JP4341162B2 - Waste plastic processing method and apparatus - Google Patents

Waste plastic processing method and apparatus Download PDF

Info

Publication number
JP4341162B2
JP4341162B2 JP2000282629A JP2000282629A JP4341162B2 JP 4341162 B2 JP4341162 B2 JP 4341162B2 JP 2000282629 A JP2000282629 A JP 2000282629A JP 2000282629 A JP2000282629 A JP 2000282629A JP 4341162 B2 JP4341162 B2 JP 4341162B2
Authority
JP
Japan
Prior art keywords
catalyst
waste plastic
tank
boron
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000282629A
Other languages
Japanese (ja)
Other versions
JP2002088375A (en
Inventor
芳夫 上道
明己 菖蒲
正皓 伊東
順也 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000282629A priority Critical patent/JP4341162B2/en
Publication of JP2002088375A publication Critical patent/JP2002088375A/en
Application granted granted Critical
Publication of JP4341162B2 publication Critical patent/JP4341162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【0001】
【発明の属する技術分野】
本発明は、都市ゴミ等の廃棄物に含まれるポリエチレン、ポリプロピレン等の廃プラスチックを処理し、オレフィンなどの化学原料を回収する方法および装置に関する。
【0002】
【従来の技術】
従来、都市ゴミ等の廃棄物に含まれるポリエチレン、ポリプロピレンなどのポリオレフィン系プラスチック等の廃プラスチックを再利用する試みとしては、廃プラスチックを熱分解させることによって、化学原料として有用なオレフィンなどの炭化水素等の処理物を得る廃プラスチック処理方法がある。
具体的には、廃プラスチックを高温(例えば700〜1500℃)下において単純熱分解により油化またはガス化する方法のほか、鉄や白金を担持した活性炭触媒やゼオライト触媒等の触媒の存在下で廃プラスチックを熱分解させる方法がある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、目的とする炭化水素(オレフィンなど)の収率が低い問題があり、化学原料として利用しうる形態の処理物を得るには、さらなる精製が必要となり、工程が煩雑となり処理コストの点で不満があった。
特に、単純熱分解を採用する場合には、高温の加熱処理が必要となるため、燃料コストが嵩む問題があった。
本発明は、上記事情に鑑みてなされたもので、炭化水素、特にオレフィンの収率が高く、しかも低コストで実施できる廃プラスチック処理方法および装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題は、本発明の廃プラスチック処理方法は、廃プラスチックを熱分解により気化させて得られた熱分解ガスをホウ素含有珪酸塩触媒に接触させ、触媒反応生成物を回収し、前記ホウ素含有珪酸塩触媒は、xM O・yB・zSiO・nHO(M:NaまたはK)をプロトン置換によりH型にしたものであることを特徴とする。
本発明の廃プラスチック処理装置は、廃プラスチックを熱分解し気化させる熱分解槽と、熱分解槽内で気化した熱分解ガスをホウ素含有珪酸塩触媒に接触させる触媒反応槽とを備え、前記ホウ素含有珪酸塩触媒は、xM O・yB・zSiO・nH(M:NaまたはK)をプロトン置換によりH型にしたものであることを特徴とする。
触媒反応槽は、熱分解槽内に設けることができる。
また本発明では、触媒反応槽が、熱分解槽外に設けられ、かつ内部温度を任意に設定することができる構成を採用することもできる。
触媒反応槽は、ホウ素含有珪酸塩触媒が熱分解ガスによって流動するように構成することもできる。
【0005】
【発明の実施の形態】
図1は、本発明の廃プラスチック処理装置の第1実施形態を示すもので、ここに示す処理装置は、原料供給部1から供給された廃プラスチックを熱分解させる熱分解槽2と、熱分解槽2内で熱分解され気化した熱分解ガスをホウ素含有珪酸塩触媒8aに接触させる触媒反応槽3と、触媒反応槽3で得られた触媒反応生成物中の高分子成分を分離する還流器4と、還流器4において高分子成分が分離された反応生成物中の低沸点成分を凝縮させ分離する第1および第2コンデンサ5、6とを備えている。
【0006】
熱分解槽2は、ヒータ2aを備えており、このヒータ2aによって、槽内の廃プラスチックを加熱し熱分解させることができるようになっている。
熱分解槽2には攪拌機2bが設けられ、槽内の廃プラスチックを攪拌しつつ加熱することができるようになっている。
熱分解槽2には、不活性ガス導入管14が接続され、熱分解槽2内に窒素、ヘリウムなどの不活性ガスを導入することができるようになっている。
【0007】
触媒反応槽3は、外筒7内に、ホウ素含有珪酸塩触媒8aを充填した触媒層8を備えている。
ホウ素含有珪酸塩としては、ホウ素化珪酸塩を用いることができ、特に廃プラスチックの分解効率の点から、xMI 2O・yB23・zSiO2・nH2O(M:Na、K等)をプロトン置換によりH型にしたH型ホウ素化珪酸塩を用いるのが好ましい。
ホウ素含有珪酸塩としては、ゼオライトHZSM−5をイオン交換などによりホウ素化したB−HZSM−5を用いることもできる。
ホウ素含有珪酸塩触媒8a中の珪素とホウ素の比Si/B(重量比)は、20〜120(好ましくは50〜100)とするのが好ましい。
この触媒8aとしては、ホウ素含有珪酸塩を、平均粒径が例えば0.2〜5mmの粒状に成形したものを用いるのが好ましい。
【0008】
触媒反応槽3は、熱分解槽2の内部に配置されており、熱分解され気化した熱分解ガスを、熱分解槽2内で触媒層8のホウ素含有珪酸塩触媒8aに接触させることができるようになっている。
【0009】
還流器4には、触媒反応生成物から高沸点成分を凝縮させ、凝縮した高沸点成分を他の成分から分離し経路10を通して熱分解槽2内に返送することができる構成を採用することができる。
第1および第2コンデンサ5、6は、触媒反応生成物を、冷却水流通経路12、13を流通する冷却水により冷却し、低沸点成分を凝縮させることができるようになっている。
【0010】
以下、上記処理装置を用いた場合を例として、本発明の廃プラスチック処理方法の一実施形態を説明する。
本発明の廃プラスチック処理方法の処理対象としては、都市ごみ、産業廃棄物等に由来する廃プラスチック、例えばポリエチレン、ポリプロピレン等のポリオレフィン系プラスチックを含むものを挙げることができる。
【0011】
本実施形態の処理方法では、まず、好ましくは適度の粒径に粉砕した廃プラスチックを、原料供給部1を通して熱分解槽2内に投入し、この廃プラスチックをヒータ2aを用いて好ましくは375〜600℃(さらに好ましくは400〜575℃)に加熱し熱分解させる。
この温度が上記範囲未満であると、廃プラスチックの熱分解が不十分となる。また上記温度が上記範囲を越えると、廃プラスチックの熱分解(低分子化)が過剰となり、後述する反応生成物中のオレフィン含有率が低下するため好ましくない。
【0012】
この加熱処理により、廃プラスチックは、例えば炭素数が4〜20程度の炭化水素に低分子化されて気化し、熱分解ガスとなる。
なお廃プラスチックを熱分解槽2内に投入する際には、予め窒素ガスなどの不活性ガスを導入管14を通して熱分解槽2内に導入しておき、不活性ガス雰囲気下で上記廃プラスチックを加熱するのが好ましい。
【0013】
熱分解槽2内で生成した熱分解ガスは、触媒反応槽3内に導入され、触媒反応槽3内を流れつつ、触媒層8を構成するホウ素含有珪酸塩触媒8aに接触する。
熱分解ガスを上記触媒8aに接触させる際の温度条件は、375〜600℃(好ましくは500〜575℃)とするのが好ましい。
この温度が上記範囲未満であると、触媒反応が進行しにくくなり反応生成物中のオレフィン含有率が低下し、上記範囲を越えると熱分解ガスの分解が過剰となって反応生成物中のオレフィン含有率が低下するため好ましくない。
【0014】
熱分解ガスを触媒反応槽3に供給する速度は、3〜30g熱分解ガス/g触媒・hr(Time Factor(=W/F、W:触媒量、F:熱分解ガス供給速度)=2〜20g触媒・min/g熱分解ガス)となるように設定するのが好ましい。
この速度は、4〜10g熱分解ガス/g触媒・hr(Time Factor=6〜15g触媒・min/g熱分解ガス)となるように設定するのがより好ましい。
【0015】
触媒反応槽3においては、ホウ素含有珪酸塩触媒8aの作用により熱分解ガスの一部が分解または再結合することによりオレフィン化する。
これによって、炭素数2〜5の炭化水素(以下、C2〜C5炭化水素という)であるオレフィンを多く含む触媒反応生成物が得られる。
【0016】
次いで、触媒反応槽3を経た触媒反応生成物を経路9を通して還流器4に導入し、ここで触媒反応生成物を冷却することにより触媒反応生成物中の一部を凝縮させ、凝縮物を他の部分から分離し、経路10を通して熱分解槽2内に返送する。
凝縮物は、触媒反応生成物中に残留した未分解成分である高分子成分を多く含む。この高分子成分は、再び熱分解槽2内において加熱処理され、熱分解される。
【0017】
次いで、還流器4を経た触媒反応生成物を、経路11を通して第1コンデンサ5に導入し、ここで冷却水流通経路12を流通する冷却水により冷却し、この反応生成物中の低沸点成分を凝縮させ、経路15、油水分離器16を経て回収経路17を通して回収する。
【0018】
次いで、第1コンデンサ5を通過した反応生成物を、経路18を通して第2コンデンサ6に導入し、ここで冷却水流通経路13を流通する冷却水により冷却する。第2コンデンサ6では、第1コンデンサ5で凝縮した低沸点成分に比べ沸点が同等または低い成分が凝縮し、経路19、回収器20を経て回収経路21を通して回収される。
【0019】
次いで、第2コンデンサ6を通過した反応生成物を経路22を経てドレン32に導入し、ここで水分などを分離した後、回収経路24を通して回収する。
回収された反応生成物は、C2〜C5炭化水素であるオレフィンを多く含むものとなる。このため、プラスチック原料などの化学原料として利用できる。
【0020】
上記廃プラスチック処理方法にあっては、熱分解槽2において廃プラスチックを熱分解により気化させ、得られた熱分解ガスを触媒反応槽3に導き、触媒反応槽3内で流通させ、触媒層8を構成するホウ素含有珪酸塩触媒8aに接触させるので、ホウ素含有珪酸塩触媒8aの触媒作用により、熱分解ガスはオレフィン化する。
このため、煩雑な精製工程を経ることなく、プラスチック原料などの化学原料として有用なオレフィンを多く含む処理物を回収することができる。
従って、処理工程を簡略化し、処理コストを削減することができる。
また比較的低温(例えば375〜600℃)での処理が可能となるため、加熱コストを低く抑えることができる。
【0021】
また、上記廃プラスチック処理装置にあっては、廃プラスチックを熱分解させる熱分解槽2と、熱分解槽2内で熱分解され気化した熱分解ガスをホウ素含有珪酸塩触媒8aに接触させる触媒反応槽3と、触媒反応生成物中の高分子成分を凝縮させ分離する還流器4とを備えているので、廃プラスチックを熱分解槽2で熱分解させた熱分解ガスを、触媒反応槽3において容易かつ効率よくホウ素含有珪酸塩触媒8aに接触させることができる。
このため、触媒反応(熱分解ガスのオレフィン化反応)の効率を高め、化学原料として有用なオレフィンを多く含む処理物を容易に回収することができる。従って、処理工程を簡略化し、処理コストを削減することができる。
【0022】
また触媒反応槽3が熱分解槽2内に配置されているので、熱分解槽2において廃プラスチックを熱分解させる際の余熱によって触媒反応槽3内を加熱することができる。このため、触媒反応槽3を独立に加熱することが必要なく、触媒反応槽3用のヒータが不要となり、設備コスト、加熱コストを低く抑えることができる。
【0023】
図2は、本発明の廃プラスチック処理装置の第2実施形態を示すもので、ここに示す処理装置は、原料供給部1から供給された廃プラスチックを熱分解させる熱分解槽2と、熱分解槽2内で熱分解され気化した熱分解ガスをホウ素含有珪酸塩触媒28aに接触させる触媒反応槽23と、触媒反応槽23で得られた触媒反応生成物中の高分子成分を分離する還流器4と、還流器4において高分子成分が分離された反応生成物中の低沸点成分を凝縮させ分離するコンデンサ25とを備えている。
触媒反応槽23は、外筒27内に触媒28aが充填された触媒層28を備えている。触媒反応槽23は、熱分解槽2の外部に設けられており、ヒータ23aによって内部温度を任意に設定できるようになっている。
また、触媒反応槽23には、熱分解ガスを流通させる際に、外筒27内に充填されたホウ素含有珪酸塩触媒28aが外筒27に対し変位しない固定床方式を採用することができる。
【0024】
上記装置を用いて廃プラスチックの処理を行うには、熱分解槽2において廃プラスチックを熱分解により気化させ、得られた熱分解ガスを経路26を通して触媒反応槽23に導き、ここでホウ素含有珪酸塩触媒28aに接触させ、得られた触媒反応生成物を還流器4を経てコンデンサ25に導き、ここで高沸点成分を凝縮させ回収経路29を通して回収、除去し、低沸点成分である処理物を回収経路30を通して回収する。
【0025】
上記処理装置では、図1に示す第1実施形態の処理装置と同様に、触媒反応効率を高め、化学原料として有用なオレフィンを多く含む処理物を容易に回収することができる。
さらに、本実施形態の処理装置では、触媒反応槽23が熱分解槽2の外部に設けられ、かつ内部温度を任意に設定できるようになっているので、触媒反応槽23における触媒反応時の温度条件を任意に設定することができる。このため、触媒反応時の温度条件の最適化により触媒反応効率を高めることができる。
【0026】
図3は、本発明の廃プラスチック処理装置の第3実施形態を示すもので、ここに示す処理装置では、触媒反応槽33に、熱分解ガスの流通によって粒状のホウ素含有珪酸塩触媒38aが外筒37内で流動する流動床方式が採用されている。
触媒反応槽33の後段には、触媒反応槽33を経た触媒反応生成物とともに槽外に流出した触媒38aを分離回収する分離部34が設けられ、回収した触媒38aを経路35を通して触媒反応槽33に戻すことができるようになっている。
【0027】
上記処理装置を用いて廃プラスチックの処理を行うには、熱分解槽2において廃プラスチックを熱分解により気化させ、得られた熱分解ガスを経路31を通して触媒反応槽33に導き、ここでホウ素含有珪酸塩触媒38aに接触させる。
この際、触媒反応槽33に導入され外筒37内を流通する熱分解ガスによって、ホウ素含有珪酸塩触媒38aは外筒37内で流動しつつ熱分解ガスに接触する。
次いで、触媒反応槽33を経た触媒反応生成物を、還流器4を経てコンデンサ25に導き、ここで高沸点成分を凝縮させ回収経路29を通して回収、除去し、低沸点成分である処理物を回収経路30を通して回収する。
この際、触媒反応生成物とともに触媒反応槽33外に流出した触媒38aは、分離部34で回収し経路35を通して触媒反応槽33に戻す。
【0028】
上記処理装置では、図1に示す第1実施形態の処理装置と同様に、触媒反応効率を高め、化学原料として有用なオレフィンを多く含む処理物を容易に回収することができる。
さらに、本実施形態の処理装置では、触媒反応槽33に流動床方式が採用されているので、粒状の触媒38aを外筒37内で流動させつつ熱分解ガスに接触させることができる。このため、触媒38aのほぼ全表面を熱分解ガスに接触させることができる。従って、熱分解ガスと触媒38aとの接触効率を高め、触媒反応効率を向上させることができる。
【0029】
【実施例】
以下、具体例を示して本発明の効果を明確化する。
(試験例1〜5、7〜9)
図1に示す処理装置を用いて以下に示す処理試験を行った。ホウ素含有珪酸塩触媒8aとしてはH型ホウ素化珪酸塩(Si/Ga=71)を平均粒径0.8mmの粒状に成形したものを用いた。
低密度ポリエチレン(LDPE)またはポリプロピレン(PP)を、原料供給部1を通して熱分解槽2内に投入し、ヒータ2aを用いて加熱し熱分解させ、生成した熱分解ガスを、W/Fが6〜15g触媒・min/g熱分解ガスとなるように、触媒反応槽3内のホウ素含有珪酸塩触媒8aに接触させた。
触媒反応槽3を経た触媒反応生成物を、還流器4、第1および第2コンデンサ5、6を経て回収経路24を通して回収し、回収物の成分分析を行った。
結果を表1〜3に示す。
【0030】
(試験例6、10)
ホウ素含有珪酸塩触媒8aを使用しないこと以外は試験例1に準じて処理試験を行った。
結果を表1〜3に併せて示す。
【0031】
(比較例1、2)
ポリエチレンを、触媒を使用しないで熱分解して得られた分解物の成分分析結果を表3に併せて示す。
【0032】
【表1】

Figure 0004341162
【0033】
【表2】
Figure 0004341162
【0034】
【表3】
Figure 0004341162
【0035】
表1〜3より、ホウ素含有珪酸塩触媒8aを用いる場合には、これを用いない場合に比べ、処理温度が低いにも拘わらず、オレフィンの回収率を高めることができたことがわかる。
【0036】
【発明の効果】
本発明の廃プラスチック処理方法では、廃プラスチックを熱分解により気化させて得られた熱分解ガスをホウ素含有珪酸塩触媒に接触させるので、ホウ素含有珪酸塩触媒の触媒作用により、熱分解ガスはオレフィン化する。
このため、煩雑な精製工程を経ることなく、プラスチック原料などの化学原料として有用なオレフィンを多く含む処理物を回収することができる。
従って、処理工程を簡略化し、処理コストを削減することができる。
また比較的低温での処理が可能となるため、加熱コストを低く抑えることができる。
【図面の簡単な説明】
【図1】 本発明の廃プラスチック処理方法の第1実施形態を実施するために用いられる処理装置を示す概略構成図である。
【図2】 本発明の廃プラスチック処理方法の第2実施形態を実施するのに好適に用いられる処理装置を示す概略構成図である。
【図3】 本発明の廃プラスチック処理方法の第3実施形態を実施するのに好適に用いられる処理装置を示す概略構成図である。
【符号の説明】
2・・・熱分解槽、3、23、33・・・触媒反応槽、8a、28a、38a・・・ホウ素含有珪酸塩触媒[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for treating waste plastics such as polyethylene and polypropylene contained in waste such as municipal waste and recovering chemical raw materials such as olefins.
[0002]
[Prior art]
Conventionally, as an attempt to recycle waste plastics such as polyethylene and polypropylene plastics such as polypropylene contained in waste such as municipal waste, hydrocarbons such as olefins that are useful as chemical raw materials by thermally decomposing waste plastics. There is a waste plastic processing method to obtain processed materials such as.
Specifically, in addition to a method in which waste plastic is liquefied or gasified by simple pyrolysis at a high temperature (for example, 700 to 1500 ° C.), in the presence of a catalyst such as an activated carbon catalyst or a zeolite catalyst supporting iron or platinum. There is a method to thermally decompose waste plastic.
[0003]
[Problems to be solved by the invention]
However, the above prior art has a problem that the yield of the target hydrocarbon (olefin, etc.) is low, and in order to obtain a processed product that can be used as a chemical raw material, further purification is required and the process becomes complicated. I was dissatisfied with the processing cost.
In particular, in the case of adopting simple pyrolysis, there is a problem that the fuel cost increases because high-temperature heat treatment is required.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a waste plastic treatment method and apparatus which can be carried out at a low cost with a high yield of hydrocarbons, particularly olefins.
[0004]
[Means for Solving the Problems]
The above-described problem is that, in the waste plastic treatment method of the present invention, a pyrolysis gas obtained by vaporizing waste plastic by pyrolysis is brought into contact with a boron-containing silicate catalyst, a catalytic reaction product is recovered, and the boron-containing silicic acid is recovered. The salt catalyst is characterized in that xM I 2 O.yB 2 O 3 .zSiO 2 .nH 2 O (M: Na or K) is converted to H-type by proton substitution.
The waste plastic treatment apparatus of the present invention comprises a pyrolysis tank for pyrolyzing and vaporizing waste plastic, and a catalytic reaction tank for bringing the pyrolysis gas vaporized in the pyrolysis tank into contact with a boron-containing silicate catalyst, The contained silicate catalyst is characterized in that xM I 2 O.yB 2 O 3 .zSiO 2 .nH 2 O (M: Na or K) is converted to H-type by proton substitution.
The catalytic reaction tank can be provided in the pyrolysis tank.
In the present invention, a configuration in which the catalytic reaction tank is provided outside the pyrolysis tank and the internal temperature can be arbitrarily set can be adopted.
The catalytic reactor can also be configured such that the boron-containing silicate catalyst flows with the pyrolysis gas.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of the waste plastic processing apparatus of the present invention. The processing apparatus shown here includes a thermal decomposition tank 2 for thermally decomposing waste plastic supplied from a raw material supply unit 1, and a thermal decomposition. A catalytic reaction tank 3 for bringing the pyrolysis gas pyrolyzed and vaporized in the tank 2 into contact with the boron-containing silicate catalyst 8a, and a reflux device for separating the polymer component in the catalytic reaction product obtained in the catalytic reaction tank 3 4 and first and second capacitors 5 and 6 for condensing and separating the low boiling point components in the reaction product from which the polymer component has been separated in the reflux unit 4.
[0006]
The thermal decomposition tank 2 includes a heater 2a, and the heater 2a can heat and decompose the waste plastic in the tank.
The pyrolysis tank 2 is provided with a stirrer 2b so that the waste plastic in the tank can be heated while being stirred.
An inert gas introduction pipe 14 is connected to the pyrolysis tank 2 so that an inert gas such as nitrogen or helium can be introduced into the pyrolysis tank 2.
[0007]
The catalyst reaction tank 3 includes a catalyst layer 8 filled with a boron-containing silicate catalyst 8 a in an outer cylinder 7.
As the boron-containing silicate, a borated silicate can be used. In particular, from the viewpoint of decomposition efficiency of waste plastic, xM I 2 O.yB 2 O 3 .zSiO 2 .nH 2 O (M: Na, K, etc.) It is preferable to use H-type boronated silicate that is converted to H-type by proton substitution.
As the boron-containing silicate, B-HZSM-5 obtained by boronizing zeolite HZSM-5 by ion exchange or the like can also be used.
The silicon-boron ratio Si / B (weight ratio) in the boron-containing silicate catalyst 8a is preferably 20 to 120 (preferably 50 to 100).
As the catalyst 8a, it is preferable to use a boron-containing silicate formed into a granule having an average particle diameter of, for example, 0.2 to 5 mm.
[0008]
The catalytic reaction tank 3 is disposed inside the pyrolysis tank 2, and the pyrolysis gas that has been pyrolyzed and vaporized can be brought into contact with the boron-containing silicate catalyst 8 a of the catalyst layer 8 in the pyrolysis tank 2. It is like that.
[0009]
It is possible to employ a configuration in which the high boiling point component is condensed from the catalytic reaction product, and the condensed high boiling point component is separated from other components and returned to the thermal decomposition tank 2 through the path 10 in the reflux device 4. it can.
The first and second capacitors 5 and 6 are configured to cool the catalytic reaction product with the cooling water flowing through the cooling water flow paths 12 and 13 to condense the low boiling point components.
[0010]
Hereinafter, an embodiment of the waste plastic processing method of the present invention will be described by taking the case of using the processing apparatus as an example.
Examples of the treatment object of the waste plastic treatment method of the present invention include waste plastics derived from municipal waste, industrial waste, etc., for example, those containing polyolefin plastics such as polyethylene and polypropylene.
[0011]
In the treatment method of this embodiment, first, waste plastic, preferably pulverized to an appropriate particle size, is introduced into the thermal decomposition tank 2 through the raw material supply unit 1, and this waste plastic is preferably 375-mm using a heater 2a. Heat to 600 ° C. (more preferably 400 to 575 ° C.) for thermal decomposition.
When this temperature is less than the above range, the thermal decomposition of the waste plastic becomes insufficient. On the other hand, when the temperature exceeds the above range, the thermal decomposition (reduction in molecular weight) of the waste plastic becomes excessive, and the olefin content in the reaction product described later is lowered, which is not preferable.
[0012]
By this heat treatment, the waste plastic is vaporized by being reduced in molecular weight to a hydrocarbon having, for example, about 4 to 20 carbon atoms, and becomes a pyrolysis gas.
In addition, when putting waste plastic into the thermal decomposition tank 2, an inert gas such as nitrogen gas is introduced into the thermal decomposition tank 2 through the introduction pipe 14 in advance, and the waste plastic is placed under an inert gas atmosphere. Heating is preferred.
[0013]
The pyrolysis gas generated in the pyrolysis tank 2 is introduced into the catalyst reaction tank 3 and comes into contact with the boron-containing silicate catalyst 8 a constituting the catalyst layer 8 while flowing in the catalyst reaction tank 3.
The temperature condition for bringing the pyrolysis gas into contact with the catalyst 8a is preferably 375 to 600 ° C. (preferably 500 to 575 ° C.).
When this temperature is less than the above range, the catalytic reaction is difficult to proceed, and the olefin content in the reaction product is reduced. When the temperature exceeds the above range, pyrolysis gas is excessively decomposed and the olefin in the reaction product is reduced. Since the content rate decreases, it is not preferable.
[0014]
The rate at which the pyrolysis gas is supplied to the catalytic reactor 3 is 3 to 30 g pyrolysis gas / g catalyst · hr (Time Factor (= W / F, W: catalyst amount, F: pyrolysis gas supply rate) = 2 to 2. 20 g catalyst / min / g pyrolysis gas) is preferable.
This rate is more preferably set to 4 to 10 g pyrolysis gas / g catalyst · hr (Time Factor = 6 to 15 g catalyst · min / g pyrolysis gas).
[0015]
In the catalytic reaction tank 3, a part of the pyrolysis gas is olefinated by decomposition or recombination by the action of the boron-containing silicate catalyst 8a.
As a result, a catalytic reaction product containing a large amount of olefin which is a hydrocarbon having 2 to 5 carbon atoms (hereinafter referred to as C2 to C5 hydrocarbon) is obtained.
[0016]
Next, the catalytic reaction product that has passed through the catalytic reaction tank 3 is introduced into the reflux device 4 through the path 9, where the catalytic reaction product is cooled to condense a part of the catalytic reaction product, and to remove the condensate. And is returned to the pyrolysis tank 2 through the path 10.
The condensate contains a large amount of polymer components that are undecomposed components remaining in the catalytic reaction product. This polymer component is again heat-treated in the pyrolysis tank 2 and pyrolyzed.
[0017]
Next, the catalytic reaction product that has passed through the refluxing device 4 is introduced into the first condenser 5 through the path 11 and is cooled by cooling water that flows through the cooling water circulation path 12, and low boiling point components in the reaction product are removed. It is condensed and recovered through a recovery path 17 via a path 15 and an oil / water separator 16.
[0018]
Next, the reaction product that has passed through the first capacitor 5 is introduced into the second capacitor 6 through the path 18, where it is cooled by the cooling water flowing through the cooling water flow path 13. In the second capacitor 6, a component having a boiling point equal to or lower than that of the low boiling point component condensed in the first capacitor 5 is condensed and recovered through the recovery path 21 via the path 19 and the recovery device 20.
[0019]
Next, the reaction product that has passed through the second condenser 6 is introduced into the drain 32 via the path 22, where water and the like are separated and then collected through the collection path 24.
The recovered reaction product contains a large amount of olefins which are C2 to C5 hydrocarbons. For this reason, it can utilize as chemical raw materials, such as a plastic raw material.
[0020]
In the waste plastic treatment method, the waste plastic is vaporized by thermal decomposition in the thermal decomposition tank 2, the obtained thermal decomposition gas is guided to the catalyst reaction tank 3, and circulated in the catalyst reaction tank 3. Therefore, the pyrolysis gas is olefinated by the catalytic action of the boron-containing silicate catalyst 8a.
For this reason, the processed material containing many olefins useful as chemical raw materials, such as a plastic raw material, can be collect | recovered, without passing through a complicated refinement | purification process.
Accordingly, the processing steps can be simplified and the processing cost can be reduced.
Further, since the treatment at a relatively low temperature (for example, 375 to 600 ° C.) is possible, the heating cost can be kept low.
[0021]
In the waste plastic treatment apparatus, the thermal decomposition tank 2 for thermally decomposing the waste plastic, and the catalytic reaction in which the pyrolysis gas pyrolyzed and vaporized in the thermal decomposition tank 2 is brought into contact with the boron-containing silicate catalyst 8a. Since the tank 3 and the reflux device 4 for condensing and separating the polymer component in the catalytic reaction product are provided, the pyrolysis gas obtained by thermally decomposing the waste plastic in the pyrolysis tank 2 is supplied to the catalyst reaction tank 3. It can be easily and efficiently brought into contact with the boron-containing silicate catalyst 8a.
For this reason, the efficiency of the catalytic reaction (the olefination reaction of the pyrolysis gas) can be increased, and a processed product containing a large amount of olefin useful as a chemical raw material can be easily recovered. Accordingly, the processing steps can be simplified and the processing cost can be reduced.
[0022]
Further, since the catalytic reaction tank 3 is disposed in the thermal decomposition tank 2, the inside of the catalytic reaction tank 3 can be heated by the residual heat when the waste plastic is thermally decomposed in the thermal decomposition tank 2. For this reason, it is not necessary to heat the catalyst reaction tank 3 independently, a heater for the catalyst reaction tank 3 is not required, and equipment costs and heating costs can be kept low.
[0023]
FIG. 2 shows a second embodiment of the waste plastic processing apparatus of the present invention. The processing apparatus shown here includes a thermal decomposition tank 2 for thermally decomposing waste plastic supplied from a raw material supply unit 1, and thermal decomposition. A catalytic reaction tank 23 in which the pyrolysis gas pyrolyzed and vaporized in the tank 2 is brought into contact with the boron-containing silicate catalyst 28a, and a reflux device for separating the polymer component in the catalytic reaction product obtained in the catalytic reaction tank 23. 4 and a condenser 25 that condenses and separates the low boiling point component in the reaction product from which the polymer component has been separated in the reflux unit 4.
The catalyst reaction tank 23 includes a catalyst layer 28 in which an outer cylinder 27 is filled with a catalyst 28a. The catalyst reaction tank 23 is provided outside the thermal decomposition tank 2, and the internal temperature can be arbitrarily set by the heater 23a.
Further, a fixed bed system in which the boron-containing silicate catalyst 28 a filled in the outer cylinder 27 is not displaced with respect to the outer cylinder 27 when the pyrolysis gas is circulated can be adopted for the catalyst reaction tank 23.
[0024]
In order to treat the waste plastic using the above apparatus, the waste plastic is vaporized by pyrolysis in the pyrolysis tank 2, and the obtained pyrolysis gas is led to the catalytic reaction tank 23 through the path 26, where boron-containing silicic acid is used. The catalyst reaction product obtained is brought into contact with the salt catalyst 28a and led to the condenser 25 through the reflux device 4, where the high-boiling components are condensed, recovered and removed through the recovery path 29, and the processed product which is the low-boiling components is removed. Recover through the recovery path 30.
[0025]
In the said processing apparatus, like the processing apparatus of 1st Embodiment shown in FIG. 1, the catalytic reaction efficiency can be improved and the processed material containing many olefins useful as a chemical raw material can be collect | recovered easily.
Furthermore, in the processing apparatus of this embodiment, the catalyst reaction tank 23 is provided outside the thermal decomposition tank 2 and the internal temperature can be arbitrarily set. Therefore, the temperature during the catalyst reaction in the catalyst reaction tank 23 Conditions can be set arbitrarily. For this reason, the catalytic reaction efficiency can be increased by optimizing the temperature conditions during the catalytic reaction.
[0026]
FIG. 3 shows a third embodiment of the waste plastic processing apparatus of the present invention. In the processing apparatus shown here, a granular boron-containing silicate catalyst 38a is externally provided in the catalyst reaction tank 33 by the circulation of pyrolysis gas. A fluidized bed system that flows in the cylinder 37 is employed.
A separation unit 34 for separating and recovering the catalyst 38a flowing out of the tank together with the catalyst reaction product passing through the catalyst reaction tank 33 is provided at the subsequent stage of the catalyst reaction tank 33, and the recovered catalyst 38a is passed through the path 35 to the catalyst reaction tank 33. Can be returned to.
[0027]
In order to process the waste plastic using the above-described processing apparatus, the waste plastic is vaporized by pyrolysis in the pyrolysis tank 2, and the obtained pyrolysis gas is led to the catalytic reaction tank 33 through the path 31, where boron is contained. Contact with the silicate catalyst 38a.
At this time, the boron-containing silicate catalyst 38 a is brought into contact with the pyrolysis gas while flowing in the outer cylinder 37 by the pyrolysis gas introduced into the catalyst reaction tank 33 and flowing in the outer cylinder 37.
Next, the catalytic reaction product that has passed through the catalytic reaction tank 33 is led to the condenser 25 through the reflux device 4, where the high-boiling components are condensed and recovered and removed through the recovery path 29 to recover the processed material that is the low-boiling components. Collect through path 30.
At this time, the catalyst 38 a that has flowed out of the catalyst reaction tank 33 together with the catalyst reaction product is recovered by the separation unit 34 and returned to the catalyst reaction tank 33 through the path 35.
[0028]
In the said processing apparatus, like the processing apparatus of 1st Embodiment shown in FIG. 1, the catalytic reaction efficiency can be improved and the processed material containing many olefins useful as a chemical raw material can be collect | recovered easily.
Furthermore, in the processing apparatus of this embodiment, since the fluidized bed system is adopted for the catalyst reaction tank 33, the granular catalyst 38a can be brought into contact with the pyrolysis gas while flowing in the outer cylinder 37. Therefore, almost the entire surface of the catalyst 38a can be brought into contact with the pyrolysis gas. Therefore, the contact efficiency between the pyrolysis gas and the catalyst 38a can be increased, and the catalytic reaction efficiency can be improved.
[0029]
【Example】
Hereinafter, specific examples will be shown to clarify the effects of the present invention.
(Test Examples 1-5, 7-9)
The following processing test was performed using the processing apparatus shown in FIG. As the boron-containing silicate catalyst 8a, an H-type boronated silicate (Si / Ga = 71) formed into granules having an average particle diameter of 0.8 mm was used.
Low density polyethylene (LDPE) or polypropylene (PP) is introduced into the pyrolysis tank 2 through the raw material supply unit 1, and is heated and pyrolyzed using the heater 2a. The generated pyrolysis gas has a W / F of 6 It was made to contact with the boron containing silicate catalyst 8a in the catalyst reaction tank 3 so that it might become -15g catalyst * min / g pyrolysis gas.
The catalytic reaction product that passed through the catalytic reaction tank 3 was recovered through the recovery path 24 via the reflux unit 4, the first and second capacitors 5, 6, and the components of the recovered product were analyzed.
The results are shown in Tables 1-3.
[0030]
(Test Examples 6 and 10)
A treatment test was conducted according to Test Example 1 except that the boron-containing silicate catalyst 8a was not used.
A result is combined with Tables 1-3 and shown.
[0031]
(Comparative Examples 1 and 2)
Table 3 also shows the component analysis results of the decomposition product obtained by thermally decomposing polyethylene without using a catalyst.
[0032]
[Table 1]
Figure 0004341162
[0033]
[Table 2]
Figure 0004341162
[0034]
[Table 3]
Figure 0004341162
[0035]
From Tables 1 to 3, it can be seen that when the boron-containing silicate catalyst 8a is used, the olefin recovery rate can be increased even though the treatment temperature is lower than when the boron-containing silicate catalyst 8a is not used.
[0036]
【The invention's effect】
In the waste plastic treatment method of the present invention, since the pyrolysis gas obtained by vaporizing the waste plastic by pyrolysis is brought into contact with the boron-containing silicate catalyst, the pyrolysis gas is olefin by the catalytic action of the boron-containing silicate catalyst. Turn into.
For this reason, the processed material containing many olefins useful as chemical raw materials, such as a plastic raw material, can be collect | recovered, without passing through a complicated refinement | purification process.
Accordingly, the processing steps can be simplified and the processing cost can be reduced.
Moreover, since the treatment at a relatively low temperature is possible, the heating cost can be kept low.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a processing apparatus used for carrying out a first embodiment of a waste plastic processing method of the present invention.
FIG. 2 is a schematic configuration diagram showing a processing apparatus suitably used for carrying out a second embodiment of the waste plastic processing method of the present invention.
FIG. 3 is a schematic configuration diagram showing a processing apparatus suitably used for carrying out a third embodiment of the waste plastic processing method of the present invention.
[Explanation of symbols]
2 ... Pyrolysis tank 3, 3, 33 ... Catalytic reaction tank, 8a, 28a, 38a ... Boron-containing silicate catalyst

Claims (5)

廃プラスチックを熱分解により気化させて得られた熱分解ガスをホウ素含有珪酸塩触媒に接触させ、触媒反応生成物を回収し、
前記ホウ素含有珪酸塩触媒は、xM O・yB・zSiO・nHO(M:NaまたはK)をプロトン置換によりH型にしたものであることを特徴とする廃プラスチック処理方法。
The pyrolysis gas obtained by vaporizing the waste plastic by pyrolysis is brought into contact with the boron-containing silicate catalyst, and the catalytic reaction product is recovered.
The waste plastic treatment characterized in that the boron-containing silicate catalyst is obtained by converting xM I 2 O.yB 2 O 3 .zSiO 2 .nH 2 O (M: Na or K) into H-type by proton substitution. Method.
廃プラスチックを熱分解し気化させる熱分解槽(2)と、熱分解槽内で気化した熱分解ガスをホウ素含有珪酸塩触媒(8a)に接触させる触媒反応槽(3)とを備え、
前記ホウ素含有珪酸塩触媒は、xM O・yB・zSiO・nH(M:NaまたはK)をプロトン置換によりH型にしたものであることを特徴とする廃プラスチック処理装置。
A thermal decomposition tank (2) for thermally decomposing and vaporizing waste plastic, and a catalytic reaction tank (3) for bringing the pyrolysis gas vaporized in the thermal decomposition tank into contact with the boron-containing silicate catalyst (8a),
The waste plastic treatment characterized in that the boron-containing silicate catalyst is obtained by converting xM I 2 O.yB 2 O 3 .zSiO 2 .nH 2 O (M: Na or K) into proton type by proton substitution. apparatus.
触媒反応槽(3)は、熱分解槽内に設けられていることを特徴とする請求項2記載の廃プラスチック処理装置。The waste plastic processing apparatus according to claim 2, wherein the catalytic reaction tank (3) is provided in a thermal decomposition tank. 触媒反応槽(23)は、熱分解槽外に設けられ、かつ内部温度を任意に設定することができるようにされていることを特徴とする請求項2記載の廃プラスチック処理装置。The waste plastic processing apparatus according to claim 2, wherein the catalytic reaction tank (23) is provided outside the pyrolysis tank, and the internal temperature can be arbitrarily set. 触媒反応槽(33)は、ホウ素含有珪酸塩触媒(38a)が、熱分解ガスによって流動するようにされていることを特徴とする請求項2〜4のうちいずれか1項記載の廃プラスチック処理装置。The waste plastic treatment according to any one of claims 2 to 4, wherein the catalyst reaction vessel (33) is configured such that the boron-containing silicate catalyst (38a) flows by a pyrolysis gas. apparatus.
JP2000282629A 2000-09-18 2000-09-18 Waste plastic processing method and apparatus Expired - Fee Related JP4341162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282629A JP4341162B2 (en) 2000-09-18 2000-09-18 Waste plastic processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282629A JP4341162B2 (en) 2000-09-18 2000-09-18 Waste plastic processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2002088375A JP2002088375A (en) 2002-03-27
JP4341162B2 true JP4341162B2 (en) 2009-10-07

Family

ID=18767112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282629A Expired - Fee Related JP4341162B2 (en) 2000-09-18 2000-09-18 Waste plastic processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4341162B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154313A (en) * 2003-11-21 2005-06-16 Ishikawajima Harima Heavy Ind Co Ltd Method for chemically recycling waste plastic
BR112012005379B1 (en) 2009-09-09 2019-03-06 University Of Massachusetts SYSTEMS AND PROCESSES FOR CATALYTIC BIOMASS PYROLYSIS AND HYDROCARBONIFIC MATERIALS FOR PRODUCTION OF OPTIONAL OLEPHINE RECYCLING AND CATALYLERS HAVING SELECTED PARTICLE SIZE FOR CATALYTIC PYROLYSIS.
US8895790B2 (en) 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
US9447332B2 (en) 2013-02-12 2016-09-20 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products using temperature control
US9428695B2 (en) 2013-02-12 2016-08-30 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
EP4232426A1 (en) * 2020-10-23 2023-08-30 ExxonMobil Chemical Patents Inc. Methods for producing higher alcohols from waste plastic pyrolysis oil and the higher alcohols obtained therefrom

Also Published As

Publication number Publication date
JP2002088375A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
KR101170891B1 (en) Removal of carbon dioxide from flue gas with ammonia comprising medium
TW474986B (en) Process and apparatus for the conversion of sludges
EP2199364A2 (en) Counter-current process for biomass conversion
CN101543684B (en) Process for treating oxidized exhaust gas
JP4341162B2 (en) Waste plastic processing method and apparatus
CN110819372B (en) Method for preparing aromatic hydrocarbon and hydrogen-rich fuel gas by catalytic thermal conversion of polyolefin waste plastic
JPS60231792A (en) Manufacture of hydrocarbon from clarified sludge
JP4314546B2 (en) Waste plastic processing method and apparatus
JP4465851B2 (en) Chemical recycling method and apparatus for waste plastic
JP5344113B2 (en) Hydrogen separation and recovery method and hydrogen separation and recovery equipment
CN104271512B (en) For the method reducing the organic impurities in waste water
JP4103198B2 (en) Waste plastic processing equipment
JP3843940B2 (en) Method for producing mixed salt from waste in gasification reforming system
JP3667597B2 (en) Method for treating ammonia-containing wastewater discharged from semiconductor manufacturing processes
JP4314542B2 (en) Waste plastic processing method
JP2022549100A (en) Formation of formic acid from a carbon dioxide source
CN112175647B (en) Process for controllably and selectively converting medical wastes into oil by non-catalytic thermal cracking
US2762850A (en) Vinyl chloride production
JPH09227877A (en) Method for converting waste plastic into oil
JPH05287281A (en) Method for producing low-boiling hydrocarbon oil from waste plastic or rubber material and equipment therefor
KR20180138188A (en) Recovery method of d-limonene by fast pyrolysis of waste tire and pyrolysis oil distillation and oil thereof
JP2001198561A (en) Method for recovering bromine from waste printed circuit board
JPH09279171A (en) Purification of oil-containing thermal decomposition gas
TWI305787B (en) Device and process for plastic pyrolysis
WO2023094629A1 (en) A method for the removal of impurities from a pyrolysis oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees