JP4337518B2 - Method and apparatus for measuring suspended aggregates - Google Patents

Method and apparatus for measuring suspended aggregates Download PDF

Info

Publication number
JP4337518B2
JP4337518B2 JP2003392901A JP2003392901A JP4337518B2 JP 4337518 B2 JP4337518 B2 JP 4337518B2 JP 2003392901 A JP2003392901 A JP 2003392901A JP 2003392901 A JP2003392901 A JP 2003392901A JP 4337518 B2 JP4337518 B2 JP 4337518B2
Authority
JP
Japan
Prior art keywords
laser
aggregate
volume
incandescent light
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003392901A
Other languages
Japanese (ja)
Other versions
JP2005156256A (en
Inventor
芳樹 高鳥
修一 久保
清一 須浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003392901A priority Critical patent/JP4337518B2/en
Publication of JP2005156256A publication Critical patent/JP2005156256A/en
Application granted granted Critical
Publication of JP4337518B2 publication Critical patent/JP4337518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、浮遊凝集体の測定方法及び装置に係り、特に、ディーゼルエンジンの排気中に含まれる粒状物質(PM(Particulate Matter)等の燃焼により生じた一次粒子が多数結合した鎖状凝集体のサイズ、浮遊凝集体の粒子数を測定するための浮遊凝集体の測定方法及び装置に関する。   The present invention relates to a method and an apparatus for measuring floating aggregates, and in particular, a chain aggregate in which a large number of primary particles generated by combustion of particulate matter (PM (Particulate Matter), etc.) contained in the exhaust of a diesel engine are combined. The present invention relates to a method and an apparatus for measuring a floating aggregate for measuring the size and the number of particles of the floating aggregate.

従来より、空気中の単一の浮遊粒子の粒径を測定する方法の1つとして、レーザ誘起白熱法(以下「LII法」という。)が知られている。LII法は、パルスレーザを浮遊粒子に照射して浮遊粒子の温度をすすの蒸発温度(約4500°K)まで瞬間的に上昇させて浮遊粒子からのレーザ誘起による白熱光の強度を検出し、検出したレーザ誘起白熱光強度信号(以下「LII信号」という。)の減衰速度が粒径によって異なることを利用して、LII信号の減衰速度に基づいて粒径を測定するものである。すなわち、中心粒径が小さくなるに従ってLII信号の減衰速度が速くなることを利用して粒径を測定するものである。   Conventionally, a laser-induced incandescent method (hereinafter referred to as “LII method”) is known as one of methods for measuring the particle size of a single suspended particle in the air. The LII method detects the intensity of laser-induced incandescent light from a suspended particle by irradiating the suspended particle with a pulsed laser and instantaneously raising the temperature of the suspended particle to the evaporation temperature (about 4500 ° K). The particle size is measured based on the attenuation rate of the LII signal by utilizing the fact that the attenuation rate of the detected laser-induced incandescent light intensity signal (hereinafter referred to as “LII signal”) varies depending on the particle size. That is, the particle diameter is measured by utilizing the fact that the attenuation rate of the LII signal increases as the central particle diameter decreases.

米国特許6181419B1号明細書(特許文献1)には、初期のLII信号と発光強度の積算値との比が粒径の関数になることを利用して、LII信号から平均粒径を求めることが記載されている。   In US Pat. No. 6,181,419 B1 (Patent Document 1), the average particle diameter is obtained from the LII signal by utilizing the ratio of the initial LII signal and the integrated value of the emission intensity as a function of the particle diameter. Are listed.

文献“SAE1999−01−0146”(非特許文献1)には、LII信号の減衰時間から粒径を決定することが記載されている。   The document “SAE 1999-01-0146” (Non-Patent Document 1) describes that the particle diameter is determined from the decay time of the LII signal.

また、特開2003−139679号公報(特許文献2)には、LII信号から減衰速度定数を演算し、演算した減衰速度定数に基づいて中心粒径及び分布幅を決定することが記載されている。
米国特許6181419B1号明細書 特開2003−139679号公報 SAE1999−01−0146
Japanese Patent Laid-Open No. 2003-139679 (Patent Document 2) describes that an attenuation rate constant is calculated from an LII signal, and a center particle size and a distribution width are determined based on the calculated attenuation rate constant. .
US Pat. No. 6,181,419 B1 JP 2003-139679 A SAE 1999-01-0146

しかしながら、上記従来の技術では、いずれも単一粒子の粒径をサイズとして測定する技術であり、一次粒子が多数結合した鎖状凝集体である浮遊凝集体のサイズや凝集体の粒子数を測定するのは困難である、という問題があった。   However, all of the conventional techniques described above are techniques for measuring the particle size of a single particle as a size, and measuring the size of floating aggregates and the number of particles of aggregates, which are chain aggregates in which a large number of primary particles are bonded. There was a problem that it was difficult to do.

本発明は、上記の問題点を解消するためになされたもので、浮遊凝集体のサイズや浮遊凝集体の粒子数を測定することができる浮遊凝集体の測定方法及び装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method and apparatus for measuring a floating aggregate capable of measuring the size of the floating aggregate and the number of particles of the floating aggregate. And

また、本発明は、体積等価粒径及び形状因子を測定することを目的とする。   Another object of the present invention is to measure a volume equivalent particle size and a shape factor.

上記目的を達成するために、本発明は、パルスレーザを浮遊凝集体に照射したときに該浮遊凝集体からレーザ誘起により発光される白熱光の強度を検出し(100)検出された前記白熱光の強度からレーザ誘起白熱光全強度信号を求め(104)、前記レーザ誘起白熱光全強度信号の時間変化に基づいてレーザ誘起白熱光強度の減衰時間を求め(106)、予め定めたレーザ誘起白熱光強度の減衰時間と移動度粒径との関係、及び求められた前記レーザ誘起白熱光強度の減衰時間に基づいて、浮遊凝集体の移動度粒径を求め(108)、前記移動度粒径を浮遊凝集体のサイズとして測定することを特徴とする。 In order to achieve the above object, the present invention detects the intensity of incandescent light emitted by laser induction from a floating aggregate when a pulsed laser is irradiated to the floating aggregate (100) , and detects the detected incandescence. A laser-induced incandescent light total intensity signal is obtained from the light intensity (104), and a decay time of the laser-induced incandescent light intensity is obtained based on the time change of the laser-induced incandescent light total intensity signal (106), and a predetermined laser-induced incandescence is obtained. Based on the relationship between the decay time of the incandescent light intensity and the mobility particle size , and the obtained decay time of the laser-induced incandescent light intensity, the mobility particle size of the floating aggregate is obtained (108), and the mobility particle is obtained. The diameter is measured as the size of the floating aggregate.

また、凝集体形状因子が既知の浮遊凝集体の測定方法であって、パルスレーザを浮遊凝集体に照射したときに該浮遊凝集体からレーザ誘起により発光される白熱光の強度を検出し(100)検出された前記白熱光の強度からレーザ誘起白熱光全強度信号を求め(104)、前記レーザ誘起白熱光全強度信号の時間変化に基づいてレーザ誘起白熱光強度の減衰時間を求め(106)、予め定めたレーザ誘起白熱光強度の減衰時間と、凝集体の体積と等価体積の球体の径で表される体積等価粒径との関係、及び求められた前記レーザ誘起白熱光強度の減衰時間に基づいて、体積等価粒径を求め(110)、前記体積等価粒径から凝集体の体積を求め(112)、予め定めた凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係、及び求められた前記凝集体の体積に基づいて、凝集体一粒子のレーザ誘起白熱光強度を求め(114)、前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を求める(116)ことを特徴とする。 Further, it is a method for measuring a floating aggregate having a known aggregate form factor, and detects the intensity of incandescent light emitted from the floating aggregate by laser induction when the pulsed laser is irradiated to the floating aggregate (100 ) A laser-induced incandescent light total intensity signal is obtained from the detected intensity of the incandescent light (104), and an attenuation time of the laser-induced incandescent light intensity is obtained on the basis of the time change of the laser-induced incandescent light total intensity signal (106). ), The relationship between the predetermined decay time of the laser-induced incandescent light intensity and the volume equivalent particle diameter represented by the diameter of the sphere of the volume of the aggregate and the equivalent volume, and the attenuation of the obtained laser-induced incandescent light intensity Based on the time, a volume equivalent particle diameter is determined (110), and the volume of the aggregate is determined from the volume equivalent particle diameter (112), and the predetermined aggregate volume and the laser-induced incandescent light intensity of one aggregate particle are determined. Relationship and seeking Based on the obtained volume of the aggregate, the laser-induced incandescent light intensity of one aggregate particle is obtained (114), and from the laser-induced incandescent light intensity of the one aggregate particle and the laser-induced incandescent light total intensity signal. The number of particles of the floating aggregate is obtained (116) .

本発明の浮遊凝集体の測定装置は、上記の浮遊凝集体の測定方法を利用したものであり、浮遊凝集体にパルスレーザを照射するレーザ照射手段と、前記浮遊凝集体からのレーザ誘起による白熱光強度を検出する検出手段と、前記検出手段で検出された白熱光強度からレーザ誘起白熱光全強度信号を演算するレーザ誘起白熱光全強度信号演算手段と、前記レーザ誘起白熱光全強度信号演算手段により演算されたレーザ誘起白熱光強度信号の時間変化に基づいて、該レーザ誘起白熱光強度の減衰時間を演算する減衰時間演算手段と、レーザ誘起白熱光強度の減衰時間と移動度粒径との関係を記憶した記憶手段と、前記減衰時間演算手段で演算されたレーザ誘起白熱光強度の減衰時間と前記記憶手段に記憶された関係とに基づいて、浮遊凝集体の移動度粒径を演算する粒径演算手段と、前記浮遊凝集体の移動度粒径を浮遊凝集体のサイズとして表示する表示部と、を含んで構成されている。 The apparatus for measuring floating aggregates of the present invention utilizes the above-described method for measuring floating aggregates, and includes laser irradiation means for irradiating the floating aggregates with a pulse laser, and laser-induced incandescence from the floating aggregates. Detection means for detecting light intensity, laser-induced incandescent light total intensity signal calculating means for calculating a laser-induced incandescent light total intensity signal from the incandescent light intensity detected by the detecting means, and laser-induced incandescent light total intensity signal calculation based on the time variation of the computed laser-induced incandescence total intensity signals by means, and decay time calculating means for calculating a decay time of the laser-induced incandescence strongly light degree, and the decay time of the laser-induced incandescence strongly light degree mobility storage means for storing a relationship between the particle size, on the basis of the stored relationship in the laser-induced incandescence light strength of the decay time and the storage means calculated by the decay time calculating means, the suspended aggregates A particle size calculating means for computation of Dodo particle size, is configured to include a display unit for displaying the mobility particle size of the suspended aggregates as the size of the suspended aggregates.

また、本発明の浮遊凝集体の測定装置は、凝集体形状因子が既知の浮遊凝集体の測定装置であって、浮遊凝集体にパルスレーザを照射するレーザ照射手段と、前記浮遊凝集体からのレーザ誘起による白熱光強度を検出する検出手段と、前記検出手段で検出された白熱光強度からレーザ誘起白熱光全強度信号を演算するレーザ誘起白熱光全強度信号演算手段と、前記レーザ誘起白熱光全強度信号演算手段により演算されたレーザ誘起白熱光強度信号の時間変化に基づいて、該レーザ誘起白熱光強度の減衰時間を演算する減衰時間演算手段と、レーザ誘起白熱光強度の減衰時間と、凝集体の体積と等価体積の球体の径で表される体積等価粒径との関係を記憶した記憶手段と、前記減衰時間演算手段で演算されたレーザ誘起白熱光強度の減衰時間とに基づいて、体積等価粒径を演算する体積等価粒径演算手段と、前記体積等価粒径演算手段で演算された体積等価粒径から凝集体の体積を演算する凝集体の体積演算手段と、凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係を記憶した記憶手段と、前記凝集体の体積演算手段で演算された凝集体の体積とに基づいて、凝集体一粒子のレーザ誘起白熱光強度を演算する凝集体一粒子のレーザ誘起白熱光強度演算手段と、前記凝集体一粒子のレーザ誘起白熱光強度演算手段で演算された前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号演算手段で演算されたレーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を演算する浮遊凝集体の粒子数演算手段と、前記浮遊凝集体の粒子数演算手段で演算された浮遊凝集体の粒子数を表示する表示部と、を含んで構成することができる。 The floating aggregate measuring apparatus of the present invention is a floating aggregate measuring apparatus having a known aggregate form factor, a laser irradiation means for irradiating the floating aggregate with a pulsed laser, and the floating aggregate from the floating aggregate Detection means for detecting incandescent light intensity induced by laser, laser-induced incandescent light total intensity signal calculating means for calculating a laser-induced incandescent light total intensity signal from the incandescent light intensity detected by the detecting means, and the laser-induced incandescent light based on the time variation of the computed laser-induced incandescence total intensity signals by the total intensity signal calculating means, and the decay time calculating means for calculating a decay time of the laser-induced incandescence light strength of the attenuation of the laser-induced incandescence strongly light degree time, memory means for storing a relationship between the volume equivalent diameter represented by diameter sphere volume equivalent volume of coagulation Atsumaritai, the damping time calculating means laser-induced incandescence intensity decay time which is calculated by A volume equivalent particle diameter calculating means for calculating a volume equivalent particle diameter, and an aggregate volume calculating means for calculating the volume of the aggregate from the volume equivalent particle diameter calculated by the volume equivalent particle diameter calculating means, Based on the storage means storing the relationship between the volume of the aggregate and the laser-induced incandescent light intensity of one aggregate particle, and the volume of the aggregate calculated by the volume calculation means of the aggregate, Laser-induced incandescent light intensity calculating means for agglomerates for calculating laser-induced incandescent light intensity, and laser-induced incandescent light intensity of the agglomerated particles calculated by laser-induced incandescent light intensity calculating means for the agglomerated particles And floating aggregate number calculation means for calculating the number of floating aggregate particles from the laser-induced incandescent light total intensity signal calculated by the laser-induced incandescent light total intensity signal calculation means, and the number of floating aggregate particles Calculated by the calculation means A display unit for displaying the number of particles suspended aggregates, can be configured to include.

また、凝集体形状因子が未知の浮遊凝集体の測定方法であって、強度が異なる2つ以上のパルスレーザを浮遊凝集体に照射したときに該浮遊凝集体からレーザ誘起により発光される白熱光の強度を各々検出し、検出された2つの白熱光の強度からレーザ誘起白熱光全強度信号の比を求め、検出された前記2つの白熱光の強度のうちいずれか一方の白熱光の強度からレーザ誘起白熱光全強度信号を求め、前記レーザ誘起白熱光全強度信号の時間変化に基づいてレーザ誘起白熱光強度の減衰時間を求め、予め定めたレーザ誘起白熱光強度信号の比と、凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係、並びに求められた前記レーザ誘起白熱光全強度信号の比に基づいて、レーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を求め、予め定めたレーザ誘起白熱光強度の減衰時間と体積等価粒径及び凝集体形状因子との関係、並びに求められた前記レーザ誘起白熱光強度の減衰時間に基づいて、レーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を求め、前記レーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係と、レーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係から、体積等価粒径及び凝集体形状因子を求め、前記体積等価粒径から凝集体の体積を求め(112)、予め定めた凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係、及び求められた前記凝集体の体積に基づいて、凝集体一粒子のレーザ誘起白熱光強度を求め(114)、前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を求める(116)ようにしてもよい。さらに、凝集体形状因子が未知の浮遊凝集体の測定装置であって、浮遊凝集体に強度が異なる2つ以上のパルスレーザを照射するレーザ照射手段と、前記浮遊凝集体からのレーザ誘起による白熱光強度を各々検出する検出手段と、前記検出手段で検出された2つの白熱光強度からレーザ誘起白熱全光強度信号の比を演算するレーザ誘起白熱光全強度信号の比演算手段と、前記検出手段で検出された2つの白熱光の強度のうちいずれか一方の白熱光の強度からレーザ誘起白熱光全強度信号を演算するレーザ誘起白熱光全強度信号演算手段と、前記レーザ誘起白熱光全強度信号演算手段により演算されたレーザ誘起白熱光強度信号時間変化に基づいて、該レーザ誘起白熱光強度の減衰時間を演算する減衰時間演算手段と、レーザ誘起白熱光強度信号の比と凝集体の体積と等価体積の球体の径で表される体積等価粒径と凝集形状因子との関係を記憶した記憶手段と、前記レーザ誘起白熱光全強度信号の比演算手段で演算されたレーザ誘起白熱光全強度信号の比とに基づいて、レーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を演算するレーザ誘起白熱光全強度信号の比に対する体積等価粒径−凝集体形状因子演算手段と、レーザ誘起白熱光強度の減衰時間と、凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係を記憶した記憶手段と、前記減衰時間演算手段で演算されたレーザ誘起白熱光強度の減衰時間とに基づいて、レーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を演算するレーザ誘起白熱光強度の減衰時間に対する体積等価粒径−凝集体形状因子演算手段と、前記レーザ誘起白熱光全強度信号の比に対する体積等価粒径−凝集体形状因子演算手段で演算されたレーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係と、前記レーザ誘起白熱光強度の減衰時間に対する体積等価粒径−凝集体形状因子演算手段で演算されたレーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係とから、前記体積等価粒径及び凝集体形状因子演算する体積等価粒径及び凝集体形状因子演算手段と、前記体積等価粒径及び凝集体形状因子演算手段で演算された体積等価粒径から凝集体の体積を演算する凝集体の体積演算手段と、凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係を記憶した記憶手段と、前記凝集体の体積演算手段で演算された凝集体の体積とに基づいて、凝集体一粒子のレーザ誘起白熱光強度を演算する凝集体一粒子のレーザ誘起白熱光強度演算手段と、前記凝集体一粒子のレーザ誘起白熱光強度演算手段で演算された前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号演算手段で演算されたレーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を演算する浮遊凝集体の粒子数演算手段と、前記浮遊凝集体の粒子数演算手段で演算された浮遊凝集体の粒子数を表示する表示部と、を含んで構成してもよい。 An incandescent light emitted from the floating aggregate by laser induction when the floating aggregate is irradiated with two or more pulse lasers having different intensities , which is a method for measuring a floating aggregate whose aggregate form factor is unknown. strength respectively detect, determine the ratio of the laser-induced incandescence total intensity signal from the intensity of the detected two incandescence, from the intensity of either incandescent light of the intensity of the detected said two incandescence A laser-induced incandescent light total intensity signal is obtained, a decay time of the laser-induced incandescent light intensity is obtained based on the time change of the laser-induced incandescent light total intensity signal, Based on the relationship between the volume of the aggregate and the volume equivalent particle size represented by the diameter of the sphere of the equivalent volume and the aggregate shape factor, and the ratio of the obtained laser-induced incandescent light total intensity signal, the laser-induced incandescent light total Intensity signal ratio Volume equivalent particle size and agglomerates obtained relation shape factor, previously decay time of the laser-induced incandescence intensity which defines the volume equivalent particle size and aggregate shape represented by the diameter of a sphere of volume equivalent to the volume of the aggregates against Based on the relationship with the factor and the decay time of the laser-induced incandescent light intensity obtained, the volume equivalent particle diameter represented by the diameter of the sphere of the volume of the aggregate and the equivalent volume with respect to the decay time of the laser-induced incandescent light intensity. And the relationship between the volume equivalent particle size and the aggregate shape factor expressed by the diameter of the sphere of the volume of the aggregate and the equivalent volume with respect to the ratio of the laser-induced incandescent light total intensity signal, and the laser From the relationship between the volume of the aggregate with respect to the decay time of the incandescent light intensity and the volume equivalent particle diameter represented by the diameter of the sphere of the equivalent volume and the aggregate shape factor, the volume equivalent particle diameter and the aggregate shape factor are obtained, Is volume equivalent particle size? The volume of the aggregate is determined (112). Based on the predetermined relationship between the volume of the aggregate and the laser-induced incandescent light intensity of the aggregate and the determined volume of the aggregate, The laser-induced incandescent light intensity may be obtained (114), and the number of floating aggregate particles may be obtained from the laser-induced incandescent light intensity of one particle of the aggregate and the laser-induced incandescent light total intensity signal (116) . Furthermore, it is a measuring apparatus for a floating aggregate whose aggregate form factor is unknown, a laser irradiation means for irradiating the floating aggregate with two or more pulse lasers having different intensities, and a laser-induced incandescence from the floating aggregate A detecting means for detecting each light intensity; a ratio calculating means for a laser-induced incandescent light total intensity signal for calculating a ratio of a laser-induced incandescent light intensity signal from two incandescent light intensities detected by the detecting means; and the detection A laser-induced incandescent light total intensity signal calculating means for calculating a laser-induced incandescent light total intensity signal from the intensity of one of the two incandescent lights detected by the means, and the laser-induced incandescent light total intensity based on the time variation of the computed laser-induced incandescence total intensity signals by the signal computation means, and decay time calculating means for calculating a decay time of the laser-induced incandescence light strength of the laser-induced incandescence total The ratio of the degree signals, memory means for storing a relationship between the volume equivalent diameter represented by diameter on a volume equivalent volume sphere aggregates and aggregate form factor, the ratio calculation of the laser-induced incandescence total intensity signal The volume-equivalent particle size and coagulation expressed by the volume of the aggregate and the diameter of the sphere of the equivalent volume with respect to the ratio of the laser-induced incandescent light total intensity signal calculated by the means. Atsumaritai specific volume equivalent particle diameter to form factor laser-induced incandescence total intensity signal for calculating the relationship - and aggregate form factor computing means, and decay time of the laser-induced incandescence strongly light degree, the aggregate volume and the equivalent volume Based on the storage means storing the relationship between the volume equivalent particle size expressed by the diameter of the sphere and the aggregate shape factor, and the decay time of the laser-induced incandescent light intensity calculated by the decay time calculation means Against decay time of incandescent light intensity A volume equivalent particle diameter-aggregate shape factor calculating means for a decay time of laser-induced incandescent light intensity for calculating a relationship between a volume equivalent particle diameter expressed by a sphere of an aggregate volume and a sphere having an equivalent volume and an aggregate shape factor; Volume equivalent particle diameter to the ratio of the laser-induced incandescent light total intensity signal-expressed by the diameter of the sphere having the volume of the aggregate and the equivalent volume with respect to the ratio of the laser-induced incandescent light total intensity signal calculated by the aggregate shape factor calculating means. The volume-equivalent particle size and aggregate shape factor, and the volume-equivalent particle size-aggregate shape factor calculation means for the laser-induced incandescent light intensity decay time. The volume equivalent particle size and aggregate shape factor for calculating the volume equivalent particle size and aggregate shape factor from the relationship between the volume equivalent particle size and aggregate shape factor represented by the volume of the aggregate and the sphere diameter of the equivalent volume Performance A calculation means, a volume calculation means for the aggregate that calculates the volume of the aggregate from the volume equivalent particle diameter calculated by the volume equivalent particle diameter and the aggregate shape factor calculation means, a volume of the aggregate, and one aggregate particle Aggregates for calculating the laser-induced incandescent light intensity of one particle of the aggregate based on the storage means storing the relationship with the laser-induced incandescent light intensity and the aggregate volume calculated by the aggregate volume calculating means Laser-induced incandescent light intensity calculation means for one particle, and laser-induced incandescent light intensity and laser-induced incandescent light total intensity signal calculation of the aggregate one particle calculated by the laser-induced incandescent light intensity calculation means for the one-aggregate particle The floating aggregate particle number calculating means for calculating the number of floating aggregate particles from the laser-induced incandescent light total intensity signal calculated by the means, and the floating aggregate calculated by the floating aggregate particle number calculating means Table showing the number of particles And parts may be configured to include.

以上説明したように本発明によれば、LII信号の減衰時間に基づいて凝集体のサイズを測定することができると共に、LII信号の減衰時間及びLII信号の絶対強度に基づいて、凝集体の粒子数を演算することができる、という効果が得られる。   As described above, according to the present invention, the size of the aggregate can be measured based on the decay time of the LII signal, and the aggregate particles can be measured based on the decay time of the LII signal and the absolute intensity of the LII signal. The effect that a number can be calculated is obtained.

また、体積等価粒径及び形状因子を測定することができる、という効果が得られる。   Moreover, the effect that a volume equivalent particle diameter and a shape factor can be measured is acquired.

以下、図面を参照して本発明の実施の形態を詳細に説明する。まず、標準粒子発生器から複数の標準粒子を発生させ、各標準粒子についてLII法によるレーザ誘起白熱光強度信号の減衰時間と浮遊凝集体のサイズとの関係を調べた結果について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, a plurality of standard particles are generated from a standard particle generator, and the results of examining the relationship between the decay time of the laser-induced incandescent light intensity signal by the LII method and the size of the floating aggregate for each standard particle will be described.

標準粒子である燃焼微粒子の発生源として、Matter Engineering社の標準粒子発生器(CAST:Combustion Aerosol Sandard)を用いた。この標準粒子発生器は、プロパンガスの拡散火炎により粒子を生成させ、一定高さにおいて側方からクエンチ用窒素ガスを送り込んで燃焼を抑制し、粒子の成長を凍結するものである。この標準粒子発生器では、プロパンガスに添加するクエンチ用窒素ガスの希釈率を変えることにより、発生する粒子の粒径を変えることができる。発生した粒子流の一部を希釈器で希釈した後、試験用粒子として取り出し、後述する微粒子計測装置(SMPS)、TEM(透過型電子顕微鏡)、LII装置の各計測で用いた。   A standard particle generator (CAST: Combustion Aerosol Sandard) manufactured by Matter Engineering was used as a generation source of combustion fine particles which are standard particles. This standard particle generator generates particles by a propane gas diffusion flame, sends quenching nitrogen gas from the side at a constant height, suppresses combustion, and freezes particle growth. In this standard particle generator, the particle size of the generated particles can be changed by changing the dilution rate of the quenching nitrogen gas added to the propane gas. A part of the generated particle flow was diluted with a diluter, then taken out as test particles, and used in each measurement of a particle measuring device (SMPS), a TEM (transmission electron microscope), and an LII device described later.

ディーゼル排気中のナノ微粒子計測に利用される電気移動度法による微粒子計測装置(SMPS)は、TSI製の装置を用いた。CASTにより生成した微粒子を微粒子計測装置に直接導入し、DMA(静電式エアロゾル分級器:Model 3081)で分級し、CPC(凝結核カウンター:Model 3025A)で粒子数を測定した。   A TSI device was used as a particle measuring device (SMPS) based on the electric mobility method used for measuring the nano particles in diesel exhaust. Fine particles produced by CAST were directly introduced into a fine particle measuring apparatus, classified by DMA (electrostatic aerosol classifier: Model 3081), and the number of particles was measured by CPC (condensation nucleus counter: Model 3025A).

電顕観察用試料は、粒子流の流路に炭素膜付マイクログリッドを直接挿入することにより採取した。採取した試料は、透過型電子顕微鏡(日本電子JEM2000EX、加速電圧200kV)により観察し、パーソナルコンピュータに取り込んだ後、画像解析ソフトにより処理・解析を行った。   A sample for electron microscope observation was collected by directly inserting a microgrid with a carbon film into the flow path of the particle flow. The collected sample was observed with a transmission electron microscope (JEOL JEM2000EX, acceleration voltage 200 kV), taken into a personal computer, and then processed and analyzed with image analysis software.

LII装置は、本実施の形態のLII装置と同様の装置を用いた。図1に本実施の形態のLII装置の概略を示す。   As the LII apparatus, an apparatus similar to the LII apparatus of the present embodiment was used. FIG. 1 shows an outline of the LII apparatus according to the present embodiment.

LII装置は、浮遊凝集体等の被測定物に励起光としてのパルスレーザを照射するパルス発振レーザ装置10を備えている。パルス発振レーザ装置10のレーザ光照射側には、レーザ光を切り出すアパチャー12、レーザ光の強度を調整するNDフィルタ14、及び主光路からレーザ光を分岐するためのビームスプリッタ16が順に配置されている。ビームスプリッタ16のレーザ光分岐側には、レーザ光をモニタするフォトダイオード18が配置されている。   The LII apparatus includes a pulsed laser apparatus 10 that irradiates a measurement object such as a floating aggregate with a pulse laser as excitation light. On the laser beam irradiation side of the pulsed laser device 10, an aperture 12 for cutting out the laser beam, an ND filter 14 for adjusting the intensity of the laser beam, and a beam splitter 16 for branching the laser beam from the main optical path are sequentially arranged. Yes. A photodiode 18 for monitoring the laser beam is disposed on the laser beam branching side of the beam splitter 16.

ビームスプリッタ16のレーザ光透過側である主光路のレーザ光は、ビームスプリッタ19等により2つに分けられる。2分したレーザ光は、各々NDフィルタ21、21’により、強度の異なる2本の励起光にする。2本のレーザ光の光路には、LII観測用石英円筒セル22、22’中にレーザ光を集光するシリンドリカルレンズ20、20’(例えば、f=100mm)が配置されている。   The laser beam in the main optical path on the laser beam transmitting side of the beam splitter 16 is divided into two by the beam splitter 19 and the like. The bisected laser light is converted into two excitation lights having different intensities by ND filters 21 and 21 ', respectively. Cylindrical lenses 20 and 20 '(for example, f = 100 mm) for condensing the laser light are disposed in the LII observation quartz cylindrical cells 22 and 22' in the optical paths of the two laser lights.

LII観測用石英円筒セル22、22’の側方には、LII観測用石英円筒セル22、22’中に存在するすす粒子等の浮遊粒子からレーザ励起により発光される白熱光である輻射光を検出する光電子増倍管24、24’が配置されている。LII観測用石英円筒セル22、22’中央部には、一方の輻射光(LII光)を遮断するための仕切り板25が設けられている。   Radiation light, which is incandescent light emitted by laser excitation from floating particles such as soot particles existing in the LII observation quartz cylinder cells 22 and 22 ′, is provided on the side of the LII observation quartz cylinder cells 22 and 22 ′. Photomultiplier tubes 24 and 24 'for detection are arranged. A partition plate 25 for blocking one radiation light (LII light) is provided at the center of the LII observation quartz cylindrical cells 22 and 22 '.

LII観測用石英円筒セル22と光電子増倍管24との間には、シリンドリカルレンズ26、アパチャー28、及び波長選択を行う干渉フィルター30(例えば、中心波長355nm,半値幅16.7nm)が配置されている。また、光電子増倍管24は、高速アンプ32を介してデジタルオシロスコープ34に接続されている。同様に、LII観測用石英円筒セル22’と光電子増倍管24’との間には、シリンドリカルレンズ26’、アパチャー28’、及び波長選択を行う干渉フィルター30’(例えば、中心波長355nm,半値幅16.7nm)が配置されている。また、光電子増倍管24’は、高速アンプ32’を介して上記のデジタルオシロスコープ34に接続されている。   Between the LII observation quartz cylindrical cell 22 and the photomultiplier tube 24, a cylindrical lens 26, an aperture 28, and an interference filter 30 for performing wavelength selection (for example, a center wavelength of 355 nm and a half-value width of 16.7 nm) are arranged. ing. The photomultiplier tube 24 is connected to a digital oscilloscope 34 via a high-speed amplifier 32. Similarly, between the LII observation quartz cylindrical cell 22 ′ and the photomultiplier tube 24 ′, a cylindrical lens 26 ′, an aperture 28 ′, and an interference filter 30 ′ that performs wavelength selection (for example, a central wavelength of 355 nm, a half wavelength) The value width 16.7 nm) is arranged. The photomultiplier tube 24 'is connected to the digital oscilloscope 34 via a high-speed amplifier 32'.

このLII装置では、励起光として、Nd:YAGレーザの第2高調波(532nm)を用いた。   In this LII apparatus, the second harmonic (532 nm) of an Nd: YAG laser was used as excitation light.

上記の各装置を使用し、CASTによりモード1〜モード6(Mode1〜Mode6)の6種類の粒径モードの粒子群を発生させ、測定に用いた。図3にSMPSで測定した各モードの粒径分布(移動度粒子径(Mobility粒径)に対する粒子数の分布)を示す。いずれのモードも正規対数分布に近い分布形状を持っており、中位径は約30nm〜170nmの範囲で変化している。表1に各モードのSMPS中位径をまとめて示した。   Using each of the above devices, a particle group of six particle size modes, Mode 1 to Mode 6 (Mode 1 to Mode 6), was generated by CAST and used for measurement. FIG. 3 shows the particle size distribution (distribution of the number of particles with respect to mobility particle size (Mobility particle size)) of each mode measured by SMPS. Each mode has a distribution shape close to a normal logarithmic distribution, and the median diameter changes in a range of about 30 nm to 170 nm. Table 1 summarizes the SMPS median diameter of each mode.

Figure 0004337518
Figure 0004337518

また、図4に、これら各モードの粒子の代表的なTEM像を示す。小粒径側では、粒子は単一の球形に近い形状をしており、大粒径側へいくほど一次粒子が多数結合した鎖状凝集体の形状をしている。このことから、今回用いた標準粒子では、粒径の成長に伴い粒子の形態(morphology)も変化していることが分かる。   FIG. 4 shows representative TEM images of the particles in each mode. On the small particle size side, the particles have a shape close to a single spherical shape, and in the form of a chain aggregate in which a large number of primary particles are bonded toward the large particle size side. From this, it can be seen that in the standard particles used this time, the morphology of the particles changes as the particle size grows.

図3のMobility粒径とTEMにより観測される粒径との関係を調べるために、数百個の粒子のTEΜ画像を統計的に解析した。TEMにより観測される粒径としては、図6(a)に示す旋回粒径、(b)に示す最大粒子径、(c)に示す平均フェレ径、(d)に示す面積等価粒径を用いた。   In order to examine the relationship between the mobility particle size in FIG. 3 and the particle size observed by TEM, TE-images of several hundred particles were statistically analyzed. As the particle diameter observed by TEM, the swirling particle diameter shown in FIG. 6 (a), the maximum particle diameter shown in (b), the average ferret diameter shown in (c), and the area equivalent particle diameter shown in (d) are used. It was.

図5に旋回粒径の分布を示す。図中に図3のSMPSによる粒径分布を実線で重ねて示した。低粒径側でのズレは見られるが、概ね両者の分布は類似しているといえる。   FIG. 5 shows the distribution of the swirling particle size. In the figure, the particle size distribution by SMPS in FIG. Although there is a shift on the low particle size side, it can be said that the distribution of both is generally similar.

同様にして、図6に定義した別の粒径、(b)最大粒子径、(c)平均フェレ径、(d)面積等価粒径についても解析を行った。個々の分布グラフの記載は省略するが、各々の平均値と平均Mobility粒径との相関を図7にプロットした。図中の破線は等粒径線を示している。図7より、標準粒子では旋回粒径が、Mobility粒径と最も良い一致を示すことが理解できる。   Similarly, another particle size defined in FIG. 6, (b) maximum particle size, (c) average ferret size, and (d) area equivalent particle size were also analyzed. Although the description of each distribution graph is omitted, the correlation between the average value and the average mobility particle size is plotted in FIG. A broken line in the figure indicates an equal particle diameter line. From FIG. 7, it can be understood that the swirling particle diameter shows the best coincidence with the mobility particle diameter in the standard particles.

次に、LII法によるすす濃度・粒径計測の検討を行った。図8に各粒径モードについてLII信号の絶対強度のレーザ光強度依存性を示す。LII信号の絶対強度は、レーザ強度の変化に対し初期では比例的に増加するが、一旦極大値をとった後減少している。この理由は、レーザ光が強い領域では、すす粒子の蒸発が起きているためであると考えられる。本発明では、この影響を避けるため、LII信号の飽和が起きる前の最大レーザ強度(例えば、図中破線示す4mJ/pulseの強度)のデー夕を解析に用いた。   Next, soot concentration and particle size measurement by the LII method was studied. FIG. 8 shows the laser beam intensity dependence of the absolute intensity of the LII signal for each particle size mode. The absolute intensity of the LII signal increases in proportion to the change of the laser intensity in the initial stage, but decreases after taking the maximum value once. The reason is considered to be that soot particles are evaporated in the region where the laser beam is strong. In the present invention, in order to avoid this influence, data of the maximum laser intensity (for example, the intensity of 4 mJ / pulse indicated by a broken line in the figure) before the saturation of the LII signal is used for the analysis.

先ず、すす濃度とLII信号の強度(LII intensity)との関係を調べるため、別途測定した元素状炭素(EC:Elementary Carbon)の重量濃度とLII信号の強度との関係を図9にプロットした。図中には、SMPS中位径を示してある。この図9より、粒径範囲(例えば、30〜170nm)では、粒径によらずLII信号の強度がEC濃度に比例していることが理解できる。このことから、粒径が大きく変化する条件においても、LII信号の絶対強度からすす重量濃度の計測が可能であることが確かめられた。   First, in order to examine the relationship between the soot concentration and the LII signal intensity (LII intensity), the relationship between the separately measured weight concentration of elemental carbon (EC) and the intensity of the LII signal is plotted in FIG. In the figure, the median diameter of SMPS is shown. From FIG. 9, it can be understood that in the particle size range (for example, 30 to 170 nm), the intensity of the LII signal is proportional to the EC concentration regardless of the particle size. From this, it was confirmed that the soot weight concentration can be measured from the absolute intensity of the LII signal even under conditions in which the particle size changes greatly.

次に、LII装置による粒子径計測について説明する。この場合には、いずれか一方のレーザ強度でのLII信号強度を用いる。図10にモード1〜6の各モードのLII信号強度の経時変化を示す。LII信号強度の減衰時間は、モード1〜6の順に単調に増加している。図4のTEM像から一次粒子径はモード1〜6の順に単調には増加しておらず、LII信号の減衰時間と一次粒子径の大小とは対応していないことが分かる。   Next, particle diameter measurement by the LII apparatus will be described. In this case, the LII signal intensity at one of the laser intensities is used. FIG. 10 shows changes with time in the LII signal intensity in each of the modes 1 to 6. The LII signal intensity decay time increases monotonically in the order of modes 1-6. It can be seen from the TEM image in FIG. 4 that the primary particle diameter does not increase monotonically in the order of modes 1 to 6, and the decay time of the LII signal does not correspond to the size of the primary particle diameter.

一方、図11に示すようにSMPS中位径、すなわち凝集体サイズ(移動度粒径)に対しLII信号の減衰時間は単調に増加しており、このことから、LII信号の減衰時間は一次粒子径よりも、すす凝集体の大きさに依存していると判断できる。   On the other hand, as shown in FIG. 11, the decay time of the LII signal monotonously increases with respect to the SMPS median diameter, that is, the aggregate size (mobility particle size). It can be judged that it depends on the size of the soot aggregate rather than the diameter.

LII法では、すすが光吸収により加熱された後、熱放射により冷却することで輻射光が減衰する。吸収エネルギーは粒子体積に比例するのに対し、冷却速度は粒子表面積に比例するので、LII信号の減衰速度は粒子の比表面積(=粒子表面積/粒子体積)に依存することになる。したがって、LII信号の減衰時間が凝集体サイズに依存した理由としては、凝集体の成長により一次粒子の表面積が徐々に覆われていき、それに伴い粒子の比表面積が減少したこと推定することができる。   In the LII method, soot is heated by light absorption and then cooled by thermal radiation to attenuate radiation light. The absorbed energy is proportional to the particle volume, whereas the cooling rate is proportional to the particle surface area, so the decay rate of the LII signal depends on the specific surface area of the particle (= particle surface area / particle volume). Therefore, the reason that the decay time of the LII signal depends on the aggregate size can be estimated that the surface area of the primary particles is gradually covered by the growth of the aggregates, and the specific surface area of the particles is reduced accordingly. .

上記の推定を確認するため、次の(1)式で定義される比周囲長の解析をTEM画像について行った。   In order to confirm the above estimation, the specific perimeter defined by the following equation (1) was analyzed for the TEM image.

(比周囲長)=(粒子の周囲長)/(粒子面積)・・・(1)
本来は、この比周囲長が三次元物質の比表面積の代用として妥当かどうかの検討が必要であるが、今回は定性的な傾向をつかむ目的に限って使用した。図12に、モード1〜6の各モードの比周囲長と旋回粒径との相関を示す。いずれのモードでも粒径の増加とともに比周囲長が減少する傾向が表れている。図13は、モード1〜6の各モードの比周囲長の平均値とSMPS中位径との関係を示したものであるが、この図からも粒径の増大に伴い、比周囲長が単調に減少していることが理解できる。これらのことから、間接的にではあるが、凝集体の粒径と粒子比表面積にはかなりの相関があるものと推察される。
(Specific circumference) = (particle circumference) / (particle area) (1)
Originally, it is necessary to examine whether this specific perimeter is appropriate as a substitute for the specific surface area of a three-dimensional material, but this time it was used only for the purpose of grasping a qualitative tendency. FIG. 12 shows the correlation between the specific perimeter length of each mode 1 to 6 and the swirling particle diameter. In either mode, the specific perimeter tends to decrease with increasing particle size. FIG. 13 shows the relationship between the average value of the specific peripheral length of each mode 1 to 6 and the median diameter of the SMPS. From this figure, the specific peripheral length is monotonous as the particle size increases. It can be understood that the number has decreased. From these facts, it is presumed that there is a considerable correlation between the particle size of the aggregate and the specific surface area of the particles, though indirectly.

以上の結果より、凝集体においても粒径の増加とともに比表面積が減少し、その結果LII信号強度の減衰時間と粒径との間に図11に見られる対応関係が表れたものと考えられ、上記の結果は、LII装置のLII信号の減衰時間から凝集体のサイズを計測することが可能であることを示すものである。   From the above results, it is considered that the specific surface area of the agglomerates also decreases with an increase in the particle size, and as a result, the correspondence shown in FIG. 11 appears between the decay time of the LII signal intensity and the particle size. The above results indicate that the size of the aggregate can be measured from the decay time of the LII signal of the LII device.

すなわち、LII信号の減衰時間を計測すれば、計測したLII信号の減衰時間と図11の関係とから、凝集体の移動度粒径(Mobility粒径)を凝集体のサイズとして計測することができる。   That is, if the decay time of the LII signal is measured, the mobility particle size (mobility particle size) of the aggregate can be measured as the aggregate size from the measured decay time of the LII signal and the relationship of FIG. .

次に、凝集体の粒子数を求めるために、粒子の比表面積の因子として球からのずれ量を表す形状因子αを定義し、凝集体の体積と等価体積の球体の径で表される体積等価粒径をDとしたとき、燃焼粒子の凝集体の表面積をαπD3/6と表した。ずれ量を表す形状因子αは、燃焼粒子が球のときα=1となり、凝集体のように形状が球からずれたときα>1になる。 Next, in order to obtain the number of particles in the aggregate, a shape factor α representing the amount of deviation from the sphere is defined as a factor of the specific surface area of the particle, and the volume represented by the diameter of the sphere having an equivalent volume to the volume of the aggregate when the equivalent particle diameter is D, and the surface area of the aggregate of the combustion particles was expressed as απD 3/6. The shape factor α representing the amount of deviation is α = 1 when the combustion particle is a sphere, and α> 1 when the shape is deviated from the sphere like an aggregate.

図14は、α=1,5,10について凝集体一粒子の体積とLII信号の強度との関係を示したものであり、図15は、α=1,5,10について凝集体の体積等価粒径とLII信号の減衰時間との関係を示したものである。   FIG. 14 shows the relationship between the volume of one aggregate particle and the intensity of the LII signal when α = 1, 5, and 10. FIG. 15 shows the volume equivalent of the aggregate when α = 1, 5, and 10. The relationship between a particle size and the decay time of a LII signal is shown.

燃焼で生成されるすすの凝集体については、粒子の形状が概略わかっているので、実験により形状因子αの値を予め定めておく。形状因子αが既知であるので、LII信号の減衰時間と図15に示す関係とから体積等価粒径D(例えば、80nm)を求めることができる。求めた体積等価粒径Dから単一の凝集体の体積(例えば、2.7×105nm3)が求められ、この求めた体積と図14に示す関係とから凝集体一粒子当たりのLII信号の強度が求められる。 As for the soot aggregates produced by combustion, the shape of the particles is roughly known, so the value of the shape factor α is determined in advance by experiments. Since the shape factor α is known, the volume equivalent particle diameter D (for example, 80 nm) can be obtained from the decay time of the LII signal and the relationship shown in FIG. The volume of a single aggregate (for example, 2.7 × 10 5 nm 3 ) is determined from the determined volume equivalent particle diameter D, and the LII per aggregate particle is determined from the determined volume and the relationship shown in FIG. The signal strength is required.

全LII強度=凝集体一粒子当たりのLII強度×粒子数・・・(2)
であるので、形状因子αが既知の場合には、LII信号の強度(LIIの全信号強度)及びLII信号の減衰時間より、凝集体サイズ(体積等価粒径)と粒子数とを求めることができる。
Total LII intensity = LII intensity per aggregate particle × number of particles (2)
Therefore, when the shape factor α is known, the aggregate size (volume equivalent particle diameter) and the number of particles can be obtained from the intensity of the LII signal (total signal intensity of LII) and the decay time of the LII signal. it can.

そこで、本実施の形態では、デジタルオシロスコープ34のメモリに、図11に示すLII信号の減衰時間と移動度粒径との関係を示す第1のマップ、図14に示す凝集体の体積(等価体積)と一粒子当たりのLII信号の強度との関係を表す第2のマップ、及び図15に示す体積等価粒径とLII信号の減衰時間との関係を示す第3のマップを予め記憶すると共に、図2に示す計測ルーチンのプロブラムを予め記憶しておく。   Therefore, in the present embodiment, the memory of the digital oscilloscope 34 stores, in the memory of the digital oscilloscope 34, the first map showing the relationship between the decay time of the LII signal and the mobility particle size shown in FIG. ) And the intensity of the LII signal per particle, and a third map indicating the relationship between the volume equivalent particle diameter and the LII signal decay time shown in FIG. The measurement routine program shown in FIG. 2 is stored in advance.

次に、図2の計測ルーチンについて説明する。ステップ100において、LII信号を取り込み、ステップ102で取り込んだLII信号をデジタル値に変換し、ステップ104においてLII信号の強度を演算すると共に、ステップ106おいてLII信号の減衰時間を演算する。   Next, the measurement routine of FIG. 2 will be described. In step 100, the LII signal is captured, and the LII signal captured in step 102 is converted into a digital value. In step 104, the intensity of the LII signal is calculated, and in step 106, the decay time of the LII signal is calculated.

ステップ108では、ステップ106で演算したLII信号の減衰時間と第1のマップとに基づいて、LII信号の減衰時間に対応する移動度粒径を凝集体のサイズとして演算し、ステップ110では、ステップ106で演算したLII信号の減衰時間と第3のマップとに基づいて、体積等価粒径Dを演算し、ステップ112で、予め定められている形状因子αと演算した体積等価粒径Dとに基づいて体積を演算した後、ステップ114で、演算した体積と第2のマップとに基づいて、一粒子のLII信号の強度を演算する。   In step 108, based on the LII signal decay time calculated in step 106 and the first map, the mobility particle size corresponding to the LII signal decay time is calculated as the aggregate size. In step 110, step 110 is performed. Based on the decay time of the LII signal calculated in 106 and the third map, the volume equivalent particle diameter D is calculated, and in step 112, the predetermined shape factor α and the calculated volume equivalent particle diameter D are obtained. After calculating the volume based on this, in step 114, the intensity of the LII signal of one particle is calculated based on the calculated volume and the second map.

そして、ステップ116において、一粒子のLII信号の強度及びLII信号の強度(LII信号の全信号強度)より、凝集体の粒子数を求め、ステップ118において、ステップ108で演算した移動度粒径もしくはステップ110で演算した体積等価粒径、及びステップ116で演算した粒子数をデジタルオシロスコープ34の表示部に表示する。   In step 116, the number of aggregate particles is determined from the intensity of the LII signal of one particle and the intensity of the LII signal (total signal intensity of the LII signal). In step 118, the mobility particle diameter calculated in step 108 or The volume equivalent particle diameter calculated in step 110 and the number of particles calculated in step 116 are displayed on the display unit of the digital oscilloscope 34.

以上説明したように、本実施の形態によれば、LII信号の減衰時間に基づいて凝集体のサイズを測定することができると共に、LII信号の減衰時間及びLII信号の強度に基づいて、凝集体の粒子数を演算することができる。   As described above, according to the present embodiment, the size of the aggregate can be measured based on the decay time of the LII signal, and the aggregate can be measured based on the decay time of the LII signal and the intensity of the LII signal. The number of particles can be calculated.

次に、形状因子αが未知の凝集体粒子の体積等価粒径Dと形状因子αとを決定する方法について説明する。この場合には、2つのレーザ強度でのLII信号強度の比、LII信号減衰時間、及び以下に示す2つのマップを用いる。また、形状因子αは、粒子比表面が球の場合に対し、どの程度大きいかを表す量として以下のように定義する。   Next, a method for determining the volume equivalent particle diameter D and the shape factor α of the aggregate particles whose shape factor α is unknown will be described. In this case, the ratio of the LII signal intensity at the two laser intensities, the LII signal decay time, and the following two maps are used. Further, the shape factor α is defined as follows as an amount representing how much the particle specific surface is compared to a sphere.

体積等価粒径Dに対して表面積がπD3/6のとき(球の場合)α=1となる。また、体積等価粒径Dに対して表面積がα’πD3/6の粒子に対して形状因子α=α’(α’>1)となる。 Surface area to volume equivalent particle diameter D (in the case of a sphere) when πD 3/6 α = 1 and becomes. The shape factor alpha = alpha to the particle surface area is α'πD 3/6 relative to the volume equivalent particle diameter D becomes '(α'> 1).

図16及び図17は、2つのレーザ光のレーザ強度が570mJ/cm2及び285mJ/cm2のときの、2つのレーザ強度でのLII信号強度の比に対する体積等価粒径D及び形状因子αの等高線図を示すマップである。 16 and 17 show the volume equivalent particle diameter D and the shape factor α with respect to the ratio of the LII signal intensity at the two laser intensities when the laser intensities of the two laser lights are 570 mJ / cm 2 and 285 mJ / cm 2 . It is a map which shows a contour map.

図18及び図19は、レーザ強度が570mJ/cm2のときのLII信号減衰時間に対する体積等価粒径D及び形状因子αのの等高線図を示すマップである。 18 and 19 are maps showing contour maps of the volume equivalent particle diameter D and the shape factor α with respect to the LII signal decay time when the laser intensity is 570 mJ / cm 2 .

これらのマップは、デジタルオシロスコープ34のメモリに、予め記憶しておく。   These maps are stored in advance in the memory of the digital oscilloscope 34.

デジタルオシロスコープ34では、図2で説明したように、2つのレーザ強度のLII信号強度を各々演算した後、2つのレーザ強度のLII信号強度の比を演算すると共に、LII減衰時間を演算する。そして、上記のマップに基づいて2つのレーザ強度でのLII信号強度の比に対するD−αの等高線と、LII信号減衰時間に対するD−αの等高線を求め、これらの等高線を重ねることで体積等価粒径D及び形状因子αを求める。例えば、LII信号強度の比が0.5でLII信号減衰時間が5nsの時は、2つの等高線を重ねることで形状因子が約4、体積等価粒径が約35nmと一義的に求めることができる。   As described with reference to FIG. 2, the digital oscilloscope 34 calculates the LII signal intensity of the two laser intensities, calculates the ratio of the LII signal intensity of the two laser intensities, and calculates the LII decay time. Then, based on the above map, the contour line of D-α with respect to the ratio of the LII signal intensity at the two laser intensities and the contour line of D-α with respect to the LII signal decay time are obtained, and the volume equivalent particle is obtained by superimposing these contour lines. The diameter D and the shape factor α are obtained. For example, when the LII signal intensity ratio is 0.5 and the LII signal decay time is 5 ns, the shape factor is approximately 4 and the volume equivalent particle diameter is approximately 35 nm by overlapping two contour lines. .

得られた体積等価粒径D及び形状因子α及びLII信号の絶対強度から図2の手順位により粒子数を求めることができる。また、凝集体形状因子αが既知の粒子に対しては、2つのレーザ強度でのLII信号強度の比、またはLII信号減衰時間の測定と、LII信号の絶対強度を求めるのみで凝集体サイズ(体積等価粒径)と粒子数とを求めることができる。   The number of particles can be determined from the obtained volume equivalent particle diameter D, the shape factor α, and the absolute intensity of the LII signal according to the procedure shown in FIG. For particles with known aggregate shape factor α, the aggregate size (by measuring the ratio of LII signal intensity at two laser intensities or LII signal decay time and the absolute intensity of the LII signal) Volume equivalent particle diameter) and the number of particles can be determined.

なお、上記のマップは、数値シミュレーションで求めることができるし、また標準粒子等を用いて実験的にも求めることができる。   The above map can be obtained by numerical simulation, or can be obtained experimentally using standard particles or the like.

本発明の実施の形態の概略図である。It is the schematic of embodiment of this invention. 本発明の実施の形態の計測ルーチンを示す流れ図である。It is a flowchart which shows the measurement routine of embodiment of this invention. 標準粒子の微粒子計測装置(SMPS)による粒径と粒子個数との関係を示す線図である。It is a diagram which shows the relationship between the particle size by the fine particle measuring device (SMPS) of standard particles, and the number of particles. 標準粒子の代表的なTEM画像示す概略図である。It is the schematic which shows the typical TEM image of a standard particle. 標準粒子の展開直径分布を示す線図である。It is a diagram which shows the expansion | deployment diameter distribution of a standard particle. TEM画像解析で用いた粒径のの定義を説明するための概略図である。It is the schematic for demonstrating the definition of the particle size used by TEM image analysis. 微粒子計測装置(SMPS)による粒径とTEM粒径との相関を示す線図である。It is a diagram which shows the correlation with the particle size and TEM particle size by a fine particle measuring device (SMPS). LII信号の絶対強度のレーザ光強度依存性を示す線図である。It is a diagram which shows the laser beam intensity | strength dependence of the absolute intensity | strength of a LII signal. LII信号の絶対強度のEC濃度依存性をを示す線図である。It is a diagram which shows the EC density | concentration dependence of the absolute intensity of a LII signal. LII信号の経時変化を示す線図である。It is a diagram which shows a time-dependent change of a LII signal. LII信号の減衰時間と移動度粒径との関係を示す線図である。It is a diagram which shows the relationship between the decay time of a LII signal, and a mobility particle size. 比周囲長と平均展開展開直径(旋回粒径)との関係を示す線図である。It is a diagram which shows the relationship between specific circumference and an average expansion | deployment diameter (swivel particle size). 平均比周囲長と平均移動度粒径との関係を示す線図である。It is a diagram which shows the relationship between average specific circumference and average mobility particle size. α=1,5,10について単一粒子の体積とLII信号の強度との関係を示した線図である。It is the diagram which showed the relationship between the volume of a single particle, and the intensity | strength of a LII signal about (alpha) = 1,5,10. α=1,5,10について凝集体の場合の体積等価粒径とLII信号の強度との関係を示した線図である。It is the diagram which showed the relationship between the volume equivalent particle size in the case of an aggregate about α = 1,5,10, and the intensity | strength of a LII signal. 2つのレーザ強度でのLII信号強度の比に対する体積等価粒径D及び形状因子αの等高線図を示すマップである。It is a map which shows the contour map of the volume equivalent particle diameter D and the shape factor (alpha) with respect to the ratio of the LII signal intensity | strength in two laser intensity | strengths. 図16と同様の等高線図を示すマップである。It is a map which shows the same contour map as FIG. LII信号減衰時間に対する体積等価粒径D及び形状因子αのの等高線図を示すマップである。It is a map which shows the contour map of the volume equivalent particle diameter D with respect to LII signal decay time, and the shape factor (alpha). 図18と同様の等高線図を示すマップである。It is a map which shows the same contour map as FIG.

符号の説明Explanation of symbols

10 パルス発振レーザ装置
22 LII観測用石英円筒セル
24 光電子増倍管
34 デジタルオシロスコープ
10 Pulsed Laser Device 22 Quartz Cylindrical Cell for LII Observation 24 Photomultiplier Tube 34 Digital Oscilloscope

Claims (6)

パルスレーザを浮遊凝集体に照射したときに該浮遊凝集体からレーザ誘起により発光される白熱光の強度を検出し(100)
検出された前記白熱光の強度からレーザ誘起白熱光全強度信号を求め(104)、
前記レーザ誘起白熱光全強度信号の時間変化に基づいてレーザ誘起白熱光強度の減衰時間を求め(106)、
予め定めたレーザ誘起白熱光強度の減衰時間と移動度粒径との関係、及び求められた前記レーザ誘起白熱光強度の減衰時間に基づいて、浮遊凝集体の移動度粒径を求め(108)、
前記移動度粒径を浮遊凝集体のサイズとして測定する
浮遊凝集体の測定方法。
Detecting the intensity of incandescent light emitted from the floating aggregate when the pulsed laser is irradiated to the floating aggregate (100) ;
A laser-induced incandescent light total intensity signal is obtained from the detected incandescent light intensity (104),
Determining the decay time of the laser-induced incandescent light intensity based on the time change of the laser-induced incandescent light total intensity signal (106);
Based on a predetermined relationship between the decay time of the laser-induced incandescent light intensity and the mobility particle size , and the obtained decay time of the laser-induced incandescent light intensity, the mobility particle size of the floating aggregate is obtained (108). ,
Measuring the mobility particle size as the size of floating aggregates ,
Method for measuring suspended aggregates.
凝集体形状因子が既知の浮遊凝集体の測定方法であって、
パルスレーザを浮遊凝集体に照射したときに該浮遊凝集体からレーザ誘起により発光される白熱光の強度を検出し(100)
検出された前記白熱光の強度からレーザ誘起白熱光全強度信号を求め(104)、
前記レーザ誘起白熱光全強度信号の時間変化に基づいてレーザ誘起白熱光強度の減衰時間を求め(106)、
予め定めたレーザ誘起白熱光強度の減衰時間と、凝集体の体積と等価体積の球体の径で表される体積等価粒径との関係、及び求められた前記レーザ誘起白熱光強度の減衰時間に基づいて、体積等価粒径を求め(110)、
前記体積等価粒径から凝集体の体積を求め(112)、
予め定めた凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係、及び求められた前記凝集体の体積に基づいて、凝集体一粒子のレーザ誘起白熱光強度を求め(114)、
前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を求める(116)、
浮遊凝集体の測定方法。
A method for measuring suspended aggregates with known aggregate form factors,
Detecting the intensity of incandescent light emitted from the floating aggregate when the pulsed laser is irradiated to the floating aggregate (100) ;
A laser-induced incandescent light total intensity signal is obtained from the detected incandescent light intensity (104),
Determining the decay time of the laser-induced incandescent light intensity based on the time change of the laser-induced incandescent light total intensity signal (106);
The relationship between the predetermined decay time of the laser-induced incandescent light intensity and the volume equivalent particle diameter represented by the sphere diameter of the volume of the aggregate and the equivalent volume, and the obtained decay time of the laser-induced incandescent light intensity. Based on the volume equivalent particle size (110),
Determining the volume of the aggregate from the volume equivalent particle diameter (112);
Based on the relationship between the predetermined volume of the aggregate and the laser-induced incandescent light intensity of the aggregate one particle, and the determined volume of the aggregate, the laser-induced incandescent light intensity of the aggregate one particle is obtained (114) ,
The number of particles in the floating aggregate is determined from the laser-induced incandescent light intensity of the one aggregate particle and the laser-induced incandescent light total intensity signal (116),
Method for measuring suspended aggregates.
凝集体形状因子が未知の浮遊凝集体の測定方法であって、
強度が異なる2つ以上のパルスレーザを浮遊凝集体に照射したときに該浮遊凝集体からレーザ誘起により発光される白熱光の強度を各々検出し、
検出された2つの白熱光の強度からレーザ誘起白熱光全強度信号の比を求め、
検出された前記2つの白熱光の強度のうちいずれか一方の白熱光の強度からレーザ誘起白熱光全強度信号を求め、
前記レーザ誘起白熱光全強度信号の時間変化に基づいてレーザ誘起白熱光強度の減衰時間を求め、
予め定めたレーザ誘起白熱光強度信号の比と、凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係、並びに求められた前記レーザ誘起白熱光全強度信号の比に基づいて、レーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を求め、
予め定めたレーザ誘起白熱光強度の減衰時間と体積等価粒径及び凝集体形状因子との関係、並びに求められた前記レーザ誘起白熱光強度の減衰時間に基づいて、レーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を求め、
前記レーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係と、レーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係から、体積等価粒径及び凝集体形状因子を求め、
前記体積等価粒径から凝集体の体積を求め(112)、
予め定めた凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係、及び求められた前記凝集体の体積に基づいて、凝集体一粒子のレーザ誘起白熱光強度を求め(114)、
前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を求める(116)、
浮遊凝集体の測定方法。
A method for measuring floating aggregates whose aggregate form factor is unknown,
Detecting the intensity of incandescent light emitted from the floating aggregate when the floating aggregate is irradiated with two or more pulse lasers having different intensities, respectively ,
Obtain the ratio of the total intensity signal of the laser-induced incandescent light from the intensity of the two incandescent lights detected,
A laser-induced incandescent light total intensity signal is obtained from the intensity of one of the two incandescent lights detected ,
Determine the decay time of the laser-induced incandescent light intensity based on the time change of the laser-induced incandescent light total intensity signal ,
The ratio of the predetermined laser-induced incandescent light total intensity signal, the relationship between the volume of the aggregate and the volume equivalent particle size expressed by the diameter of the sphere of the equivalent volume and the aggregate form factor, and the obtained laser-induced incandescence Based on the ratio of the total light intensity signal, the relationship between the volume of the aggregate and the volume of the aggregate and the shape factor of the aggregate represented by the sphere diameter of the equivalent volume with respect to the ratio of the laser-induced incandescent light total intensity signal
Based on the relationship between the predetermined decay time of the laser-induced incandescent light intensity, the volume equivalent particle size and the aggregate shape factor, and the obtained decay time of the laser-induced incandescent light intensity, the decay time of the laser-induced incandescent light intensity The relationship between the volume of the aggregate and the volume equivalent particle size expressed by the diameter of the sphere of the equivalent volume and the aggregate shape factor is obtained.
The relationship between the volume of the aggregate and the volume equivalent particle size represented by the diameter of the sphere of the equivalent volume to the ratio of the laser-induced incandescent light total intensity signal and the aggregate shape factor, and the aggregate with respect to the decay time of the laser-induced incandescent light intensity From the relationship between the volume equivalent particle size and the aggregate shape factor represented by the volume of the sphere of the equivalent volume and the aggregate shape factor, the volume equivalent particle size and the aggregate shape factor are obtained,
Determining the volume of the aggregate from the volume equivalent particle diameter (112);
Based on the relationship between the predetermined volume of the aggregate and the laser-induced incandescent light intensity of the aggregate one particle, and the determined volume of the aggregate, the laser-induced incandescent light intensity of the aggregate one particle is obtained (114) ,
The number of particles in the floating aggregate is determined from the laser-induced incandescent light intensity of the one aggregate particle and the laser-induced incandescent light total intensity signal (116),
Method for measuring suspended aggregates.
浮遊凝集体にパルスレーザを照射するレーザ照射手段と、
前記浮遊凝集体からのレーザ誘起による白熱光強度を検出する検出手段と、
前記検出手段で検出された白熱光強度からレーザ誘起白熱光全強度信号を演算するレーザ誘起白熱光全強度信号演算手段と、
前記レーザ誘起白熱光全強度信号演算手段により演算されたレーザ誘起白熱光強度信号の時間変化に基づいて、該レーザ誘起白熱光強度の減衰時間を演算する減衰時間演算手段と、
レーザ誘起白熱光強度の減衰時間と移動度粒径との関係を記憶した記憶手段と、
前記減衰時間演算手段で演算されたレーザ誘起白熱光強度の減衰時間と前記記憶手段に記憶された関係とに基づいて、浮遊凝集体の移動度粒径を演算する粒径演算手段と、
前記浮遊凝集体の移動度粒径を浮遊凝集体のサイズとして表示する表示部と、
を含む浮遊凝集体の測定装置。
Laser irradiation means for irradiating the floating aggregate with a pulsed laser;
Detection means for detecting incandescent light intensity induced by laser from the floating aggregate;
A laser-induced incandescent light total intensity signal calculating means for calculating a laser-induced incandescent light total intensity signal from the incandescent light intensity detected by the detecting means;
Based on the time variation of the laser-induced incandescence total intensity signal calculated by said laser-induced incandescence total intensity signal calculating means, and the decay time calculating means for calculating a decay time of the laser-induced incandescence strongly light degree,
Storage means for storing the relationship between the decay time of the laser-induced incandescence strongly light degree and the mobility diameter,
A particle size computing means for the damping time calculation means laser-induced incandescence light strength of the decay time and which is calculated in the basis of the stored relationship in the storage means, for computation mobility particle size of the suspended aggregates,
A display unit for displaying the mobility particle size of the floating aggregate as the size of the floating aggregate;
An apparatus for measuring floating aggregates.
凝集体形状因子が既知の浮遊凝集体の測定装置であって、
浮遊凝集体にパルスレーザを照射するレーザ照射手段と、
前記浮遊凝集体からのレーザ誘起による白熱光強度を検出する検出手段と、
前記検出手段で検出された白熱光強度からレーザ誘起白熱光全強度信号を演算するレーザ誘起白熱光全強度信号演算手段と、
前記レーザ誘起白熱光全強度信号演算手段により演算されたレーザ誘起白熱光強度信号の時間変化に基づいて、該レーザ誘起白熱光強度の減衰時間を演算する減衰時間演算手段と、
レーザ誘起白熱光強度の減衰時間と、凝集体の体積と等価体積の球体の径で表される体積等価粒径との関係を記憶した記憶手段と、前記減衰時間演算手段で演算されたレーザ誘起白熱光強度の減衰時間とに基づいて、体積等価粒径を演算する体積等価粒径演算手段と、
前記体積等価粒径演算手段で演算された体積等価粒径から凝集体の体積を演算する凝集体の体積演算手段と、
凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係を記憶した記憶手段と、前記凝集体の体積演算手段で演算された凝集体の体積とに基づいて、凝集体一粒子のレーザ誘起白熱光強度を演算する凝集体一粒子のレーザ誘起白熱光強度演算手段と、
前記凝集体一粒子のレーザ誘起白熱光強度演算手段で演算された前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号演算手段で演算されたレーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を演算する浮遊凝集体の粒子数演算手段と、
前記浮遊凝集体の粒子数演算手段で演算された浮遊凝集体の粒子数を表示する表示部と
を含む浮遊凝集体の測定装置。
An apparatus for measuring suspended aggregates with known aggregate form factors,
Laser irradiation means for irradiating the floating aggregate with a pulsed laser;
Detection means for detecting incandescent light intensity induced by laser from the floating aggregate;
A laser-induced incandescent light total intensity signal calculating means for calculating a laser-induced incandescent light total intensity signal from the incandescent light intensity detected by the detecting means ;
Based on the time variation of the laser-induced incandescence total intensity signal calculated by said laser-induced incandescence total intensity signal calculating means, and the decay time calculating means for calculating a decay time of the laser-induced incandescence strongly light degree,
And decay time of the laser-induced incandescence strongly light degree, a storage means for storing a relationship between the volume equivalent diameter represented by diameter sphere volume equivalent volume of coagulation Atsumaritai, laser calculated by the decay time calculating means A volume equivalent particle diameter calculating means for calculating a volume equivalent particle diameter based on the decay time of the incandescent light intensity,
An aggregate volume calculating means for calculating the volume of the aggregate from the volume equivalent particle diameter calculated by the volume equivalent particle diameter calculating means;
Based on the storage means storing the relationship between the volume of the aggregate and the laser-induced incandescent light intensity of one aggregate particle, and the volume of the aggregate calculated by the volume calculation means of the aggregate, Means for calculating laser-induced incandescent light intensity of a single aggregate particle for calculating laser-induced incandescent light intensity;
The laser-induced incandescent light intensity calculated by the laser-induced incandescent light intensity calculating means of the aggregate one particle and the laser-induced incandescent light total intensity signal calculated by the laser-induced incandescent light total intensity signal calculating means. The floating aggregate particle number calculating means for calculating the floating aggregate particle number from
A display unit for displaying the number of floating aggregate particles calculated by the floating aggregate particle number calculating means ;
An apparatus for measuring floating aggregates.
凝集体形状因子が未知の浮遊凝集体の測定装置であって、
浮遊凝集体に強度が異なる2つ以上のパルスレーザを照射するレーザ照射手段と、
前記浮遊凝集体からのレーザ誘起による白熱光強度を各々検出する検出手段と、
前記検出手段で検出された2つの白熱光強度からレーザ誘起白熱全光強度信号の比を演算するレーザ誘起白熱光全強度信号の比演算手段と、
前記検出手段で検出された2つの白熱光の強度のうちいずれか一方の白熱光の強度からレーザ誘起白熱光全強度信号を演算するレーザ誘起白熱光全強度信号演算手段と、
前記レーザ誘起白熱光全強度信号演算手段により演算されたレーザ誘起白熱光強度信号時間変化に基づいて、該レーザ誘起白熱光強度の減衰時間を演算する減衰時間演算手段と、
レーザ誘起白熱光強度信号の比と凝集体の体積と等価体積の球体の径で表される体積等価粒径と凝集形状因子との関係を記憶した記憶手段と、前記レーザ誘起白熱光全強度信号の比演算手段で演算されたレーザ誘起白熱光全強度信号の比とに基づいて、レーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を演算するレーザ誘起白熱光全強度信号の比に対する体積等価粒径−凝集体形状因子演算手段と、
レーザ誘起白熱光強度の減衰時間と、凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係を記憶した記憶手段と、前記減衰時間演算手段で演算されたレーザ誘起白熱光強度の減衰時間とに基づいて、レーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係を演算するレーザ誘起白熱光強度の減衰時間に対する体積等価粒径−凝集体形状因子演算手段と、
前記レーザ誘起白熱光全強度信号の比に対する体積等価粒径−凝集体形状因子演算手段で演算されたレーザ誘起白熱光全強度信号の比に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子との関係と、前記レーザ誘起白熱光強度の減衰時間に対する体積等価粒径−凝集体形状因子演算手段で演算されたレーザ誘起白熱光強度の減衰時間に対する凝集体の体積と等価体積の球体の径で表される体積等価粒径及び凝集体形状因子の関係とから、前記体積等価粒径及び凝集体形状因子演算する体積等価粒径及び凝集体形状因子演算手段と、
前記体積等価粒径及び凝集体形状因子演算手段で演算された体積等価粒径から凝集体の体積を演算する凝集体の体積演算手段と、
凝集体の体積と凝集体一粒子のレーザ誘起白熱光強度との関係を記憶した記憶手段と、前記凝集体の体積演算手段で演算された凝集体の体積とに基づいて、凝集体一粒子のレーザ誘起白熱光強度を演算する凝集体一粒子のレーザ誘起白熱光強度演算手段と、
前記凝集体一粒子のレーザ誘起白熱光強度演算手段で演算された前記凝集体一粒子のレーザ誘起白熱光強度と前記レーザ誘起白熱光全強度信号演算手段で演算されたレーザ誘起白熱光全強度信号とから浮遊凝集体の粒子数を演算する浮遊凝集体の粒子数演算手段と、
前記浮遊凝集体の粒子数演算手段で演算された浮遊凝集体の粒子数を表示する表示部と、
を含む浮遊凝集体の測定装置。
An apparatus for measuring floating aggregates whose aggregate form factor is unknown,
Laser irradiation means for irradiating two or more pulsed lasers having different intensities to the floating aggregate;
Detection means for detecting incandescent light intensity induced by laser from the floating aggregate,
A ratio calculating means for a laser-induced incandescent light total intensity signal for calculating a ratio of a laser-induced incandescent total light intensity signal from two incandescent light intensities detected by the detecting means ;
A laser-induced incandescent light total intensity signal calculating means for calculating a laser-induced incandescent light total intensity signal from the intensity of one of the two incandescent lights detected by the detecting means;
Based on the time variation of the laser-induced incandescence total intensity signal calculated by said laser-induced incandescence total intensity signal calculating means, and the decay time calculating means for calculating a decay time of the laser-induced incandescence strongly light degree,
A storage means for storing a ratio of a laser-induced incandescent light total intensity signal, a volume equivalent particle diameter expressed by a sphere diameter of an aggregate volume and an equivalent volume, and an aggregation shape factor; and the laser-induced incandescent light total Based on the ratio of the laser-induced incandescent light total intensity signal calculated by the intensity signal ratio calculation means, the volume of the aggregate and the volume of the sphere of the equivalent volume with respect to the ratio of the laser-induced incandescent light total intensity signal Volume equivalent particle size-aggregate shape factor calculating means for the ratio of the laser-induced incandescent light total intensity signal for calculating the relationship between the equivalent particle size and the aggregate shape factor;
A laser-induced incandescence light strength of the decay time, and storage means for storing a relationship between the volume and the equivalent volume of the volume equivalent particle size and aggregate shape factor represented by the diameter of the spherical aggregates, the damping time calculating means Based on the decay time of the laser-induced incandescent light intensity calculated in step 1, the volume-equivalent particle size and aggregate form factor represented by the sphere diameter of the aggregate volume and the equivalent volume with respect to the decay time of the laser-induced incandescent light intensity A volume-equivalent particle diameter-aggregate shape factor calculating means for the decay time of the laser-induced incandescent light intensity for calculating the relationship of:
Volume equivalent particle diameter to the ratio of the laser-induced incandescent light total intensity signal-expressed by the diameter of the sphere having the volume of the aggregate and the equivalent volume with respect to the ratio of the laser-induced incandescent light total intensity signal calculated by the aggregate shape factor calculating means. The volume-equivalent particle size and aggregate shape factor, and the volume-equivalent particle size-aggregate shape factor calculation means for the laser-induced incandescent light intensity decay time. The volume equivalent particle size and aggregate shape factor for calculating the volume equivalent particle size and aggregate shape factor from the relationship between the volume equivalent particle size and aggregate shape factor represented by the volume of the aggregate and the sphere diameter of the equivalent volume Computing means;
Aggregate volume calculating means for calculating the volume of the aggregate from the volume equivalent particle diameter and the volume equivalent particle diameter calculated by the aggregate shape factor calculating means,
Based on the storage means storing the relationship between the volume of the aggregate and the laser-induced incandescent light intensity of one aggregate particle, and the volume of the aggregate calculated by the volume calculation means of the aggregate, Means for calculating laser-induced incandescent light intensity of a single aggregate particle for calculating laser-induced incandescent light intensity;
The laser-induced incandescent light intensity calculated by the laser-induced incandescent light intensity calculating means of the aggregate one particle and the laser-induced incandescent light total intensity signal calculated by the laser-induced incandescent light total intensity signal calculating means. The floating aggregate particle number calculating means for calculating the floating aggregate particle number from
A display unit for displaying the number of floating aggregate particles calculated by the floating aggregate particle number calculating means;
An apparatus for measuring floating aggregates.
JP2003392901A 2003-11-21 2003-11-21 Method and apparatus for measuring suspended aggregates Expired - Fee Related JP4337518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392901A JP4337518B2 (en) 2003-11-21 2003-11-21 Method and apparatus for measuring suspended aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392901A JP4337518B2 (en) 2003-11-21 2003-11-21 Method and apparatus for measuring suspended aggregates

Publications (2)

Publication Number Publication Date
JP2005156256A JP2005156256A (en) 2005-06-16
JP4337518B2 true JP4337518B2 (en) 2009-09-30

Family

ID=34719455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392901A Expired - Fee Related JP4337518B2 (en) 2003-11-21 2003-11-21 Method and apparatus for measuring suspended aggregates

Country Status (1)

Country Link
JP (1) JP4337518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2247938A1 (en) * 2008-02-06 2010-11-10 Basf Se Measurement system for the multidimensional aerosol characterization
WO2014141994A1 (en) * 2013-03-15 2014-09-18 国立大学法人 東京大学 Particle analyzing method and particle analyzing device
JP2023538814A (en) * 2020-08-13 2023-09-12 マツクス-プランク-ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウ delivery device

Also Published As

Publication number Publication date
JP2005156256A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
CA2272255C (en) Absolute light intensity measurements in laser induced incandescence
Migliorini et al. Investigation of optical properties of aging soot
JPH03170005A (en) Optical inspection of fine pore in turbine impeller
Reimann et al. 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS)
US20040141176A1 (en) Small particle analysis by laser induced incandescence
JP5430148B2 (en) Method for detecting defects in porous material
JPH0810188B2 (en) Particulate matter analyzer and analysis method, ultrapure water production apparatus, semiconductor production apparatus, high-purity gas production apparatus
US6005913A (en) System and method for using X-ray diffraction to detect subsurface crystallographic structure
JP4337518B2 (en) Method and apparatus for measuring suspended aggregates
Zimmer et al. Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions
JP2002350324A (en) Method and apparatus for selecting defect occurring on or near surface of flat and smooth substrate
Suzuki et al. Second harmonic generation microscopy differentiates collagen type I and type III in COPD
Collings et al. Particles from internal combustion engines-what we need to know
Lee et al. Quantitative measurements of soot particles in a laminar diffusion flame using a LII/LIS technique
WO2017175811A1 (en) Cancer detection method, cancer detection device, and cancer detection program
Delhay et al. 2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements
Witze (KA-2) Diagnostics for the Measurement of Particulate Matter Emissions from Reciprocating Engines
US20030197863A1 (en) Small particle analysis by laser induced incandescence
JPH11237226A (en) Defect inspection equipment
CN111896436B (en) Method and device for simultaneously measuring primary particle size distribution and thermal adaptation coefficient of carbon black agglomerates
Wu et al. Particle size distribution of soot from a laminar/diffusion flame
US20220026338A1 (en) Method for detecting particles or aerosol in a flowing fluid, computer program, as well as electrical memory medium
JP3918508B2 (en) Particle size distribution measuring apparatus and method
Black Laser-induced incandescence measurements of particles in aeroengine exhausts
Wainner An analytical and quantitative analysis of the laser-induced incandescence of soot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees