JP4340489B2 - COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING - Google Patents

COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING Download PDF

Info

Publication number
JP4340489B2
JP4340489B2 JP2003272207A JP2003272207A JP4340489B2 JP 4340489 B2 JP4340489 B2 JP 4340489B2 JP 2003272207 A JP2003272207 A JP 2003272207A JP 2003272207 A JP2003272207 A JP 2003272207A JP 4340489 B2 JP4340489 B2 JP 4340489B2
Authority
JP
Japan
Prior art keywords
coating
damage
vapor
resistant coating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003272207A
Other languages
Japanese (ja)
Other versions
JP2005028802A (en
JP2005028802A5 (en
Inventor
昭治 黒山
博 稲垣
Original Assignee
株式会社竹中製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中製作所 filed Critical 株式会社竹中製作所
Priority to JP2003272207A priority Critical patent/JP4340489B2/en
Publication of JP2005028802A publication Critical patent/JP2005028802A/en
Publication of JP2005028802A5 publication Critical patent/JP2005028802A5/ja
Application granted granted Critical
Publication of JP4340489B2 publication Critical patent/JP4340489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、各種材料表面に耐損傷性被膜が形成された被覆物及び耐損傷性被覆剤並びに耐損傷性被覆剤の製造方法に関する。   The present invention relates to a coating in which a damage resistant coating is formed on the surface of various materials, a damage resistant coating, and a method for producing the damage resistant coating.

機械部品や締結部材である炭素鋼等の材料表面に摩擦や湿気等による劣化を防ぐ耐食性を付与する方法としては、材料表面への無機系塗料の塗布及び亜鉛等の金属メッキが一般的によく知られている。しかし、これらの方法は、特に化学薬品に対する耐食性に乏しい等の問題がある。   As a method of imparting corrosion resistance to the surface of materials such as carbon steel, which is a machine part or fastening member, to prevent deterioration due to friction, moisture, etc., coating of inorganic paint on the material surface and metal plating of zinc or the like is generally well used. Are known. However, these methods have problems such as poor corrosion resistance against chemicals.

これを解決する手段として長期耐食性に優れるフッ素樹脂を被覆する方法がよく用いられている。フッ素樹脂は摩擦係数が小さく良好な摩擦特性を示すので摺動材への被覆、又は締め付けトルクも低いことからボルト・ナット等の締結部材においてもよく利用されている。しかし、フッ素樹脂を被覆する方法では、被膜が軟らかく弱いので摺動材、締結部材等に適用した場合には、金属材料等の表面に施した被覆の損傷を招きやすく、過酷な摺動(摩擦)条件下では摩耗が激しくなるという問題がある。   As a means for solving this, a method of coating a fluororesin excellent in long-term corrosion resistance is often used. Fluororesin has a small coefficient of friction and exhibits good friction characteristics, so that it is often used in fastening members such as bolts and nuts since it has a low covering torque or tightening torque. However, in the method of coating the fluororesin, the coating is soft and weak, so when applied to a sliding material, a fastening member, etc., the coating applied to the surface of a metal material or the like is liable to be damaged and severe sliding (friction ) There is a problem that wear becomes severe under conditions.

上記問題を解決する方法として、フッ素樹脂中にフィブリル化アラミド繊維を添加する方法が提案されている(特許文献1参照)。また、過酷な摩擦条件下においても耐はく離性を確保するためにフッ素樹脂を含む樹脂で摺動層を構成し、材料表面と摺動層との界面にポリイミド樹脂及び/又はポリアミドイミド樹脂とフッ素樹脂からなる樹脂接合層を設けた2層構造にする方法が提案されている(特許文献2参照)。
特開平6−122785号公報 特開2002−276665号公報
As a method for solving the above problem, a method of adding fibrillated aramid fibers to a fluororesin has been proposed (see Patent Document 1). In addition, a sliding layer is made of a resin containing a fluororesin to ensure peeling resistance even under severe friction conditions, and a polyimide resin and / or a polyamideimide resin and fluorine are formed at the interface between the material surface and the sliding layer. A method of forming a two-layer structure provided with a resin bonding layer made of resin has been proposed (see Patent Document 2).
JP-A-6-122785 JP 2002-276665 A

しかし、特許文献1及び特許文献2において、フィブリル化アラミド繊維等によってフッ素樹脂被膜の耐損傷性は改善されているが、その被膜が損傷を受けやすいという本質的な問題について十分な解決がなされていない。また、特許文献2においては、材料表面と被膜との界面での被膜の破壊・はく離が改善されるが、被膜を2重構造としているために製造コストが高くなるという問題もある。   However, in Patent Document 1 and Patent Document 2, although the damage resistance of the fluororesin coating is improved by the fibrillated aramid fiber or the like, the essential problem that the coating is easily damaged has been sufficiently solved. Absent. Further, in Patent Document 2, although the destruction / peeling of the coating at the interface between the material surface and the coating is improved, there is also a problem that the manufacturing cost increases because the coating has a double structure.

このように、化学薬品等に対して実用上耐え得る長期耐食性を有し、潤滑性がよく、摺動に対する耐損傷性に優れ、せん断に対して被膜の破壊が起こらない程度の延性を有し、耐衝撃性に強く被膜が破壊しにくい等の良好な機械的特性の全ての要求を満たす被覆物が開発されておらず、摺動材等の機械部品や締結部材として一層好適な被覆物が必要とされている。また、これらの用途として実用化され得る被覆物は、材料表面に形成されている被膜を薄くできることも必要とされる。   In this way, it has long-term corrosion resistance that can withstand chemicals, etc., has good lubricity, excellent damage resistance against sliding, and has ductility that does not cause destruction of the coating due to shearing. No coating has been developed that satisfies all the requirements of good mechanical properties such as strong impact resistance and resistance to breakage of the coating, and a coating more suitable as a mechanical part such as a sliding material or a fastening member has not been developed. is needed. Moreover, the coating which can be put into practical use for these uses is required to be able to thin the coating film formed on the material surface.

そこで本発明は、かかる背景に鑑み上記課題を解決し、長期耐食性、延性、潤滑性及び耐衝撃性等の良好な機械的特性を有し、かつ、摺動に対する耐損傷性を有する耐損傷性被膜が形成された被覆物及び耐損傷性被覆剤並びに耐損傷性被覆剤の製造方法を提供することを目的とする。   Accordingly, the present invention solves the above-mentioned problems in view of such a background, has good mechanical properties such as long-term corrosion resistance, ductility, lubricity and impact resistance, and damage resistance having damage resistance against sliding. It is an object of the present invention to provide a coating on which a film is formed, a damage resistant coating, and a method for producing the damage resistant coating.

上記課題を解決するために、本発明の耐損傷性被膜が形成された被覆物は、合成樹脂マトリックス中に気相成長炭素繊維を含む耐損傷性被膜が金属材料、プラスチックス材料、セラミック材料、各種複合材料等の材料表面の少なくとも一部分に形成されている。   In order to solve the above-described problems, the coating formed with the damage-resistant coating of the present invention includes a metal material, a plastics material, a ceramic material, and a damage-resistant coating containing vapor-grown carbon fibers in a synthetic resin matrix. It is formed on at least a part of the material surface of various composite materials.

具体的には、本発明の耐損傷性被膜が形成された被覆物は、合成樹脂を樹脂マトリックスとし、合成樹脂100重量部に対して3〜40重量部の気相成長炭素繊維を含み、耐損傷性被膜のヌープ硬さは40Hk以上である耐損傷性被膜が材料表面の少なくとも一部分に形成された被覆物にすることを特徴とする。   Specifically, the coating on which the damage resistant coating of the present invention is formed comprises a synthetic resin as a resin matrix, contains 3 to 40 parts by weight of vapor grown carbon fiber with respect to 100 parts by weight of the synthetic resin, The Knoop hardness of the damage coating is 40 Hk or more, and is characterized in that the damage coating is a coating formed on at least a part of the material surface.

これによって、耐損傷性被膜が形成された被覆物は、長期耐食性、延性、潤滑性及び耐衝撃性等の良好な機械的特性を有し、かつ、摺動に対する耐損傷性を有しており上記目的が達成される。気相成長炭素繊維の量が合成樹脂100重量部に対して3重量部未満の場合、耐衝撃性等の機械的特性は向上するが、ヌープ硬さがあまり高くならない。耐損傷性被膜は、その量が3重量部以上であれば、被膜ヌープ硬さは少なくとも40Hkとなり、摺動に対する耐損傷性を有する。例えば、亜鉛粉末の無機系塗料によって形成された被膜のヌープ硬さは30Hk程度であり、その耐損傷性被膜が形成された被覆物は、実用上十分な耐損傷性を提供することができる。また、その量が40重量部を超える場合は、均質な薄膜が得られにくくなる。   As a result, the coating on which the damage-resistant coating is formed has good mechanical properties such as long-term corrosion resistance, ductility, lubricity and impact resistance, and has damage resistance against sliding. The above objective is achieved. When the amount of vapor grown carbon fiber is less than 3 parts by weight with respect to 100 parts by weight of the synthetic resin, mechanical properties such as impact resistance are improved, but Knoop hardness is not so high. If the amount of the damage resistant coating is 3 parts by weight or more, the coating Knoop hardness is at least 40 Hk, and it has damage resistance against sliding. For example, the Knoop hardness of a coating formed of an inorganic paint of zinc powder is about 30 Hk, and the coating on which the damage resistant coating is formed can provide practically sufficient damage resistance. Moreover, when the amount exceeds 40 parts by weight, it becomes difficult to obtain a homogeneous thin film.

ここで気相成長炭素繊維は、炭化水素の熱分解によって生成される炭素繊維を指し、繊維軸の周りに同心状に積層した炭素六角網面が繊維軸方向によく配向して黒鉛化性の高いものをいう。また、真密度は2.0g/cm3前後であり、繊維径は数nmから数十μmまであり、一般的に繊維長さが150μm前後のものが多い。 Vapor-grown carbon fiber refers to carbon fiber produced by thermal decomposition of hydrocarbons, and the carbon hexagonal network surface concentrically laminated around the fiber axis is well oriented in the fiber axis direction and is graphitizable. It's expensive. The true density is about 2.0 g / cm 3 , the fiber diameter is from several nm to several tens of μm, and the fiber length is generally around 150 μm.

なお、ここでいうヌープ硬さは、JIS規格Z2251に記載の「ヌープ硬さ試験方法」に従って得られる値をいう。   The Knoop hardness referred to here is a value obtained according to the “Knoop hardness test method” described in JIS standard Z2251.

また、本発明の耐損傷性被膜が形成された被覆物は、合成樹脂を樹脂マトリックスとし、合成樹脂100重量部に対して3〜40重量部の気相成長炭素繊維を含み、耐損傷性被膜のトルク係数値が0.15以下である耐損傷性被膜が材料表面の少なくとも一部分に形成された被覆物にすることを特徴とする。   The coating on which the damage resistant coating of the present invention is formed comprises a synthetic resin as a resin matrix and contains 3 to 40 parts by weight of vapor-grown carbon fiber with respect to 100 parts by weight of the synthetic resin. A damage-resistant film having a torque coefficient value of 0.15 or less is a coating formed on at least a part of the material surface.

これによって、耐損傷性被膜が形成された被覆物は、長期耐食性、延性、潤滑性及び耐衝撃性等の良好な機械的特性を有し、かつ、摺動に対する耐損傷性を有しており上記目的が達成される。前述のように、気相成長炭素繊維の量が合成樹脂100重量部に対して3重量部未満の場合、耐衝撃性等の機械的特性は向上するが、ヌープ硬さがあまり高くならない。   As a result, the coating on which the damage-resistant coating is formed has good mechanical properties such as long-term corrosion resistance, ductility, lubricity and impact resistance, and has damage resistance against sliding. The above objective is achieved. As described above, when the amount of vapor grown carbon fiber is less than 3 parts by weight with respect to 100 parts by weight of the synthetic resin, mechanical properties such as impact resistance are improved, but Knoop hardness is not so high.

当該耐損傷性被膜は、そのトルク係数値が0.15以下であることによって、実用上十分な耐損傷性を提供することができ、その耐損傷性被膜が形成された被覆物は、摺動に対する耐損傷性を有する。すなわち、トルク係数値は摩擦係数に相当する物性を示す指標であり、この値が0.15以下であることによって摺動時の摩擦が低減され摺動によって生じる損傷を十分に回避することができる。   The damage resistant coating can provide practically sufficient damage resistance when the torque coefficient value is 0.15 or less, and the coating on which the damage resistant coating is formed slides. Resistant to damage. That is, the torque coefficient value is an index indicating the physical property corresponding to the friction coefficient. When this value is 0.15 or less, the friction during sliding is reduced and damage caused by sliding can be sufficiently avoided. .

このように当該耐損傷性被膜の損傷が回避される現象については、次のように考察される。1つは、当該耐損傷性被膜においては、合成樹脂中に均一に分散された気相成長炭素繊維の存在によって前述のように被膜硬度が高くなり被膜表面での変形が起こりにくくなったことが挙げられる。もう1つは、気相成長炭素繊維の存在により被膜の靭性が強化され、摺動界面で発生するせん断力によって被膜の損傷が起こらなくなったことが挙げられる。すなわち、気相成長炭素繊維は合成樹脂マトリックス中に均一に分散され、気相成長炭素繊維と合成樹脂マトリックスとは、被膜の靭性が発揮されるような状態(例えば、応力の負荷によって繊維が適度に伸縮や引き抜けが起こる)で結合されているものと考えられる。更に、気相成長炭素繊維は熱伝導性がよく摺動面で生じた熱を散逸する効果もあり摺動(摩擦)による損傷を低減させる作用が発揮されると考えられる。従って、上記構成の被膜物において、気相成長炭素繊維は、合成樹脂中に好適に分散されており合成樹脂マトリックスと好適に結合されている。また、気相成長炭素繊維は、摺動時の耐損傷性が発揮される構造や組織を有しているものである。   Thus, the phenomenon in which damage to the damage resistant coating is avoided is considered as follows. First, in the damage-resistant coating, the presence of the vapor-grown carbon fibers uniformly dispersed in the synthetic resin increased the coating hardness as described above, making it difficult for deformation on the coating surface to occur. Can be mentioned. The other is that the toughness of the coating is enhanced by the presence of the vapor-grown carbon fibers, and the coating is not damaged by the shearing force generated at the sliding interface. That is, the vapor-grown carbon fiber is uniformly dispersed in the synthetic resin matrix, and the vapor-grown carbon fiber and the synthetic resin matrix are in a state in which the toughness of the film is exhibited (for example, the fiber is moderate due to stress load). It is considered that they are connected by expansion and contraction and pull-out. Furthermore, it is considered that vapor-grown carbon fiber has a good thermal conductivity and dissipates heat generated on the sliding surface, and exhibits an effect of reducing damage due to sliding (friction). Therefore, in the coating material having the above structure, the vapor-grown carbon fibers are suitably dispersed in the synthetic resin and are suitably bonded to the synthetic resin matrix. Moreover, the vapor growth carbon fiber has a structure or a structure in which damage resistance during sliding is exhibited.

また、本発明の被覆物は、実用上十分な摺動に対する耐損傷性の他、長期耐食性、延性、潤滑性、耐衝撃性等の良好な機械的特性を有する。また、その量が40重量部を超える場合は、均質な薄膜が得られにくくなる。   Further, the coating of the present invention has good mechanical properties such as long-term corrosion resistance, ductility, lubricity, impact resistance, etc. in addition to practically sufficient damage resistance against sliding. Moreover, when the amount exceeds 40 parts by weight, it becomes difficult to obtain a homogeneous thin film.

なお、ここでいうトルク係数値は、JIS規格B1186に記載の「セットのトルク係数値」に従って得られる値をいう。   The torque coefficient value referred to here is a value obtained according to the “set torque coefficient value” described in JIS standard B1186.

また、本発明の耐損傷性被膜が形成された被覆物は、耐損傷性被膜が合成樹脂を樹脂マトリックスとし、合成樹脂100重量部に対して少なくとも9重量部の気相成長炭素繊維を含み、耐損傷性被膜のヌープ硬さが150Hk以上である耐損傷性被膜が材料表面の少なくとも一部分に形成された被覆物であることを特徴とする。   Further, the coating on which the damage resistant coating of the present invention is formed, the damage resistant coating includes a synthetic resin as a resin matrix, and includes at least 9 parts by weight of vapor grown carbon fiber with respect to 100 parts by weight of the synthetic resin, The damage-resistant film having a Knoop hardness of 150 Hk or more is a coating formed on at least a part of the material surface.

これによって、亜鉛メッキのヌープ硬度である約150Hkと同等の硬度を有する被膜となり、更に高付加の摺動に対する耐損傷性を有する。   As a result, the film has a hardness equivalent to about 150 Hk, which is the Knoop hardness of galvanization, and further has damage resistance against high-addition sliding.

上記構成の被覆物にあっては、被膜の厚さは5〜50μmとすることができる。   In the covering having the above structure, the thickness of the coating can be set to 5 to 50 μm.

このように被膜を薄膜にすることによって、当該被膜を有する被覆物は、機械部品として使用する金属材料にあっては、寸法公差内に収めることを容易にすることができる。   Thus, by making a film into a thin film, the coating material which has the said film can make it easy to fit in a dimensional tolerance in the metal material used as a machine part.

また、上記構成の被覆物にあっては、合成樹脂は特に限定されず、あらゆる合成樹脂に対して適用可能であり、例えば用途に応じて合成樹脂を選定することができる。例えば、熱硬化性樹脂の使用は、被膜の硬度をより高められるので好ましい。   Further, in the covering having the above configuration, the synthetic resin is not particularly limited, and can be applied to any synthetic resin. For example, the synthetic resin can be selected according to the use. For example, use of a thermosetting resin is preferable because the hardness of the coating can be further increased.

また、上記構成の被覆物にあっては、フェノール樹脂、ポリアミドイミド樹脂、エポキシ樹脂、シリコン樹脂、水系フッ素樹脂又はウレタン樹脂のうちいずれかであることが好ましい。   Moreover, in the coating of the said structure, it is preferable that it is either a phenol resin, a polyamideimide resin, an epoxy resin, a silicon resin, a water-system fluororesin, or a urethane resin.

また、本発明の耐損傷性被膜が形成された被覆物にあっては、顔料を含むことができる。   Moreover, in the coating material in which the damage-resistant film of this invention was formed, a pigment can be included.

顔料として防錆顔料を使用することが好ましい。防錆顔料の添加によって、より長期耐食性が付与される。   It is preferable to use a rust preventive pigment as the pigment. Long-term corrosion resistance is imparted by the addition of the rust preventive pigment.

また、本発明の耐損傷性被膜が形成された被覆物にあっては、潤滑剤を含むことができる。潤滑剤を添加することによって、被膜と相手物質との摩擦係数を制御することができ、摺動によって生じる摩耗をより一層顕著に低減することができる。   Moreover, in the coating material in which the damage-resistant film of this invention was formed, a lubricant can be included. By adding a lubricant, it is possible to control the coefficient of friction between the coating and the counterpart substance, and to further significantly reduce the wear caused by sliding.

前記潤滑剤は、フッ素樹脂粉末、二硫化モリブデン又はダイヤモンドナノ粉末の少なくともいずれか1つを含むことが好ましい。   It is preferable that the lubricant contains at least one of fluororesin powder, molybdenum disulfide, or diamond nano powder.

本発明の耐損傷性被覆剤は、気相成長炭素繊維が分散された合成樹脂溶液からなる耐損傷性被覆剤であって、合成樹脂溶液の固形成分100重量部に対して、3〜40重量部の気相成長炭素繊維と10〜300重量部の極性溶媒を含むことを特徴としている。   The damage-resistant coating material of the present invention is a damage-resistant coating material comprising a synthetic resin solution in which vapor-grown carbon fibers are dispersed, and is 3 to 40 weights with respect to 100 parts by weight of the solid component of the synthetic resin solution. Part of vapor-grown carbon fiber and 10 to 300 parts by weight of a polar solvent.

これによって、合成樹脂中に気相成長炭素繊維が好適に分散された被膜を提供することができ、この被膜が形成された被覆物は、長期耐食性、延性、潤滑性及び耐衝撃性等の良好な機械的特性を有し、かつ、摺動に対する耐損傷性を有しており上記目的が達成される。更に、薄膜状の被膜を形成することも可能としている。また、気相成長炭素繊維の量が合成樹脂溶液の固形成分100重量部に対して3重量部未満であると、3重量部未満の場合、耐衝撃性等の機械的特性は向上するが、ヌープ硬さがあまり高くならない。また、40重量部を超えて気相成長炭素繊維を有すると、耐損傷性被覆剤の粘性が高くなり均一に薄膜状にするのに手間がかかることになる。   As a result, it is possible to provide a film in which vapor-grown carbon fibers are suitably dispersed in a synthetic resin, and the coating on which this film is formed has good long-term corrosion resistance, ductility, lubricity, impact resistance, and the like. The above-mentioned object is achieved by having excellent mechanical characteristics and damage resistance against sliding. Further, it is possible to form a thin film. In addition, when the amount of vapor-grown carbon fiber is less than 3 parts by weight with respect to 100 parts by weight of the solid component of the synthetic resin solution, when it is less than 3 parts by weight, mechanical properties such as impact resistance are improved. Knoop hardness is not so high. Moreover, when it has a vapor growth carbon fiber exceeding 40 weight part, the viscosity of a damage-resistant coating material will become high, and will require time and effort to make it into a thin film form uniformly.

なお、合成樹脂溶液は、合成樹脂の態様によっては、極性溶媒以外の無機及び/又は有機溶剤等を含むこともあるのは言うまでもない。また、合成樹脂溶液の固形成分とは、合成樹脂を硬化して被膜にした際に残存する樹脂成分をいう。   In addition, it cannot be overemphasized that a synthetic resin solution may contain inorganic and / or organic solvents other than a polar solvent depending on the aspect of a synthetic resin. The solid component of the synthetic resin solution refers to a resin component that remains when the synthetic resin is cured to form a film.

上記構成の耐損傷性被覆剤においては、極性溶媒としては、純水、アルコール類、N−メチル−2−ピロリドン、ジメチルアセトアミド、メチルエチルケトン、メチルイソブチルケトン又はこれら2種以上の混合物のうちいずれかであることが好ましい。   In the damage-resistant coating material having the above-described configuration, the polar solvent is pure water, alcohols, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, or a mixture of two or more of these. Preferably there is.

また、上記構成の耐損傷性被覆剤においては、合成樹脂は特に限定されず、あらゆる合成樹脂が使用可能であり、例えば用途に応じて合成樹脂を選定することができる。また、合成樹脂は、液体状の樹脂の他、粉末等固体の樹脂であってもよい。例えば、熱硬化性樹脂の使用は、被膜の硬度をより高められるので好ましい。   In the damage-resistant coating material having the above-described configuration, the synthetic resin is not particularly limited, and any synthetic resin can be used. For example, the synthetic resin can be selected according to the application. The synthetic resin may be a liquid resin or a solid resin such as a powder. For example, use of a thermosetting resin is preferable because the hardness of the coating can be further increased.

また、上記構成の耐損傷性被覆剤においては、フェノール樹脂、ポリアミドイミド樹脂、エポキシ樹脂、シリコン樹脂、水系フッ素樹脂又はウレタン樹脂のうちいずれかであることが好ましい。   Moreover, in the damage-resistant coating material of the said structure, it is preferable that they are either a phenol resin, a polyamide-imide resin, an epoxy resin, a silicon resin, a water-system fluororesin, or a urethane resin.

また、上記構成の耐損傷性被覆剤においては、顔料が含まれていることが好ましい。   Moreover, it is preferable that the damage-resistant coating material of the said structure contains the pigment.

また、上記構成の耐損傷性被覆剤においては、潤滑剤が含まれていることが好ましい。   Moreover, it is preferable that the damage-resistant coating material having the above-described configuration contains a lubricant.

更に、潤滑剤は、フッ素樹脂粉末、二硫化モリブデン又はダイヤモンドナノ粉末の少なくともいずれか1つを含むことが好ましい。   Furthermore, the lubricant preferably contains at least one of fluororesin powder, molybdenum disulfide, or diamond nano powder.

本発明の耐損傷性被覆剤の製造方法は、気相成長炭素繊維が分散された合成樹脂溶液からなる耐損傷性被覆剤を製造する方法であって、合成樹脂溶液の固形成分100重量部に対して3〜40重量部の気相成長炭素繊維と10〜300重量部の極性溶媒とを用いて、気相成長炭素繊維を極性溶媒に分散させた後、気相成長炭素繊維が分散された極性溶媒と合成樹脂とを混合する工程を含むことを特徴としている。   The method for producing a damage resistant coating according to the present invention is a method for producing a damage resistant coating comprising a synthetic resin solution in which vapor-grown carbon fibers are dispersed, wherein 100 parts by weight of a solid component of the synthetic resin solution is added. The vapor grown carbon fiber was dispersed in the polar solvent using 3 to 40 parts by weight of the vapor grown carbon fiber and 10 to 300 parts by weight of the polar solvent. It includes a step of mixing a polar solvent and a synthetic resin.

これによって、合成樹脂溶液中に気相成長炭素繊維を均一に分散させることができる。すなわち、あらかじめ気相成長炭素繊維表面を極性溶媒で取り囲み、その後気相成長炭素繊維が分散された極性溶媒と合成樹脂とを混合することが、気相成長炭素繊維を均一に分散させるために非常に有効である。また、極性溶媒の量は、前記10〜300重量部であることが好ましく、また30〜150重量部であることがより好ましい。しかし、被膜の形成方法によっては、この量に限らず被膜の形成方法に合せた耐損傷性被覆剤の適正な粘度が得られる量にしてもよい。   As a result, the vapor-grown carbon fibers can be uniformly dispersed in the synthetic resin solution. That is, in order to uniformly disperse the vapor-grown carbon fiber, it is necessary to surround the vapor-grown carbon fiber surface with a polar solvent in advance and then mix the polar solvent in which the vapor-grown carbon fiber is dispersed with the synthetic resin. It is effective for. Further, the amount of the polar solvent is preferably 10 to 300 parts by weight, and more preferably 30 to 150 parts by weight. However, depending on the method of forming the coating, the amount is not limited to this amount, and may be an amount that provides an appropriate viscosity of the damage resistant coating according to the method of forming the coating.

本発明の耐損傷性被膜が形成された被覆物は、長期耐食性、延性、潤滑性及び耐衝撃性等の良好な機械的特性を有し、かつ、摺動に対する耐損傷性を有する。耐損傷性被膜中の気相成長炭素繊維を調整することによって、より優れた被覆物とすることができる。また、合成樹脂の種類を選択することによって、用途又は使用環境に応じた耐食性を付与することができる。耐損傷性被膜への顔料の添加は、耐食性を一層向上させることができる。耐損傷性被膜への潤滑剤の添加は、一層摺動特性を向上させることができる。   The coating on which the damage-resistant coating film of the present invention is formed has good mechanical properties such as long-term corrosion resistance, ductility, lubricity and impact resistance, and has damage resistance against sliding. By adjusting the vapor growth carbon fiber in the damage resistant coating, a more excellent coating can be obtained. Moreover, the corrosion resistance according to a use or use environment can be provided by selecting the kind of synthetic resin. Addition of a pigment to the damage resistant coating can further improve the corrosion resistance. The addition of a lubricant to the damage resistant coating can further improve the sliding characteristics.

本発明の耐損傷性被覆剤は、気相成長炭素繊維が均一に分散された薄膜の耐損傷性被膜を付与することができる。そのため機械部品として使用する材料に被覆した被覆物にあっては、好適な特性を示し寸法公差内に収めることを容易にすることができる。   The damage-resistant coating agent of the present invention can provide a thin damage-resistant coating film in which vapor-grown carbon fibers are uniformly dispersed. For this reason, a coating coated on a material used as a machine part can exhibit suitable characteristics and can easily be accommodated within dimensional tolerances.

本発明の耐損傷性被覆剤の製造方法によれば、合成樹脂溶液中に気相成長炭素繊維を均一に分散させ、薄膜の耐損傷性被膜を付与するのに好適な耐損傷性被覆剤を提供する。   According to the method for producing a damage-resistant coating material of the present invention, a damage-resistant coating material suitable for dispersing a vapor-grown carbon fiber in a synthetic resin solution and providing a thin film with a damage-resistant coating material is provided. provide.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本実施形態に係る耐損傷性被膜が形成された被覆物は、合成樹脂を樹脂マトリックスとし、合成樹脂マトリックス中に合成樹脂100重量部に対して3〜40重量部の気相成長炭素繊維を含む耐損傷性被膜が金属材料等の材料表面の少なくとも一部分に形成されている。当該耐損傷性被膜のヌープ硬さは、40Hk以上であることによって、実用上十分な耐損傷性を提供することができ、その耐損傷性被膜が形成された被覆物は、好適な機械部品、締結部材等に使用可能である。更に、気相成長炭素繊維が合成樹脂100重量部に対して少なくとも9重量部含みヌープ硬さが150Hk以上であることよって、更に高付加の摺動適用可能でありより、優れた耐損傷性を有する。   The coating formed with the damage resistant coating according to the present embodiment uses a synthetic resin as a resin matrix, and the synthetic resin matrix contains 3 to 40 parts by weight of vapor-grown carbon fibers with respect to 100 parts by weight of the synthetic resin. A damage resistant coating is formed on at least a portion of the surface of a material such as a metal material. When the Knoop hardness of the damage resistant coating is 40 Hk or more, practically sufficient damage resistance can be provided, and the coating on which the damage resistant coating is formed is a suitable machine part, It can be used as a fastening member. Furthermore, since the vapor grown carbon fiber contains at least 9 parts by weight with respect to 100 parts by weight of the synthetic resin and the Knoop hardness is 150 Hk or more, it can be applied to a higher load and has excellent damage resistance. Have.

また、当該耐損傷性被膜のトルク係数値は、0.15以下であることによって、摺動時の摩擦が低減され摺動によって生じる損傷を十分に低減した耐損傷性被膜が形成された被覆物となる。   In addition, since the torque coefficient value of the damage resistant coating is 0.15 or less, the coating on which the damage resistant coating is formed in which friction during sliding is reduced and damage caused by sliding is sufficiently reduced. It becomes.

上記の耐損傷性被膜が形成された被覆物を得る方法として、気相成長炭素繊維が分散された合成樹脂溶液からなる耐損傷性被覆剤を材料表面に塗布する方法が上げられる。   As a method for obtaining a coating on which the damage resistant coating is formed, there is a method of applying a damage resistant coating made of a synthetic resin solution in which vapor-grown carbon fibers are dispersed to the material surface.

本実施形態において、耐損傷性被覆剤は、合成樹脂溶液の固形成分100重量部に対して3〜40重量部の気相成長炭素繊維が極性溶媒を含む合成樹脂の溶液に分散している。なお、合成樹脂の態様によっては、合成樹脂溶液に極性溶媒以外の無機及び/又は有機溶剤等を含むこともあるのはいうまでもない。   In this embodiment, the damage-resistant coating agent has 3 to 40 parts by weight of vapor-grown carbon fiber dispersed in a synthetic resin solution containing a polar solvent with respect to 100 parts by weight of the solid component of the synthetic resin solution. Of course, depending on the mode of the synthetic resin, the synthetic resin solution may contain inorganic and / or organic solvents other than the polar solvent.

気相成長炭素繊維としては、繊維径や繊維長さ等の形状は特に限定されないが、繊維径が150nm前後であり、アスペクト比が500以下程度あることが好ましい。また、例えば超音波を用いて切断する方法又は酸溶液による処理による方法によって気相成長炭素繊維を切断して、更にアスペクト比を小さくしてもよい。気相成長炭素繊維のアスペクト比が小さい程、気相成長炭素繊維の合成樹脂溶液中への分散性が容易になる。   The vapor grown carbon fiber is not particularly limited in shape such as fiber diameter and fiber length, but preferably has a fiber diameter of about 150 nm and an aspect ratio of about 500 or less. Further, the aspect ratio may be further reduced by cutting the vapor-grown carbon fiber by, for example, a method of cutting using ultrasonic waves or a method of treatment with an acid solution. The smaller the aspect ratio of the vapor grown carbon fiber, the easier the dispersibility of the vapor grown carbon fiber in the synthetic resin solution.

使用する合成樹脂は、特に限定されないが、例えばフッ素樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコン樹脂、ウレタン樹脂、ポリ塩化ビニル樹脂、アルキド樹脂、アクリル樹脂、メラミン樹脂、ポリスチレン樹脂、ビニルエステル樹脂、ポリエステル樹脂や、これらの共重合体、変性体、及び2種以上の混合体等を使用できる。好ましくは、ポリアミドイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコン樹脂、水系フッ素樹脂又はウレタン樹脂のうちの少なくとも1種である。また、熱硬化性樹脂は被膜の硬度をより高められるので好ましい。   The synthetic resin to be used is not particularly limited. For example, fluorine resin, polyamideimide resin, polyimide resin, phenol resin, epoxy resin, silicon resin, urethane resin, polyvinyl chloride resin, alkyd resin, acrylic resin, melamine resin, polystyrene resin , Vinyl ester resins, polyester resins, copolymers thereof, modified products, and mixtures of two or more thereof can be used. Preferably, it is at least one of a polyamide-imide resin, a phenol resin, an epoxy resin, a silicon resin, a water-based fluororesin, or a urethane resin. Further, a thermosetting resin is preferable because the hardness of the coating can be further increased.

使用する極性溶媒には、純水、アルコール類、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド(DMAc)、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等を挙げることができる。極性溶媒は、これらに限定されるものではなく、使用する気相成長炭素繊維、使用する合成樹脂との溶解性、被膜の形成性等を考慮して決めればよい。   Examples of the polar solvent used include pure water, alcohols, N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK). The polar solvent is not limited to these, and may be determined in consideration of the vapor-grown carbon fiber to be used, the solubility with the synthetic resin to be used, the film formability, and the like.

使用する極性溶媒の量は、合成樹脂溶液の固形成分100重量部に対して10〜300重量部である。より好ましくは、30〜150重量部である。   The amount of the polar solvent used is 10 to 300 parts by weight with respect to 100 parts by weight of the solid component of the synthetic resin solution. More preferably, it is 30 to 150 parts by weight.

本実施形態の耐損傷性被覆剤の製造は、以下の手順で行う。   The manufacture of the damage-resistant coating material of this embodiment is performed according to the following procedure.

まず、適当な容器に所定の量の極性溶媒を投入し、その中に気相成長炭素繊維を所定の量の投入する。この気相成長炭素繊維の投入の方法は特に限定されるものではなく、一度に多量の気相成長炭素繊維を投入しない等の工夫をすればよい。このとき、極性溶媒中に分散剤を適量添加することによって極性溶媒中への気相成長炭素繊維の分散をより確実に行うことができる。分散剤としては、アニオン性、カチオン性、非イオン性又は両性の界面活性剤を使用することができ、使用する合成樹脂溶液に合せて選択すればよい。分散剤の添加量は、少量でよく例えば合成樹脂溶液に対して1〜2w/v%程度(合成樹脂溶液100mlに対して1〜2g)でよい。   First, a predetermined amount of polar solvent is put into a suitable container, and a predetermined amount of vapor-grown carbon fiber is put therein. The method for introducing the vapor-grown carbon fiber is not particularly limited, and it may be devised such that a large amount of vapor-grown carbon fiber is not charged at a time. At this time, the vapor-grown carbon fiber can be more reliably dispersed in the polar solvent by adding an appropriate amount of the dispersant to the polar solvent. As the dispersant, an anionic, cationic, nonionic or amphoteric surfactant can be used, and it may be selected according to the synthetic resin solution to be used. The amount of the dispersant added may be small, for example, about 1 to 2 w / v% with respect to the synthetic resin solution (1-2 g with respect to 100 ml of the synthetic resin solution).

次に、気相成長炭素繊維を極性溶媒中に均一に分散させる。分散の方法は、機械的に撹拌して行う方法、超音波を利用して行う方法を挙げることができる。機械的に分散する方法として、例えば市販のホモジナイザーを用いて溶液を撹拌羽又は撹拌棒を回転させて行う。回転数は投入した気相成長炭素繊維の量や全体の処理量を考慮して決めればよいが、概ね5000〜15000rpmである。また、市販の超音波発生器を用いて分散させることができる。また、この二つの方法を併用してもよい。   Next, the vapor growth carbon fiber is uniformly dispersed in a polar solvent. Examples of the dispersion method include a method of performing mechanical stirring and a method of using ultrasonic waves. As a mechanical dispersion method, for example, a commercially available homogenizer is used to rotate the solution by rotating a stirring blade or a stirring rod. The number of revolutions may be determined in consideration of the amount of vapor-grown carbon fiber introduced and the total amount of processing, but is generally 5000 to 15000 rpm. Moreover, it can disperse | distribute using a commercially available ultrasonic generator. These two methods may be used in combination.

次に、気相成長炭素繊維が分散した極性溶媒と合成樹脂を混合する。   Next, the polar solvent in which the vapor grown carbon fiber is dispersed and the synthetic resin are mixed.

このときの混合も、機械的に撹拌して行う方法、超音波を利用して行う方法を挙げることができる。機械的に分散する方法として、例えば市販のホモジナイザイザーを用いて溶液を撹拌羽又は撹拌棒を回転させて行う。回転数は投入した気相成長炭素繊維の量や全体の処理量を考慮して決めればよいが、概ね2000〜5000rpmである。また、市販の超音波発生器を用いて分散させることができる。また、この2つの方法を併用してもよい。また、必要に応じて顔料を添加してもよい。顔料は、防錆顔料であり、天然顔料、合成有機顔料及び合成無機顔料のいずれをも使用することができるが、金属系複合酸化物、酸化クロム、有機顔料等が挙げられる。顔料の添加量は、合成樹脂100重量部に対して1〜30重量部が好ましく、より好ましくは、5〜20重量部である。顔料の粒径は、合成樹脂溶液に対する分散性及び凝集性等を考慮して決めればよいが、できるだけ微細であることが望ましい。例えば、平均粒径が4〜6μmであり、粒径が主として0.5〜10μmの分布範囲にあるものが好ましい。また、必要に応じて潤滑剤を添加してもよい。   Examples of the mixing at this time include a method of performing mechanical stirring and a method of using ultrasonic waves. As a mechanical dispersion method, for example, a commercially available homogenizer is used to rotate the solution by rotating a stirring blade or a stirring rod. The number of revolutions may be determined in consideration of the amount of vapor-grown carbon fibers added and the total amount of processing, but is generally 2000 to 5000 rpm. Moreover, it can disperse | distribute using a commercially available ultrasonic generator. These two methods may be used in combination. Moreover, you may add a pigment as needed. The pigment is a rust preventive pigment, and any of natural pigments, synthetic organic pigments, and synthetic inorganic pigments can be used, and examples thereof include metal complex oxides, chromium oxides, and organic pigments. The added amount of the pigment is preferably 1 to 30 parts by weight, and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the synthetic resin. The particle size of the pigment may be determined in consideration of the dispersibility and agglomeration property with respect to the synthetic resin solution, but is desirably as fine as possible. For example, those having an average particle size of 4 to 6 μm and a particle size mainly in the distribution range of 0.5 to 10 μm are preferable. Moreover, you may add a lubricant as needed.

潤滑剤としてはフッ素樹脂粉末、二硫化モリブデン、ダイヤモンドナノ粉末等が上げられる。潤滑剤の添加量は、被覆物の使用環境によっても異なるが合成樹脂100重量部に対して0.5〜10重量部程度でよい。潤滑剤の平均粒径の最大値は、4〜6μm以下であることが望ましい。また、潤滑剤の平均粒径は、0.01〜4μm程度であることが好ましい。   Examples of the lubricant include fluororesin powder, molybdenum disulfide, diamond nano powder, and the like. The addition amount of the lubricant may be about 0.5 to 10 parts by weight with respect to 100 parts by weight of the synthetic resin although it varies depending on the use environment of the coating. The maximum value of the average particle diameter of the lubricant is desirably 4 to 6 μm or less. The average particle size of the lubricant is preferably about 0.01 to 4 μm.

最後に、この気相成長炭素繊維が分散した合成樹脂に市販の超音波発生器を用いるなどして超音波を与えると、分散の際に発生した泡を除去することができる。   Finally, when ultrasonic waves are applied to the synthetic resin in which the vapor-grown carbon fibers are dispersed using a commercially available ultrasonic generator, bubbles generated during the dispersion can be removed.

本耐損傷性被覆剤を使用して、炭素鋼、ステンレス鋼、アルミニウム、チタン、各種合金等の金属材料、アルミナ、ジルコニア、人造黒鉛、ガラス等のセラミック材料、各種プラスチックス材料、各種複合材料等の材料表面の少なくとも一部分に被膜が形成されてなる被覆物とする。被覆物の被膜の厚さは、5μm程度の薄膜にすることができる。被膜の厚さは5〜50μmとすることによって、例えば、機械部品として使用するの金属材料にあっては、寸法公差内に収めることを容易にすることができる。また、必要に応じて例えば、1mm以上の厚膜にしてもよい。   Using this damage-resistant coating, metal materials such as carbon steel, stainless steel, aluminum, titanium, various alloys, ceramic materials such as alumina, zirconia, artificial graphite, glass, various plastics materials, various composite materials, etc. It is set as the coating by which a film is formed in at least one part of the material surface of this. The thickness of the coating can be a thin film of about 5 μm. By setting the thickness of the coating to 5 to 50 μm, for example, in the case of a metal material used as a machine part, it can be easily accommodated within a dimensional tolerance. Further, for example, a thick film of 1 mm or more may be used as necessary.

被膜を形成させて被覆物にするには、浸漬処理、スプレー処理、はけ塗り等の方法を適用することができる。被覆後、樹脂を硬化させるために乾燥や熱処理を施して、均質性の高い被膜が形成される。   In order to form a coating to form a coating, a method such as dipping, spraying or brushing can be applied. After coating, drying and heat treatment are performed to cure the resin, and a highly uniform coating is formed.

以下、表及び図面を参照して実施例を説明する。   Embodiments will be described below with reference to the tables and drawings.

液状のレゾールタイプのフェノール樹脂(合成樹脂)の固形成分100重量部に対して2.4、4.7及び11重量部の気相成長炭素繊維が分散した7種類の耐損傷性被覆剤を作製した。   7 types of damage-resistant coating materials are prepared in which 2.4, 4.7 and 11 parts by weight of vapor-grown carbon fiber are dispersed with respect to 100 parts by weight of the solid component of a liquid resol type phenolic resin (synthetic resin). did.

気相成長炭素繊維は、市販のもの(昭和電工(株)製、VGCF(R))を使用した。当該気相成長炭素繊維は、繊維径の代表値が約150nmであり、繊維長さの代表値が10〜20μmである。アスペクト比の範囲が10〜500である。   As the vapor grown carbon fiber, a commercially available product (manufactured by Showa Denko KK, VGCF®) was used. The vapor-grown carbon fiber has a typical fiber diameter of about 150 nm and a typical fiber length of 10 to 20 μm. The range of the aspect ratio is 10 to 500.

耐損傷性被覆剤の作製には、まず、ステンレス製の容器に所定の量の極性溶媒(NMP)を入れ、分散剤としてアニオン性の界面活性剤をNMP100ml当たり1〜2gの割合で添加した。このとき、NMPは合成樹脂の量と同じ重量部を使用した。   To prepare the damage resistant coating, first, a predetermined amount of polar solvent (NMP) was put in a stainless steel container, and an anionic surfactant was added as a dispersant at a rate of 1 to 2 g per 100 ml of NMP. At this time, NMP used the same weight part as the amount of synthetic resin.

この溶液に所定の量の気相成長炭素繊維を少しずつ加え、手でステンレス製の撹拌棒を用いて2〜3分間撹拌した。   A predetermined amount of vapor-grown carbon fiber was added little by little to this solution, and the mixture was stirred by hand with a stainless steel stirring rod for 2-3 minutes.

次に、気相成長炭素繊維が加えられた極性溶媒をステンレス製の容器のまま市販の超音波発生装置(周波数100kHz)を用いて約30分間超音波を与えてプレミキシングを行った。このとき周波数は100kHzに近いほど分散しやすいことが確認された。   Next, the polar solvent to which the vapor-grown carbon fiber was added was premixed by applying ultrasonic waves for about 30 minutes using a commercially available ultrasonic generator (frequency: 100 kHz) in a stainless steel container. At this time, it was confirmed that the closer to 100 kHz, the easier the dispersion.

次に、市販のホモジナイザー撹拌装置を用いて、気相成長炭素繊維が加えられた極性溶媒をステンレス製の4枚羽の撹拌羽を回転させて気相成長炭素繊維を極性溶媒中に均一に分散させた。この撹拌羽の回転数は5000〜15000rpmの間であり、気相成長炭素繊維の量が多い程回転数を高くした。このときの撹拌の時間は約15分間であった。   Next, using a commercially available homogenizer stirring device, the polar solvent with the vapor-grown carbon fibers added is rotated with four stainless steel stirring blades to uniformly disperse the vapor-grown carbon fibers in the polar solvent. I let you. The rotational speed of the stirring blade was between 5000 and 15000 rpm, and the rotational speed was increased as the amount of vapor-grown carbon fiber was increased. The stirring time at this time was about 15 minutes.

次に、気相成長炭素繊維が分散した極性溶媒に所定の量の合成樹脂を加えた。そして、気相成長炭素繊維が分散した極性溶媒と合成樹脂についても、上記の超音波発生装置を使用して最大100kHzの周波数の超音波を与えてプレミキシングを行った。気相成長炭素繊維を合成樹脂とも均一に分散させるために、上記のホモジナイザー撹拌装置及び撹拌羽を使用してこの気相成長炭素繊維を含む混合溶液を撹拌した。極性溶媒が入った合成樹脂中を回転するとき、この撹拌羽の回転数は2000〜5000rpmの間であり、気相成長炭素繊維の量が多い程回転数を高くした。撹拌の時間は約15分間であった。   Next, a predetermined amount of synthetic resin was added to the polar solvent in which the vapor grown carbon fiber was dispersed. The polar solvent and the synthetic resin in which the vapor-grown carbon fibers were dispersed were also premixed by applying ultrasonic waves having a frequency of up to 100 kHz using the above ultrasonic generator. In order to uniformly disperse the vapor-grown carbon fiber and the synthetic resin, the mixed solution containing the vapor-grown carbon fiber was stirred using the homogenizer stirring device and the stirring blade. When rotating in a synthetic resin containing a polar solvent, the number of rotations of the stirring blade was between 2000 and 5000 rpm, and the number of rotations was increased as the amount of vapor-grown carbon fiber increased. The stirring time was about 15 minutes.

ここで得られた混合溶液(耐損傷性被覆剤)を、再び上記の超音波発生装置を使用して最大100kHzの周波数の超音波を与えて撹拌した。この撹拌操作によって耐損傷性被覆剤中に存在していた気泡をほぼ取り除くことができた。   The mixed solution (damage-resistant coating material) obtained here was stirred again by applying ultrasonic waves having a frequency of up to 100 kHz using the above ultrasonic generator. By this stirring operation, the air bubbles present in the damage-resistant coating could be almost removed.

作製した耐損傷性被覆剤は、透明のガラス瓶に移した。目視によって作製した耐損傷性被覆剤の様子を観察し、気相成長炭素繊維が樹脂溶液中に均一に分散されているのが確認された。   The prepared damage resistant coating was transferred to a transparent glass bottle. The state of the damage resistant coating prepared by visual observation was observed, and it was confirmed that the vapor grown carbon fiber was uniformly dispersed in the resin solution.

次に、エチルアルコールを使用して脱脂したSPCC冷間圧延鋼板(長さ150mm、幅70mm、厚み0.8mm)、並びにM20でネジ部の長さが100mmのボルト及びM20で高さ16mmの六角ナットの全面に耐損傷性被覆剤をスプレー塗装法によって被覆して、被膜を形成させた。被覆は、圧送式エアースプレーガン(イワタ製 WIDER−61型:口径1.3mm)を用い、エアー圧力0.29〜0.34MPa、被覆剤の吐出量95〜200ml/minの条件で行った。その被覆後、乾燥器にて乾燥し樹脂が十分硬化する温度(200℃前後)で熱処理を行って被膜が形成された被覆物とした。   Next, SPCC cold-rolled steel sheet (length 150 mm, width 70 mm, thickness 0.8 mm) degreased using ethyl alcohol, a M20 bolt with a thread length of 100 mm, and a M20 hexagon with a height of 16 mm The entire surface of the nut was coated with a damage resistant coating by spray coating to form a coating. The coating was performed using a pressure-feed type air spray gun (WITER-61 type manufactured by Iwata: caliber 1.3 mm) under conditions of an air pressure of 0.29 to 0.34 MPa and a coating agent discharge rate of 95 to 200 ml / min. After the coating, it was dried in a drier and heat-treated at a temperature at which the resin was sufficiently cured (around 200 ° C.) to obtain a coating on which a film was formed.

被膜の厚さは、40〜50μmに調整した。被膜の厚さは、電磁式膜厚計(ケット科学製 LZ−330型)を用いてJIS規格K5600−1−7に従って測定した。また、被覆物の断面を走査型顕微鏡で観察して基材のSPCC冷間圧延鋼板と被膜との界面に顕著なボイド等がないことを確認した。   The thickness of the coating was adjusted to 40-50 μm. The thickness of the film was measured according to JIS standard K5600-1-7 using an electromagnetic film thickness meter (LZ-330 type, manufactured by Kett Science). Moreover, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids or the like at the interface between the SPCC cold-rolled steel sheet and the coating film of the base material.

被膜の基材(長さ150mm、幅70mm、厚み0.8mm)に対する密着性は、JIS規格K5600−5−6に従って試験を行った。その結果、被膜は基材に対して良好に密着しているのが確認された。   The adhesion of the coating to the substrate (length 150 mm, width 70 mm, thickness 0.8 mm) was tested according to JIS standard K5600-5-6. As a result, it was confirmed that the coating adhered well to the substrate.

基材であるSPCC冷間圧延鋼板の表面に形成された40〜50μmの被膜について、以下の被膜特性試験を行った。   The following film characteristic test was done about the 40-50 micrometers film formed in the surface of the SPCC cold-rolled steel plate which is a base material.

被膜の硬度については、鉛筆引っかき硬さ及びヌープ硬さを測定して評価した。鉛筆引っかき硬さは、JIS規格K5600−5−4に従って測定を行った。鉛筆引っかき硬さは、被膜にきず跡を生じなかった硬さ(鉛筆硬度)測定した。また、ヌープ硬さは、(JIS規格Z2251)に従って測定を行った。   The hardness of the film was evaluated by measuring pencil scratch hardness and Knoop hardness. The pencil scratch hardness was measured according to JIS standard K5600-5-4. The pencil scratch hardness was measured by the hardness (pencil hardness) at which no scar was formed on the film. The Knoop hardness was measured according to (JIS standard Z2251).

折り曲げ性については、JIS規格K5600−5−4に従って評価した。このとき、定められた条件下において折り曲げた後の折り曲げた部分の被膜表面を40倍の顕微鏡で観察して割れ又ははく離の有無を確認して判断している。   The bendability was evaluated according to JIS standard K5600-5-4. At this time, it is judged by observing the film surface of the bent portion after being bent under a predetermined condition with a 40-fold microscope to confirm the presence or absence of cracking or peeling.

耐衝撃性については、JIS規格K5600−5−3のデュポン式に従って測定を行った。先端の曲率半径の異なる1000gの重りを50cmの高さから被膜に落下させた後、40倍の顕微鏡で観察して割れ又ははく離の有無を確認して判断している。   About impact resistance, it measured according to the DuPont type of JIS specification K5600-5-3. A 1000 g weight having a different curvature radius at the tip is dropped onto the coating from a height of 50 cm, and then observed with a 40-fold microscope to confirm the presence or absence of cracking or peeling.

ボルト・ナットによる嵌合試験については、M20でネジ部の長さが100mmのボルト及びM20で高さ16mmのナットを使用して、ネジ部(ボルトとナットのセット)のトルク係数値(摩擦抵抗)と被膜の破壊の評価を行った。ボルトとナットには、軸力20トンを与えた。ネジ部のトルク係数値は、JIS規格B1186に従って求めた。使用した試験片は、各5本を使用した。ボルトとナットの被膜が損傷を受けて欠落した部分の割合を求めた。   For the fitting test using bolts and nuts, using a M20 bolt with a thread length of 100 mm and a M20 nut with a height of 16 mm, the torque coefficient value (friction resistance) of the screw part (bolt and nut set) And the destruction of the coating were evaluated. The bolt and nut were given an axial force of 20 tons. The torque coefficient value of the thread portion was obtained according to JIS standard B1186. Five test pieces were used each. The ratio of the portion where the bolt and nut coatings were damaged and lost was determined.

表1は、本実施例1、実施例2及び比較例1〜4について各耐損傷性被覆剤からなる各被膜の特性試験結果を示している。   Table 1 shows the property test results of the respective coatings made of each damage-resistant coating for Example 1, Example 2, and Comparative Examples 1 to 4.

図1は、実施例1及び実施例2について、各被膜の合成樹脂100重量部に対する気相成長炭素繊維の量を横軸に、各被膜のヌープ硬さを縦軸にプロットした図を示している。ここで、気相成長炭素繊維の量がゼロの場合は、それぞれ実施例1に対しては比較例3、実施例2に対しては比較例4のヌープ硬さの値を使用している。なお、各データ点は2次の多項式曲線で近似しており、相関係数(R2)は0.988(実施例1)及び0.972(実施例2)であった。 FIG. 1 shows a graph in which the amount of vapor-grown carbon fibers with respect to 100 parts by weight of the synthetic resin of each coating is plotted on the horizontal axis and the Knoop hardness of each coating is plotted on the vertical axis for Example 1 and Example 2. Yes. Here, when the amount of vapor grown carbon fiber is zero, the Knoop hardness values of Comparative Example 3 are used for Example 1 and Comparative Example 4 for Example 2, respectively. Each data point was approximated by a quadratic polynomial curve, and the correlation coefficient (R 2 ) was 0.988 (Example 1) and 0.972 (Example 2).

表1において、実施例1について、気相成長炭素繊維の量が、フェノール樹脂に対して2.4、4.7及び11重量部である3種類の各被膜の特性試験結果を示している。   In Table 1, about Example 1, the characteristic test result of each of the three types of coating films in which the amount of the vapor growth carbon fiber is 2.4, 4.7, and 11 parts by weight with respect to the phenol resin is shown.

まず、硬度については、気相成長炭素繊維の量がフェノール樹脂に対して2.4重量部の場合、ヌープ硬さは、20Hkであったが、鉛筆引っかき硬さは7Hであり、後述の比較例の値(6H)に比べて高い値を示した。気相成長炭素繊維の量が最も少ない2.4重量部の場合は、7Hであり、気相成長炭素繊維の量が4.7重量部以上では、鉛筆硬度が9Hとなった。鉛筆硬度は、測定できる最高硬度が9Hである。なお、硬度のうち鉛筆引っかき硬さは、被膜にきず跡を生じなかった硬さ(鉛筆硬度)を示している。   First, regarding the hardness, when the amount of the vapor-grown carbon fiber is 2.4 parts by weight with respect to the phenol resin, the Knoop hardness was 20 Hk, but the pencil scratch hardness was 7 H. The value was higher than the example value (6H). In the case of 2.4 parts by weight with the smallest amount of vapor-grown carbon fiber, it was 7H, and when the amount of vapor-grown carbon fiber was 4.7 parts by weight or more, the pencil hardness was 9H. The maximum hardness that can be measured is 9H. Of the hardnesses, the pencil scratch hardness indicates the hardness (pencil hardness) at which no scar was formed on the coating.

そして、ヌープ硬さは、気相成長炭素繊維の量が、11重量部ではヌープ硬さ200Hkを示している。亜鉛メッキのヌープ硬度は約150Hkであるので、フェノール樹脂100重量部に対して11重量部の気相成長炭素繊維が分散された被膜は、亜鉛メッキ以上の硬度を有することが示された。   And as for Knoop hardness, when the quantity of vapor growth carbon fiber is 11 weight part, Knoop hardness has shown 200Hk. Since the Knoop hardness of galvanization is about 150 Hk, it was shown that the coating film in which 11 parts by weight of vapor-grown carbon fiber is dispersed with respect to 100 parts by weight of phenol resin has a hardness higher than that of galvanization.

図1によれば、気相成長炭素繊維の量が、フェノール樹脂に対して少なくとも3重量部あれば少なくとも40Hkを示し、そして少なくとも9重量部であれば150Hkを示すことになる。   According to FIG. 1, if the amount of vapor grown carbon fiber is at least 3 parts by weight with respect to the phenolic resin, it indicates at least 40 Hk, and if it is at least 9 parts by weight, it indicates 150 Hk.

折り曲げ性は、表1に示す直径を有する心棒を挟んで折り曲げるものであり、心棒の直径が小さい程、被膜は高い延性を有すると評価できる。心棒の直径の値は、気相成長炭素繊維の量が11重量部のとき、4mmと小さくなり、気相成長炭素繊維の量を増やしても延性は損なわれず、むしろ延性が高くなることを示している。   The bendability is obtained by bending a mandrel having a diameter shown in Table 1, and the smaller the mandrel diameter, the higher the ductility can be evaluated. The value of the diameter of the mandrel shows that when the amount of vapor-grown carbon fiber is 11 parts by weight, it becomes as small as 4 mm. Even if the amount of vapor-grown carbon fiber is increased, the ductility is not impaired, but rather the ductility is increased. ing.

耐衝撃性は、重りの曲率半径は気相成長炭素繊維の量が最も少ない2.4重量部の場合でも3mmを示した。気相成長炭素繊維の添加によって、顕著に耐衝撃性が向上し、はく離しにくい被膜が形成されている。   As for the impact resistance, the radius of curvature of the weight was 3 mm even in the case of 2.4 parts by weight with the smallest amount of vapor-grown carbon fiber. By adding the vapor growth carbon fiber, the impact resistance is remarkably improved, and a film which is difficult to peel off is formed.

ボルト・ナットによる嵌合試験は、トルク係数値が小さいほど摩擦係数が小さく、潤滑性がよく、また延性も高いことを示している。被膜破壊状態は、被膜の機械的強度に対応する指標である。気相成長炭素繊維の添加によってトルク係数値が下がり、気相成長炭素繊維が4.7重量部の場合、被膜の破壊も認められなかった。気相成長炭素繊維の量が2.4重量部の場合であっても、トルク係数値は十分小さく、かつ、被膜の破壊も約5%以下と少ない。   The bolt / nut fitting test shows that the smaller the torque coefficient value, the smaller the friction coefficient, the better the lubricity, and the higher the ductility. The film breaking state is an index corresponding to the mechanical strength of the film. When the vapor-grown carbon fiber was added, the torque coefficient value was lowered, and when the vapor-grown carbon fiber was 4.7 parts by weight, the coating was not broken. Even when the amount of vapor-grown carbon fiber is 2.4 parts by weight, the torque coefficient value is sufficiently small, and the destruction of the coating is as small as about 5% or less.

合成樹脂として、ポリアミドイミド樹脂を使用した以外は、実施例1と同様にして、ポリアミドイミド樹脂の固形成分に対して2.3、4.6及び11重量部の気相成長炭素繊維が分散した3種類の耐損傷性被覆剤を作製した。また、実施例1と同様の基材に実施例1と同様にして、被膜が形成された被覆物を作製した。   As a synthetic resin, 2.3, 4.6, and 11 parts by weight of vapor grown carbon fiber were dispersed with respect to the solid component of the polyamideimide resin in the same manner as in Example 1 except that the polyamideimide resin was used. Three types of damage resistant coatings were prepared. Moreover, the coating material in which the film was formed on the base material similar to Example 1 like Example 1 was produced.

実施例2においても被膜の厚さは、40〜50μmに調整した。被覆の厚さも、実施例1と同様に測定した。実施例2においても、被覆物の断面を走査型顕微鏡で観察して基材のSPCC冷間圧延鋼板と被膜との界面に顕著なボイド等がないことを確認した。   Also in Example 2, the thickness of the coating was adjusted to 40 to 50 μm. The thickness of the coating was also measured in the same manner as in Example 1. Also in Example 2, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids or the like at the interface between the SPCC cold-rolled steel sheet and the coating.

また、被膜の基材(長さ150mm、幅70mm、厚み0.8mm)に対する密着性も、実施例1と同様にして試験を行った。その結果、実施例2においても被膜は基材に対して良好に密着しているのが確認された。   Further, the adhesion of the coating to the substrate (length 150 mm, width 70 mm, thickness 0.8 mm) was also tested in the same manner as in Example 1. As a result, also in Example 2, it was confirmed that the coating adhered well to the substrate.

実施例1と同様にして、基材であるSPCC冷間圧延鋼板の表面に形成された40〜50μmの被膜について、同様の被膜特性試験を行った。   In the same manner as in Example 1, the same coating property test was performed on the 40-50 μm coating formed on the surface of the SPCC cold rolled steel sheet as the substrate.

表1に示す実施例2の各被膜の特性試験において、以下のような結果を示した。   In the characteristic test of each coating film of Example 2 shown in Table 1, the following results were shown.

鉛筆引っかき硬さは、被膜にきず跡を生じなかった硬さ(鉛筆硬度)を示している。気相成長炭素繊維の量が最も少ない2.3重量部の場合は、7Hであり、気相成長炭素繊維の量の増加すると、鉛筆硬度が高くなり被膜の硬度が高くなったことを示している。   The pencil scratch hardness indicates the hardness (pencil hardness) at which no scar was formed on the coating. In the case of 2.3 parts by weight with the smallest amount of vapor-grown carbon fiber, it is 7H. When the amount of vapor-grown carbon fiber is increased, the pencil hardness is increased and the hardness of the film is increased. Yes.

そして、ヌープ硬さは、気相成長炭素繊維の量がポリアミドイミド樹脂に対して11重量部の場合、ヌープ硬さ180Hkを示し、亜鉛メッキ以上の硬度を有することが示された。   And, Knoop hardness showed Knoop hardness of 180 Hk when the amount of vapor-grown carbon fiber was 11 parts by weight with respect to the polyamide-imide resin, indicating that it had a hardness equal to or higher than galvanization.

図1によれば、実施例1の場合と同様に、気相成長炭素繊維の量がポリアミドイミド樹脂に対して3重量部あれば少なくとも40Hkを示し、それが9重量部であれば150Hkを示すことになる。   According to FIG. 1, as in Example 1, when the amount of vapor grown carbon fiber is 3 parts by weight with respect to the polyamide-imide resin, at least 40 Hk is indicated, and when it is 9 parts by weight, 150 Hk is indicated. It will be.

折り曲げ性は、表1に示す直径を有する心棒を挟んで折り曲げるものであり、心棒の直径が小さい程、被膜は高い延性を有すると評価できる。心棒の直径の値は、気相成長炭素繊維の量の11重量部のとき、6mmと小さくなり、気相成長炭素繊維の量を増やすことにより延性が高くなることを示している。   The bendability is obtained by bending a mandrel having a diameter shown in Table 1, and the smaller the mandrel diameter, the higher the ductility can be evaluated. The value of the diameter of the mandrel is as small as 6 mm when the amount of the vapor-grown carbon fiber is 11 parts by weight, indicating that the ductility is increased by increasing the amount of the vapor-grown carbon fiber.

耐衝撃性は、重りの曲率半径は気相成長炭素繊維量が最も少ない2.3重量部の場合が6mmであり、その他の場合は3mmであった。   As for the impact resistance, the radius of curvature of the weight was 6 mm in the case of 2.3 parts by weight with the smallest amount of vapor-grown carbon fiber, and 3 mm in the other cases.

ボルト・ナットによる嵌合試験は、トルク係数値が小さいほど摩擦係数が小さく、潤滑性がよく、また延性も高いことを示している。被膜破壊状態は、被膜の機械的強度に対応する指標である。気相成長炭素繊維量が増えた場合、むしろトルク係数値が下がり、被膜の破壊も認められなかった。気相成長炭素繊維の量が2.3重量部の場合であっても、トルク係数値は十分小さく、かつ、被膜の破壊も約5%以下と少ない。
(比較例1)
気相成長炭素繊維の代わりにカーボンブラック(ケッチェンブラックEC製、粒径0.04μm)、を使用した以外は、実施例1と同様にして、2.4、4.7及び11重量部のカーボンブラックが分散した3種類の耐損傷性被覆剤を作製し、それぞれ被覆物を作製した。
The bolt / nut fitting test shows that the smaller the torque coefficient value, the smaller the friction coefficient, the better the lubricity, and the higher the ductility. The film breaking state is an index corresponding to the mechanical strength of the film. When the amount of vapor-grown carbon fiber increased, the torque coefficient value rather decreased, and the coating was not broken. Even when the amount of vapor-grown carbon fiber is 2.3 parts by weight, the torque coefficient value is sufficiently small, and the destruction of the coating is as small as about 5% or less.
(Comparative Example 1)
2.4, 4.7, and 11 parts by weight of Example 1 were used except that carbon black (manufactured by Ketjen Black EC, particle size 0.04 μm) was used instead of vapor grown carbon fiber. Three types of damage-resistant coating materials in which carbon black was dispersed were prepared, and coatings were respectively prepared.

比較例1においても被膜の厚さは、40〜50μmに調整した。被覆の厚さも、実施例1と同様に測定した。比較例1においても、被覆物の断面を走査型顕微鏡で観察して基材のSPCC冷間圧延鋼板と被膜との界面に顕著なボイド等がないことを確認した。   Also in Comparative Example 1, the thickness of the coating was adjusted to 40 to 50 μm. The thickness of the coating was also measured in the same manner as in Example 1. Also in Comparative Example 1, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids or the like at the interface between the SPCC cold-rolled steel sheet and the coating.

また、被膜の基材(長さ150mm、幅70mm、厚み0.8mm)に対する密着性も、実施例1と同様にして試験を行った。その結果、比較例1においても被膜は基材に対して良好に密着しているのが確認された。   Further, the adhesion of the coating to the substrate (length 150 mm, width 70 mm, thickness 0.8 mm) was also tested in the same manner as in Example 1. As a result, also in Comparative Example 1, it was confirmed that the coating adhered well to the substrate.

実施例1と同様にして、基材であるSPCC冷間圧延鋼板の表面に形成された40〜50μmの被膜について、同様の被膜特性試験を行った。   In the same manner as in Example 1, the same coating property test was performed on the 40-50 μm coating formed on the surface of the SPCC cold rolled steel sheet as the substrate.

表1に、比較例1について、カーボンブラックの量が、フェノール樹脂100重量部に対して2.4、4.7及び11重量部の被膜の特性試験結果を示している。   Table 1 shows the characteristic test results of the coating films of Comparative Example 1, in which the amount of carbon black is 2.4, 4.7, and 11 parts by weight with respect to 100 parts by weight of the phenol resin.

表1において、カーボンブラック量を増やした場合であっても、硬度、折り曲げ性及び耐衝撃性の値はほとんど変化を示さず、これらの特性の向上は認められなかった。ボルト・ナットのよる嵌合試験においては、カーボンブラック量が最も少ない2.4重量部の場合においてトルク係数が0.15とかなり小さな値であっても約10%の被膜破壊が認められ、カーボンブラック量を増やすとトルク係数がやや下がる傾向を示したが、被膜破壊が認められなくなるには至らなかった。
(比較例2)
気相成長炭素繊維の代わりに比較例1において使用したカーボンブラックを使用した以外は、実施例2と同様にして2.3、4.6及び11重量部のカーボンブラックが分散した3種類の耐損傷性被覆剤を作製し、それぞれ被覆物を作製した。
In Table 1, even when the amount of carbon black was increased, the values of hardness, bendability and impact resistance showed little change, and no improvement in these characteristics was observed. In the fitting test using bolts and nuts, about 2.4% by weight of carbon black was observed even when the torque coefficient was as small as 0.15 in the case of 2.4 parts by weight. When the amount of black was increased, the torque coefficient tended to decrease slightly, but no film breakage was observed.
(Comparative Example 2)
Three types of resistance in which 2.3, 4.6 and 11 parts by weight of carbon black were dispersed in the same manner as in Example 2 except that the carbon black used in Comparative Example 1 was used instead of the vapor grown carbon fiber. A damaging coating was prepared and each coating was prepared.

比較例2においても被膜の厚さは、40〜50μmに調整した。被覆の厚さも、実施例1と同様に測定した。比較例2においても、被覆物の断面を走査型顕微鏡で観察して基材のSPCC冷間圧延鋼板と被膜との界面に顕著なボイド等がないことを確認した。   Also in Comparative Example 2, the thickness of the coating was adjusted to 40 to 50 μm. The thickness of the coating was also measured in the same manner as in Example 1. Also in Comparative Example 2, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids or the like at the interface between the SPCC cold-rolled steel sheet and the coating.

また、被膜の基材(長さ150mm、幅70mm、厚み0.8mm)に対する密着性も、実施例1と同様にして試験を行った。その結果、比較例2においても被膜は基材に対して良好に密着しているのが確認された。   Further, the adhesion of the coating to the substrate (length 150 mm, width 70 mm, thickness 0.8 mm) was also tested in the same manner as in Example 1. As a result, in Comparative Example 2, it was confirmed that the coating was in good contact with the substrate.

実施例1と同様にして、基材であるSPCC冷間圧延鋼板の表面に形成された40〜50μmの被膜について、同様の被膜特性試験を行った。   In the same manner as in Example 1, the same coating property test was performed on the 40-50 μm coating formed on the surface of the SPCC cold rolled steel sheet as the substrate.

表1に、比較例2について、カーボンブラックの量が、ポリアミドイミド樹脂100重量部に対して2.3、4.6及び11重量部の各被膜の特性試験結果を示している。   Table 1 shows the characteristic test results of the coating films of Comparative Example 2 in which the amount of carbon black is 2.3, 4.6, and 11 parts by weight with respect to 100 parts by weight of the polyamideimide resin.

表1において、カーボンブラック量を増やした場合であっても、硬度、折り曲げ性及び耐衝撃性の値はあまり変化を示さず、これらの特性の向上は認められなかった。ボルト・ナットのよる嵌合試験においては、カーボンブラック量が最も少ない2.3重量部の場合においてトルク係数が0.15とかなり小さな値であっても約10%の被膜破壊が認められ、カーボンブラック量を更に増やすとトルク係数がやや下がる傾向を示したが、被膜破壊が認められなくなるには至らなかった。
(比較例3)
気相成長炭素繊維を全く使用せず実質的に実施例1において使用したフェノール樹脂と極性溶媒(NMP)のみからなる耐損傷性被覆剤を作製した。同じ重量のフェノール樹脂と極性溶媒をステンレス製の容器に入れて、均一に混合するまで、撹拌して耐損傷性被覆剤とした。この被覆剤を用いて、実施例1に示した方法に従って被覆物とした。
In Table 1, even when the amount of carbon black was increased, the values of hardness, bendability and impact resistance did not change much, and no improvement in these characteristics was observed. In the fitting test using bolts and nuts, about 2.3% of the coating film was broken even if the torque coefficient was as small as 0.15 in the case of 2.3 parts by weight of carbon black. When the amount of black was further increased, the torque coefficient tended to decrease slightly, but no film breakage was observed.
(Comparative Example 3)
A damage-resistant coating consisting essentially of the phenolic resin and polar solvent (NMP) used in Example 1 was prepared without using any vapor-grown carbon fibers. The same weight of phenolic resin and polar solvent was placed in a stainless steel container and stirred until a uniform coating was made until the mixture was uniformly mixed. Using this coating agent, a coating was prepared according to the method shown in Example 1.

比較例3においても被膜の厚さは、40〜50μmに調整した。被覆の厚さも、実施例1と同様に測定した。比較例3においても、被覆物の断面を走査型顕微鏡で観察して基材のSPCC冷間圧延鋼板と被膜との界面に顕著なボイド等がないことを確認した。   Also in Comparative Example 3, the thickness of the coating was adjusted to 40 to 50 μm. The thickness of the coating was also measured in the same manner as in Example 1. Also in Comparative Example 3, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids or the like at the interface between the SPCC cold-rolled steel sheet and the coating.

また、被膜の基材(長さ150mm、幅70mm、厚み0.8mm)に対する密着性も、実施例1と同様にして試験を行った。その結果、比較例3においても被膜は基材に対して良好に密着しているのが確認された。   Further, the adhesion of the coating to the substrate (length 150 mm, width 70 mm, thickness 0.8 mm) was also tested in the same manner as in Example 1. As a result, also in Comparative Example 3, it was confirmed that the coating adhered well to the substrate.

実施例1と同様にして、基材であるSPCC冷間圧延鋼板の表面に形成された40〜50μmの被膜について、同様の被膜特性試験を行った。   In the same manner as in Example 1, the same coating property test was performed on the 40-50 μm coating formed on the surface of the SPCC cold rolled steel sheet as the base material.

表1に、比較例3における耐損傷性被覆剤からなる各被膜の特性試験結果を示している。   Table 1 shows the characteristic test results of the respective films made of the damage-resistant coating material in Comparative Example 3.

表1の比較例3に示すように、フェノール樹脂のみの被膜の場合は、鉛筆引っかき硬さは6H、ヌープ硬は18Hk、折り曲げ性を示す心棒の直径は6mm、耐衝撃性を示す重りの曲率半径は9mm、ボルト・ナットによる嵌合試験でのトルク係数は0.18であり約10%の被膜破壊が認められた。
(比較例4)
気相成長炭素繊維を全く使用せず実質的に実施例2において使用したポリアミドイミド樹脂と極性溶媒(NMP)のみからなる耐損傷性被覆剤を比較例3の場合と同様な手順で作製し、被覆物を作製した。
As shown in Comparative Example 3 of Table 1, in the case of a film made only of a phenol resin, the pencil scratch hardness is 6H, the Knoop hardness is 18Hk, the diameter of the mandrel showing bendability is 6 mm, and the curvature of the weight showing impact resistance. The radius was 9 mm, the torque coefficient in the fitting test using bolts and nuts was 0.18, and about 10% of the coating was destroyed.
(Comparative Example 4)
A vapor-resistant carbon fiber was not used at all, and a damage-resistant coating consisting essentially of the polyamideimide resin and polar solvent (NMP) used in Example 2 was prepared in the same procedure as in Comparative Example 3, A coating was made.

比較例4においても被膜の厚さは、40〜50μmに調整した。被覆の厚さも、実施例1と同様に測定した。比較例4においても、被覆物の断面を走査型顕微鏡で観察して基材のSPCC冷間圧延鋼板と被膜との界面に顕著なボイド等がないことを確認した。   Also in Comparative Example 4, the thickness of the coating was adjusted to 40 to 50 μm. The thickness of the coating was also measured in the same manner as in Example 1. Also in Comparative Example 4, the cross section of the coating was observed with a scanning microscope, and it was confirmed that there were no significant voids or the like at the interface between the SPCC cold-rolled steel sheet and the coating.

また、被膜の基材(長さ150mm、幅70mm、厚み0.8mm)に対する密着性も、実施例1と同様にして試験を行った。その結果、比較例4においても被膜は基材に対して良好に密着しているのが確認された。   Further, the adhesion of the coating to the substrate (length 150 mm, width 70 mm, thickness 0.8 mm) was also tested in the same manner as in Example 1. As a result, also in Comparative Example 4, it was confirmed that the coating adhered well to the substrate.

実施例1の場合と同様にして、基材であるSPCC冷間圧延鋼板の表面に形成された40〜50μmの被膜について、同様の被膜特性試験を行った。   In the same manner as in Example 1, the same coating property test was performed on the 40-50 μm coating formed on the surface of the SPCC cold rolled steel sheet as the base material.

表1に、比較例4における耐損傷性被覆剤からなる被膜の特性試験結果を示している。   Table 1 shows the characteristic test results of the film made of the damage-resistant coating material in Comparative Example 4.

表1の比較例4に示すように、ポリアミドイミド樹脂のみの被膜の場合は、鉛筆引っかき硬さは6H、ヌープ硬は15Hk、折り曲げ性を示す心棒の直径は6mm、耐衝撃性を示す重りの曲率半径は9mm、ボルト・ナットによる嵌合試験でのトルク係数は0.17であり約15%の被膜破壊が認められた。   As shown in Comparative Example 4 in Table 1, in the case of a film made only of polyamide-imide resin, the pencil scratch hardness is 6H, the Knoop hardness is 15Hk, the diameter of the mandrel showing bendability is 6mm, and the weight showing impact resistance The radius of curvature was 9 mm, the torque coefficient in the fitting test using bolts and nuts was 0.17, and about 15% of the coating was destroyed.

本発明の耐損傷性被膜が形成された被覆物及び耐損傷性被覆剤並びに耐損傷性被覆剤の製造方法は、ボルト・ナット等の各種締結部品、軸受け、各種シール、締結フランジ、座金、ブレーキシュー、ジャッキ部品、半導体製造装置の摺動部品等の機械部品に活用される。また、各種環境遮断ライニング被覆にも利用可能である。   The damage-resistant coating of the present invention, the damage-resistant coating, and the manufacturing method of the damage-resistant coating are made of various fastening parts such as bolts and nuts, bearings, various seals, fastening flanges, washers, brakes. Used for mechanical parts such as shoes, jack parts, and sliding parts of semiconductor manufacturing equipment. It can also be used for various environmental barrier lining coatings.

実施例1及び実施例2に係る被覆物の耐損傷性被膜について、被膜の合成樹脂100重量部に対する気相成長炭素繊維の量と各被膜のヌープ硬さとの関係を示す図である。It is a figure which shows the relationship between the quantity of the vapor growth carbon fiber with respect to 100 weight part of synthetic resins of a film | membrane, and the Knoop hardness of each film | membrane about the damage resistant film of the coating which concerns on Example 1 and Example 2. FIG.

Claims (10)

合成樹脂マトリックスと、気相成長炭素繊維と、極性溶媒とを含む、ボルト・ナット表面被膜用耐損傷性被覆剤。 A damage-resistant coating material for bolt / nut surface coating, comprising a synthetic resin matrix, vapor-grown carbon fiber, and a polar solvent. 前記合成樹脂マトリックスの固形成分100重量部に対して前記気相成長炭素繊維を3〜40重量部含む、請求項1に記載のボルト・ナット表面被膜用耐損傷性被覆剤。 The damage resistant coating for bolt / nut surface coating according to claim 1, comprising 3 to 40 parts by weight of the vapor-grown carbon fiber with respect to 100 parts by weight of a solid component of the synthetic resin matrix. 前記合成樹脂が、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコン素樹脂、ポリアミドイミド樹脂および水系フッ素樹脂からなる群から選択される少なくとも1つである、請求項1または2に記載のボルト・ナット表面被膜用耐損傷性被覆剤。 The bolt / nut surface according to claim 1 or 2, wherein the synthetic resin is at least one selected from the group consisting of a phenol resin, an epoxy resin, a polyurethane resin, a silicon resin, a polyamideimide resin, and a water-based fluororesin. Damage resistant coating for coatings. 前記合成樹脂が熱硬化性樹脂である、請求項1または2に記載のボルト・ナット表面被膜用耐損傷性被覆剤。 The damage resistant coating for bolt / nut surface coating according to claim 1 or 2, wherein the synthetic resin is a thermosetting resin. 顔料および/または潤滑剤をさらに含む、請求項1から4のいずれかに記載のボルト・ナット表面被膜用耐損傷性被覆剤。 The damage resistant coating for bolt / nut surface coating according to any one of claims 1 to 4, further comprising a pigment and / or a lubricant. 前記極性溶媒が、純水、アルコール類、N−メチル−2−ピロリドン、ジメチルアセトアミド、メチルエチルケトンおよびメチルイソブチルケトンからなる群から選択される少なくとも1つである、請求項1から5のいずれかに記載のボルト・ナット表面被膜用耐損傷性被覆剤。 6. The polar solvent according to claim 1, wherein the polar solvent is at least one selected from the group consisting of pure water, alcohols, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone, and methyl isobutyl ketone. Damage resistant coating for bolt and nut surface coatings. ボルト・ナット表面の少なくとも一部に、請求項1から6のいずれかに記載のボルト・ナット表面被膜用耐損傷性被覆剤による被膜が形成されている、被覆物。 A coating comprising a bolt / nut surface coated with the damage resistant coating for a bolt / nut surface coating according to any one of claims 1 to 6 on at least a part of the bolt / nut surface. 前記被膜のヌープ硬さが40Hk以上である、請求項7に記載の被覆物。   The coating according to claim 7, wherein the Knoop hardness of the coating is 40 Hk or more. 前記被膜のトルク係数が0.15以下である、請求項7または8に記載の被覆物。   The coating according to claim 7 or 8, wherein the torque coefficient of the coating is 0.15 or less. 前記被膜の厚さが5〜50μmである、請求項7から9のいずれかに記載の被覆物。
The coating according to any one of claims 7 to 9, wherein the thickness of the coating is 5 to 50 µm.
JP2003272207A 2003-07-09 2003-07-09 COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING Expired - Lifetime JP4340489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272207A JP4340489B2 (en) 2003-07-09 2003-07-09 COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272207A JP4340489B2 (en) 2003-07-09 2003-07-09 COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING

Publications (3)

Publication Number Publication Date
JP2005028802A JP2005028802A (en) 2005-02-03
JP2005028802A5 JP2005028802A5 (en) 2006-09-07
JP4340489B2 true JP4340489B2 (en) 2009-10-07

Family

ID=34209829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272207A Expired - Lifetime JP4340489B2 (en) 2003-07-09 2003-07-09 COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING

Country Status (1)

Country Link
JP (1) JP4340489B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198544A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Fastening structure of magnesium alloy
JP4536031B2 (en) 2006-04-27 2010-09-01 株式会社竹中製作所 Coating composition and coating
US8322754B2 (en) * 2006-12-01 2012-12-04 Tenaris Connections Limited Nanocomposite coatings for threaded connections
US9574080B1 (en) * 2011-02-18 2017-02-21 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Diamond-dispersed fiber-reinforced composite for superior friction and wear properties in extreme environments and method for fabricating the same
JP2014111980A (en) * 2012-11-12 2014-06-19 Kitagawa Kogyo Co Ltd Screw
JP6334854B2 (en) * 2013-06-19 2018-05-30 株式会社松徳工業所 Coated fastening component and method for manufacturing the same
US9963588B2 (en) * 2014-05-12 2018-05-08 Diversified Chemical Technologies, Inc. Sprayable, carbon fiber-epoxy material and process

Also Published As

Publication number Publication date
JP2005028802A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4536031B2 (en) Coating composition and coating
JP5615806B2 (en) How to reduce friction
Menini et al. Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminum surfaces
JP4932884B2 (en) Coating composition for sliding member
JP6815498B2 (en) Manufacturing method of threaded joints for pipes and threaded joints for pipes
JP4340489B2 (en) COATING WITH DAMAGE RESISTANT COATING, DAMAGE RESISTANT COATING, AND METHOD FOR PRODUCING DAMAGE RESISTANT COATING
US20210163776A1 (en) Coating compositions, processes, and applications for low friction and high durability substrates
WO2019236503A1 (en) Coating compositions, processes, and applications for low friction and high durability substrates
JP2005007622A (en) Coated article having functional film formed thereon, functional coating agent and method for manufacturing functional coating agent
Winarto et al. Wear resistance and surface hardness of carbon nanotube reinforced alumina matrix nanocomposite by cold sprayed process
JP3504872B2 (en) Coating film and method of forming coating film
KR20130038381A (en) Resin-coated aluminum alloy plate
JP2009185109A (en) Coating material containing metal filler, manufacturing method of the same and iron member
Xu et al. Performance optimization of epoxy resin (EP) modified by phenolic and effect on the tribological properties and corrosion of MoS2+ Sb2O3/EP composite coating for ultra‐long wear life and good corrosion resistance
JP6690940B2 (en) Flaky stainless pigment, resin composition containing the same, and coated product having a coating film formed from the resin composition
JP5564691B2 (en) Electrically conductive water-based paint and method for cathodic protection of reinforced concrete structures using the paint
Li et al. Mechanical and tribological properties of carbon fiber‐reinforced polyetheretherketone composite coatings by flame‐spraying method
CN102762313B (en) Conductive precoated aluminum alloy sheet
JP2003336005A (en) Corrosion-resistant coating composition, coating material and its coating film
CN211199089U (en) Metal surface lubricating friction-resistant coating structure
WO2014136219A1 (en) Zinc-based composite material and use thereof
CN114479613A (en) Epoxy resin powder coating and preparation method and application thereof
JP2008144185A (en) Coating composition and coated product
RU2702881C1 (en) Gradient metal-polymer coating
JP2015113457A (en) Lubrication film and slide bearing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140710

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term