JP4337635B2 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP4337635B2
JP4337635B2 JP2004159165A JP2004159165A JP4337635B2 JP 4337635 B2 JP4337635 B2 JP 4337635B2 JP 2004159165 A JP2004159165 A JP 2004159165A JP 2004159165 A JP2004159165 A JP 2004159165A JP 4337635 B2 JP4337635 B2 JP 4337635B2
Authority
JP
Japan
Prior art keywords
piston
hermetic compressor
cylinder
groove
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004159165A
Other languages
Japanese (ja)
Other versions
JP2005337160A (en
Inventor
郁友 梅岡
誠 片山
純一郎 矢引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34968133&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4337635(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004159165A priority Critical patent/JP4337635B2/en
Priority to EP05741280A priority patent/EP1629198B1/en
Priority to PCT/JP2005/009006 priority patent/WO2005116450A1/en
Priority to CNB2005800001747A priority patent/CN100430598C/en
Priority to DE602005002205T priority patent/DE602005002205T2/en
Priority to KR1020057020671A priority patent/KR100701527B1/en
Priority to US10/553,847 priority patent/US20060257274A1/en
Publication of JP2005337160A publication Critical patent/JP2005337160A/en
Publication of JP4337635B2 publication Critical patent/JP4337635B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0022Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)

Description

本発明は、冷凍冷蔵庫等の冷凍サイクルに用いられる密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor used in a refrigeration cycle such as a refrigerator-freezer.

近年、この種の密閉型圧縮機は、消費電力の低減が強く望まれている。従来この種の密閉型圧縮機としては、ピストンの外形形状を改善することによりピストンとシリンダー間の摺動損失を低減して、高効率化したものがある(例えば、特許文献1参照)。   In recent years, this type of hermetic compressor is strongly desired to reduce power consumption. Conventionally, as this type of hermetic compressor, there is a compressor that is highly efficient by reducing the sliding loss between the piston and the cylinder by improving the outer shape of the piston (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の密閉型圧縮機を説明する。   Hereinafter, the conventional hermetic compressor will be described with reference to the drawings.

図7は、特許文献1に記載された従来の密閉型圧縮機の縦断面図であり、図8は従来の密閉型圧縮機に用いるピストンの斜視図を示すものである。   FIG. 7 is a longitudinal sectional view of a conventional hermetic compressor described in Patent Document 1, and FIG. 8 is a perspective view of a piston used in the conventional hermetic compressor.

図7、図8において、密閉容器1内には、巻線部2aを保有する固定子2と回転子3からなる電動要素4と、電動要素4によって駆動される圧縮要素5と、密閉容器1内の下部にオイル6を収容する。   7 and 8, the hermetic container 1 includes an electric element 4 including a stator 2 and a rotor 3 having a winding portion 2 a, a compression element 5 driven by the electric element 4, and the hermetic container 1. Oil 6 is accommodated in the lower part inside.

クランクシャフト10は、回転子3を圧入固定した主軸部11および主軸部11に対し偏心して形成された偏心部12を有するとともに、主軸部11の内部にはオイルポンプ13がオイル6中に開口するよう設けてある。ブロック20は、略円筒形のシリンダー21を有するとともに主軸部11を軸支する軸受部22を有し、電動要素4の上方に形成されている。ピストン30はブロック20のシリンダー21内に往復摺動自在に挿入され、偏心部12との間を連結手段41によって連結されている。   The crankshaft 10 has a main shaft portion 11 in which the rotor 3 is press-fitted and fixed, and an eccentric portion 12 formed eccentric to the main shaft portion 11, and an oil pump 13 opens into the oil 6 inside the main shaft portion 11. It is provided as follows. The block 20 includes a substantially cylindrical cylinder 21 and a bearing portion 22 that pivotally supports the main shaft portion 11, and is formed above the electric element 4. The piston 30 is inserted into the cylinder 21 of the block 20 so as to be slidable back and forth, and is connected to the eccentric part 12 by a connecting means 41.

ピストン30は、トップ側面31とスカート側面32と外周面33とから構成され、外周面33にシリンダー21の内周面と密着するように形成されたシール面部34と、シリンダー21の内周面の一部分と密着するように形成されたピストン30の運動方向にほぼ平行に伸びる少なくとも2つの案内面部35と、シリンダー21の内周面と密着しない除去部36とを備え、ピストン30の円筒中心軸37と案内面部35の2つの境界エッジ35a、35bとをピストン30の半径方向に結ぶ線がなす角度が40°以下、好ましくは30°以下であることを特徴とする。   The piston 30 includes a top side surface 31, a skirt side surface 32, and an outer peripheral surface 33. A seal surface portion 34 formed on the outer peripheral surface 33 so as to be in close contact with the inner peripheral surface of the cylinder 21, and an inner peripheral surface of the cylinder 21. A cylindrical central axis 37 of the piston 30 is provided with at least two guide surface portions 35 formed so as to be in close contact with a part and extending substantially in parallel with the moving direction of the piston 30 and a removal portion 36 not in close contact with the inner peripheral surface of the cylinder 21. And an angle formed by a line connecting the two boundary edges 35a and 35b of the guide surface portion 35 in the radial direction of the piston 30 is 40 ° or less, preferably 30 ° or less.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

運転中、ピストン30は往復運動している。下死点付近においてピストン30はスカート側の一部がシリンダー21から外にでる。そしてピストン30がシリンダー21に入るとき、案内面部35により案内されるため、スムーズにシリンダー21に入ることができる。
国際公開第02/02944号パンフレット
During operation, the piston 30 reciprocates. In the vicinity of the bottom dead center, a part of the skirt side of the piston 30 comes out of the cylinder 21. When the piston 30 enters the cylinder 21, it is guided by the guide surface portion 35, so that it can enter the cylinder 21 smoothly.
International Publication No. 02/02944 Pamphlet

しかしながら、上記従来の構成では、ピストン30のシリンダー21に対する上下方向の傾きは、トップ側面31の縁からシール面部34の縁までの短い区間と、ピストン30の外周面33とシリンダー21の隙間とで規制される。このことから、ピストン30は傾
きやすくなり、特に下死点から上死点へ向かう圧縮行程のときにピストン30のトップ側面31は冷媒ガスの圧縮荷重を受け、連結手段41を介してクランクシャフト10が反ピストン方向へ押されることもあり、ピストン30が上下方向に最大限に傾くことになる。このため、冷媒の漏れが多くなり、冷凍能力が低く、効率が低下してしまうという課題を有していた。
However, in the above-described conventional configuration, the vertical inclination of the piston 30 with respect to the cylinder 21 is caused by a short section from the edge of the top side surface 31 to the edge of the seal surface portion 34 and the gap between the outer peripheral surface 33 of the piston 30 and the cylinder 21. Be regulated. From this, the piston 30 is easily tilted, and the top side surface 31 of the piston 30 receives a compressive load of the refrigerant gas during the compression stroke from the bottom dead center to the top dead center, and the crankshaft 10 is connected via the connecting means 41. May be pushed in the anti-piston direction, and the piston 30 is tilted to the maximum in the vertical direction. For this reason, there has been a problem that refrigerant leakage increases, refrigerating capacity is low, and efficiency decreases.

こういった課題は特に冷媒にR600aを用いた場合、ピストン30の外径は大きくなり、冷媒の漏れが生じやすくなるため、効率の低下が顕著であった。   In particular, when R600a is used as the refrigerant, the outer diameter of the piston 30 is increased, and the refrigerant is liable to leak.

本発明は上記従来の課題を解決するもので、高効率の密閉型圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a highly efficient hermetic compressor.

上記従来の課題を解決するために、本発明の密閉型圧縮機は、ピストンのトップ側面およびスカート側面に連通しない溝部を、ピストンピンの軸方向およびその直角方向を除くピストン外周面に形成するとともに、溝部は少なくとも下死点付近で容器内の空間と連通するとしたもので、摺動面積減による摺動損失の低減と、ピストンがシリンダーに対して上下方向に傾きにくくし冷媒の漏れを抑制し、また、オイルを溝部を通じて摺動部へ供給しシール性を向上させるという作用を有する。   In order to solve the above-described conventional problems, the hermetic compressor according to the present invention has a groove portion that does not communicate with the top side surface and the skirt side surface of the piston on the piston outer peripheral surface excluding the axial direction of the piston pin and its perpendicular direction. The groove is designed to communicate with the space inside the container at least near the bottom dead center, reducing the sliding loss by reducing the sliding area, and preventing the piston from tilting up and down with respect to the cylinder, thereby suppressing refrigerant leakage. In addition, the oil is supplied to the sliding portion through the groove portion to improve the sealing performance.

本発明の密閉型圧縮機は、ピストンとシリンダー間からの冷媒の漏れを抑制して高効率の密閉型圧縮機を提供できる。   The hermetic compressor of the present invention can provide a highly efficient hermetic compressor by suppressing the leakage of refrigerant from between the piston and the cylinder.

請求項1に記載の発明は、容器内にオイルを貯溜するとともに冷媒ガスを圧縮する圧縮機構を収容し、前記圧縮機構は、略鉛直方向に配設され主軸部および偏芯部を有するクランクシャフトと、シリンダーを形成するブロックと、前記シリンダー内を往復運動するピストンと、前記ピストンに軸心が前記偏芯部と平行になるよう配設されたピストンピンと、前記偏心部と前記ピストンピンを連結するコンロッドと、前記オイルを前記ピストンの外周面に供給する給油手段とを備えるとともに、前記ピストンを軸方向から見て前記ピストンピンの軸方向およびその直角方向を除く前記ピストンの外周面に溝部を形成し、前記溝部は少なくとも前記ピストンのトップ側面に連通せず、かつ前記ピストンの位置に関わらず、常に前記溝部と前記容器内の空間が連通している密閉型圧縮機としたもので、ピストンピンの直角方向に形成された上部及び下部摺動面で、シリンダーに対してピストンの上下方向への傾きを抑制するとともに、溝部を通じてピストン摺動部へオイル供給を促進することで、ピストンとシリンダー間の冷媒漏れを抑制するとともに、摺動損失が低減し、効率を向上させることができる。 The invention according to claim 1 stores a compression mechanism that stores oil in a container and compresses refrigerant gas, and the compression mechanism is disposed in a substantially vertical direction and has a main shaft portion and an eccentric portion. And a block that forms a cylinder, a piston that reciprocates in the cylinder, a piston pin that is arranged on the piston so that its axis is parallel to the eccentric part, and the eccentric part and the piston pin connected to each other A connecting rod and oil supply means for supplying the oil to the outer peripheral surface of the piston, and a groove portion is formed on the outer peripheral surface of the piston excluding the axial direction of the piston pin and its perpendicular direction when the piston is viewed from the axial direction. formed, the groove does not communicate with the top side of at least the piston and irrespective of the position of the piston is always the said groove container The space obtained by the hermetic compressor in communication, at the upper and lower sliding surface formed at right angles to the piston pin, suppresses the inclination of the vertical direction of the piston relative to the cylinder, the groove By promoting the oil supply to the piston sliding part through, the refrigerant leakage between the piston and the cylinder can be suppressed, the sliding loss can be reduced, and the efficiency can be improved.

さらに、圧縮工程中に溝部へ溜まった高圧ガスが容器内の空間に抜け、吸入工程中における再膨張損失を低減できるとともに、下死点付近で溝部が容器内空間と連通する時に発生する噴流音を抑制でき、更に高効率で低騒音にすることができる Furthermore, high-pressure gas accumulated in the groove during the compression process escapes to the space in the container, reducing re-expansion loss during the suction process, and jet noise generated when the groove communicates with the space in the container near the bottom dead center Can be suppressed, and the noise can be further reduced with high efficiency .

請求項2に記載の発明は、請求項1に記載の発明に、更に、溝部の面積をピストンの外周面の面積の半分以上としたもので、ピストンとシリンダー間からの漏れを抑制した上で、シリンダーと接触しない面積を大きくでき、ピストンとシリンダー間で発生する摺動損失を大幅に減らすことができ、また、溝部を通じてピストンの外周の広い範囲にオイルを供給することができるため、更に効率を高くすることができる。   The invention according to claim 2 is the invention according to claim 1, wherein the area of the groove is more than half of the area of the outer peripheral surface of the piston, and leakage from between the piston and the cylinder is suppressed. The area that does not come into contact with the cylinder can be increased, the sliding loss that occurs between the piston and the cylinder can be greatly reduced, and the oil can be supplied to the wide area of the outer periphery of the piston through the groove, further increasing efficiency. Can be high.

請求項3に記載の発明は、請求項1または2に記載の発明に、更に、溝部の端部とピス
トンの外周面とがなす角度を鋭角としたもので、溝部に供給されたオイルは溝部の縁の端部を上りやすくなり、ピストンの外周の各摺動部へのオイル供給を促進し、ピストンとシリンダー間のシール性および潤滑性を高め、更に高効率にすることができる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the angle formed by the end of the groove and the outer peripheral surface of the piston is an acute angle, and the oil supplied to the groove is grooved. As a result, the oil can be easily supplied to the sliding portions on the outer periphery of the piston, the sealing performance and the lubricity between the piston and the cylinder can be improved, and the efficiency can be further increased.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明に、更に、ピストンのトップ摺動面に環状溝を設けたもので、毛細管現象の保油性が維持でき、ピストンとシリンダー間のシール性が向上し、更に高効率で低騒音にすることができる。 The invention according to claim 4 is the invention according to any one of claims 1 to 3 , further comprising an annular groove on the top sliding surface of the piston, so that the oil retention of the capillary phenomenon can be maintained. , The sealing performance between the piston and the cylinder is improved, and it is possible to further reduce the noise with high efficiency.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明に、更に、ピストンの両端に微小なテーパを設けたもので、この微小テーパ部に油膜が発生して、ピストンの挙動を安定化するとともにピストンとシリンダー間のシール性を向上させ、更に、高効率で低騒音化を図ることができる。 The invention according to claim 5 is the invention according to any one of claims 1 to 4 , wherein a minute taper is provided at both ends of the piston, and an oil film is generated at the minute taper portion. The piston behavior can be stabilized, the sealing performance between the piston and cylinder can be improved, and the noise can be reduced with high efficiency.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明に、更に、少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動されるとしたもので、低速運転においてオイルの供給量が減るにも関わらず、溝部にオイルを貯留して冷媒の漏れを抑制するため、更に高効率化を図ることができる。 The invention according to claim 6 is the invention according to any one of claims 1 to 5 , and is further inverter-driven at a plurality of operation frequencies including an operation frequency equal to or lower than a power supply frequency. In spite of a decrease in the amount of oil supplied during low-speed operation, the oil is stored in the groove and the leakage of the refrigerant is suppressed, so that higher efficiency can be achieved.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明に、更に、冷媒にR600aを用いるもので、従来のR134a冷媒使用の圧縮機と比べて気筒容積の拡大の為にピストン外径が大きくなり、冷媒の漏れが生じやすくなるにも関わらず、ピストンがシリンダーに対して上下方向に傾きにくくし、冷媒の漏れを抑制し、更に高効率化を図ることができる。 The invention according to claim 7 is the invention according to any one of claims 1 to 6 , further using R600a as a refrigerant, and has an increased cylinder volume as compared with a conventional compressor using R134a refrigerant. For this reason, the piston outer diameter becomes large and refrigerant leakage is likely to occur, but the piston is less likely to tilt in the vertical direction with respect to the cylinder, thereby suppressing refrigerant leakage and further improving efficiency. it can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における密閉型圧縮機の縦断面図、図2は、同実施の形態の密閉型圧縮機に用いるピストン周りの要素拡大図、図3は、同実施の形態の密閉型圧縮機に用いるピストンの正面図、図4は、同実施の形態の密閉型圧縮機に用いる図3のA−A’断面図、図5は、同実施の形態の密閉型圧縮機に用いるピストンの溝部の端面拡大図、図6は、同実施の形態の密閉型圧縮機に用いるピストンの先端拡大図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention, FIG. 2 is an enlarged view of elements around a piston used in the hermetic compressor of the same embodiment, and FIG. 4 is a front view of a piston used in the hermetic compressor of the embodiment, FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 3 used in the hermetic compressor of the embodiment, and FIG. 5 is a hermetic compressor of the embodiment. FIG. 6 is an enlarged view of the end of the piston used in the hermetic compressor according to the embodiment.

図1から図6において、容器101内には、固定子102と回転子103からなり、電源周波数以下の運転周波数を含む複数の運転周波数で制御回路等を用いることでインバーター駆動できる電動要素104を収容し、電動要素104によって駆動される圧縮機構105を収容し、容器101内にはオイル106を貯溜している。   1 to 6, an electric element 104 that includes a stator 102 and a rotor 103 and that can be driven by an inverter by using a control circuit or the like at a plurality of operation frequencies including an operation frequency that is lower than the power supply frequency is contained in a container 101. A compression mechanism 105 that is accommodated and driven by the electric element 104 is accommodated, and oil 106 is stored in the container 101.

本密閉型圧縮機に使用される冷媒は温暖化係数の低い自然冷媒である炭化水素系冷媒のR600aである。   The refrigerant used in the hermetic compressor is a hydrocarbon refrigerant R600a which is a natural refrigerant having a low global warming potential.

クランクシャフト110は、回転子103を圧入固定した主軸部111と、主軸部111に対し偏心して形成された偏芯部112とからなり、略鉛直方向に配設されている。   The crankshaft 110 includes a main shaft portion 111 into which the rotor 103 is press-fitted and fixed, and an eccentric portion 112 formed eccentrically with respect to the main shaft portion 111, and is disposed in a substantially vertical direction.

給油手段120は、一端がオイル106中に開口し他端が粘性ポンプ121と連通するクランクシャフト110の内部に形成された遠心ポンプ122と、粘性ポンプ121の他端で容器101内の空間と開口する縦孔部123と、横孔部124とから構成されている。   The oil supply means 120 includes a centrifugal pump 122 formed in the crankshaft 110 having one end opened in the oil 106 and the other end communicating with the viscous pump 121, and the space and opening in the container 101 at the other end of the viscous pump 121. The vertical hole portion 123 and the horizontal hole portion 124 are configured.

ブロック130は、略円筒形のシリンダー131を有するとともに主軸部111を軸支する主軸受132を有していて、シリンダー131の上部には当り部134を有し、シリンダー131はクランクシャフト110側の縁の上部に設けられた切り欠き部135を備えている。   The block 130 includes a substantially cylindrical cylinder 131 and a main bearing 132 that supports the main shaft portion 111. The block 130 includes a contact portion 134 at the upper portion of the cylinder 131. The cylinder 131 is disposed on the crankshaft 110 side. A notch 135 is provided at the top of the edge.

ピストン140は、ブロック130のシリンダー131に往復摺動自在に挿入されている。ピストン140には偏芯部112の軸心と平行に穿設したピストンピン孔141に中空円筒状のピストンピン142が嵌入され、ピストンピン142は中空円筒状のロックピン143によってピストン140に固定されている。そしてピストンピン142は偏心部112とコンロッド146で連結されている。   The piston 140 is inserted into the cylinder 131 of the block 130 so as to be slidable back and forth. A hollow cylindrical piston pin 142 is fitted into a piston pin hole 141 formed in the piston 140 in parallel with the axis of the eccentric portion 112, and the piston pin 142 is fixed to the piston 140 by a hollow cylindrical lock pin 143. ing. The piston pin 142 is connected to the eccentric portion 112 by a connecting rod 146.

ピストンピン142の中空部144と容器101内の空間はガス抜き孔145によって連通している。   The hollow portion 144 of the piston pin 142 and the space in the container 101 communicate with each other through a gas vent hole 145.

ピストンの外周面150には、ピストン140のトップ側面151に連通せず、スカート側面152に連通している溝部153が、ピストンの軸方向170から見て、ピストンピンの軸方向147およびピストンピンの直角方向148を除いて形成されている。これにより、ピストンの外周面150の上下方向に上部摺動面154、下部摺動面155、側面方向に側面摺動面160がそれぞれ形成されている。   On the outer peripheral surface 150 of the piston, a groove portion 153 that does not communicate with the top side surface 151 of the piston 140 but communicates with the skirt side surface 152 is viewed in the axial direction 170 of the piston. It is formed except for the perpendicular direction 148. Thus, an upper sliding surface 154, a lower sliding surface 155, and a side surface sliding surface 160 are formed in the vertical direction of the outer peripheral surface 150 of the piston, respectively.

溝部153の総面積は、ピストンの外周面150の面積の半分を超え、また、図5に示すように、溝部153の端部180は、ピストンの外周面150となす角度αが鋭角になっている。そしてピストン140のトップ摺動面190に環状溝191を2本設けており、さらにピストンの外周面150の両端に微小なテーパ200が設けられている。   The total area of the groove portion 153 exceeds half of the area of the outer peripheral surface 150 of the piston, and as shown in FIG. 5, the end portion 180 of the groove portion 153 has an acute angle α with the outer peripheral surface 150 of the piston. Yes. Two annular grooves 191 are provided on the top sliding surface 190 of the piston 140, and minute tapers 200 are provided at both ends of the outer peripheral surface 150 of the piston.

本実施の形態においては、図1に示すように下死点付近でピストン140のスカート側の一部がシリンダー131内から突出する構成となっている。   In the present embodiment, as shown in FIG. 1, a part of the piston 140 on the skirt side protrudes from the cylinder 131 in the vicinity of the bottom dead center.

以上のように構成された密閉型圧縮機について、以下その動作、作用を説明する。   The operation and action of the hermetic compressor configured as described above will be described below.

電動要素104の回転子103は、クランクシャフト110を回転させ、偏芯部112の回転運動がコンロッド146とピストンピン142を介してピストン140に伝えられることでピストン140はシリンダー131内を往復運動する。それにより、冷媒ガスは冷却システム(図示せず)からシリンダー131内へ吸入・圧縮された後、再び冷却システムへと吐き出される。   The rotor 103 of the electric element 104 rotates the crankshaft 110, and the rotational movement of the eccentric portion 112 is transmitted to the piston 140 via the connecting rod 146 and the piston pin 142, so that the piston 140 reciprocates in the cylinder 131. . As a result, the refrigerant gas is sucked and compressed into the cylinder 131 from a cooling system (not shown) and then discharged again to the cooling system.

一方、給油手段120は、クランクシャフト110の回転に伴って遠心ポンプ122が回転することで発生する遠心力によって、オイル106を遠心ポンプ122内で上昇させ、さらに粘性ポンプ121に到達したオイル106を粘性ポンプ121内で上昇させ、縦孔部123と、横孔部124から容器101内に散布する。   On the other hand, the oil supply means 120 raises the oil 106 in the centrifugal pump 122 by the centrifugal force generated by the rotation of the centrifugal pump 122 as the crankshaft 110 rotates, and further causes the oil 106 that has reached the viscous pump 121 to flow. It is raised in the viscous pump 121 and sprayed into the container 101 from the vertical hole portion 123 and the horizontal hole portion 124.

散布されたオイル106は当り部134に当り、切り欠き部135を伝って、ピストンの外周面150に付着する。付着したオイル106はピストン140の往復動に伴ってピストンの外周面150や溝部153、環状溝191、微小なテーパ200に入り込み、ピストンの外周面150とシリンダー131との間を潤滑する。   The sprayed oil 106 hits the contact part 134, travels through the notch part 135, and adheres to the outer peripheral surface 150 of the piston. As the piston 140 reciprocates, the attached oil 106 enters the outer peripheral surface 150 of the piston, the groove 153, the annular groove 191, and the minute taper 200, and lubricates between the outer peripheral surface 150 of the piston and the cylinder 131.

この際、本実施の形態においては、図1に示すように下死点付近でピストン140のスカート側の一部がシリンダー131内から突出するので、ピストン140が下死点にきた時に溝部153はシリンダー131より出てオイル106を受けるので、オイル106は溝部153へ十分に供給される。   At this time, in this embodiment, as shown in FIG. 1, a part of the skirt side of the piston 140 protrudes from the inside of the cylinder 131 near the bottom dead center. Therefore, when the piston 140 comes to the bottom dead center, the groove 153 Since the oil 106 is received from the cylinder 131, the oil 106 is sufficiently supplied to the groove portion 153.

溝部153に入り込んだオイル106は溝部153の端部180付近に貯留され、ピストン140が下死点から上死点に向うときにシリンダー131の奥に運ばれ、ピストン140が上死点から下死点に向うときに、ピストン140の動きに伴いシリンダー131とピストンの外周面150との間に引き込まれトップ摺動面190近傍を効果的に潤滑する。   The oil 106 that has entered the groove 153 is stored in the vicinity of the end 180 of the groove 153, and is carried to the back of the cylinder 131 when the piston 140 moves from the bottom dead center to the top dead center, and the piston 140 is bottom dead from the top dead center. When it goes to the point, it is drawn between the cylinder 131 and the outer peripheral surface 150 of the piston as the piston 140 moves, so that the vicinity of the top sliding surface 190 is effectively lubricated.

ここで端部180とピストンの外周面150とがなす角度αが鋭角になっているため、オイル106はピストン140の動きに伴いシリンダー131とピストンの外周面150との間に引き込まれやすくなる。   Here, since the angle α formed by the end portion 180 and the outer peripheral surface 150 of the piston is an acute angle, the oil 106 is easily drawn between the cylinder 131 and the outer peripheral surface 150 of the piston as the piston 140 moves.

また、溝部153は本実施の形態においてはピストン140の軸方向に4本あることからそれぞれの溝部153通じてピストンの外周面150の広い範囲にオイル106が供給されやすい。   In addition, since there are four groove portions 153 in the axial direction of the piston 140 in this embodiment, the oil 106 is easily supplied to a wide range of the outer peripheral surface 150 of the piston through each groove portion 153.

これらの相乗効果でピストン140の潤滑性が向上し、その結果、極めて高いシール性を得ることができ、冷媒漏れが抑制できため、高効率化を図ることができる。   These synergistic effects improve the lubricity of the piston 140. As a result, it is possible to obtain an extremely high sealing performance and to suppress the leakage of the refrigerant, so that high efficiency can be achieved.

また、ピストン140が上死点付近にあるとき、シリンダー131内は圧縮された冷媒により高圧となり、シリンダー131とピストンの外周面150との間から冷媒ガスが漏れようとする。この際、シリンダー131内で生じる圧縮荷重により、ピストンピン142、コンロッド146を介してクランクシャフト110が反ピストン方向へ押され、傾斜する。   Further, when the piston 140 is near the top dead center, the inside of the cylinder 131 becomes high pressure due to the compressed refrigerant, and refrigerant gas tends to leak from between the cylinder 131 and the outer peripheral surface 150 of the piston. At this time, due to the compressive load generated in the cylinder 131, the crankshaft 110 is pushed in the anti-piston direction via the piston pin 142 and the connecting rod 146 and tilts.

このため、ピストン140はシリンダー131に対して上下方向へ傾き、シリンダー131とピストンの外周面150の隙間が広くなる部分ができ、冷媒ガスの漏れが加速される。さらに、ピストン140が傾斜することで、ピストン140とシリンダー131との潤滑状態が悪くなり、摺動音も増大する。   For this reason, the piston 140 is inclined in the vertical direction with respect to the cylinder 131, and there is a portion where the gap between the cylinder 131 and the outer peripheral surface 150 of the piston becomes wide, and the leakage of the refrigerant gas is accelerated. Furthermore, since the piston 140 is inclined, the lubrication state between the piston 140 and the cylinder 131 is deteriorated, and the sliding noise is also increased.

しかしながら本実施の形態では、ピストン140に上部摺動面154と下部摺動面155が形成されていることでこれらがピストン140の上下方向の傾きを規制するため、ピストン140の傾斜が小さい。その結果、シリンダー131から容器101内への冷媒の漏れが抑制され、ピストン140の挙動が安定し、摺動損失を低減できるとともに騒音の増大も抑制でき、高効率、低騒音化を図ることができる。   However, in the present embodiment, since the upper sliding surface 154 and the lower sliding surface 155 are formed on the piston 140, which restricts the vertical inclination of the piston 140, the inclination of the piston 140 is small. As a result, the leakage of the refrigerant from the cylinder 131 into the container 101 is suppressed, the behavior of the piston 140 is stabilized, the sliding loss can be reduced and the increase in noise can be suppressed, and high efficiency and low noise can be achieved. it can.

また、ピストン140がシリンダー131内で往復運動する時に発生する摺動損失は摺動面積に比例して小さくなる流体潤滑状態であるが、溝部153の面積をピストンの外周面150の面積の半分以上としていることから、ピストン140の摺動損失は約半分となり、大幅な入力低減による高効率化を図ることができる。   The sliding loss that occurs when the piston 140 reciprocates in the cylinder 131 is a fluid lubrication state that decreases in proportion to the sliding area, but the area of the groove portion 153 is more than half the area of the outer peripheral surface 150 of the piston. Therefore, the sliding loss of the piston 140 is about half, and high efficiency can be achieved by greatly reducing the input.

また、圧縮行程時にシリンダー131内の高圧ガスが溝部153に漏出するが、溝部153は常に容器101内の空間と連通しているため、漏出した冷媒ガスが溝部153に溜まることはない。よって、溝部153がシリンダー131から出る時に高圧ガスが一気に容器101内の低圧空間に解放されて発生する噴流音は生じることはなく、また、溝部153に溜まった高圧ガスが吸入行程時にシリンダー131内へ逆流し、再膨張損失を増大させることはない。   Further, the high-pressure gas in the cylinder 131 leaks into the groove portion 153 during the compression stroke, but since the groove portion 153 always communicates with the space in the container 101, the leaked refrigerant gas does not accumulate in the groove portion 153. Therefore, there is no jet noise generated when the high pressure gas is released into the low pressure space in the container 101 when the groove 153 exits the cylinder 131, and the high pressure gas accumulated in the groove 153 is not contained in the cylinder 131 during the intake stroke. Does not increase the re-expansion loss.

なお、本実施例では溝部153が常にスカート側面152に連通しているが、溝部153をスカート側面152へ連通させずに下死点近傍で容器101内の空間に連通するか、あるいはピストンピン孔141と連通させたものにおいても、高圧ガスは容器101内の
空間に開放されるため、同様の効果が得られる。
In this embodiment, the groove 153 always communicates with the skirt side 152. However, the groove 153 communicates with the space in the container 101 near the bottom dead center without communicating with the skirt side 152, or the piston pin hole. Even in the case of communication with 141, since the high-pressure gas is released into the space in the container 101, the same effect can be obtained.

また、図6に示すように、トップ摺動面190に環状溝191を設けることで、ピストン140がシリンダー131から出た下死点付近でオイル106が環状溝191へ降りかかり、毛細管現象により環状溝191内の全体に染み渡る。その後、ピストン140が下死点から上死点へ向かう時に冷媒ガスが環状溝191に到達し、環状溝191内のオイル106と合流することで、冷媒ガスに大きな粘性抵抗が働くとともに、合流したオイル106と冷媒ガスは膨張、収縮を繰り返し減圧することで、いわゆるラビリンスシールの効果が発生して、シリンダー131からの冷媒漏れに対するシール性が向上することで、さらにトップ摺動面への給油が促進され、潤滑性を向上させることができ、更に高効率化を図ることができる。   Further, as shown in FIG. 6, by providing an annular groove 191 on the top sliding surface 190, the oil 106 falls onto the annular groove 191 near the bottom dead center where the piston 140 comes out of the cylinder 131, and the annular groove is caused by capillary action. It spreads throughout 191. Thereafter, when the piston 140 moves from the bottom dead center to the top dead center, the refrigerant gas reaches the annular groove 191 and merges with the oil 106 in the annular groove 191 so that a large viscous resistance acts on the refrigerant gas and merges. The oil 106 and the refrigerant gas are repeatedly expanded and contracted to reduce the pressure, so that a so-called labyrinth seal effect is generated, and the sealing performance against the refrigerant leakage from the cylinder 131 is improved. Thus, the lubricity can be improved and the efficiency can be further improved.

また、図6に示すように、ピストン140の両端面に微小なテーパ200を設けることで、下死点から上死点へピストンが運動する時には、ピストン140のトップ側面151側の微小なテーパ200のくさび効果により、オイル106がピストン140のトップ摺動面190へ入り込みピストン140の潤滑性を向上させるとともに、シール性も向上する。さらに、上死点から下死点へピストン140が運動する時にはスカート側面152側の微小なテーパ200のくさび効果により微小なテーパ200にオイル106が進入し、油膜が形成され、同様に、潤滑及び、シール性が向上する。これらのことから、冷媒漏れの抑制と、摺動損失が低減され、さらなる高効率化を図ることができる。   Also, as shown in FIG. 6, by providing minute tapers 200 on both end faces of the piston 140, when the piston moves from the bottom dead center to the top dead center, the minute taper 200 on the top side 151 side of the piston 140 is used. Due to the wedge effect, the oil 106 enters the top sliding surface 190 of the piston 140 to improve the lubricity of the piston 140 and improve the sealing performance. Further, when the piston 140 moves from the top dead center to the bottom dead center, the oil 106 enters the minute taper 200 due to the wedge effect of the minute taper 200 on the skirt side 152 side, and an oil film is formed. , Sealing performance is improved. For these reasons, suppression of refrigerant leakage and sliding loss can be reduced, and higher efficiency can be achieved.

また、少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動する場合には、低速運転においてピストン140の往復運動速度が遅くなることと、容器101内に散布するオイル106の量が減るのでピストンの外周面150とシリンダー131の隙間からの冷媒の漏れが大きくなる。本実施の形態は溝部153にオイル106を貯留できるとともにピストン140の上下傾斜を抑制することができるため、効率を高く維持することができる。   Further, when the inverter is driven at a plurality of operation frequencies including at least an operation frequency equal to or lower than the power supply frequency, the reciprocating speed of the piston 140 is reduced in low speed operation, and the amount of oil 106 sprayed in the container 101 is reduced. Therefore, the refrigerant leaks from the gap between the outer peripheral surface 150 of the piston and the cylinder 131. In this embodiment, the oil 106 can be stored in the groove 153 and the vertical inclination of the piston 140 can be suppressed, so that the efficiency can be maintained high.

R600a冷媒の密度は従来から冷蔵庫に用いられているR134a冷媒と比較すると小さいため、R134a冷媒の密閉型圧縮機と同じ冷凍能力を得るためには、R600a冷媒を用いる場合、気筒容積が大きくなり、ピストン140の外径が大きくなる。従ってシリンダー131から容器101内に漏れる冷媒は、流路面積が大きくなり、増加する。しかしながら本実施の形態のピストン140はシリンダー131に対して傾きにくくできるので、効率を向上させることができる。   Since the density of the R600a refrigerant is small compared to the R134a refrigerant conventionally used in refrigerators, in order to obtain the same refrigeration capacity as the R134a refrigerant hermetic compressor, when using the R600a refrigerant, the cylinder volume is increased, The outer diameter of the piston 140 is increased. Therefore, the refrigerant leaking from the cylinder 131 into the container 101 increases in flow path area. However, since the piston 140 of the present embodiment can hardly tilt with respect to the cylinder 131, the efficiency can be improved.

なお、クランクシャフト110に、偏芯部112を挟んで主軸部111と同軸上に設けた副軸部を設けるとともに、副軸部を軸支する副軸受を備えた構成とした場合は、クランクシャフト110が偏心部112を挟んで両端で軸支されるため、ピストン140はシリンダー131に対して更に上下方向へ傾きにくくなり、更にピストン140の挙動が安定し、摺動損失を低減できるとともに騒音の増大も抑制でき、高効率、低騒音化を図ることができる。   In the case where the crankshaft 110 is provided with a sub-shaft portion provided coaxially with the main shaft portion 111 with the eccentric portion 112 interposed therebetween, and a structure including a sub-bearing that pivotally supports the sub-shaft portion, the crankshaft Since 110 is pivotally supported at both ends with the eccentric portion 112 interposed therebetween, the piston 140 is more difficult to tilt in the vertical direction with respect to the cylinder 131, and the behavior of the piston 140 is further stabilized, sliding loss can be reduced and noise can be reduced. The increase can also be suppressed, and high efficiency and low noise can be achieved.

以上のように、本発明にかかる密閉型圧縮機は、生産性が高く、効率と信頼性を高くすることが可能となるので、エアーコンディショナーや自動販売機等の密閉型圧縮機の用途にも広く適用できる。   As described above, the hermetic compressor according to the present invention is highly productive and can improve efficiency and reliability. Therefore, the hermetic compressor can be used for a hermetic compressor such as an air conditioner or a vending machine. Widely applicable.

本発明による実施の形態1における密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention. 同実施の形態の密閉型圧縮機に用いるピストン周りの要素拡大図Enlarged view of the elements around the piston used in the hermetic compressor of the same embodiment 同実施の形態の密閉型圧縮機に用いるピストンの正面図Front view of piston used for hermetic compressor of the embodiment 同実施の形態の密閉型圧縮機に用いる図3のA−A’断面図A-A 'sectional view of FIG. 3 used for the hermetic compressor of the embodiment. 同実施の形態の密閉型圧縮機に用いるピストンの溝部の端面拡大図End face enlarged view of the groove of the piston used in the hermetic compressor of the same embodiment 同実施の形態の密閉型圧縮機に用いるピストンの先端拡大図Enlarged view of the tip of the piston used in the hermetic compressor of the same embodiment 従来の密閉型圧縮機の縦断面図Vertical section of a conventional hermetic compressor 従来の密閉型圧縮機に用いるピストンの斜視図A perspective view of a piston used in a conventional hermetic compressor

101 容器
105 圧縮機構
106 オイル
110 クランクシャフト
111 主軸部
112 偏芯部
120 給油手段
130 ブロック
131 シリンダー
140 ピストン
142 ピストンピン
146 コンロッド
147 ピストンピンの軸方向
148 ピストンピンの直角方向
150 ピストンの外周面
151 トップ側面
152 スカート側面
153 溝部
170 ピストンの軸方向
180 端部
190 トップ摺動面
191 環状溝
200 微小なテーパ
α 溝部の端部とピストン外周面とがなす角度
DESCRIPTION OF SYMBOLS 101 Container 105 Compression mechanism 106 Oil 110 Crankshaft 111 Main shaft part 112 Eccentric part 120 Oil supply means 130 Block 131 Cylinder 140 Piston 142 Piston pin 146 Connecting rod 147 Piston pin axial direction 148 Piston pin perpendicular direction 150 Piston outer peripheral surface 151 Top Side surface 152 Skirt side surface 153 Groove portion 170 Piston axial direction 180 End portion 190 Top sliding surface 191 Annular groove 200 Small taper α Angle formed between the end portion of the groove portion and the outer peripheral surface of the piston

Claims (7)

容器内にオイルを貯溜するとともに冷媒ガスを圧縮する圧縮機構を収容し、前記圧縮機構は、略鉛直方向に配設され主軸部および偏芯部を有するクランクシャフトと、シリンダーを形成するブロックと、前記シリンダー内を往復運動するピストンと、前記ピストンに軸心が前記偏芯部と平行になるよう配設されたピストンピンと、前記偏心部と前記ピストンピンを連結するコンロッドと、前記オイルを前記ピストンの外周面に供給する給油手段とを備えるとともに、前記ピストンを軸方向から見て前記ピストンピンの軸方向およびその直角方向を除く前記ピストンの外周面に溝部を形成し、前記溝部は少なくとも前記ピストンのトップ側面には連通せず、かつ前記ピストンの位置に関わらず、常に前記溝部と前記容器内の空間が連通している密閉型圧縮機。 Storing a compression mechanism for storing oil in the container and compressing the refrigerant gas, the compression mechanism being arranged in a substantially vertical direction and having a main shaft portion and an eccentric portion; a block forming a cylinder; A piston that reciprocates in the cylinder; a piston pin that is arranged on the piston so that its axis is parallel to the eccentric portion; a connecting rod that connects the eccentric portion and the piston pin; And a groove portion is formed on the outer peripheral surface of the piston excluding the axial direction of the piston pin and the direction perpendicular thereto when the piston is viewed from the axial direction, and the groove portion is at least the piston. the top side without communicating, and irrespective of the position of the piston, is always space in the container and the groove communicates the Closed compressor. 溝部の面積をピストンの外周面の面積の半分以上とした請求項1に記載の密閉型圧縮機。   The hermetic compressor according to claim 1, wherein the area of the groove is at least half the area of the outer peripheral surface of the piston. 溝部の端部とピストンの外周面とがなす角度を鋭角とした請求項1または2に記載の密閉型圧縮機。   The hermetic compressor according to claim 1 or 2, wherein an angle formed by the end of the groove and the outer peripheral surface of the piston is an acute angle. ピストンのトップ摺動面に環状溝を設けた請求項1から3のいずれか一項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 3 , wherein an annular groove is provided on a top sliding surface of the piston. ピストンの両端に微小なテーパを設けた請求項1から4に記載の密閉型圧縮機。 5. The hermetic compressor according to claim 1 , wherein a minute taper is provided at both ends of the piston. 少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動される請求項1から5のいずれか一項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 5 , wherein the hermetic compressor is inverter-driven at a plurality of operating frequencies including at least an operating frequency equal to or lower than a power supply frequency. 冷媒にR600aを用いる請求項1から6のいずれか一項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 6 , wherein R600a is used as the refrigerant.
JP2004159165A 2004-05-28 2004-05-28 Hermetic compressor Expired - Fee Related JP4337635B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004159165A JP4337635B2 (en) 2004-05-28 2004-05-28 Hermetic compressor
DE602005002205T DE602005002205T2 (en) 2004-05-28 2005-05-11 HERMETIC COMPRESSOR
PCT/JP2005/009006 WO2005116450A1 (en) 2004-05-28 2005-05-11 Hermetic compressor
CNB2005800001747A CN100430598C (en) 2004-05-28 2005-05-11 Hermetic compressor
EP05741280A EP1629198B1 (en) 2004-05-28 2005-05-11 Hermetic compressor
KR1020057020671A KR100701527B1 (en) 2004-05-28 2005-05-11 Hermetic compressor
US10/553,847 US20060257274A1 (en) 2004-05-28 2005-05-11 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159165A JP4337635B2 (en) 2004-05-28 2004-05-28 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2005337160A JP2005337160A (en) 2005-12-08
JP4337635B2 true JP4337635B2 (en) 2009-09-30

Family

ID=34968133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159165A Expired - Fee Related JP4337635B2 (en) 2004-05-28 2004-05-28 Hermetic compressor

Country Status (7)

Country Link
US (1) US20060257274A1 (en)
EP (1) EP1629198B1 (en)
JP (1) JP4337635B2 (en)
KR (1) KR100701527B1 (en)
CN (1) CN100430598C (en)
DE (1) DE602005002205T2 (en)
WO (1) WO2005116450A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760003B2 (en) 2004-12-14 2011-08-31 パナソニック株式会社 Hermetic compressor
US9261104B2 (en) * 2005-09-19 2016-02-16 Ingersoll-Rand Company Air blower for a motor-driven compressor
BRPI0603568A (en) * 2006-08-16 2008-04-08 Whirlpool Sa reciprocating compressor piston and rod mounting arrangement
JP4915205B2 (en) * 2006-10-19 2012-04-11 パナソニック株式会社 Compressor
EP1999370A1 (en) * 2007-02-23 2008-12-10 Panasonic Corporation Hermetic compressor
AT10065U1 (en) * 2007-08-28 2008-08-15 Acc Austria Gmbh REFRIGERANT COMPRESSOR
US8702405B2 (en) * 2007-11-17 2014-04-22 Brian Leonard Verrilli Twisting translational displacement pump cartridge
WO2009088179A2 (en) * 2008-01-10 2009-07-16 Lg Electronics Inc. Reciprocating compressor
US8814539B2 (en) * 2008-05-12 2014-08-26 Panasonic Corporation Hermetic compressor
WO2011052195A1 (en) * 2009-10-27 2011-05-05 パナソニック株式会社 Hermetic compressor
JP5810273B2 (en) * 2010-10-21 2015-11-11 パナソニックIpマネジメント株式会社 Hermetic compressor and refrigeration system
JP2012197769A (en) * 2011-03-23 2012-10-18 Panasonic Corp Hermetic compressor
BRPI1101929A2 (en) * 2011-04-26 2015-07-14 Whirlpool Sa Refrigeration compressor connecting rod
JP5492917B2 (en) * 2012-02-01 2014-05-14 株式会社豊田自動織機 Variable capacity swash plate compressor
CN104884803A (en) * 2012-12-27 2015-09-02 松下知识产权经营株式会社 Hermetic compressor and refrigeration device with same
US10352312B2 (en) 2013-01-22 2019-07-16 Panasonic Appliances Refrigeration Devices Singapore Hermetic compressor and refrigerator
US10208743B2 (en) * 2016-10-07 2019-02-19 Westinghouse Air Brake Technologies Corporation Piston cylinder arrangement for an oil free compressor having cooling passageways and method of cooling wrist pin bearing surface
KR102351707B1 (en) * 2017-06-20 2022-01-17 엘지전자 주식회사 Piston for reciprocating compressor and method for manufacturing the same
JP2020033873A (en) * 2018-08-27 2020-03-05 日立グローバルライフソリューションズ株式会社 Closed compressor and refrigerator having the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1760122A (en) * 1929-05-28 1930-05-27 Carl B Drevitson Engine piston
US2702219A (en) * 1951-04-06 1955-02-15 Gen Motors Corp Lubricating mechanism
US3173345A (en) * 1963-02-12 1965-03-16 Thompson Marion Lee Piston
US4502423A (en) * 1983-10-10 1985-03-05 Perry John C Lubrication means for a two-cycle internal combustion engine
DE3338474A1 (en) * 1983-10-22 1985-05-09 Mahle Gmbh, 7000 Stuttgart SUBMERSIBLE PISTON FOR COMBUSTION ENGINES
US5267505A (en) * 1989-05-06 1993-12-07 Vickers Plc Piston
US5228853A (en) * 1991-07-17 1993-07-20 E. I. Du Pont De Nemours And Company Method for determining a sensitive tooth
US5816783A (en) * 1993-05-19 1998-10-06 Hitachi, Ltd. Electrically driven hermetic compressor
BR9601835A (en) * 1996-06-14 1998-09-29 Metal Leve Sa Internal combustion engine piston
US5860395A (en) * 1997-09-04 1999-01-19 Chrysler Corporation Piston cooling by oil flow from a pocket reservoir and passageway formed in the piston
JPH11230628A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Freezing device
US6282910B1 (en) * 2000-06-21 2001-09-04 American Standard International Inc. Indoor blower variable speed drive for reduced airflow
BR0104001B1 (en) * 2001-07-25 2009-01-13 Piston mounting arrangement for reciprocating hermetic compressor.
DE10224428B4 (en) * 2002-06-01 2004-04-08 Danfoss Compressors Gmbh Piston compressors, especially hermetically sealed refrigerant compressors
JP2004027969A (en) * 2002-06-26 2004-01-29 Matsushita Refrig Co Ltd Hermetically sealed compressor
CN2602188Y (en) * 2003-02-28 2004-02-04 松下冷机株式会社 Enclosed type motor compressor

Also Published As

Publication number Publication date
EP1629198A1 (en) 2006-03-01
KR20060038921A (en) 2006-05-04
US20060257274A1 (en) 2006-11-16
JP2005337160A (en) 2005-12-08
WO2005116450A1 (en) 2005-12-08
CN1771394A (en) 2006-05-10
KR100701527B1 (en) 2007-03-29
EP1629198B1 (en) 2007-08-29
DE602005002205D1 (en) 2007-10-11
CN100430598C (en) 2008-11-05
DE602005002205T2 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
KR100701527B1 (en) Hermetic compressor
KR100772767B1 (en) Hermetic compressor
KR100724843B1 (en) Hermetic compressor
JP5753983B2 (en) Hermetic compressor
JP2013060953A (en) Hermetic compressor
JP2009215894A (en) Hermetic compressor
JP2010180740A (en) Hermetic compressor and refrigerating unit
KR20060065471A (en) Enclosed type compressor
JP2002089450A (en) Refrigerant compressor
JP5045521B2 (en) Hermetic compressor
JP2015007381A (en) Hermetic compressor
KR20050028217A (en) Sealing typed scroll compressor
JP2005264740A (en) Hermetic compressor
JP2009062954A (en) Hermetic compressor
KR101454244B1 (en) Reciprocating compressor and refrigerating machine having the same
JP5810273B2 (en) Hermetic compressor and refrigeration system
JP5353445B2 (en) Hermetic compressor and refrigerator / freezer
JP3980623B2 (en) Hermetic electric compressor
KR20230064104A (en) Reciprocating compressor
JP4622793B2 (en) Hermetic compressor
JP2013096351A (en) Hermetic compressor
JP2012149564A (en) Hermetic compressor and refrigerating device
JPH06323255A (en) Oil feeding device for compressor
JP2010242589A (en) Hermetic compressor and refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees