x * (k).

この学習同定法には、入力信号x(k)が音声の様に有色信号である場合、未知系の推定速度が遅くなるという問題があった。
ここで、[非特許文献2]に示されるアフィン射影アルゴリズムによる未知系推定装置を図4を参照して説明する。この未知系推定装置100は、未知系h*への入力信号x(k)を有限個サンプルして蓄積し、ベクトル化し、入力信号ベクトルx*(k)として出力する入力信号ベクトル化部101と、入力信号ベクトルx*(k)を入力し、未知系h*の出力信号y(k)を模擬する出力模擬信号y’(k)を出力する未知系推定フィルタ102と、未知系h* から得られる出力信号y(k)から出力模擬信号y’(k)を差し引いて誤差信号e(k)を出力する誤差計算部103と、1ステップ過去の入力信号ベクトルx*(k−1)を得る遅延部104と、(1−μ)により重み付けされた1ステップ過去の誤差信号(1−μ)e(k−1)を得る重み付き遅延部105と、x*(k)、x*(k−1)、e(k)、(1−μ)e(k−1)を入力し、(式2)に従い、未知系推定フィルタh*’(k)を更新する遅延入力及び遅延誤差参照型推定フィルタ更新部106により構成される。
This learning identification method has a problem that when the input signal x (k) is a colored signal like speech, the estimated speed of the unknown system becomes slow.
Here, an unknown system estimation apparatus based on the affine projection algorithm shown in [Non-Patent Document 2] will be described with reference to FIG. This unknown system estimation apparatus 100 includes an input signal vectorization unit 101 that samples and accumulates a finite number of input signals x (k) to an unknown system h * , vectorizes them, and outputs them as input signal vectors x * (k). , receives the input signal vector x * (k), and unknown system estimation filter 102 which outputs an output test signal y simulating the unknown system h * of the output signal y (k) '(k) , from the unknown system h * An error calculation unit 103 that outputs an error signal e (k) by subtracting the output simulation signal y ′ (k) from the obtained output signal y (k), and an input signal vector x * (k−1) of one step in the past. A delay unit 104 to obtain, a weighted delay unit 105 to obtain an error signal (1-μ) e (k−1) of one step past weighted by (1-μ), and x * (k), x * ( k-1), e (k), (1-μ) e (k-1) and ( According 2), constituted by the unknown system estimation filter h * '(delayed input and the delay error reference types updating k) estimating filter updating unit 106.

このアフィン射影アルゴリズムによる未知系推定装置は、未知系の推定フィルタh*’(k)を、以下の様に逐次更新して推定し(次数が2の場合)、未知系の推定速度が遅くなるという学習同定法の先の問題を克服している。

Figure 0004344305
但し、
00=‖x*(k)‖2
01=xT(k)x*(k−1)
10=x* T(k−1)x*(k)=r01
11=‖x*(k−1)‖2
である。
J.Nagumo,A.noda;“A learning method for system identification”IEEE Trans.Automatic control,Vol.AC-12,No.3,June 1967. 尾関 和彦,梅田 哲夫:「アフィン部分空間への直行射影を用いた適応フィルタ・アルゴリズムとその諸性質」電子通信学会 論文誌(A),J67−A,pp126−132,1984. The unknown system estimation apparatus based on this affine projection algorithm estimates the unknown system estimation filter h * '(k) by updating it sequentially as follows (when the order is 2), and the estimation speed of the unknown system becomes slow. It overcomes the previous problem of learning identification method.
Figure 0004344305
However,
r 00 = ‖x * (k) || 2
r 01 = x T (k) x * (k−1)
r 10 = x * T (k−1) x * (k) = r 01
r 11 = ‖x * (k−1) ‖ 2
It is.
J. Nagumo, A. noda; “A learning method for system identification” IEEE Trans. Automatic control, Vol. AC-12, No. 3, June 1967. Kazuhiko Ozeki, Tetsuo Umeda: "Adaptive filter algorithm using direct projection to affine subspace and its properties" IEICE Transactions (A), J67-A, pp126-132, 1984.

図4により図示説明される未知系推定装置100は、入力信号x(k)が有色であっても未知系推定の速度が速いという利点があるものの、遅延入力及び遅延誤差参照型推定フィルタ更新部106が(式2)に従い演算を実行するものであるところから、(式1)に従い演算を実行する先の学習同定法の場合と比較して演算が複雑となる問題がある。
この発明は、図4に示される未知系推定装置100と同等の未知系推定速度を達成しながら、未知系推定フィルタの更新をより簡易に実現する未知系推定方法およびこれを実施する装置を提供するものである。
The unknown system estimation apparatus 100 illustrated in FIG. 4 has the advantage that the speed of unknown system estimation is fast even if the input signal x (k) is colored, but the delay input and delay error reference type estimation filter update unit Since 106 performs the operation according to (Equation 2), there is a problem that the operation becomes more complicated than in the case of the learning identification method that performs the operation according to (Equation 1).
The present invention provides an unknown system estimation method and an apparatus that implements the unknown system estimation filter that can easily update the unknown system estimation filter while achieving an unknown system estimation speed equivalent to that of the unknown system estimation apparatus 100 shown in FIG. To do.

請求項1:離散時間k領域における未知系への入力信号x(k)と、未知系からの出力信号y(k)とを入力し、未知系の伝達特性を推定する未知系推定方法において、入力信号x(k)を有限個サンプルして蓄積し、ベクトル化して入力信号ベクトルx*(k)を出力し、未知系推定フィルタ102に入力信号ベクトルx*(k)を入力し、未知系からの出力信号y(k)を模擬する出力模擬信号y’(k)を生成し、出力模擬信号y’(k)を未知系の出力信号y(k)から差し引いて誤差信号e(k)を生成し、入力信号ベクトルx*(k)に基づいて1ステップ過去の入力信号ベクトルx*(k−1)を生成し、時変或いは固定の更新調整係数を持ち、入力信号ベクトルと、1ステップ過去の入力信号ベクトルと、誤差信号とに基づいて、入力信号ベクトルから、入力信号ベクトルの内の1ステップ過去の入力信号ベクトルと相関のあるベクトル成分に1ステップ過去に用いられた更新調整係数を乗じたものを減じた相関低減入力信号ベクトルを得、相関低減入力信号ベクトルを入力信号ベクトルと相関低減入力信号ベクトルの内積で除し、誤差信号を乗じ、更新調整係数を乗じることにより、未知系推定フィルタの更新値を未知系推定フィルタ102に与える、未知系推定方法を構成した。 Claim 1: In an unknown system estimation method for inputting an input signal x (k) to an unknown system in a discrete time k region and an output signal y (k) from the unknown system, and estimating transfer characteristics of the unknown system, the input signal x (k) and accumulates the finite number samples, and vectorized outputs the input signal vector x * (k), receives the input signal vector x * (k) to the unknown system estimation filter 102, the unknown system An output simulation signal y ′ (k) that simulates the output signal y (k) from the output signal y (k) is generated, and the error simulation signal y (k) is subtracted from the output simulation signal y ′ (k) of the unknown system. generate, based on the input signal vector x * (k) to generate a one-step past input signal vector x * (k-1), has an update adjustment factor varying or fixed time, the input signal vector, 1 Step Based on past input signal vector and error signal , To obtain a correlation-reduced input signal vector obtained by subtracting a vector component correlated with an input signal vector in the past of one step from the input signal vector multiplied by the update adjustment coefficient used in the past of one step. The update value of the unknown system estimation filter is given to the unknown system estimation filter 102 by dividing the correlation reduction input signal vector by the inner product of the input signal vector and the correlation reduction input signal vector, multiplying by the error signal, and multiplying by the update adjustment coefficient. An unknown system estimation method was constructed.

請求項2:離散時間k領域における未知系への入力信号x(k)と、未知系からの出力信号y(k)とを入力し、未知系の伝達特性を推定する未知系推定装置において、入力信号x(k)を有限個サンプルして蓄積し、ベクトル化して入力信号ベクトルx*(k)を出力する入力信号ベクトル化部101と、入力信号ベクトル化部101においてベクトル化した入力信号ベクトルx*(k)を入力し、未知系からの出力信号y(k)を模擬する出力模擬信号y’(k)を出力する未知系推定フィルタ102と、未知系推定フィルタh*’(k)102から出力される出力模擬信号y’(k)を未知系の出力信号y(k)から差し引いて誤差信号e(k)を出力する誤差計算部103と、入力信号ベクトル化部101からベクトル化した入力信号ベクトルx*(k)を入力して1ステップ過去の入力信号ベクトルx*(k−1)を生成する遅延部104と、時変或いは固定の更新調整係数を持ち、入力信号ベクトルと、1ステップ過去の入力信号ベクトルと、誤差信号とを入力して、入力信号ベクトルから、入力信号ベクトルの内の1ステップ過去の入力信号ベクトルと相関のあるベクトル成分に1ステップ過去に用いられた更新調整係数を乗じたものを減じた相関低減入力信号ベクトルを得、相関低減入力信号ベクトルを入力信号ベクトルと相関低減入力信号ベクトルの内積で除し、誤差信号を乗じ、更新調整係数を乗じることにより、未知系推定フィルタの更新値を未知系推定フィルタ102に与える遅延入力参照型推定フィルタ更新部201とを有する、未知系推定装置を構成した。 Claim 2: In an unknown system estimation device for inputting an input signal x (k) to an unknown system in a discrete time k region and an output signal y (k) from the unknown system, and estimating the transfer characteristics of the unknown system, An input signal vectorization unit 101 that samples and accumulates a finite number of input signals x (k), vectorizes them and outputs an input signal vector x * (k), and an input signal vector vectorized by the input signal vectorization unit 101 An unknown system estimation filter 102 that inputs x * (k) and outputs an output simulation signal y ′ (k) that simulates an output signal y (k) from the unknown system, and an unknown system estimation filter h * ′ (k) An error calculation unit 103 that subtracts an output simulation signal y ′ (k) output from the output signal y (k) from the unknown system and outputs an error signal e (k), and vectorization from the input signal vectorization unit 101 Input signal And torr x * (k) delay unit 104 for generating an input to one step past input signal vector x * (k-1) to have an update adjustment factor varying or fixed time, the input signal vector, one step The past input signal vector and the error signal are input, and the update adjustment coefficient used one step in the past from the input signal vector to the vector component correlated with the input signal vector in the previous step of the input signal vector. The correlation reduced input signal vector obtained by subtracting the value obtained by multiplying by, and the unknown signal is obtained by dividing the correlation reduced input signal vector by the inner product of the input signal vector and the correlation reduced input signal vector, multiplying by the error signal, and multiplying by the update adjustment coefficient. An unknown system estimation device having a delay input reference type estimation filter update unit 201 that supplies an updated value of the system estimation filter to the unknown system estimation filter 102 is configured.

アフィン射影アルゴリズムが、現ステップの入力信号と誤差信号の他に、1ステップ過去の入力信号ベクトルと1ステップ過去の誤差信号を未知系推定フィルタの更新に用いるのに対して、この発明は、1ステップ過去の誤差信号を用いる代わりにこれを現ステップの誤差信号に基づく近似値で置き換えることにより、アフィン射影アルゴリズムと比較して簡易な計算により、未知系推定フィルタの更新をすることができる。そして、この発明の未知系推定フィルタの推定速度は、有色性の入力信号に対してアフィン射影アルゴリズムと同等であり、学習同定法よりも速い。   The affine projection algorithm uses an input signal vector of one step past and an error signal of one step past in addition to the input signal and error signal of the current step for updating the unknown system estimation filter. By replacing the error signal of the step past with an approximate value based on the error signal of the current step, the unknown system estimation filter can be updated by simple calculation compared with the affine projection algorithm. The estimation speed of the unknown system estimation filter of the present invention is equivalent to the affine projection algorithm for colored input signals and is faster than the learning identification method.

(式2)による未知系推定フィルタの更新は、更新後の未知系推定フィルタh*’(k+1)が、以下の連立方程式

Figure 0004344305
を満足する様に、更新ベクトルΔh*’(k)を求め、
*’(k+1)=h*’(k)+μΔh*’(k)
とすることにより与えられている。 The unknown system estimation filter is updated by (Equation 2). The updated unknown system estimation filter h * ′ (k + 1) is represented by the following simultaneous equations:
Figure 0004344305
To obtain an update vector Δh * ′ (k) so that
h * ′ (k + 1) = h * ′ (k) + μΔh * ′ (k)
And is given by.

即ち、アフィン射影アルゴリズムにおいて、Δh’(k)は、

Figure 0004344305
の最小ノルム解に相当する。
ここで、(式2)が(式1)より複雑な原因となっているのは、x*(k)とe(k)に加え、1ステップ過去の入力信号ベクトルx*(k−1)と誤差信号e(k−1)が導入されているためとみることができる。いま、(式2)の右辺第2項
Figure 0004344305
とを比較すると、x*(k)とx*(k−1)、或いはe(k)とe(k−1)とが統計的に同じ程度の大きさをとるとすれば、その絶対値が1より小さい(1−μ)により重み付けられている(式2)の右辺第3項の方が、更新に小さく影響しているとみることができる。そこで、(式2)の右辺第3項にのみ現れるe(k−1)を正確に適用する変わりに、(式2)の右辺第2項にあるe(k)に基づいて、以下の様に近似することを考える。 That is, in the affine projection algorithm, Δh ′ (k) is
Figure 0004344305
Corresponds to the minimum norm solution of.
Here, the reason why (Equation 2) is more complicated than (Equation 1) is that x * (k) and e (k), in addition to the input signal vector x * (k−1) of one step in the past. And the error signal e (k−1) is introduced. Now, the second term on the right side of (Equation 2)
Figure 0004344305
If x * (k) and x * (k-1) or e (k) and e (k-1) are statistically the same size, the absolute value It can be considered that the third term on the right side of (Expression 2) weighted by (1-μ) smaller than 1 has a smaller influence on the update. Therefore, instead of correctly applying e (k−1) that appears only in the third term on the right side of (Expression 2), the following is obtained based on e (k) in the second term on the right side of (Expression 2). Consider approximating to.

Figure 0004344305
と表し、x*(k−1)と直交する方向(式4右辺第1項)と、x*(k−1)の方向(式4右辺第2項)との2つのベクトルに直交展開し、それぞれのベクトル成分のノルムの二乗に応じてe(k)を分配する際に、x*(k−1)の方向のベクトル成分に起因する誤差は、1ステップ過去の推定フィルタ更新によって、(1−μ)倍小さくなったとみなすことにより得られる。即ち、e(k)は、
Figure 0004344305
と分解され、この式の右辺第2項が、x*(k−1)の方向のベクトル成分、即ち(r01/r11)x*(k−1)に起因するとみなされる誤差信号である。そこで、x*(k−1)に起因する誤差(1−μ)e(k−1)に相当する誤差は、(式5)右辺第2項をr11/r01倍することにより、(式3)の様に近似される。
Figure 0004344305
And represents, x * (k-1) orthogonal to the direction (Expression 4 the first term of the right side), x * (k-1) orthogonal expanded into two vectors and the direction (Equation 4 the second term on the right side) of the When e (k) is distributed according to the square of the norm of each vector component, the error caused by the vector component in the direction of x * (k−1) It can be obtained by assuming that 1−μ) times smaller. That is, e (k) is
Figure 0004344305
The second term on the right side of this equation is an error signal that is considered to be caused by a vector component in the direction of x * (k−1), that is, (r 01 / r 11 ) x * (k−1). . Therefore, the error corresponding to the error (1-μ) e (k−1) due to x * (k−1) is expressed by (Expression 5) by multiplying the second term on the right side by r 11 / r 01 ( It is approximated as shown in Equation 3).

(式3)の近似を(式2)に適用すると、未知系の推定フィルタを更新する新しい更新式が得られる。

Figure 0004344305
(式6)は、この発明の課題を解決する未知系推定フィルタの更新式である。また、この発明において、未知系推定フィルタの更新に用いる更新調整係数が、各ステップkに対して、変化してもよく、その場合、(式6)は、
Figure 0004344305
となる。
この発明においては、(式6)、或いは、より一般化された(式7)により、未知系の推定フィルタの更新を行う。これらの式は、(式2)と比較して、e(k−1)を含まず、簡易に更新を実現することができる。
この発明の実施例を図1を参照して具体的に説明する。 When the approximation of (Expression 3) is applied to (Expression 2), a new update expression for updating the unknown system estimation filter is obtained.
Figure 0004344305
(Expression 6) is an update expression of the unknown system estimation filter that solves the problem of the present invention. In the present invention, the update adjustment coefficient used for updating the unknown system estimation filter may change with respect to each step k.
Figure 0004344305
It becomes.
In the present invention, the unknown system estimation filter is updated according to (Expression 6) or more generalized (Expression 7). These equations do not include e (k−1) compared to (Equation 2), and can be easily updated.
An embodiment of the present invention will be specifically described with reference to FIG.

図1の実施例は、未知系に対して入力信号x(k)を与えて得られたと未知系出力信号y(k)と当該未知系入力信号x(k)とを入力して、未知系の伝達特性を推定し、或いは、未知系から出力の予測、模擬を実現する未知系推定装置である。
101は入力信号ベクトル化部であり、入力信号x(k)を有限個サンプルして蓄積し、ベクトル化して入力信号ベクトルx*(k)を出力する部位である。
102は未知系推定フィルタであり、入力信号ベクトル化部101においてベクトル化した入力信号ベクトルx*(k)を入力し、未知系からの出力信号y(k)を模擬する出力模擬信号y’(k)を出力する部位である。
The embodiment of FIG. 1 inputs an unknown system output signal y (k) and the unknown system input signal x (k) obtained by giving an input signal x (k) to the unknown system, This is an unknown system estimation device that estimates the transfer characteristics of the system or realizes output prediction and simulation from an unknown system.
Reference numeral 101 denotes an input signal vectorization unit, which is a part that samples and accumulates a finite number of input signals x (k), vectorizes them, and outputs an input signal vector x * (k).
An unknown system estimation filter 102 receives the input signal vector x * (k) vectorized by the input signal vectorization unit 101 and simulates the output signal y (k) from the unknown system. k) is a part to output.

103は誤差計算部であり、未知系推定フィルタh*’(k)102から出力される出力模擬信号y’(k)を未知系の出力信号y(k)から差し引いて誤差信号e(k)を出力する部位である。
104は遅延部であり、入力信号ベクトル化部101からベクトル化した入力信号ベクトルx*(k)を入力して1ステップ過去の入力信号ベクトルx*(k−1)を生成する部位である。
201は遅延入力参照型推定フィルタ更新部であり、入力信号ベクトル化部101から入力信号ベクトルx*(k)を入力すると共に遅延部104から1ステップ過去の入力信号ベクトルx*(k−1)を入力し、更に、未知系の出力信号y(k)から出力模擬信号y’(k)を差し引いて得られる誤差信号を誤差計算部103から入力する。この遅延入力参照型推定フィルタ更新部201は、時変或いは固定の更新調整係数を持ち、入力信号ベクトルと、1ステップ過去の入力信号ベクトルと、誤差信号とを入力して、入力信号ベクトルから、入力信号ベクトルの内の1ステップ過去の入力信号ベクトルと相関のあるベクトル成分に1ステップ過去に用いられた更新調整係数を乗じたものを減じた相関低減入力信号ベクトルを得、相関低減入力信号ベクトルを入力信号ベクトルと相関低減入力信号ベクトルの内積で除し、誤差信号を乗じ、更新調整係数を乗じることにより、未知系推定フィルタの更新値を未知系推定フィルタ102に与える部位である。
An error calculation unit 103 subtracts the simulated output signal y ′ (k) output from the unknown system estimation filter h * ′ (k) 102 from the unknown system output signal y (k) to generate an error signal e (k). Is a part that outputs.
Reference numeral 104 denotes a delay unit, which is a part that inputs the input signal vector x * (k) vectorized from the input signal vectorization unit 101 and generates the input signal vector x * (k−1) of one step in the past.
Reference numeral 201 denotes a delay input reference type estimation filter update unit which inputs the input signal vector x * (k) from the input signal vectorization unit 101 and inputs the input signal vector x * (k−1) from the delay unit 104 one step in the past. Further, an error signal obtained by subtracting the output simulation signal y ′ (k) from the output signal y (k) of the unknown system is input from the error calculation unit 103. The delayed input reference type estimation filter update unit 201 has a time-varying or fixed update adjustment coefficient, inputs an input signal vector, an input signal vector of one step past, and an error signal, and from the input signal vector, A correlation-reduced input signal vector is obtained by subtracting a vector component correlated with an input signal vector in the past of one step from the input signal vector multiplied by the update adjustment coefficient used in the past of one step. Is an area where the update value of the unknown system estimation filter is given to the unknown system estimation filter 102 by dividing by the inner product of the input signal vector and the correlation reduced input signal vector, multiplying by the error signal, and multiplying by the update adjustment coefficient.

この発明の実施例は、図4により図示説明される従来例の入力信号ベクトル化部101、未知系推定フィルタ102、誤差計算部103、遅延部104を共通に具備している。ところが、この発明の実施例は、(1−μ)により重み付けされた1ステップ過去の誤差信号(1−μ)e(k−1)を得る従来例の重み付き遅延部105が不要である。また、入力信号ベクトルx*(k)、1ステップ過去の入力信号ベクトルx*(k−1)、誤差信号e(k)を入力し、(式7)に従い、入力信号ベクトルx*(k)から、x*(k)の内の1ステップ過去の入力信号x*(k−1)と相関のあるベクトル成分(r10/r11)x*(k−1)に1ステップ過去に用いられた更新調整係数μ(k−1)を乗じたものを減じた相関低減入力信号ベクトル[x*(k)−μ(k−1)(r10/r11)x*(k−1)]を得、これを、入力信号ベクトルと相関低減入力信号ベクトルの内積[r00−μ(k−1)(r0110/r11)]で除し、更に、誤差信号e(k)と、更新調整係数μ(k)とを乗じることにより、未知系推定フィルタの更新値

Figure 0004344305
を得、未知系推定フィルタを更新する遅延入力参照型推定フィルタ更新部201を独自に有している。 The embodiment of the present invention includes the input signal vectorization unit 101, the unknown system estimation filter 102, the error calculation unit 103, and the delay unit 104 of the conventional example illustrated and described with reference to FIG. However, the embodiment of the present invention does not require the weighted delay unit 105 of the conventional example that obtains the error signal (1-μ) e (k−1) of one step past weighted by (1-μ). Further, the input signal vector x * (k), the input signal vector x * (k−1) in the past of one step, and the error signal e (k) are input, and the input signal vector x * (k) according to (Equation 7). from used one step past x * 1 step past input signal of the (k) x * (k- 1) and a correlation vector component (r 10 / r 11) x * (k-1) The correlation-reduced input signal vector [x * (k) −μ (k−1) (r 10 / r 11 ) x * (k−1)] obtained by subtracting the product of the update adjustment coefficient μ (k−1). Is divided by the inner product [r 00 −μ (k−1) (r 01 r 10 / r 11 )] of the input signal vector and the correlation-reduced input signal vector, and the error signal e (k) , The update value of the unknown system estimation filter by multiplying by the update adjustment coefficient μ (k)
Figure 0004344305
And has a delay input reference type estimation filter update unit 201 for updating the unknown system estimation filter.

[実施例2]
非負のパラメータδ1及びδ2を導入し、(式7)を

Figure 0004344305
の様に拡張することにより、この発明の効果を維持しながら、更に、零除算による数値の不安定化を防ぐことができる。この場合、相関低減入力信号ベクトルは、
[x*(k)−μ(k−1)(r10/(r11+δ1))x*(k−1)]に相当し、入力信号ベクトルと相関低減入力信号ベクトルの内積は、[r00−μ(k−1)(r0110/(r11+δ1))+δ2]に相当する。また、(式6)についても同様な拡張をすることができる。 [Example 2]
Introducing non-negative parameters δ 1 and δ 2 ,
Figure 0004344305
By extending like this, it is possible to further prevent the numerical value from becoming unstable due to division by zero while maintaining the effect of the present invention. In this case, the correlation-reduced input signal vector is
[x * (k) −μ (k−1) (r 10 / (r 11 + δ 1 )) x * (k−1)], and the inner product of the input signal vector and the correlation-reduced input signal vector is [ r 00 −μ (k−1) (r 01 r 10 / (r 11 + δ 1 )) + δ 2 ]. Further, the same extension can be applied to (Equation 6).

[実施例3]
更新調整係数μをステップkに対して、変化させてもよい場合は、[実施例2]に記載した零除算の防止のための代替として、r11=0、或いは、[r00−μ(k−1)(r0110/r111 )]=0のとき、μ(k)=0とおくことにより、(式7)を更新することもできる。また、μ(k)=0とおく条件は、r11<ε,r00−μ(k−1)(r0110/r111 )<εの様に、完全に0と一致する場合だけでなく、0の近傍において、μ(k)=0としてもよい。
[Example 3]
When the update adjustment coefficient μ may be changed with respect to step k, as an alternative for preventing division by zero described in [Embodiment 2], r 11 = 0 or [r 00 −μ ( (k-1) When (r 01 r 10 / r 111 )] = 0, it is also possible to update (Equation 7) by setting μ (k) = 0. Also, the condition for setting μ (k) = 0 is only when it completely matches 0 as r 11 <ε, r 00 −μ (k−1) (r 01 r 10 / r 111 ) <ε. Alternatively, μ (k) = 0 may be set in the vicinity of 0.

この発明は以上の通りであり、アフィン射影アルゴリズムが、現ステップの入力信号と誤差信号の他に、1ステップ過去の入力信号ベクトルと1ステップ過去の誤差信号を未知系推定フィルタの更新に用いるのに対して、1ステップ過去の誤差信号を用いる代わりにこれを現ステップの誤差信号に基づく近似値で置き換えることにより、アフィン射影アルゴリズムと比較して簡易な計算により、未知系推定フィルタの更新をすることができる。そして、この発明の未知系推定フィルタの推定速度は、有色性の入力信号に対してアフィン射影アルゴリズムと同等であり、学習同定法よりも速い。図2においては、音声の平均スペクトルを周波数特性として持つ定常信号を入力信号として与え、512タップの推定フィルタ係数ベクトルと同じく512タップの未知系のフィルタ係数ベクトルの差のノルムを「フィルタ係数誤差」として、dB単位で、各推定ステップ毎にプロットしている。比較した推定方式は、この発明と、アフィン射影アルゴリズム、学習同定法である。また、未知系の出力には、白色雑音を加え、「フィルタ係数誤差」が定常状態で等しくなる様に、更新調整係数μを、この発明はμ=0.65、アフィン射影アルゴリズムはμ=0.22、学習同定法はμ=1.0と設定した。   The present invention is as described above, and the affine projection algorithm uses the input signal vector of the previous step and the error signal of the previous step for updating the unknown system estimation filter in addition to the input signal and the error signal of the current step. In contrast, instead of using the error signal of one step in the past, this is replaced with an approximate value based on the error signal of the current step, so that the unknown system estimation filter is updated by a simple calculation compared to the affine projection algorithm. be able to. The estimation speed of the unknown system estimation filter of the present invention is equivalent to the affine projection algorithm for colored input signals and is faster than the learning identification method. In FIG. 2, a stationary signal having an average spectrum of speech as a frequency characteristic is given as an input signal, and the norm of the difference between the 512-tap unknown filter coefficient vectors as well as the 512-tap estimated filter coefficient vector is “filter coefficient error”. Are plotted for each estimation step in dB. The comparison estimation methods are the present invention, the affine projection algorithm, and the learning identification method. Further, white noise is added to the output of the unknown system, and the update adjustment coefficient μ is set so that the “filter coefficient error” becomes equal in the steady state, μ = 0.65 in the present invention, and μ = 0 in the affine projection algorithm. .22, the learning identification method was set to μ = 1.0.

この発明は、音響エコーキャンセラにおけるスピーカとマイクロホン間の伝達特性の推定に利用することができ、また回線エコーキャンセラにも利用することができる。   The present invention can be used for estimation of transfer characteristics between a speaker and a microphone in an acoustic echo canceller, and can also be used for a line echo canceller.

未知系推定装置の実施例を説明する図。The figure explaining the Example of an unknown system estimation apparatus. この発明と従来例の間の未知系推定速度の比較を示す図。The figure which shows the comparison of the unknown system estimated speed between this invention and a prior art example. 未知系推定の概念を説明する図。The figure explaining the concept of unknown system estimation. 未知系推定装置の従来例を説明する図。The figure explaining the prior art example of an unknown system estimation apparatus.

符号の説明Explanation of symbols

101 入力信号ベクトル化部 102 未知系推定フィルタ
103 誤差計算部 104 遅延部
105 重み付き遅延部
106 遅延入力及び遅延誤差参照型推定フィルタ更新部
201 遅延入力参照型推定フィルタ更新部
DESCRIPTION OF SYMBOLS 101 Input signal vectorization part 102 Unknown system estimation filter 103 Error calculation part 104 Delay part 105 Weighted delay part 106 Delay input and delay error reference type estimation filter update part 201 Delay input reference type estimation filter update part

Claims (2)

離散時間k領域における未知系への入力信号x(k)と、未知系からの出力信号y(k)とを入力し、未知系の伝達特性を推定する未知系推定方法において、
入力信号x(k)を有限個サンプルして蓄積し、ベクトル化して入力信号ベクトルx*(k)を出力し、
未知系推定フィルタに入力信号ベクトルx*(k)を入力し、未知系からの出力信号y(k)を模擬する出力模擬信号y’(k)を生成し、
出力模擬信号y’(k)を未知系の出力信号y(k)から差し引いて誤差信号e(k)を生成し、
入力信号ベクトルx*(k)に基づいて1ステップ過去の入力信号ベクトルx*(k−1)を生成し、
時変或いは固定の更新調整係数を持ち、入力信号ベクトルと、1ステップ過去の入力信号ベクトルと、誤差信号とに基づいて、入力信号ベクトルから、入力信号ベクトルの内の1ステップ過去の入力信号ベクトルと相関のあるベクトル成分に1ステップ過去に用いられた更新調整係数を乗じたものを減じた相関低減入力信号ベクトルを得、相関低減入力信号ベクトルを入力信号ベクトルと相関低減入力信号ベクトルの内積で除し、誤差信号を乗じ、更新調整係数を乗じることにより、未知系推定フィルタの更新値を未知系推定フィルタに与える、
ことを特徴とする未知系推定方法。
In an unknown system estimation method for inputting an input signal x (k) to an unknown system in a discrete-time k domain and an output signal y (k) from the unknown system and estimating transfer characteristics of the unknown system,
Sample and store a finite number of input signals x (k), vectorize them, and output an input signal vector x * (k),
An input signal vector x * (k) is input to the unknown system estimation filter, and an output simulation signal y ′ (k) that simulates the output signal y (k) from the unknown system is generated.
An error signal e (k) is generated by subtracting the output simulation signal y ′ (k) from the output signal y (k) of the unknown system,
Based on the input signal vector x * (k), an input signal vector x * (k−1) of one step past is generated,
An input signal vector that has a time-varying or fixed update adjustment coefficient and that is one step past from the input signal vector based on the input signal vector, the input signal vector that is one step past, and the error signal. A correlation-reduced input signal vector is obtained by subtracting the vector component correlated with the update adjustment coefficient used in the previous step, and the correlation-reduced input signal vector is the inner product of the input signal vector and the correlation-reduced input signal vector. Dividing the error signal and multiplying by the update adjustment coefficient to give the update value of the unknown system estimation filter to the unknown system estimation filter.
An unknown system estimation method characterized by this.
離散時間k領域における未知系への入力信号x(k)と、未知系からの出力信号y(k)とを入力し、未知系の伝達特性を推定する未知系推定装置において、
入力信号x(k)を有限個サンプルして蓄積し、ベクトル化して入力信号ベクトルx*(k)を出力する入力信号ベクトル化部と、
入力信号ベクトル化部においてベクトル化した入力信号ベクトルx*(k)を入力し、未知系からの出力信号y(k)を模擬する出力模擬信号y’(k)を出力する未知系推定フィルタh*’(k)と、
未知系推定フィルタh*’(k)から出力される出力模擬信号y’(k)を未知系の出力信号y(k)から差し引いて誤差信号e(k)を出力する誤差計算部と、
入力信号ベクトル化部からベクトル化した入力信号ベクトルx*(k)を入力して1ステップ過去の入力信号ベクトルx*(k−1)を生成する遅延部と、
時変或いは固定の更新調整係数を持ち、入力信号ベクトルと、1ステップ過去の入力信号ベクトルと、誤差信号とを入力して、入力信号ベクトルから、入力信号ベクトルの内の1ステップ過去の入力信号ベクトルと相関のあるベクトル成分に1ステップ過去に用いられた更新調整係数を乗じたものを減じた相関低減入力信号ベクトルを得、相関低減入力信号ベクトルを入力信号ベクトルと相関低減入力信号ベクトルの内積で除し、誤差信号を乗じ、更新調整係数を乗じることにより、未知系推定フィルタの更新値を未知系推定フィルタ102に与える遅延入力参照型推定フィルタ更新部とを有する、
ことを特徴とする未知系推定装置。
In an unknown system estimation apparatus that inputs an input signal x (k) to an unknown system in the discrete time k region and an output signal y (k) from the unknown system, and estimates the transfer characteristics of the unknown system,
An input signal vectorization unit that samples and accumulates a finite number of input signals x (k), vectorizes them, and outputs an input signal vector x * (k);
An unknown system estimation filter h that receives an input signal vector x * (k) vectorized by the input signal vectorization unit and outputs an output simulation signal y ′ (k) that simulates an output signal y (k) from the unknown system. * '(K),
An error calculator that subtracts the output simulation signal y ′ (k) output from the unknown system estimation filter h * ′ (k) from the output signal y (k) of the unknown system and outputs an error signal e (k);
A delay unit that inputs an input signal vector x * (k) vectorized from the input signal vectorization unit to generate an input signal vector x * (k−1) that is one step past;
It has a time-varying or fixed update adjustment coefficient, inputs an input signal vector, an input signal vector of one step past, and an error signal, and inputs an input signal of one step past of the input signal vector from the input signal vector A correlation-reduced input signal vector obtained by subtracting the vector component correlated with the vector multiplied by the update adjustment coefficient used in the previous step is obtained, and the inner product of the correlation-reduced input signal vector and the correlation-reduced input signal vector A delay input reference type estimation filter update unit that gives an update value of the unknown system estimation filter to the unknown system estimation filter 102 by multiplying by an error signal and multiplying by an update adjustment coefficient,
An unknown system estimation device characterized by that.
JP2004312906A 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for implementing the same Expired - Fee Related JP4344305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312906A JP4344305B2 (en) 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for implementing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312906A JP4344305B2 (en) 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for implementing the same

Publications (2)

Publication Number Publication Date
JP2006128946A JP2006128946A (en) 2006-05-18
JP4344305B2 true JP4344305B2 (en) 2009-10-14

Family

ID=36723173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312906A Expired - Fee Related JP4344305B2 (en) 2004-10-27 2004-10-27 Unknown system estimation method and apparatus for implementing the same

Country Status (1)

Country Link
JP (1) JP4344305B2 (en)

Also Published As

Publication number Publication date
JP2006128946A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
Ciochină et al. An optimized NLMS algorithm for system identification
Enzner et al. Acoustic echo control
EP2987316B1 (en) Echo cancellation
CN106486135B (en) Near-end speech detector, speech system and method for classifying speech
KR102111185B1 (en) Echo removal
JPWO2006049260A1 (en) Signal processing method, signal processing apparatus, and signal processing program
KR102076760B1 (en) Method for cancellating nonlinear acoustic echo based on kalman filtering using microphone array
EP2987315B1 (en) Echo removal
JPH11345000A (en) Noise canceling method and noise canceling device
EP2987314B1 (en) Echo suppression
EP2987313B1 (en) Echo removal
Yang et al. Optimal step-size control of the partitioned block frequency-domain adaptive filter
Ciochina et al. An optimized proportionate adaptive algorithm for sparse system identification
Paleologu et al. Study of the optimal and simplified Kalman filters for echo cancellation
JP4344305B2 (en) Unknown system estimation method and apparatus for implementing the same
JP4344306B2 (en) Unknown system estimation method and apparatus for carrying out this method
Stanciu et al. A proportionate affine projection algorithm using dichotomous coordinate descent iterations
Kamarudin et al. Acoustic echo cancellation using adaptive filtering algorithms for Quranic accents (Qiraat) identification
KR100545832B1 (en) Sound echo canceller robust to interference signals
Ciochină et al. An optimized affine projection algorithm for acoustic echo cancellation
Faza et al. Adaptive regularization in frequency-domain NLMS filters
Hosseini et al. A novel noise cancellation method for speech enhancement using variable step-size adaptive algorithm
Griffiths et al. Convergence properties of an adaptive noise cancelling lattice structure
US11837248B2 (en) Filter adaptation step size control for echo cancellation
JP4425114B2 (en) Echo canceling method, echo canceling apparatus, echo canceling program, and recording medium recording the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees