JP4344183B2 - Joint structure of fireproof double-layer pipe - Google Patents

Joint structure of fireproof double-layer pipe Download PDF

Info

Publication number
JP4344183B2
JP4344183B2 JP2003197997A JP2003197997A JP4344183B2 JP 4344183 B2 JP4344183 B2 JP 4344183B2 JP 2003197997 A JP2003197997 A JP 2003197997A JP 2003197997 A JP2003197997 A JP 2003197997A JP 4344183 B2 JP4344183 B2 JP 4344183B2
Authority
JP
Japan
Prior art keywords
tube
pipe
double
layer
fireproof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003197997A
Other languages
Japanese (ja)
Other versions
JP2004100950A (en
Inventor
貞夫 石本
一真 上川
孝明 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2003197997A priority Critical patent/JP4344183B2/en
Publication of JP2004100950A publication Critical patent/JP2004100950A/en
Application granted granted Critical
Publication of JP4344183B2 publication Critical patent/JP4344183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内管及び外管からなる耐火二層管の接合構造に関するものである。
【0002】
【従来の技術】
図4に従来のこの種の耐火二層管の接合構造の断面を示す。耐火二層管の接合構造は、一対の耐火二層管1の間に配設される耐火二層構造の管継手5を備える。各耐火二層管1は、内管2と、その外周に環状の空間部3を介して同軸的に設けられる外管4とからなる。一方、管継手5も同様に、内管6とその外周に環状の空間部7を介して同軸的に設けられる外管8とから成っているそれぞれの内管2及び6は硬質塩化ビニル等の樹脂から構成され、それぞれの外管4及び8は繊維強化モルタルから構成される。管継手5の内管6の内側面には、一対の耐火二層管1の内管2の開口端面2bがそれぞれ当接する環状突起6bが形成されている。また、管継手5と各耐火二層管1の外管4との間には、目地処理材として機能するセラミック繊維の環状パッキン9が介装されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来の耐火二層管の接合構造においては、環状パッキン9がセラミック繊維から構成されているため、火災発生時、耐火二層管1や管継手5の伸縮により、当該パッキン9と耐火二層管1または管継手5との間に所定以上の間隙が生じ、その隙間から煙の漏洩が生じる問題があった。
【0004】
したがって、本発明は上述した従来の耐火二層管の接合構造における問題に鑑みてなされたものであり、火災時に煙の漏洩を確実に防止することができる耐火二層管の接合構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
上述の目的を達成するため、本発明は、内管及び外管からなる耐火二層管の接合構造において接合するための一対の耐火二層管の各内管が両側から挿入されている内管と各外管の端面が両側の端面に突き付けられている外管とからなる耐火二層構造の管継手と、各耐火二層管の外管の端面が管継手の外管の端面に突き付けられている部分を覆うように設けられたシートとを備えており、前記シートが弾性粘着シートであって、巻き付け前の展開状態において、0.5〜2mmの厚さ、20mm以上の幅、その状態で巻き付けた場合の巻き付け部の外径が耐火二層管の外管と管継手の外管のうち外径の大きい外管の外径より1mm〜10mm大きくなるような長さを有することを特徴とする。
【0006】
また、弾性粘着シートがブチルゴムからなることが望ましく、さらに、弾性粘着シートが、ブチルゴム、スチレンブタジエンゴム、ポリクロロプレンゴムなどの合成ゴム系支持体と、合成ゴム系、シリコーン系、アクリル系などの粘着剤とから構成されていることが望ましい。
【0007】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
最初に、図1に、従来の耐火二層管の接合構造を発展させた接合構造を参考的に示す。この内管及び外管からなる耐火二層管の接合構造21は、接合するための一対の耐火二層管23、23と、それらの間に配設される耐火二層構造の管継手25と、さらに目地処理材として機能する環状パッキン27とを備える。各耐火二層管23は、内管としての樹脂管29と、その外周に同軸的に設けられる外管としてのモルタル被覆管31とからなる。一方、管継手25も同様に、内管としての樹脂管33と、その外周に同軸的に設けられる外管としてのモルタル被覆管35とからなる。なお、このような形態では、樹脂管の一例として具体的には塩化ビニル管を用いているため、以下、塩化ビニル管29、33と称する。各耐火二層管23における塩化ビニル管29は、モルタル被覆管31よりも長く延びており、塩化ビニル管29の端部は、対応するモルタル被覆管31の長手方向外側において露出している。耐火二層管23の内管である塩化ビニル管29は、管継手25の内管にその両側から挿入され、それによって、管継手25は、これら隣接する塩化ビニル管29の露出する端部を被覆する。管継手25の塩化ビニル管33の内側面には、径方向内側に向けて突出する環状突起37が形成されている。したがって、管継手25の塩化ビニル管33に一対の耐火二層管23の塩化ビニル管29の端部が挿入されるには、塩化ビニル管29の対向する端面23aはそれぞれ環状突起37に当接すると共に相互に離隔される。
【0008】
環状パッキン27は、耐火二層管23の塩化ビニル管29の端部外周であって、耐火二層管23のモルタル被覆管31の端面と管継手25のモルタル被覆管35の端面との間の位置に配置されている。この環状パッキン27は、樹脂発泡体から構成されている。樹脂発泡体の具体例としては、ポリオレフィン発泡体、発泡ポリエチレン又は発泡ポリプロピレンを主成分とする材料や、ポリスチレンフォーム、ウレタンフォーム、ポリエチレンフォーム、EPDMフォームなど、弾性のある材料が挙げられる。また、環状パッキン27の寸法は、その厚さが5〜20mm(より好適には5〜10mm)、その内径が耐火二層管23の塩化ビニル管29の外径よりも0〜5mm(より好適には2〜5mm)小さ、その外径が耐火二層管23のモルタル被覆管31の外径よりも大きい値(より好適には12〜50mm)に設定される。これら寸法設定の理由としては、厚さが5mm未満であると復元が不十分となり目地幅の変動に追従できない恐れがあり、逆に20mm以上であると、径の増大に対して漏洩防止効果の向上が期待できないからである。また、内径が塩化ビニル管29の外径よりも5mm以上小さいと、取付時に損傷する恐れがあり、逆に塩化ビニル管29の外径よりも大きくすると圧縮時にパッキンは滑り耐火二層管から外れる恐れがあるからである。さらに、外径がモルタル被覆管31の外径よりも12mm以上大きくない場合には、耐火二層管23のモルタル被覆管31よりも小さいことになり、目地部を完全に覆うことができなくなる恐れがある一方、50mm以上大きくしてしまうと、径の増大に対して漏洩防止効果の向上が期待できず、加えて、外力により剥がれやすくなり、配管より過大にはみ出すために仕上がりの美観を損ねるなどの問題が生じ得る。
【0009】
また、環状パッキン27の両面には粘着層を設けておく。これにより、モルタル被覆管31,35が移動しても目地部が離れることがない。また、環状パッキン27は、管継手25に予め貼り付けておく。これにより、一対の耐火二層管23を、環状パッキン27が貼り付いている管継手25内に挿入して組み立てることができ、施工性が良好となる。
【0010】
次に、以上のような構成を有する耐火二層管の接合構造に関して、その漏洩防止性能についての試験結果を以下に示す。図2に漏洩防止性能の試験設備を模式的に示す。試験容器41内には、本発明に係る耐火二層管の接合構造21や比較例としての耐火二層管の接合構造が収容される。試験容器41には、供給管43を介して空気供給源45が接続されている。供給管43の流出端43aは、耐火二層管の接合構造の内部に配置され、耐火二層管の接合構造の内部にのみ空気が供給される。さらに、試験容器41には、開放用配管47及び連通管49が接続されている。開放用配管47の流入端47aは、試験容器41内であって且つ耐火二層管の接合構造の外側に配置されており、開放用配管47の下流側には、開放弁51が設けられている。また、連通管49の流入端49aは、耐火二層管の接合構造の内部に配置され、連通管49の下流側には、圧力測定を行うマノメータ53が設けられている。
【0011】
このような構成を有する試験設備において、まず、参考例としての耐火二層管の接合構造21を試験容器41内に配置し、試験容器41を密閉状態にする。そして、空気供給源45から供給管43を介して耐火二層管の接合構造21内に空気を供給する。かかる供給は、耐火二層管の接合構造21内の圧力が約980Pa(100mmHO)となり、さらに目地部を介して接合構造21の内外の圧力が平衡し、試験容器41内側であって耐火二層管の接合構造21外側の圧力も約980Pa(100mmHO)となるまで行われる。この状態から、開放弁51を開弁して、試験容器41内を開放する。これにより、耐火二層管の接合構造21内部の空気が目地部から接合構造21の外へ流出し得る。そして、この間の耐火二層管の接合構造21内部の圧力をマノメータ53により測定しておき、初期内圧約980Pa(100mmHO)からの圧力減少分が目地部における漏洩の度合いとして検出される。
【0012】
この参考例の耐火二層管の接合構造21においては、耐火二層管23の塩化ビニル管29として呼び径(JIS K 6741)50mmを使用し、環状パッキン27は、EPDMフォームから形成され、その厚さが10mm、外径が耐火二層管23の塩化ビニル管29の外径よりも46mm大きいものを使用する。なお、管継手25のモルタル被覆管35の外径は、環状パッキン27の外径と等しいものを使用している。以上のような耐火二層管の接合構造21においては、初期内圧約980Pa(100mmHO)から開放後の残留内圧は約578Pa(59mmHO)となった。実際の使用において煙の遮断を十分に行うためには、初期内圧約980Pa(100mmHO)から開放後の残留内圧は約196Pa(20mmHO)程度あれば十分である。一方、図4に示した従来の耐火二層管の接合構造に関しても、試験過程や条件を同様にして実施したところ、初期内圧約980Pa(100mmHO)から開放後の残留内圧は約29.4Pa(3mmHO)となった。このように参考例としての耐火二層管の接合構造21で、目地部において十分な漏洩防止性能を発揮できることが分かった。また、参考例としての耐火二層管の接合構造と図4に示した従来の耐火二層管の接合構造とのそれぞれにつき、ISO834に準拠した72分間の加熱試験も行ってみたところ、従来の耐火二層管の接合構造では煙の漏洩が認められたが、参考例としての耐火二層管の接合構造では煙の漏洩は認められなかった。
【0013】
実施の形態.
図3にこの発明の実施の形態に係る耐火二層管の接合構造を示す。本発明の実施の形態に係る耐火二層管の接合構造51は、上記参考例において、目地処理材として環状パッキンに代えて弾性粘着シートを用いたものである。この実施の形態では、各耐火二層管23のモルタル被覆管31の端面は、管継手25の塩化ビニル管33及びモルタル被覆管35の対応する端面に突き付けられている。弾性粘着シート57は、一対の耐火二層管23のモルタル被覆管31の端面が管継手25のモルタル被覆管35の端面に突き付けられているを覆うように、耐火二層管23のモルタル被覆管31及び管継手35のモルタル被覆管35にまたがって巻き付けられ、両者に貼り付けられる。弾性粘着シート57は、ブチルゴムなどの自己融着性を有するゴム状弾性体、またはブチルゴム、スチレンブタジエンゴム、ポリクロロプレンゴムなどの合成ゴム系支持体と、合成ゴム系、シリコーン系、アクリル系などの粘着剤とで構成されている。また、弾性粘着シート57について、その巻き付け前の展開状態の寸法について説明すると、その厚さは0.5〜2mm(より好適には0.5〜1mm)、幅(管への巻き付け時の管軸方向)は20mm以上、長さ(管への巻き付け時の周方向)は大きい方の被巻き付け管(図3では管継手25のモルタル被覆管35)の外径よりも巻き付け部の外径が1mm〜10mm大きく(好適には5〜10mm大きく)なるように設定されている。これら寸法設定の理由としては、厚さが0.5mm未満であると、形状が安定しにくく漏洩の原因となる縒れなどが生じやすく、逆に2mmを超えると、堅くなりすぎ管への密着が不十分となる恐れがある。また、幅が20mm未満であると、被覆される管との接着力が不十分となり、100mmを超えると、径の増大に対する漏洩防止効果の向上が期待できないからである。さらに、シート長さ展開状態で巻き付けたとした場合に、巻き付け部の外径が大きい方の被巻き付け管の外径よりも1mm以上大きくないと、耐火二層管の外管の端面が管継手の外管の端面に突き付けられている部分を完全に覆うことができない恐れがあり、当該被巻き付け管の外径よりも10mmを超えて大きくなると、巻き付け部分の外径の増大に対する漏洩防止効果の向上が期待できないからである。
【0014】
次に、以上のような構成を有する本実施の形態に係る耐火二層管の接合構造に関し、その漏洩防止性能についての試験結果を以下に示す。漏洩防止性能の試験設備は、図2に示した参考例の場合と同様なものを用いる。また、本実施の形態に係る耐火二層管の接合構造51としては、耐火二層管23の塩化ビニル管29として呼び径(JIS K 6741)50mmを使用し、弾性粘着シート57は、ブチルゴム支持体及び合成ゴム系接着剤から構成され、展開状態において、その厚さが1mm、幅が50mm、長さが1000mmのものを使用している。試験結果は、初期内圧約980Pa(100mmHO)から開放後の残留内圧は約813.4Pa(83mmHO)となった。実際の使用において煙の遮断を十分に行うためには開放後の残留内圧は約196Pa(20mmHO)程度あれば十分であるため、本実施の形態に係る耐火二層管の接合構造51も、各耐火二層管の外管の端面が管継手の外管の端面に突き付けられている部分において十分な漏洩防止性能を発揮できることが分かった。また、参考例の場合と同様にISO834に準拠した72分間の加熱試験も行ってみたところ、本実施の形態の耐火二層管の接合構造でも煙の漏洩は認められなかった。
【0015】
【発明の効果】
以上説明したように、本発明の耐火二層管の接合構造によれば、所定条件の弾性粘着シートを用いることにより、各耐火二層管の外管の端面が管継手の外管の端面に突き付けられている部分からの煙の漏洩をより確実に防止することが可能となった。
【図面の簡単な説明】
【図1】参考例である耐火二層管の接合構造の断面図である。
【図2】漏洩防止性能の試験設備を模式的に示す図である。
【図3】本発明の実施の形態に係る耐火二層管の接合構造の断面図である。
【図4】従来の耐火二層管の接合構造の断面図である。
【符号の説明】
21,51・・・耐火二層管の接合構造、23・・・耐火二層管、25・・・耐火二層構造の管継手、27・・・環状パッキン、29・・・樹脂(塩化ビニル)管(耐火二層管の内管)、31・・・モルタル被覆管(耐火二層管の外管)、33・・・樹脂(塩化ビニル)管(管継手の内管)、35・・・モルタル被覆管(管継手の外管)、57・・・弾性粘着シート。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining structure of a fireproof double-layered tube composed of an inner tube and an outer tube .
[0002]
[Prior art]
FIG. 4 shows a cross section of a conventional joining structure of this type of refractory double-layer pipe. The joint structure of the fireproof double-layer pipe includes a pipe joint 5 having a fireproof double-layer structure disposed between the pair of fireproof double-layer pipes 1. Each refractory bilayer tube 1, the inner tube 2, that Do from the outer tube 4 provided coaxially through the space portion 3 of the annular outer periphery thereof. On the other hand, also the pipe joint 5 consists of an inner tube 6 and outer tube 8 which is disposed coaxially through the annular space portion 7 on the outer periphery thereof. Each of the inner pipes 2 and 6 is made of a resin such as hard vinyl chloride, and each of the outer pipes 4 and 8 is made of a fiber reinforced mortar. The inner surface of the inner tube 6 of the pipe joint 5, the open end face 2b of the inner tube 2 a pair of refractory bilayer tube 1 is formed in contact with the annular protrusion 6b respectively. Between the pipe joint 5 and the outer pipe 4 of each refractory double-layer pipe 1, an annular packing 9 of ceramic fiber that functions as a joint treatment material is interposed.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional fire-resistant double-layer pipe joining structure, the annular packing 9 is made of ceramic fiber. Therefore, in the event of a fire, the fire- resistant double-layer pipe 1 and the pipe joint 5 expand and contract, There was a problem that a gap of a predetermined amount or more was generated between the fireproof double-layer pipe 1 or the pipe joint 5 and smoke leaked from the gap.
[0004]
Accordingly, the present invention has been made in view of the above-described problems in the conventional fire-resistant double-layer pipe joint structure, and provides a fire-resistant double-layer pipe joint structure that can reliably prevent smoke leakage in the event of a fire. For the purpose.
[0005]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a joint structure of the refractory bilayer tube composed of the inner and outer tubes, among which each inner tube of a pair of refractory bilayer tube for bonding is inserted from both sides A pipe joint with a fireproof two-layer structure consisting of a pipe and an outer pipe whose end faces are pressed against both end faces, and the end face of the outer pipe of each fireproof double-layer pipe hits the end face of the outer pipe of the pipe joint A sheet provided so as to cover the portion that is formed, and the sheet is an elastic adhesive sheet, in a deployed state before winding, a thickness of 0.5 to 2 mm, a width of 20 mm or more, The outer diameter of the winding part when wound in a state has a length that is 1 mm to 10 mm larger than the outer diameter of the outer pipe having the larger outer diameter among the outer pipe of the fireproof double-layer pipe and the outer pipe of the pipe joint. Features.
[0006]
The elastic pressure-sensitive adhesive sheet is preferably made of butyl rubber, and the elastic pressure-sensitive adhesive sheet is made of a synthetic rubber-based support such as butyl rubber, styrene-butadiene rubber, or polychloroprene rubber, and a pressure-sensitive adhesive such as synthetic rubber-based, silicone-based, or acrylic-based. It is desirable that it is composed of an agent.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
First, FIG. 1 shows a joint structure obtained by developing a joint structure of a conventional refractory double-layer tube . The joining structure 21 of the fireproof double-layered pipe composed of the inner pipe and the outer pipe includes a pair of fireproof double-layered pipes 23 and 23 for joining , and a fireproof double-layered pipe joint 25 disposed therebetween. And an annular packing 27 that functions as a joint treatment material. Each refractory bilayer pipe 23, a resin tube 29 as inner tube, Tona Ru and mortar cladding 31 as the outer tube is provided coaxially on the outer periphery thereof. On the other hand, also the pipe joint 25, the resin tube 33 as inner tube, Ru and mortar cladding 35 as an external tube provided coaxially on the outer periphery Tona. In addition, in such a form, since the vinyl chloride pipe | tube is specifically used as an example of the resin pipe | tube, it calls the vinyl chloride pipe | tubes 29 and 33 below. The vinyl chloride pipe 29 in each refractory double-layer pipe 23 extends longer than the mortar cladding pipe 31, and the end of the vinyl chloride pipe 29 is exposed on the outside in the longitudinal direction of the corresponding mortar cladding pipe 31. The vinyl chloride pipe 29, which is the inner pipe of the refractory double-layer pipe 23 , is inserted into the inner pipe of the pipe joint 25 from both sides thereof, so that the pipe joint 25 connects the exposed ends of these adjacent vinyl chloride pipes 29 to each other. Cover. An annular protrusion 37 is formed on the inner surface of the vinyl chloride pipe 33 of the pipe joint 25 so as to protrude radially inward. Therefore, when the end portion of the vinyl chloride tube 29 of a pair of refractory bilayer tube 23 is inserted into the vinyl chloride pipe 33 of the pipe joint 25 are each an end surface 23a which faces the vinyl chloride pipe 29 is annular projection 37 equivalents Ru is spaced apart from each other with contact.
[0008]
The annular packing 27 is the outer periphery of the end portion of the vinyl chloride tube 29 of the fireproof double-layer tube 23, and is between the end surface of the mortar cladding tube 31 of the fireproof double-layer tube 23 and the end surface of the mortar cladding tube 35 of the pipe joint 25. Placed in position. The annular packing 27 is made of a resin foam. Specific examples of the resin foam include a material mainly composed of polyolefin foam, foamed polyethylene or foamed polypropylene, and an elastic material such as polystyrene foam, urethane foam, polyethylene foam, and EPDM foam. Further, the annular packing 27 has a thickness of 5 to 20 mm (more preferably 5 to 10 mm) and an inner diameter of 0 to 5 mm (more preferably) than the outer diameter of the vinyl chloride tube 29 of the fireproof double-layer tube 23. the 2 to 5 mm) rather small, its outer diameter to the large value (more preferably than the outer diameter of the mortar cladding tube 31 of a refractory bilayer tube 23 is set to 12~50mm). The reason for setting these dimensions is that if the thickness is less than 5 mm, the restoration may be insufficient and the change in joint width may not be tracked. This is because improvement cannot be expected. Also, if the inner diameter is 5 mm or more smaller than the outer diameter of the vinyl chloride pipe 29, there is a risk of damage during mounting. Conversely, if the inner diameter is larger than the outer diameter of the vinyl chloride pipe 29, the packing will slip off the sliding fire-resistant double-layer pipe when compressed. Because there is a fear. Furthermore, when the outer diameter is not 12 mm or more larger than the outer diameter of the mortar cladding tube 31, the outer diameter is smaller than the mortar cladding tube 31 of the refractory double-layer tube 23, and the joint portion may not be completely covered. On the other hand, if the diameter is increased by 50 mm or more, the improvement of the leakage prevention effect cannot be expected with respect to the increase of the diameter, and in addition, it becomes easy to peel off due to an external force, and the appearance of the finish is impaired because it protrudes excessively from the piping. Problems can arise.
[0009]
An adhesive layer is provided on both sides of the annular packing 27. Thereby, even if the mortar cladding tubes 31 and 35 move, the joint portion does not leave. The annular packing 27 is attached to the pipe joint 25 in advance. Thereby, a pair of fireproof two-layer pipe 23 can be inserted and assembled in the pipe joint 25 to which the annular packing 27 is affixed, and workability | operativity becomes favorable.
[0010]
Next, regarding the joint structure of the fireproof double-layered tube having the above-described configuration, the test results for the leakage prevention performance are shown below. FIG. 2 schematically shows a test facility for leakage prevention performance. In the test container 41, the fire-resistant double-layer tube joint structure 21 according to the present invention and the fire-resistant double-layer tube joint structure as a comparative example are accommodated. An air supply source 45 is connected to the test container 41 via a supply pipe 43. The outflow end 43a of the supply pipe 43 is arranged inside the joint structure of the fireproof two-layer pipe, and air is supplied only to the inside of the joint structure of the fireproof two-layer pipe. Furthermore, an opening pipe 47 and a communication pipe 49 are connected to the test container 41. An inflow end 47 a of the opening pipe 47 is disposed inside the test vessel 41 and outside the fire-resistant two-layer pipe joining structure, and an opening valve 51 is provided on the downstream side of the opening pipe 47. Yes. The inflow end 49 a of the communication pipe 49 is disposed inside the fireproof two-layer pipe joint structure, and a manometer 53 for measuring pressure is provided on the downstream side of the communication pipe 49.
[0011]
In the test facility having such a configuration, first, a fire-resistant double-layer tube joining structure 21 as a reference example is disposed in a test container 41, and the test container 41 is sealed. Then, air is supplied from the air supply source 45 through the supply pipe 43 into the refractory double-layer pipe joining structure 21. In such supply, the pressure inside the joining structure 21 of the fireproof double-layered tube becomes about 980 Pa (100 mmH 2 O), and the pressure inside and outside the joining structure 21 is balanced via the joint, and the inside of the test container 41 is fireproof. The pressure outside the joining structure 21 of the two-layered tube is also increased to about 980 Pa (100 mmH 2 O). From this state, the release valve 51 is opened to open the inside of the test container 41. Thereby, the air inside the joining structure 21 of the refractory double-layer pipe can flow out of the joining structure 21 from the joint portion. And the pressure inside the joining structure 21 of the refractory double-layer tube during this period is measured by the manometer 53, and the pressure decrease from the initial internal pressure of about 980 Pa (100 mmH 2 O) is detected as the degree of leakage at the joint.
[0012]
In the joint structure 21 of the fireproof double-layer pipe of this reference example, a nominal diameter (JIS K 6741) of 50 mm is used as the vinyl chloride pipe 29 of the fireproof double-layer pipe 23, and the annular packing 27 is formed from EPDM foam. A pipe having a thickness of 10 mm and an outer diameter 46 mm larger than the outer diameter of the vinyl chloride pipe 29 of the fireproof double-layer pipe 23 is used. The outer diameter of the mortar covering tube 35 of the pipe joint 25 is equal to the outer diameter of the annular packing 27. Or more at a junction structure 21 of the refractory bilayer tubes, such as the residual pressure after opening the initial pressure of about 980Pa (100mmH 2 O) was about 578Pa (59mmH 2 O). In order to sufficiently block smoke in actual use, it is sufficient that the residual internal pressure after opening is about 196 Pa (20 mm H 2 O) from the initial internal pressure of about 980 Pa (100 mm H 2 O). On the other hand, with respect to the conventional fire-resistant double-layered tube joint structure shown in FIG. 4, when the test process and conditions were carried out in the same manner, the residual internal pressure after release from the initial internal pressure of about 980 Pa (100 mmH 2 O) was about 29. The pressure was 4 Pa (3 mmH 2 O). Thus even at the joint structure 21 of the refractory bilayer tube as a reference example, it was found that can exhibit sufficient leakage prevention performance in joints. In addition, for each of the joining structure of the fireproof double-layer pipe as a reference example and the joining structure of the conventional fireproof double-layer pipe shown in FIG. 4, a heating test for 72 minutes in accordance with ISO 834 was also conducted. Smoke leakage was observed in the fire-resistant double-layer pipe joint structure, but no smoke leak was observed in the fire-resistant double-layer pipe joint structure as a reference example .
[0013]
Embodiment.
FIG. 3 shows a joining structure of a refractory double-layer pipe according to an embodiment of the present invention. The fireproof double-layered pipe joint structure 51 according to the embodiment of the present invention uses an elastic adhesive sheet in place of the annular packing as the joint treatment material in the above reference example . In this embodiment, the end surfaces of the mortar cladding tube 31 of each fireproof double-layer tube 23 are abutted against the corresponding end surfaces of the vinyl chloride tube 33 and the mortar cladding tube 35 of the pipe joint 25. Elastic adhesive sheet 57, so as to cover the part fraction end faces of the mortar cladding tube 31 of the pair of refractory bilayer pipe 23 is confronted to the end surface of the mortar cladding 35 of the pipe joint 25, the refractory bilayer tube 23 It is wound over the mortar cladding tube 31 and the mortar cladding tube 35 of the pipe joint 35 and is attached to both. The elastic pressure-sensitive adhesive sheet 57 is a rubber-like elastic body having a self-bonding property such as butyl rubber, or a synthetic rubber base such as butyl rubber, styrene butadiene rubber, or polychloroprene rubber, and a synthetic rubber base, a silicone base, an acrylic base, or the like. It consists of an adhesive. Moreover, about the elastic adhesive sheet 57 , the dimension of the expansion | deployment state before the winding is demonstrated, The thickness is 0.5-2 mm (preferably 0.5-1 mm), The width | variety (pipe at the time of winding to a pipe | tube) axial direction) 20mm or more, a length (circumferential direction upon wrapping to the tube), the outer winding portion than the outer diameter of the larger the winding outer tube (mortar cladding 35 of FIG. 3, the pipe joint 25) The diameter is set to be 1 mm to 10 mm larger (preferably 5 to 10 mm larger). The reason for setting these dimensions is that if the thickness is less than 0.5 mm, the shape is difficult to stabilize, and it is easy to cause a leak that causes leakage. May be insufficient. Further, if the width is less than 20 mm, the adhesive strength of the tube to be coated is insufficient, when it exceeds 100 mm, increase of leakage prevention effect against the increase in the outer diameter of can not be expected. Further, when the sheet length is wound in the unfolded state, the end face of the outer tube of the refractory double-layer tube is not less than 1 mm larger than the outer diameter of the tube to be wound with the larger outer diameter of the winding portion. There may not be completely cover the portion that is confronted to the end surface of the outer tube of the joint, it becomes greater beyond the 10mm than the outer diameter of the object to be wrapped tube, leakage increases to a pair of outer diameter of the wrapped portion This is because improvement of the prevention effect cannot be expected.
[0014]
Next, regarding the joint structure of the refractory double-layer tube according to the present embodiment having the above-described configuration, the test results regarding the leakage prevention performance are shown below. The same leakage prevention performance test equipment as in the reference example shown in FIG. 2 is used. Moreover, as the joining structure 51 of the fireproof two-layer pipe according to this embodiment, a nominal diameter (JIS K 6741) of 50 mm is used as the vinyl chloride pipe 29 of the fireproof two-layer pipe 23, and the elastic adhesive sheet 57 is supported by butyl rubber. It is composed of a body and a synthetic rubber adhesive, and in the unfolded state, it has a thickness of 1 mm, a width of 50 mm, and a length of 1000 mm . Test results, the residual pressure after opening the initial pressure of about 980Pa (100mmH 2 O) was about 813.4Pa (83mmH 2 O). In order to sufficiently block smoke in actual use, it is sufficient that the residual internal pressure after opening is about 196 Pa (20 mmH 2 O). Therefore, the joint structure 51 of the refractory double-layer pipe according to the present embodiment is also included. It has been found that sufficient leakage prevention performance can be exhibited at the portion where the end face of the outer pipe of each fireproof double-layer pipe is abutted against the end face of the outer pipe of the pipe joint . In addition, when a heating test for 72 minutes in accordance with ISO834 was performed as in the case of the reference example, no smoke leakage was observed even in the joined structure of the fireproof two-layer tube of the present embodiment.
[0015]
【The invention's effect】
As described above, according to the joining structure of the fireproof double-layered pipe of the present invention, the end face of the outer pipe of each fireproof double-layered pipe becomes the end face of the outer pipe of the pipe joint by using the elastic adhesive sheet of a predetermined condition. It has become possible to more reliably prevent smoke from leaking from the part that is being struck .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a joining structure of a fireproof two-layer pipe as a reference example .
FIG. 2 is a diagram schematically showing a test facility for leakage prevention performance.
FIG. 3 is a cross-sectional view of a joint structure of a refractory double-layer tube according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a conventional refractory double-layer tube joining structure.
[Explanation of symbols]
21, 51... Refractory double-layer pipe joint structure, 23 refractory double-layer pipe, 25 refractory double-layer pipe joint, 27, annular packing, 29, resin (vinyl chloride) ) Tube (inner tube of refractory double-layer tube), 31 ... Mortar cladding tube (outer tube of refractory double-layer tube), 33 ... Resin (vinyl chloride) tube (inner tube of pipe joint), 35 ... -Mortar cladding tube (outer tube of pipe joint), 57 ... elastic adhesive sheet.

Claims (3)

内管及び外管からなる耐火二層管の接合構造において
接合するための一対の耐火二層管の各内管の端部が両側から挿入されている内管と各外管の端面が両側の端面に突き付けられている外管とからなる耐火二層構造の管継手と、各耐火二層管の外管の端面が管継手の外管の端面に突き付けられている部分を覆うように巻き付けられたシートとを備えており、前記シートが弾性粘着シートであって展開状態において、0.5〜2mmの厚さ、20mm以上の幅その状態で巻き付けた場合の巻き付け部の外径が耐火二層管の外管と管継手の外管のうち大きい外管の外径より1mm〜10mm大きくなるような長さを有することを特徴とする耐火二層管の接合構造。
In the joint structure of a fireproof double-layered tube consisting of an inner tube and an outer tube,
A fire-resistant double-layer structure comprising an inner tube in which ends of each inner tube of a pair of fire-resistant double-layer tubes to be joined are inserted from both sides and an outer tube in which the end surfaces of each outer tube are abutted against both end surfaces And a sheet wound so as to cover a portion where the end face of the outer pipe of each fireproof double-layer pipe is abutted against the end face of the outer pipe of the pipe joint , and the sheet is an elastic adhesive sheet. there are, in the deployed state, the thickness of 0.5 to 2 mm, 20 mm or wider, outside of which the outer tube of the outer tube and pipe fittings of the outer diameter of the refractory bilayer tube winding portion when wound in that state structure for joining refractory bilayer tube characterized by having a large 1mm~10mm larger length such than the outer diameter of the outer tube diameter.
上記弾性粘着シートがブチルゴムからなることを特徴とする耐火二層管の接合構造。A joining structure of a fireproof two-layer pipe, wherein the elastic adhesive sheet is made of butyl rubber. 上記弾性粘着シートが、ブチルゴム、スチレンブタジエンゴム、ポリクロロプレンゴムなどの合成ゴム系支持体と、合成ゴム系、シリコーン系、アクリル系などの粘着剤とから構成されていることを特徴とする耐火二層管の接合構造。The elastic adhesive sheet is composed of a synthetic rubber base such as butyl rubber, styrene butadiene rubber or polychloroprene rubber, and a synthetic rubber base, silicone base, acrylic base adhesive or the like. Layered tube joint structure.
JP2003197997A 2002-07-16 2003-07-16 Joint structure of fireproof double-layer pipe Expired - Fee Related JP4344183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197997A JP4344183B2 (en) 2002-07-16 2003-07-16 Joint structure of fireproof double-layer pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002206950 2002-07-16
JP2003197997A JP4344183B2 (en) 2002-07-16 2003-07-16 Joint structure of fireproof double-layer pipe

Publications (2)

Publication Number Publication Date
JP2004100950A JP2004100950A (en) 2004-04-02
JP4344183B2 true JP4344183B2 (en) 2009-10-14

Family

ID=32300250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197997A Expired - Fee Related JP4344183B2 (en) 2002-07-16 2003-07-16 Joint structure of fireproof double-layer pipe

Country Status (1)

Country Link
JP (1) JP4344183B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256447B2 (en) * 2009-02-03 2013-08-07 西武ポリマ化成株式会社 Joining structure and joining method of different types of tubes

Also Published As

Publication number Publication date
JP2004100950A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
KR100212167B1 (en) Piping repairing rubber band and piping repairing method
JP5547629B2 (en) Seal with fire protection
WO1987000761A1 (en) Composite fire stop device
JPS5854318B2 (en) Repair tool for pipe leakage points
US6145895A (en) Sleeve for joining tubular conduits
JP5451064B2 (en) Thermal expansion blockage promotion type fireproof two-layer pipe joint and thermal expansion agent storage device
JP4344183B2 (en) Joint structure of fireproof double-layer pipe
JP3448801B2 (en) Connection structure of fire-resistant double-layer pipe joint
JP7317676B2 (en) through hole obturator
JP3367715B2 (en) Protective body of pipe joint and method of protecting pipe joint
JPH0118953Y2 (en)
JP3209218U (en) Refractory double-layer pipe joint and thermally expandable member
JP2020133649A (en) Water shut-off plug
JP5753029B2 (en) Fireproof sheet for flammable piping
JP2004257523A (en) Fireproof double layered pipe
JPH0543346Y2 (en)
JPH0756400Y2 (en) Flexible air tube connection device
JP2021179093A (en) Drain pipe joint
CN219440357U (en) Skin protection device for wrapping pipeline
JPH0123024Y2 (en)
JP2023056383A (en) Endless double cylinder, and, setup method for endless double cylinder
JP3956560B2 (en) Pipe welding jig and method
JPH09280480A (en) Fire resistant coating material
JP2006194374A (en) Drainpipe
JP2607345B2 (en) Pipe mouth water stopping member and pipe repair method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees