JP4343489B2 - Overcurrent detection delay circuit - Google Patents

Overcurrent detection delay circuit Download PDF

Info

Publication number
JP4343489B2
JP4343489B2 JP2002143368A JP2002143368A JP4343489B2 JP 4343489 B2 JP4343489 B2 JP 4343489B2 JP 2002143368 A JP2002143368 A JP 2002143368A JP 2002143368 A JP2002143368 A JP 2002143368A JP 4343489 B2 JP4343489 B2 JP 4343489B2
Authority
JP
Japan
Prior art keywords
signal
delay
overcurrent
circuit
overcurrent detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002143368A
Other languages
Japanese (ja)
Other versions
JP2003337146A (en
Inventor
努 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002143368A priority Critical patent/JP4343489B2/en
Publication of JP2003337146A publication Critical patent/JP2003337146A/en
Application granted granted Critical
Publication of JP4343489B2 publication Critical patent/JP4343489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Pulse Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は二次電池のバッテリーパックにおいて、二次電池の過電流検出遅延回路に関する。
【0002】
【従来の技術】
従来の放電過電流検出および遅延回路としては、図4に回路ブロック図で示すような回路が知られていた。このような回路において、放電電流401が流れる際のセンス抵抗402の両端電圧を端子403、404に入力される。端子404に接続される信号417を基準電圧とした基準電圧発生回路405の出力信号412と端子403に接続される信号411をコンパレータ406にて比較し、センス抵抗402に発生する電圧が一定値以上になったことを検出し、過電流検出信号413に出力する。以上の過電流検出部418にて検出した過電流検出信号413を遅延時間検出部419に入力する。この入力の過電流検出信号413を遅延用充電電流発生回路407に入力し、遅延用容量408への充電を開始する。この遅延用容量408に充電された電圧信号を電圧信号414とし、端子404に接続された信号417を基準電圧とした基準電圧発生回路409の出力信号415とコンパレータ410にて比較する。
【0003】
この遅延時間検出部419の遅延回路によって過電流検出信号413が入力されてから遅延用容量408によって決められた遅延時間後に検出信号416を出力していた。参考として、図5及び図6に検出時のタイミングの一例を示す。図5は、従来回路での過電流検出(電流小)時のタイミングを示す図である。図6は、従来回路での過電流検出(電流大)時のタイミングを示す図である。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような回路を用いて過電流を検出した場合、過電流の電流値によって遅延時間を変化させるためには、変化させたい電流値毎に過電流検出回路を用意する必要が有る。更に、それら検出回路ごとに異なった遅延時間を設定する遅延回路が必要となる。
【0005】
【課題を解決するための手段】
上記課題を解決するために、図4に示される遅延用容量408の基準電圧をセンス抵抗402の基準側404から、図1に示される様に、遅延用容量108の基準電圧をセンス抵抗102の検出側103に変える。
【0006】
図4に示される様に遅延用容量408の基準電圧をセンス抵抗402の基準側404に接続した場合、センス抵抗402に流れる電流401が大きくても小さくても充電開始時の遅延用容量408の出力電圧は一定となるため、電流値が小さいときの遅延時間509と電流値が大きいときの遅延時間609は同一となる。
【0007】
しかし、遅延用容量108の基準電圧をセンス抵抗102の基準側104から検出側103に変更することで、充電開始時の遅延用容量108の出力電圧はセンス抵抗102に流れる電流101に比例して大きくなる。そのため、センス抵抗102を流れる電流101が多くなると、電流値が大きいときの遅延時間309は電流値が小さいときの遅延時間209に対して短くなる。
【0008】
この様に、遅延用量108の基準電圧をセンス抵抗102の基準側104から検出側103に変更することで、1つの過電流検出回路にて電流量に応じた過電流検出遅延時間を設定することが可能となる。
【0009】
また、本願発明は、二次電池の充放電過電流を検出する過電流検出遅延回路であって、過電流検出部と、遅延時間検出部と、を有し、前記過電流検出部は、前記二次電池の充放電電流が流れるセンス抵抗と、前記センス抵抗の第2の端子が入力に接続された前記第1の基準電圧発生回路と、前記センス抵抗の第1の端子と前記第1の基準電圧発生回路の出力とが入力される第1のコンパレータと、からなり、前記遅延時間検出部は、前記センス抵抗の第2の端子が入力に接続された第2の基準電圧発生回路と、前記第1のコンパレータの入力が、入力される遅延用充電電流発生回路と、前記遅延用充電電流発生回路の出力と前記センス抵抗の第1の端子との間に接続された容量と、前記遅延用充電電流発生回路の出力と前記第2の基準電圧発生回路の出力とが入力される第2のコンパレータとからなり、前記第2のコンパレータは、出力より過電流の検出信号を出力することを特徴とする。
【0010】
【発明の実施の形態】
上記の様に構成された過電流検出遅延回路においては、過電流遅延時間設定用の遅延用容量108の基準電圧を、比較する基準電圧発生回路109の基準信号117ではなく、センス抵抗102の基準側104から検出側103に接続される信号111に接続する。これにより、遅延用容量108に充電を開始する際の充電開始電圧がセンス抵抗102に発生する電圧に応じて変化する。従って、遅延時間が変化することとなり、1つの過電流検出遅延回路によって検出する電流量に応じた遅延時間で過電流検出を行うことが可能となる。
【0011】
【実施例】
以下にこの発明の実施例を図に基づいて説明する。図1は、本発明の充放電電流検出回路の回路ブロックを示した説明図である。
【0012】
まず、過電流検出遅延回路の回路構成を図1に基づいて説明する。二次電池の充放電を行う経路に、センス抵抗102を直列に接続する。そして、センス抵抗102の両端を過電流検出用回路の基準側104と検出側103に接続する。さらに、基準側104に接続される基準信号117に対し、基準電圧信号112を出力する基準電圧発生回路105を接続する。また、検出側103には過電流入力信号111が接続される。この過電流入力信号111をコンパレータ106の非反転入力端子に入力し、また基準電圧信号112をコンパレータ106の反転入力端子に入力する。そのコンパレータ106の出力信号を過電流検出信号113とする。ここまでが過電流検出部118となる。
【0013】
過電流出力部118の出力となる過電流検出信号113を遅延時間検出部119の入力とし、遅延用充電電流発生回路107に入力される。遅延用充電電流発生回路107の出力が遅延用容量108に接続される。また、遅延用容量108の基準電圧は検出側103に接続される。遅延用容量108の充電電圧信号114とする。さらに、基準側104に接続される基準信号117に対し、基準電圧信号115を出力する基準電圧発生回路109を接続する。この基準電圧信号115をコンパレータ110の反転入力端子に入力し、また充電電圧信号114をコンパレータ110の非反転入力端子に入力し、そのコンパレータ110の出力信号を過電流検出遅延信号116とする。
【0014】
ここで、過電流検出遅延回路の動作を図1および図2、図3に基づいて説明する。図2は、本発明回路での過電流検出(電流小)時のタイミングを示す図である。図3は、本発明回路での過電流検出(電流大)時のタイミングを示す図である。
【0015】
二次電池の充放電電流経路に直列に接続されたセンス抵抗102に放電電流101が流れると、センス抵抗102の両端に電圧が発生する。過電流基準信号117の電圧波形を207に示し、過電流検出信号111の電圧波形を201に示す。その際比較する基準電圧発生回路105の出力信号112の電圧波形を202に示す。コンパレータ106にて信号111と信号112を比較し、信号111電圧が信号112電圧以上になったことを検出し、信号113に過電流検出信号を出力する。その際の信号113の電圧波形を203に示す。信号113に過電流検出信号が出力された瞬間を充電開始時間210とする。信号113に過電流検出信号が出力されることで遅延用充電電流発生回路107から遅延用容量108に充電が開始される。この際の充電電圧信号114の電圧波形を204に示す。過電流基準信号117の電圧波形を208に示し、基準電圧発生回路109の基準電圧信号115の電圧波形を205に示す。コンパレータ110にて信号114と信号115を比較し、信号114電圧が信号115電圧以上になったことを検出し、信号116に遅延終了信号を出力する。その際の信号116の電圧波形を206に示す。信号116に遅延終了信号が出力された瞬間を充電終了時間211とし、充電開始時間210から充電終了時間211までの時間を過電流検出遅延時間209とする。
【0016】
そして、検出される放電電流量による過電流検出遅延の動作を図2及び図3に基づいて説明する。遅延用容量108は過電流検出信号111を基準に充電が行われるため、電圧波形204に示されるように充電開始時間210の充電電圧信号114の電圧はセンス抵抗102に流れる放電電流101によって変化する。この電流101が多ければ充電開始時間210での信号114電圧は大きくなり、電流101が少なければ充電開始時間210での信号114電圧は小さくなる。
【0017】
図2のタイミング図は放電電流101が少ない場合を示し、図3のタイミング図は放電電流101が多い場合を示す。電流101が多くても少なくても充電開始時間210と310は、過電流検出信号111が基準電圧信号112以上になったときを示し、その際の信号114の電圧はセンス抵抗102に流れる電流101に比例する。過電流検出後の遅延用容量108に充電される電流値は、センス抵抗102に流れる電流101とは無関係であるため、信号114の電圧上昇の傾きは、電流101が大きくても小さくても同一となる。
【0018】
また、コンパレータ110にて遅延時間の終了を検出するための基準電圧信号115の電圧205と305は同一であるため、充電開始時間210での信号114の電圧によって過電流検出遅延時間が決められることになる。センス抵抗102の電流値101が少ない場合の過電流検出遅延時間209に対し、センス抵抗102の電流値101が多い場合の過電流検出遅延時間309に示される様に、図1に示される回路を用いることで、センス抵抗102を流れる電流101の電流量に応じた過電流検出遅延時間を設定することができ、ひとつの過電流検出遅延回路で複数の遅延時間に対応させることが可能となり、大電流が流れた場合の遅延時間を短くすることが可能となる。
【0019】
【発明の効果】
本発明は、以上説明したようにスマートバッテリ回路において、過電流検出時にセンス抵抗に流れる電流量によって異なる複数の遅延時間を設定することが、ひとつの過電流検出遅延回路を用いて設定することが出来、回路が簡略化できるという効果がある。
【図面の簡単な説明】
【図1】本発明の充放電電流検出回路の回路ブロックを示した説明図である。
【図2】本発明回路での過電流検出(電流小)時のタイミングを示す図である。
【図3】本発明回路での過電流検出(電流大)時のタイミングを示す図である。
【図4】従来の充放電電流検出回路の回路ブロックを示した説明図である。
【図5】従来回路での過電流検出(電流小)時のタイミングを示す図である。
【図6】従来回路での過電流検出(電流大)時のタイミングを示す図である。
【符号の説明】
101 放電電流
102 放電電流センス抵抗
103,104 放電電流センス抵抗接続端子
105、109 基準電圧発生回路
106,110 電圧比較回路
107 遅延用充電電流発生回路
108 遅延用容量
111 過電流検出 入力信号
112 過電流検出 判定信号
113 過電流検出 出力信号
114 遅延時間検 出入力信号
115 遅延時間検 出判定信号
116 遅延時間検 出出力信号
117 GND(基準)電位
118 過電流検出部
119 遅延時間検出部
201 過電流検出 入力信号 (信号111)
202 過電流検出 判定信号 (信号112)
203 過電流検出 出力信号 (信号113)
204 遅延時間検出 入力信号(信号114)
205 遅延時間検出 判定信号(信号115)
206 遅延時間検出 出力信号(信号116)
207、208 GND(基準)電位 (信号117)
209 過電流遅延時間
210 過電流検出タイミング(遅延用容量充電開始)
211 遅延時間検出タイミング(遅延用容量充電終了)
301 過電流検出 入力信号 (信号111)
302 過電流検出 判定信号 (信号112)
303 過電流検出 出力信号 (信号113)
304 遅延時間検出 入力信号(信号114)
305 遅延時間検出 判定信号(信号115)
306 遅延時間検出 出力信号(信号116)
307、308 GND(基準)電位 (信号117)
309 過電流遅延時間
310 過電流検出タイミング(遅延用容量充電開始)
311 遅延時間検出タイミング(遅延用容量充電終了)
401 放電電流
402 放電電流センス抵抗
403,404 放電電流センス抵抗接続端子
405、409 基準電圧発生回路
406,410 電圧比較回路
407 遅延用充電電流発生回路
408 遅延用容量
411 過電流検出 入力信号
412 過電流検出 判定信号
413 過電流検出 出力信号
414 遅延時間検 出入力信号
415 遅延時間検 出判定信号
416 遅延時間検 出出力信号
417 GND(基準)電位
418 過電流検出部
419 遅延時間検出部
501 過電流検出 入力信号 (信号411)
502 過電流検出 判定信号 (信号412)
503 過電流検出 出力信号 (信号413)
504 遅延時間検出 入力信号(信号414)
505 遅延時間検出 判定信号(信号415)
506 遅延時間検出 出力信号(信号416)
507、508 GND(基準)電位 (信号417)
509 過電流遅延時間
510 過電流検出タイミング(遅延用容量充電開始)
511 遅延時間検出タイミング(遅延用容量充電終了)
601 過電流検出 入力信号 (信号411)
602 過電流検出 判定信号 (信号412)
603 過電流検出 出力信号 (信号413)
604 遅延時間検出 入力信号(信号414)
605 遅延時間検出 判定信号(信号415)
606 遅延時間検出 出力信号(信号416)
607、608 GND(基準)電位 (信号417)
609 過電流遅延時間
610 過電流検出タイミング(遅延用容量充電開始)
611 遅延時間検出タイミング(遅延用容量充電終了)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery overcurrent detection delay circuit in a secondary battery pack.
[0002]
[Prior art]
As a conventional discharge overcurrent detection and delay circuit, a circuit as shown in a circuit block diagram of FIG. 4 is known. In such a circuit, the voltage across the sense resistor 402 when the discharge current 401 flows is input to the terminals 403 and 404. The comparator 406 compares the output signal 412 of the reference voltage generation circuit 405 using the signal 417 connected to the terminal 404 as a reference voltage and the signal 411 connected to the terminal 403, and the voltage generated in the sense resistor 402 is a certain value or more. Is detected and output to the overcurrent detection signal 413. The overcurrent detection signal 413 detected by the overcurrent detection unit 418 is input to the delay time detection unit 419. The input overcurrent detection signal 413 is input to the delay charging current generation circuit 407, and charging of the delay capacitor 408 is started. The voltage signal charged in the delay capacitor 408 is used as a voltage signal 414, and the output signal 415 of the reference voltage generation circuit 409 using the signal 417 connected to the terminal 404 as a reference voltage is compared with the comparator 410.
[0003]
The detection signal 416 is output after a delay time determined by the delay capacitor 408 after the overcurrent detection signal 413 is input by the delay circuit of the delay time detection unit 419. For reference, FIGS. 5 and 6 show an example of the timing at the time of detection. FIG. 5 is a diagram showing timing when overcurrent is detected (small current) in the conventional circuit. FIG. 6 is a diagram illustrating timing when overcurrent is detected (current is large) in the conventional circuit.
[0004]
[Problems to be solved by the invention]
However, when an overcurrent is detected using a circuit as described above, it is necessary to prepare an overcurrent detection circuit for each current value to be changed in order to change the delay time depending on the current value of the overcurrent. Furthermore, a delay circuit for setting a different delay time for each of the detection circuits is required.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, the reference voltage of the delay capacitor 408 shown in FIG. 4 is supplied from the reference side 404 of the sense resistor 402, and the reference voltage of the delay capacitor 108 is supplied to the sense resistor 102 as shown in FIG. Change to the detection side 103.
[0006]
As shown in FIG. 4, when the reference voltage of the delay capacitor 408 is connected to the reference side 404 of the sense resistor 402, the delay capacitor 408 at the start of charging is charged regardless of whether the current 401 flowing through the sense resistor 402 is large or small. Since the output voltage is constant, the delay time 509 when the current value is small and the delay time 609 when the current value is large are the same.
[0007]
However, by changing the reference voltage of the delay capacitor 108 from the reference side 104 of the sense resistor 102 to the detection side 103, the output voltage of the delay capacitor 108 at the start of charging is proportional to the current 101 flowing through the sense resistor 102. growing. Therefore, when the current 101 flowing through the sense resistor 102 increases, the delay time 309 when the current value is large becomes shorter than the delay time 209 when the current value is small.
[0008]
In this way, by changing the reference voltage of the delay dose 108 from the reference side 104 of the sense resistor 102 to the detection side 103, one overcurrent detection circuit can set an overcurrent detection delay time corresponding to the amount of current. Is possible.
[0009]
The invention of the present application is an overcurrent detection delay circuit for detecting a charge / discharge overcurrent of a secondary battery, comprising an overcurrent detection unit and a delay time detection unit, wherein the overcurrent detection unit is A sense resistor through which a charging / discharging current of the secondary battery flows; a first reference voltage generating circuit having a second terminal of the sense resistor connected to an input; a first terminal of the sense resistor; A first comparator to which an output of a reference voltage generation circuit is input, and the delay time detection unit includes a second reference voltage generation circuit in which a second terminal of the sense resistor is connected to an input; The input of the first comparator includes an input delay charging current generation circuit, a capacitor connected between the output of the delay charging current generation circuit and the first terminal of the sense resistor, and the delay Output of the charging current generator circuit and the second reference voltage generator Consists of a second comparator and the output of the circuit is input, the second comparator, and outputs a detection signal of the overcurrent from the output.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the overcurrent detection delay circuit configured as described above, the reference voltage of the delay capacitor 108 for setting the overcurrent delay time is not the reference signal 117 of the reference voltage generation circuit 109 to be compared, but the reference voltage of the sense resistor 102. A signal 111 connected from the side 104 to the detection side 103 is connected. As a result, the charging start voltage when charging the delay capacitor 108 is changed according to the voltage generated in the sense resistor 102. Therefore, the delay time changes, and overcurrent detection can be performed with a delay time corresponding to the amount of current detected by one overcurrent detection delay circuit.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing a circuit block of a charge / discharge current detection circuit of the present invention.
[0012]
First, the circuit configuration of the overcurrent detection delay circuit will be described with reference to FIG. A sense resistor 102 is connected in series to a path for charging and discharging the secondary battery. Then, both ends of the sense resistor 102 are connected to the reference side 104 and the detection side 103 of the overcurrent detection circuit. Further, a reference voltage generation circuit 105 that outputs a reference voltage signal 112 is connected to the reference signal 117 connected to the reference side 104. An overcurrent input signal 111 is connected to the detection side 103. The overcurrent input signal 111 is input to the non-inverting input terminal of the comparator 106, and the reference voltage signal 112 is input to the inverting input terminal of the comparator 106. The output signal of the comparator 106 is referred to as an overcurrent detection signal 113. This is the overcurrent detection unit 118.
[0013]
The overcurrent detection signal 113 output from the overcurrent output unit 118 is input to the delay time detection unit 119 and input to the delay charging current generation circuit 107. The output of the delay charging current generation circuit 107 is connected to the delay capacitor 108. The reference voltage of the delay capacitor 108 is connected to the detection side 103. The charging voltage signal 114 of the delay capacitor 108 is assumed. Further, a reference voltage generation circuit 109 that outputs a reference voltage signal 115 is connected to the reference signal 117 connected to the reference side 104. The reference voltage signal 115 is input to the inverting input terminal of the comparator 110, the charging voltage signal 114 is input to the non-inverting input terminal of the comparator 110, and the output signal of the comparator 110 is used as the overcurrent detection delay signal 116.
[0014]
Here, the operation of the overcurrent detection delay circuit will be described with reference to FIG. 1, FIG. 2, and FIG. FIG. 2 is a diagram showing the timing at the time of overcurrent detection (small current) in the circuit of the present invention. FIG. 3 is a diagram showing the timing at the time of overcurrent detection (large current) in the circuit of the present invention.
[0015]
When the discharge current 101 flows through the sense resistor 102 connected in series to the charge / discharge current path of the secondary battery, a voltage is generated across the sense resistor 102. A voltage waveform of the overcurrent reference signal 117 is shown at 207, and a voltage waveform of the overcurrent detection signal 111 is shown at 201. Reference numeral 202 denotes a voltage waveform of the output signal 112 of the reference voltage generation circuit 105 to be compared at that time. The comparator 106 compares the signal 111 with the signal 112, detects that the voltage of the signal 111 has become equal to or higher than the signal 112, and outputs an overcurrent detection signal to the signal 113. A voltage waveform of the signal 113 at that time is indicated by 203. The moment when the overcurrent detection signal is output as the signal 113 is defined as a charging start time 210. When the overcurrent detection signal is output as the signal 113, charging of the delay capacitor 108 from the delay charge current generation circuit 107 is started. A voltage waveform of the charging voltage signal 114 at this time is shown at 204. A voltage waveform of the overcurrent reference signal 117 is shown at 208, and a voltage waveform of the reference voltage signal 115 of the reference voltage generation circuit 109 is shown at 205. The comparator 110 compares the signal 114 with the signal 115, detects that the voltage of the signal 114 has become equal to or higher than the signal 115, and outputs a delay end signal to the signal 116. A voltage waveform of the signal 116 at that time is shown at 206. The moment when the delay end signal is output as the signal 116 is defined as a charging end time 211, and the time from the charging start time 210 to the charging end time 211 is defined as an overcurrent detection delay time 209.
[0016]
The overcurrent detection delay operation based on the detected discharge current amount will be described with reference to FIGS. Since the delay capacitor 108 is charged with reference to the overcurrent detection signal 111, the voltage of the charging voltage signal 114 at the charging start time 210 varies depending on the discharging current 101 flowing through the sense resistor 102 as indicated by the voltage waveform 204. . If the current 101 is large, the signal 114 voltage at the charging start time 210 increases. If the current 101 is small, the signal 114 voltage at the charging start time 210 decreases.
[0017]
The timing chart of FIG. 2 shows the case where the discharge current 101 is small, and the timing chart of FIG. 3 shows the case where the discharge current 101 is large. Charging start times 210 and 310 whether the current 101 is large or small indicate when the overcurrent detection signal 111 becomes equal to or higher than the reference voltage signal 112, and the voltage of the signal 114 at that time is the current 101 flowing through the sense resistor 102. Is proportional to Since the current value charged in the delay capacitor 108 after the overcurrent is detected is independent of the current 101 flowing through the sense resistor 102, the slope of the voltage rise of the signal 114 is the same regardless of whether the current 101 is large or small. It becomes.
[0018]
Further, since the voltages 205 and 305 of the reference voltage signal 115 for detecting the end of the delay time in the comparator 110 are the same, the overcurrent detection delay time is determined by the voltage of the signal 114 at the charge start time 210. become. As shown in the overcurrent detection delay time 309 when the current value 101 of the sense resistor 102 is large, the circuit shown in FIG. By using it, it is possible to set an overcurrent detection delay time according to the amount of current 101 flowing through the sense resistor 102, and it is possible to cope with a plurality of delay times with one overcurrent detection delay circuit. It becomes possible to shorten the delay time when the current flows.
[0019]
【The invention's effect】
According to the present invention, as described above, in the smart battery circuit, it is possible to set a plurality of delay times that differ depending on the amount of current flowing through the sense resistor at the time of overcurrent detection using a single overcurrent detection delay circuit. The circuit can be simplified.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a circuit block of a charge / discharge current detection circuit of the present invention.
FIG. 2 is a diagram showing the timing when overcurrent is detected (small current) in the circuit of the present invention.
FIG. 3 is a diagram showing timing at the time of overcurrent detection (large current) in the circuit of the present invention.
FIG. 4 is an explanatory diagram showing a circuit block of a conventional charge / discharge current detection circuit.
FIG. 5 is a diagram illustrating timing when overcurrent is detected (small current) in a conventional circuit.
FIG. 6 is a diagram illustrating timing when overcurrent is detected (current is large) in a conventional circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Discharge current 102 Discharge current sense resistor 103,104 Discharge current sense resistor connection terminal 105,109 Reference voltage generation circuit 106,110 Voltage comparison circuit 107 Delay charge current generation circuit 108 Delay capacity 111 Overcurrent detection Input signal 112 Overcurrent Detection determination signal 113 Overcurrent detection output signal 114 Delay time detection input signal 115 Delay time detection determination signal 116 Delay time detection output signal 117 GND (reference) potential 118 Overcurrent detection unit 119 Delay time detection unit 201 Overcurrent detection Input signal (signal 111)
202 Overcurrent detection determination signal (signal 112)
203 Overcurrent detection output signal (signal 113)
204 Delay time detection input signal (signal 114)
205 Delay time detection decision signal (signal 115)
206 Delay time detection output signal (signal 116)
207, 208 GND (reference) potential (signal 117)
209 Overcurrent delay time 210 Overcurrent detection timing (delay capacitor start charging)
211 Delay time detection timing (capacity charging for delay ends)
301 Overcurrent detection input signal (Signal 111)
302 Overcurrent detection determination signal (signal 112)
303 Overcurrent detection output signal (signal 113)
304 Delay time detection Input signal (signal 114)
305 Delay time detection decision signal (signal 115)
306 Delay time detection output signal (signal 116)
307, 308 GND (reference) potential (signal 117)
309 Overcurrent delay time 310 Overcurrent detection timing (delay capacitor start charging)
311 Delay time detection timing (end of delay capacity charging)
401 Discharge current 402 Discharge current sense resistor 403, 404 Discharge current sense resistor connection terminal 405, 409 Reference voltage generation circuit 406, 410 Voltage comparison circuit 407 Delay charge current generation circuit 408 Delay capacitance 411 Overcurrent detection Input signal 412 Overcurrent Detection determination signal 413 Overcurrent detection output signal 414 Delay time detection input signal 415 Delay time detection determination signal 416 Delay time detection output signal 417 GND (reference) potential 418 Overcurrent detection unit 419 Delay time detection unit 501 Overcurrent detection Input signal (Signal 411)
502 Overcurrent detection determination signal (signal 412)
503 Overcurrent detection output signal (signal 413)
504 Delay time detection input signal (signal 414)
505 Delay time detection decision signal (signal 415)
506 Delay time detection output signal (signal 416)
507, 508 GND (reference) potential (signal 417)
509 Overcurrent delay time 510 Overcurrent detection timing (capacity charging for delay start)
511 Delay time detection timing (end of delay capacity charging)
601 Overcurrent detection input signal (signal 411)
602 Overcurrent detection determination signal (signal 412)
603 Overcurrent detection output signal (signal 413)
604 Delay time detection Input signal (signal 414)
605 Delay time detection decision signal (signal 415)
606 Delay time detection output signal (signal 416)
607, 608 GND (reference) potential (signal 417)
609 Overcurrent delay time 610 Overcurrent detection timing (delay capacitor start charging)
611 Delay time detection timing (capacity charging for delay ends)

Claims (1)

二次電池の充放電過電流を検出する過電流検出遅延回路であって、
過電流検出部と、
遅延時間検出部と、を有し、
前記過電流検出部は、
前記二次電池の充放電電流が流れるセンス抵抗と、
前記センス抵抗の第2の端子が入力に接続された前記第1の基準電圧発生回路と、
前記センス抵抗の第1の端子と前記第1の基準電圧発生回路の出力とが入力される第1のコンパレータと、からなり、
前記遅延時間検出部は、
前記センス抵抗の第2の端子が入力に接続された第2の基準電圧発生回路と、
前記第1のコンパレータの出力が、入力される遅延用充電電流発生回路と、
前記遅延用充電電流発生回路の出力と前記センス抵抗の第1の端子との間に接続された容量と、
前記遅延用充電電流発生回路の出力と前記第2の基準電圧発生回路の出力とが入力される第2のコンパレータとからなり、
前記第2のコンパレータは、出力より過電流の検出信号を出力することを特徴とする過電流検出遅延回路。
An overcurrent detection delay circuit for detecting a charge / discharge overcurrent of a secondary battery,
An overcurrent detector;
A delay time detection unit,
The overcurrent detector is
A sense resistor through which a charge / discharge current of the secondary battery flows;
The first reference voltage generating circuit having a second terminal of the sense resistor connected to an input;
A first comparator to which a first terminal of the sense resistor and an output of the first reference voltage generation circuit are input;
The delay time detector is
A second reference voltage generating circuit having a second terminal of the sense resistor connected to an input;
The output of the first comparator, a delay for the charging current generation circuit is input,
A capacitor connected between the output of the delay charging current generation circuit and the first terminal of the sense resistor;
A second comparator to which an output of the delay charging current generation circuit and an output of the second reference voltage generation circuit are input;
The overcurrent detection delay circuit, wherein the second comparator outputs an overcurrent detection signal from an output.
JP2002143368A 2002-05-17 2002-05-17 Overcurrent detection delay circuit Expired - Fee Related JP4343489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143368A JP4343489B2 (en) 2002-05-17 2002-05-17 Overcurrent detection delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143368A JP4343489B2 (en) 2002-05-17 2002-05-17 Overcurrent detection delay circuit

Publications (2)

Publication Number Publication Date
JP2003337146A JP2003337146A (en) 2003-11-28
JP4343489B2 true JP4343489B2 (en) 2009-10-14

Family

ID=29703409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143368A Expired - Fee Related JP4343489B2 (en) 2002-05-17 2002-05-17 Overcurrent detection delay circuit

Country Status (1)

Country Link
JP (1) JP4343489B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215309A (en) 2006-02-08 2007-08-23 Sanyo Electric Co Ltd Battery pack control method
CN103326327B (en) * 2013-07-03 2016-01-20 中国人民解放军重庆通信学院 Floating charger current foldback circuit
JP6685603B2 (en) * 2016-07-13 2020-04-22 日東工業株式会社 Vehicle charging system
CN106300240B (en) * 2016-09-28 2019-02-22 杭州先途电子有限公司 Delay protection circuit
CN111463847B (en) * 2020-03-09 2022-05-13 深圳市创芯微微电子有限公司 Battery protection chip and battery protection board
DE112021001690T5 (en) 2020-03-18 2022-12-29 Rohm Co., Ltd. COMPARATOR CIRCUIT

Also Published As

Publication number Publication date
JP2003337146A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US7825638B2 (en) Device and method for balancing charge between the individual cells of a double-layer capacitor
US7663375B2 (en) Battery voltage detecting circuit
JP3296385B2 (en) Battery voltage detection circuit
JP2002089426A (en) Misfiring detector for internal combustion engine
JP4343489B2 (en) Overcurrent detection delay circuit
US6781348B2 (en) Method of charging a storage battery
JP2001201548A (en) Battery voltage detecting device and method
JP2001204141A (en) Detector for cell voltage of set battery and detecting method therefor
JP2007240426A (en) Insulation detection method and insulation detection device
JP5929880B2 (en) Battery control device
JP3705274B2 (en) Abnormality detection device for battery pack
JP2004170103A (en) Insulation detector for non-grounded power supply
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
JP2008064700A (en) Internal resistance measuring device for electric double layer capacitor
JP5012482B2 (en) Power storage device
JP5320929B2 (en) Current measuring device
JP2004349186A (en) Battery pack
JP7467337B2 (en) Integrated circuit, battery monitoring device, and battery monitoring system
JPH09322410A (en) Charge discharge control circuit
US20060114700A1 (en) Method for controlling the transient response of a power converter powering a load, transient response controller and power converter
JP2005265777A (en) Switch control unit, its method, and voltage measuring apparatus
JP2003219551A (en) Leakage detection apparatus
KR0151494B1 (en) Charging mode conversion circuit of battery
TW201937826A (en) Charging device, method for determining charging sequence and method for power detection
JP2000078760A (en) Fault detector circuit for charger

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4343489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees