JP4342573B2 - Method for growing compound semiconductor thin films - Google Patents

Method for growing compound semiconductor thin films Download PDF

Info

Publication number
JP4342573B2
JP4342573B2 JP2007144842A JP2007144842A JP4342573B2 JP 4342573 B2 JP4342573 B2 JP 4342573B2 JP 2007144842 A JP2007144842 A JP 2007144842A JP 2007144842 A JP2007144842 A JP 2007144842A JP 4342573 B2 JP4342573 B2 JP 4342573B2
Authority
JP
Japan
Prior art keywords
thin film
tea
compound semiconductor
ammonia
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007144842A
Other languages
Japanese (ja)
Other versions
JP2008300615A5 (en
JP2008300615A (en
Inventor
賀行 荒木
秀雄 横浜
Original Assignee
株式会社オプトランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトランス filed Critical 株式会社オプトランス
Priority to JP2007144842A priority Critical patent/JP4342573B2/en
Publication of JP2008300615A publication Critical patent/JP2008300615A/en
Publication of JP2008300615A5 publication Critical patent/JP2008300615A5/ja
Application granted granted Critical
Publication of JP4342573B2 publication Critical patent/JP4342573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

本発明は、V族材料に窒素を用いたIII-V族化合物半導体のエピタキシャル結晶を有機金属気相成長法(MOCVD)により成長する技術に関するものである。   The present invention relates to a technique for growing an epitaxial crystal of a III-V compound semiconductor using nitrogen as a group V material by metal organic chemical vapor deposition (MOCVD).

V族材料に窒素を用いたIII-V族化合物半導体エピタキシャル結晶をMOCVDにより結晶成長するとき、窒素材料となるアンモニア(NH3)はフォスフィン(PH3)、アルシン(AsH3)に比べ、分解効率が著しく低い。このために窒化物系では一般的に他のIII-V化合物半導体に比べ、高温度成長や高V/III比率成長が必要とされる。高温度成長ではIII族材料やドーパント材料の蒸発が発生し、ガリウム(Ga)より蒸気圧の高いアルミニウム(Al)やインジウム(In)を含んだ材料の成長を困難とする。一方、成長温度を下げるとNH3が分解されないことから高V/III比率成長が必要とされ、過剰なNH3がIII族有機材料やドーパント有機材料と錯体を形成し、結晶成長を妨げることから低温度結晶性は困難とされてきた。 When III-V compound semiconductor epitaxial crystals using nitrogen as the group V material are grown by MOCVD, ammonia (NH 3 ), the nitrogen material, is decomposed more efficiently than phosphine (PH 3 ) and arsine (AsH 3 ). Is extremely low. For this reason, nitride systems generally require higher temperature growth and higher V / III ratio growth than other III-V compound semiconductors. High-temperature growth causes evaporation of group III materials and dopant materials, making it difficult to grow materials containing aluminum (Al) and indium (In), which have higher vapor pressures than gallium (Ga). On the other hand, if the growth temperature is lowered, NH 3 is not decomposed, so a high V / III ratio growth is required, and excess NH 3 forms a complex with a group III organic material or dopant organic material, preventing crystal growth. Low temperature crystallinity has been considered difficult.

MOCVDによるエピタキシャル結晶成長において、一般的な材料であるNH3を用いて高品質な窒化物を成長する場合、1000℃程度の高温成長が必要となる。しかし、1000℃を超える高温成長では高いIn組成のInGaNの成長は困難であり、In組成が10%以上のInGaN薄膜成長は780℃以下の低温成長が必要である。しかし、780℃以下の低温ではNH3が十分に分解せず多量な材料を消費しても高In 組成のInGaN薄膜を得ることは難しかった。 In epitaxial crystal growth by MOCVD, when growing high quality nitride using NH 3 which is a general material, high temperature growth of about 1000 ° C. is required. However, growth of InGaN with a high In composition is difficult at high temperature growth exceeding 1000 ° C., and growth of InGaN thin film with an In composition of 10% or more requires low temperature growth at 780 ° C. or less. However, at a low temperature of 780 ° C. or lower, NH 3 is not sufficiently decomposed and it is difficult to obtain an InGaN thin film having a high In composition even if a large amount of material is consumed.

上記の課題を解決するために、本発明ではNH3にTEAを混合し相互化学反応過程により窒素の分解効率を高め600℃の低温度でGaN及び高In組成のInGaN薄膜のエピタキシャル結晶成長を達成している。 In order to solve the above-mentioned problems, in the present invention, TEA is mixed with NH 3 to increase the decomposition efficiency of nitrogen through a mutual chemical reaction process, and achieve epitaxial crystal growth of GaN and InGaN thin films with a high In composition at a low temperature of 600 ° C. is doing.

本発明によるエピタキシャル結晶成長方法を用いれば、600℃の低温度でGaN及び高In 組成のInGaN薄膜を得ることができる。   By using the epitaxial crystal growth method according to the present invention, GaN and an InGaN thin film having a high In composition can be obtained at a low temperature of 600 ° C.

以下に、実施例について図面を参照して説明する。   Embodiments will be described below with reference to the drawings.

GaN薄膜のエピタキシャル結晶成長にはNH3とTEA,トリエチルガリウム(TEG)を用いる。基板にはサファイアを用い、成長前に基板とGaN薄膜との密着性を高めるために800℃に昇温し、トリメチルアルミニウム(TMAl)を2.9μmol/minにて10分間供給、その後降温して成長温度600℃において表1に示す材料供給量で15分間結晶を成長した。TEGの供給停止により成長を終了し、その後、表面状態を整える目的でNH3とTEAの流量を保った状態で800℃に昇温し、30分間保持した後、降温した。図1に示す得られた薄膜のフォトルミネッセンススペクトルにはGaN特有の375nmに発光が観測され、GaN薄膜の成長が確認された。 NH 3 , TEA, and triethylgallium (TEG) are used for epitaxial crystal growth of GaN thin films. Sapphire is used for the substrate, and the temperature is raised to 800 ° C to increase the adhesion between the substrate and the GaN thin film before growth. Crystals were grown at a temperature of 600 ° C. for 15 minutes with the material supply amounts shown in Table 1. The growth was terminated by stopping the supply of TEG, and then the temperature was raised to 800 ° C. while maintaining the flow rates of NH 3 and TEA for the purpose of adjusting the surface state, and the temperature was lowered after holding for 30 minutes. In the photoluminescence spectrum of the obtained thin film shown in FIG. 1, light emission was observed at 375 nm peculiar to GaN, and the growth of the GaN thin film was confirmed.

InGaN薄膜のエピタキシャル結晶成長にはNH3とTEA,トリエチルガリウム(TEG)、トリエチルインジウム(TMI)を用いる。基板にはサファイア上に成長されたGaNを用い、成長温度600℃において表1に示す材料供給量で10分間結晶を成長した。得られたInGaN薄膜は図2に示す二次イオン質量分析法(SIMS)より、In組成60%、Ga組成40%であることが確認された。 NH 3 and TEA, triethylgallium (TEG), and triethylindium (TMI) are used for epitaxial crystal growth of the InGaN thin film. As the substrate, GaN grown on sapphire was used, and a crystal was grown for 10 minutes at a growth temperature of 600 ° C. with the material supply amount shown in Table 1. The obtained InGaN thin film was confirmed to have an In composition of 60% and a Ga composition of 40% by secondary ion mass spectrometry (SIMS) shown in FIG.

本発明に用いる材料供給量   Material supply amount used in the present invention

Figure 0004342573
Figure 0004342573

GaN薄膜のフォトルミネッセンススペクトルの図である。It is a figure of the photoluminescence spectrum of a GaN thin film. InGaN薄膜のSIMSプロファイルの図である。It is a figure of the SIMS profile of an InGaN thin film.

Claims (2)

有機金属材料としてトリエチルガリウム(TEG)、アンモニア、及びトリエチルアミン(TEA)を用いた有機金属気相成長法によるIII-V族化合物半導体薄膜積層ウエハにおけるGaN薄膜のエピタキシャル結晶成長において、アンモニアとトリエチルアミン(TEA)の相互化学反応工程によりV族材料を分解し、600°Cの成長温度でGaN薄膜を成長させることを特徴とする結晶成長方法。 In epitaxial crystal growth of GaN thin films on III-V compound semiconductor thin film laminated wafers by metalorganic vapor phase epitaxy using triethylgallium (TEG), ammonia, and triethylamine (TEA) as organometallic materials, ammonia and triethylamine (TEA) mutual chemical reaction process decomposes the V material, the crystal growth method according to claim Rukoto grown GaN thin film at a growth temperature of 600 ° C for). 有機金属材料としてトリエチルガリウム(TEG)及びトリエチルインジウム(TEI)、アンモニア、及びトリエチルアミン(TEA)を用いた有機金属気相成長法によるIII-V族化合物半導体薄膜積層ウエハにおけるInGaN薄膜のエピタキシャル結晶成長において、アンモニアとトリエチルアミン(TEA)の相互化学反応工程によりV族材料を分解し、600°Cの成長温度で、In組成が10パーセント以上のInGaN薄膜を成長させることを特徴とする結晶成長方法。 In epitaxial crystal growth of InGaN thin films on III-V compound semiconductor thin film laminated wafers by metal organic vapor phase epitaxy using triethylgallium (TEG) and triethylindium (TEI), ammonia, and triethylamine (TEA) as organometallic materials decomposes the V material by mutual chemical reaction step of ammonia and triethylamine (TEA), at a growth temperature of 600 ° C, crystal growth method in composition characterized Rukoto grown InGaN thin film of more than 10 percent.
JP2007144842A 2007-05-31 2007-05-31 Method for growing compound semiconductor thin films Active JP4342573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144842A JP4342573B2 (en) 2007-05-31 2007-05-31 Method for growing compound semiconductor thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144842A JP4342573B2 (en) 2007-05-31 2007-05-31 Method for growing compound semiconductor thin films

Publications (3)

Publication Number Publication Date
JP2008300615A JP2008300615A (en) 2008-12-11
JP2008300615A5 JP2008300615A5 (en) 2009-04-23
JP4342573B2 true JP4342573B2 (en) 2009-10-14

Family

ID=40173835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144842A Active JP4342573B2 (en) 2007-05-31 2007-05-31 Method for growing compound semiconductor thin films

Country Status (1)

Country Link
JP (1) JP4342573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184836A (en) * 2008-02-01 2009-08-20 Sumitomo Electric Ind Ltd Method for growing crystal of group iii-v compound semiconductor, method for producing light-emitting device and method for producing electronic device
JP2016149493A (en) * 2015-02-13 2016-08-18 日本エア・リキード株式会社 Manufacturing method of gallium nitride thin film and gallium nitride thin film

Also Published As

Publication number Publication date
JP2008300615A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
TWI501291B (en) Method for forming epitaxial wafers and method for fabricating semiconductor elements
JP5283502B2 (en) Polarity controlled group III nitride thin film and method for producing the same
JP5792209B2 (en) Method for heteroepitaxial growth of high quality N-plane GaN, InN and AlN and their alloys by metalorganic chemical vapor deposition
JP2021502713A (en) Embedded activated p- (AL, IN) GAN layer
US20060225643A1 (en) AlGaN substrate and production method thereof
US8106419B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
US20110254048A1 (en) Group iii nitride semiconductor epitaxial substrate
JP2013191851A (en) METHOD FOR CONDUCTIVITY CONTROL OF (Al,In,Ga,B)N
TW201331987A (en) Composite substrate, manufacturing method thereof and light emitting device having the same
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
US6967355B2 (en) Group III-nitride on Si using epitaxial BP buffer layer
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
US11393683B2 (en) Methods for high growth rate deposition for forming different cells on a wafer
CN104593861A (en) Growth method for improving quality of aluminum nitride film crystal by temperature modulation
CN102839417A (en) Method for growing self-stripping GaN thin film on sapphire substrate
US20190272994A1 (en) High growth rate deposition for group iii/v materials
US9396936B2 (en) Method for growing aluminum indium nitride films on silicon substrate
JP4342573B2 (en) Method for growing compound semiconductor thin films
US8878345B2 (en) Structural body and method for manufacturing semiconductor substrate
KR100935974B1 (en) Manufacturing method of Nitride semiconductor light emitting devide
JP2004119423A (en) Gallium nitride crystal substrate, its producing process, gallium nitride based semiconductor device, and light emitting diode
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP2007227803A (en) Gas phase growth method of nitride group semiconductor, nitride group semiconductor expitaxial substrate using the same, self-standing substrate, and semiconductor device
KR100765386B1 (en) Gallium nitride-based compound semiconductor and method of manufacturing the same
JPH06216409A (en) Growth method of single-crystal semiconductor nitride

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090306

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20270717

Year of fee payment: 18