JP4337346B2 - レーザ走査顕微鏡 - Google Patents

レーザ走査顕微鏡 Download PDF

Info

Publication number
JP4337346B2
JP4337346B2 JP2003001444A JP2003001444A JP4337346B2 JP 4337346 B2 JP4337346 B2 JP 4337346B2 JP 2003001444 A JP2003001444 A JP 2003001444A JP 2003001444 A JP2003001444 A JP 2003001444A JP 4337346 B2 JP4337346 B2 JP 4337346B2
Authority
JP
Japan
Prior art keywords
time
scanner
signal
series signal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003001444A
Other languages
English (en)
Other versions
JP2004212807A (ja
Inventor
幹夫 大崎
博之 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003001444A priority Critical patent/JP4337346B2/ja
Publication of JP2004212807A publication Critical patent/JP2004212807A/ja
Application granted granted Critical
Publication of JP4337346B2 publication Critical patent/JP4337346B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料上でレーザ光を走査することにより試料を観察するレーザ走査顕微鏡に関する。
【0002】
【従来の技術】
従来より、レーザ走査顕微鏡では、レーザ光源と対物レンズとの間の光路上にガルバノスキャナなどの反射部材を配置し、この反射部材の回転角度を連続的に変えることにより、試料上でレーザ光を走査している(例えば特許文献1)。反射部材の回転角度の制御は角度に対応した制御信号を反射部材の駆動装置に入力して行うが、この制御信号は、走査条件(速度など)に応じて変えられる。
【0003】
しかし、反射部材の実際の回転角度は一般に制御信号の指示に対して遅れるため、この遅延時間を考慮して、試料から発生する光(反射光や蛍光など)の画像化が行われる。通常この遅延時間は、レーザ走査顕微鏡の製造時に走査条件(速度など)に応じて測定され、顕微鏡内部に予め記憶させてある。したがって、ユーザが走査条件を変えても、遅延時間が補正され、試料上での位置ずれや歪みのない画像を観察することができる。
【0004】
【特許文献1】
特開2000−121947号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来のレーザ走査顕微鏡では、その製造時に想定されなかった新たな走査条件をユーザが設定すると、制御信号に対する反射部材の角度設定の遅れを補正できないので、試料上での位置ずれや歪みのない良好な画像を生成できない。
【0006】
本発明の目的は、納品後に追加された新たな走査条件の下でも良好な画像を生成できるレーザ走査顕微鏡を提供することにある。
【0007】
【課題を解決するための手段】
本発明のレーザ走査顕微鏡は、レーザ光を射出する光源と、レーザ光を偏向する光学部材と、光学部材を駆動してレーザ光の偏向角度を変えることにより、レーザ光を試料上で走査する駆動手段と、駆動手段に偏向角度の制御信号を入力する第1指示手段と、レーザ光の走査により試料から発生する光の強度を検出して、該強度に関わる第1の時系列信号を出力する光検出手段と、第1の時系列信号の一部を指示されたタイミングで取得して、試料の観察対象範囲の画像を生成する画像生成手段と、画像生成手段による画像の生成に先立ち、光学部材による実際の偏向角度を逐次検知して、該実際の偏向角度に関わる第2の時系列信号を取得するとともに、制御信号により設定された偏向角度を逐次検知して、該設定された偏向角度に関わる第3の時系列信号を取得する検知手段と、画像生成手段による画像の生成に先立ち、第2の時系列信号及び第3の時系列信号に基づいて、実際の偏向角度が設定された偏向角度となるまでの遅延時間を測定する測定手段と、画像生成手段による画像の生成時、制御信号と遅延時間とに基づいて、画像生成手段に一部の取得タイミングを指示する第2指示手段とを備えたものである。
また、前記画像生成手段及び前記検知手段は、共通の画像サンプリング回路であって、該画像サンプリング回路には、前記第1の時系列信号、前記第2の時系列信号、及び前記第3の時系列信号の間で取得すべき信号を切り換えるセレクタが含まれ、該画像サンプリング回路は、該セレクタの切り替えにより、前記画像生成手段として前記第1時系列信号を取得する状態と、前記検知手段として前記第2の時系列信号を取得する状態と、前記検知手段として前記第3の時系列信号を取得する状態との間で切り換わる。
【0011】
【発明の実施の形態】
以下、図面を用いて本発明の実施形態を詳細に説明する
本実施形態のレーザ走査顕微鏡10は、図1に示すように、レーザ光源11と、光分離モジュール12と、試料21のX軸方向をスキャンするX軸用のガルバノスキャナ13Xおよびスキャナドライバ14Xと、試料21のY軸方向をスキャンするY軸用のガルバノスキャナ13Yおよびスキャナドライバ14Yと、スキャナ制御回路15と、光検出器16と、画像サンプリング回路17と、クロック生成回路18と、CPU19と、記憶装置20とで構成されている。
【0012】
また、画像サンプリング回路17は、図2に示すように、セレクタ22と、A/Dコンバータ23と、フレームメモリ24と、アドレスカウンタ25と、書き込み制御信号生成回路26とで構成される。レーザ走査顕微鏡10のうち、図1のスキャナ制御回路15,CPU19、および、図2のA/Dコンバータ23,アドレスカウンタ25,書き込み制御信号生成回路26は、クロック生成回路18からのクロックに同期して動作する。
【0013】
レーザ光源11から射出されたレーザ光L1は、光分離モジュール12とガルバノスキャナ13Xとガルバノスキャナ13Yを介した後、不図示の対物レンズを介して試料21に入射する。対物レンズ(不図示)はレーザ光L1を集光するため、試料21上にはレーザスポットが形成される。ちなみに、光分離モジュール12は、ハーフミラーまたはダイクロイックミラーにより構成される。
【0014】
ガルバノスキャナ13X,13Yは、各々、反射部材(ミラー)により構成され、その反射作用でレーザ光L1を偏向する(請求項の「光学部材」)。また、一方のガルバノスキャナ13Xは、X軸およびY軸に垂直な回転軸を中心として往復回転可能であり、他方のガルバノスキャナ13Yは、X軸に平行な回転軸を中心として往復回転可能である。X軸,Y軸は直交する。
【0015】
このため、一方のガルバノスキャナ13Xで反射した後、他方のガルバノスキャナ13Yで反射して、試料21に入射するレーザ光L1は、ガルバノスキャナ13Xの回転によりX軸方向に走査され、ガルバノスキャナ13Yの回転によりY軸方向に走査される。
なお、ガルバノスキャナ13Xの回転角度とガルバノスキャナ13Xによるレーザ光L1の偏向角度は、1対1に対応する。同様に、ガルバノスキャナ13Y回転角度とガルバノスキャナ13Yによるレーザ光L1の偏向角度も、1対1に対応する。
【0016】
また、ガルバノスキャナ13X,13Yに接続されたスキャナドライバ14X,14Y(請求項の「駆動手段」)は、スキャナ制御回路15からのスキャナ制御信号AX,AYに基づいて各々のガルバノスキャナ13X,13Yを駆動し、ガルバノスキャナ13X,13Yの回転角度(つまりレーザ光L1の偏向角度)を調整する。
【0017】
ガルバノスキャナ13X,13Yを回転させて、図3に示すラスタスキャンを試料21上で実現させる場合、スキャナドライバ14Xは、スキャナ制御信号AXに基づいてガルバノスキャナ13Xを高速で往復回転させ、スキャナドライバ14Yは、スキャナ制御信号AYに基づいてガルバノスキャナ13Yを低速で回転させる。
【0018】
その結果、レーザ光L1は、X軸方向に高速で往復走査され、かつ、Y軸方向に低速で走査され、結果として、2次元的に走査される。図3に示した多数の斜め線は、レーザ光L1の2次元走査に伴う試料21上でのレーザスポット(走査点)の軌跡を表している。通常、レーザ光L1の2次元走査は、試料21の観察対象領域21aより広い範囲で行われる。
【0019】
また、ガルバノスキャナ13X,13Yの各々には、ガルバノスキャナ13X,13Yの実際の回転角度を逐次検出するためにセンサ(不図示)が設けられている。そして、スキャナドライバ14X,14Yは、ガルバノスキャナ13X,13Yのセンサ出力(フィードバック信号)に基づいて、各々の回転角度をフィードバック制御する。
【0020】
なお、X軸用のガルバノスキャナ13Xのセンサ出力(以下「スキャナ角度信号KX」という)は、スキャナドライバ14Xを介して画像サンプリング回路17のセレクタ22(図2)に出力され、画像サンプリング回路17で逐次検知される。スキャナ角度信号KXに関わる説明は、後で詳細に行う。
ここで、スキャナ制御回路15からスキャナドライバ14X,14Yに出力されるスキャナ制御信号AX,AYの説明を行う。スキャナ制御信号AX,AYは、CPU19がスキャナ制御回路15に設定したスキャナ制御パターン(スキャン速度,スキャン範囲,スキャン周波数などの走査条件)に基づいて、スキャナ制御回路15が生成したものである。スキャナ制御回路15,CPU19は、請求項の「第1指示手段」に対応する。
【0021】
スキャナドライバ14Xへのスキャナ制御信号AXは、図4に示すように、ノコギリ波形(三角波形)の周期的な信号である。図4の横軸は時間、縦軸はガルバノスキャナ13Xの回転角度の設定値(電圧値)を表している。スキャナドライバ14Yへのスキャナ制御信号AYは、図示省略したが、同様の信号である。
ただし、スキャナ制御信号AX,AYは周期が異なる。スキャナ制御信号AYの周期は、図3の観察対象領域21aを2次元走査する際の所要時間に相当し、スキャナ制御信号AXの周期Taは、スキャナ制御信号AYの周期と比較して非常に短い(例えば1/100)。
【0022】
スキャナ制御信号AX,AYの波形は、CPU19からスキャナ制御回路15に設定されるスキャナ制御パターン(スキャン速度,スキャン範囲,スキャン周波数などの走査条件)に応じて異なる。
これらのスキャナ制御信号AX,AYは、レーザ光L1の2次元走査時、スキャナドライバ14X,14Yに対して「ガルバノスキャナ13X,13Yの回転角度の設定値」を指示するための信号である。本実施形態では、スキャナ制御信号AXの設定値が上昇するとき(期間Tb)、レーザ光L1が図3の斜め線に沿って図中左方から右方へ走査される。逆に設定値が下降するとき(期間Tc)、レーザ光L1は振り戻される。
【0023】
なお、スキャナドライバ14Xへのスキャナ制御信号AX(図4)は、スキャナ制御回路15から画像サンプリング回路17(図2)のセレクタ22にも出力され、画像サンプリング回路17で逐次検知される。スキャナ制御信号AXに関わる説明は、後で詳細に行う。
一方、レーザ光L1の2次元走査(図3)により、試料21から発生する戻り光L2(反射光や蛍光など)は、対物レンズ(不図示)とガルバノスキャナ13Yとガルバノスキャナ13Xを介した後、光分離モジュール12で分離され、光検出器16に入射する。この光検出器16は、例えば光電子増倍管(PMT)により構成される。
【0024】
光検出器16では、戻り光L2の強度を逐次検出し、この強度に関わる時系列信号(以下「光強度信号H」という)を画像サンプリング回路17のセレクタ22(図2)に出力する。光分離モジュール12,光検出器16は、請求項の「光検出手段」に対応し、光強度信号Hは「第1の時系列信号」に対応する。
なお、レーザ走査顕微鏡10による蛍光観察時、光分離モジュール12にはダイクロイックミラーが用いられ、光分離モジュール12とレーザ光源11の間には励起フィルタが、光分離モジュール12と光検出器16の間にはバリアフィルタが配置され、試料21は、蛍光色素で染色される。
【0025】
次に、画像サンプリング回路17(図2)の説明を行う。
セレクタ22には、3つのアナログ入力と1つのアナログ出力が設けられている。3つのアナログ入力の各々には、上記した光検出器16からの光強度信号Hと、スキャナドライバ14Xからのスキャナ角度信号KXと、スキャナ制御回路15からのスキャナ制御信号AXとが供給されている。
【0026】
そして、セレクタ22は、CPU19からの切り替え信号に応じて、3つのアナログ入力(光強度信号H,スキャナ角度信号KX,スキャナ制御信号AX)のうち何れか1つを選択し、後段のA/Dコンバータ23に出力する。
A/Dコンバータ23は、セレクタ22からの信号(光強度信号H,スキャナ角度信号KX,スキャナ制御信号AXのうち何れか1つ)をデジタル信号に変換し、フレームメモリ24に出力する。ただし、A/Dコンバータ23からのデジタル信号をフレームメモリ24に保存するためには、アドレスカウンタ25からのアドレス指定信号と、書き込み制御信号生成回路26からの書き込み制御信号とが必要である。
【0027】
書き込み制御信号生成回路26は、CPU19からの制御信号に基づいて、フレームメモリ24への保存(データ書き込み)を許可するか否かに応じた書き込み制御信号を生成し、これをアドレスカウンタ25とフレームメモリ24の各々に出力する。
アドレスカウンタ25は、フレームメモリ24の書き込みアドレスの指定値を保持している。アドレスの指定値は、書き込み制御信号生成回路26からの書き込み制御信号が「許可」を表す場合に、クロック生成回路18からのクロックに応じて更新され、フレームメモリ24にアドレス指定信号として出力される。アドレスカウンタ25のイニシャライズはCPU19からの制御信号に基づいて行われる。
【0028】
このように、A/Dコンバータ23からのデジタル信号(光強度信号H,スキャナ角度信号KX,スキャナ制御信号AXのうち何れか1つ)は、書き込み制御信号が「許可」を表す場合に限って、選択的に、アドレス指定信号に応じたフレームメモリ24のアドレスに実際に保存されることになる。
書き込み制御信号の「許可」から「不許可」への切り替えや「不許可」から「許可」への切り替え、つまり、フレームメモリ14への保存データの選択は、CPU19からの制御信号に応じて自在に行うことができる。
【0029】
また、フレームメモリ24に保存されたデジタル信号(光強度信号H,スキャナ角度信号KX,スキャナ制御信号AXのうち何れか1つ)は、CPU19からの制御信号に応じて読み出し可能となっている。
ここで、セレクタ22が光検出器16に切り替えられた場合について説明する。この場合、フレームメモリ24には、光検出器16からの光強度信号Hのうち一部が選択的に保存されていく。これは、画像サンプリング回路17による画像の生成(画像化)を意味する。フレームメモリ24に保存された各データは、各画素のデータである。画像サンプリング回路17は、請求項の「画像生成手段」に対応する。
【0030】
画像サンプリング回路17により生成される画像の試料21上での位置や歪みの程度は、光検出器16からの光強度信号Hのうち一部を選択するタイミングに依存している。この選択タイミングに応じてフレームメモリ24に保存されるデータの試料21上での位置が変わるからである。
レーザ走査顕微鏡10では、画像サンプリング回路17における光強度信号Hの一部の選択タイミングを、CPU19から書き込み制御信号生成回路26への指示によって制御可能である。なお、CPU19は、請求項の「第2指示手段」に対応する。
【0031】
また、CPU19は、ガルバノスキャナ13Xの回転角度の設定値(図4のスキャナ制御信号AX参照)と、記憶装置20内の遅延時間ΔT(後述の方法により測定されたもの)を考慮して、画像サンプリング回路17における光強度信号Hの一部の選択タイミングを指示する。
遅延時間ΔTとは、図5に示すように、ガルバノスキャナ13Xの実際の回転角度(KX)が設定値の回転角度(AX)となるまでの遅れ時間に相当し、一般に、レーザ光L1の走査条件ごとに最適値が異なる。また、遅延時間ΔTの最適値は、スキャナドライバ14Xの調整状態や、ガルバノスキャナ13Xの機差によっても変化する。
【0032】
光強度信号Hを取り込む際のレーザ光L1の走査条件に適した遅延時間ΔTを考慮し、画像サンプリング回路17における光強度信号Hの一部の選択タイミングを指示することにより、試料21上での位置ずれや歪みのない良好な画像(例えば図3の観察対象領域21aの画像)を生成することが可能となる。
例えば図5の例では、ガルバノスキャナ13Xの回転角度の変化が安定している期間(つまり時間t1から時間t2までの期間)内に、画像サンプリング回路17に入力した光強度信号Hのみをフレームメモリ24に保存できるように、選択タイミングの指示が行われ、良好な画像が生成される。
【0033】
本実施形態のレーザ走査顕微鏡10では、上記の遅延時間ΔTを容易に測定することができる。つまり、レーザ走査顕微鏡10の製造時に限らず、納品後であっても、遅延時間ΔTを容易に測定できる。遅延時間ΔTを測定するタイミングは任意であるが、試料21の画像を生成する直前や、装置の立ち上げ時などが考えられる。遅延時間ΔTの測定方法については後述する。
【0034】
また、画像サンプリング回路17により生成された画像(例えば図3の観察対象領域21aの画像)、つまり、フレームメモリ24に保存された一部の光強度信号Hは、CPU19からの制御信号に応じて読み出され、例えば表示装置(不図示)に出力され、そこで可視化される。
次に、画像サンプリング回路17のセレクタ22がスキャナドライバ14Xに切り替えられた場合について説明する。この場合、フレームメモリ24には、スキャナドライバ14Xからのスキャナ角度信号KXが保存されていく。これは、スキャナ角度信号KXの画像サンプリング回路17による逐次検知を意味する。画像サンプリング回路17は、請求項の「検知手段」に対応する。
【0035】
そして、画像サンプリング回路17により逐次検知されたスキャナ角度信号KX(つまりフレームメモリ24に保存されたスキャナ角度信号KX)は、CPU19からの制御信号に応じて読み出され、CPU19に出力される。以下の説明では、フレームメモリ24からCPU19に出力されるスキャナ角度信号KXを「スキャナ角度信号KXS」という。このスキャナ角度信号KXS(請求項の「第2の時系列信号」)は、遅延時間ΔTの測定(後述)に用いられる。
【0036】
さらに、セレクタ22がスキャナ制御回路15に切り替えられた場合について説明する。この場合、フレームメモリ24には、スキャナ制御回路15からのスキャナ制御信号AXが保存されていく。これはスキャナ制御信号AXの画像サンプリング回路17(検知手段)による逐次検知を意味する。
そして、画像サンプリング回路17により逐次検知されたスキャナ制御信号AX(つまりフレームメモリ24に保存されたスキャナ制御信号AX)は、CPU19からの制御信号に応じて読み出され、CPU19に出力される。以下の説明では、フレームメモリ24からCPU19に出力されるスキャナ制御信号AXを「スキャナ制御信号AXS」という。このスキャナ制御信号AXS(請求項の「第3の時系列信号」)は、遅延時間ΔTの測定(後述)に用いられる。
【0037】
さて次に、本実施形態のレーザ走査顕微鏡10における遅延時間ΔTの測定について説明する。遅延時間ΔTの測定は、CPU19が次の手順(1)〜(7)により行う。手順(1)〜(3)の順序は変更しても構わない。CPU19は、請求項の「測定手段」に対応する。
(1) CPU19は、画像サンプリング回路17のセレクタ22をスキャナ制御回路15に切り替える。そして、スキャナ制御回路15からのスキャナ制御信号AXを画像サンプリング回路17に逐次検知させ、最終的に、フレームメモリ24からスキャナ制御信号AXSを取り込む。
【0038】
ここで、スキャナ制御信号AXSには、画像サンプリング回路17のA/Dコンバータ23における変換誤差が含まれている。したがって、CPU19は、スキャナ制御信号AXSの取り込みを、スキャナ制御信号AXSの複数の周期Ta(図4参照)にわたって繰り返し実行すると共に、複数の周期Ta分のスキャナ制御信号AXSを平均化する。
【0039】
スキャナ制御信号AXSはデジタル信号であり、1つの周期Taにおけるスキャナ制御信号AXSのサンプリング値(設定値の回転角度)は画像サンプリング回路17でのサンプリング時間Ptごとに分割されている。つまり、1つの周期Taにおけるスキャナ制御信号AXSはN個の離散的なサンプリング値により構成されている(N=Ta/Pt)。以下の説明では、1つの周期Taにおけるスキャナ制御信号AXSの各々のサンプリング値に番号X(=1〜N)を付与する。番号Xはサンプリング順を表している。
【0040】
上記した複数の周期Ta分のスキャナ制御信号AXSを平均化する処理とは、スキャナ制御信号AXSの各々のサンプリング値(設定値の回転角度)を、周期Taごとの同じ番号Xどうしで平均化する処理に対応する。平均化処理後のスキャナ制御信号AXSの各々のサンプリング値を“I(X)”と記す(X=1〜N)。
【0041】
(2) CPU19は、画像サンプリング回路17のセレクタ22をスキャナドライバ14Xに切り替える。そして、スキャナドライバ14Xからのスキャナ角度信号KXを画像サンプリング回路17に逐次検知させ、最終的に、フレームメモリ24からスキャナ角度信号KXSを取り込む。
なお、スキャナ角度信号KXSにも、A/Dコンバータ23における変換誤差が含まれている。したがって、CPU19は、スキャナ角度信号KXSの取り込みを、上記したスキャナ制御信号AXSの複数の周期Ta(図4参照)にわたって繰り返し実行すると共に、複数の周期Ta分のスキャナ角度信号KXSを平均化する。
【0042】
スキャナ角度信号KXSもデジタル信号であり、1つの周期Taにおけるスキャナ角度信号KXSのサンプリング値(実際の回転角度)はサンプリング時間Ptごとに分割されている。つまり、1つの周期Taにおけるスキャナ角度信号KXSもN個の離散的なサンプリングにより構成されている(N=Ta/Pt)。このため、1つの周期Taにおけるスキャナ角度信号KXSの各々のサンプリング値にも番号X(=1〜N)を付与する。
【0043】
上記した複数の周期Ta分のスキャナ角度信号KXSを平均化する処理とは、スキャナ角度信号KXSの各々のサンプリング値(実際の回転角度)を、周期Taごとの同じ番号Xどうしで平均化する処理に対応する。平均化処理後のスキャナ角度信号KXSの各々のサンプリング値を“J(X)”と記す(X=1〜N)。
(3) CPU19は、次の手順(4),(5)でスキャナ制御信号AXSのサンプリング値I(X)とスキャナ角度信号KXSのサンプリング値J(X)を正規化するため、ここで、スキャナ制御信号AXの最小値(0)と最大値(16ビットの場合は0xFFFF)を画像サンプリング回路17に検知させる。この場合にも、セレクタ22はスキャナ制御回路15に切り替えられる。
【0044】
具体的に説明すると、CPU19は、スキャナ制御信号AXが常に一定の最小値(0)となるようにスキャナ制御回路15を設定し、この最小値(0)を画像サンプリング回路17に検知させ、フレームメモリ24からスキャナ制御信号AXSのサンプリング値を繰り返し取り込む。そして、最小値(0)に関わる複数のサンプリング値を平均化する。この平均化処理後のサンプリング値を“IL”と記す。
【0045】
同様に、CPU19は、スキャナ制御信号AXが常に一定の最大値(0xFFFF)となるようにスキャナ制御回路15を設定し、この最大値(0xFFFF)を画像サンプリング回路17に検知させ、フレームメモリ24からスキャナ制御信号AXSのサンプリング値を繰り返し取り込む。そして、最大値(0xFFFF)に関わる複数のサンプリング値を平均化する。この平均化処理後のサンプリング値を“IH”と記す。同様に、スキャナ角度信号KXSの最大値、最小値を測定し、それぞれをスキャナ角度信号KXSの最大値のサンプリング値“JH”、最小値のサンプリング値“JL”とする。
【0046】
(4) CPU19は、手順(3)で求めたスキャナ制御信号AXSの最小値,最大値のサンプリング値IL,IHを用いて、手順(1)で求めたスキャナ制御信号AXSの各々のサンプリング値I(X)を正規化する(X=1〜N)。正規化後の各々のサンプリング値(以下「正規サンプリング値」という)IS(X)は、次式(1)のようになる。
【0047】
S(X)=(I(X)−IL)/(IH−IL) ……(1)
(5) 同様に、手順(3)で求めたスキャナ制御信号AXSの最小値,最大値のサンプリング値IL,IHを用いて、手順(2)で求めたスキャナ角度信号KXSの各々のサンプリング値J(X)を正規化する(X=1〜N)。正規サンプリング値JS(X)は、次式(2)のようになる。
【0048】
S(X)=(J(X)−IL)/(IH−IL) ……(2)
なお、(4),(5)において正規化にスキャナ制御信号AXSの最小値,最大値のサンプリング値IL,IHを用いたが、スキャナ角度信号KXSの最小値,最大値のサンプリング値JL,JHを用いて正規化しても構わない。また、スキャナ制御信号AXSの最大値のサンプリング値IHおよびスキャナ角度信号KXSの最大値のサンプリング値JH、スキャナ制御信号AXSの最小値のサンプリング値ILおよびスキャナ角度信号KXSの最小値のサンプリング値JLは、スキャナを高速で走査しない場合、例えば、スキャナ角度を最大値もしくは最小値の一定の角度に保った状態では、等しい値になるので、スキャナ制御信号AXSの正規化にスキャナ制御信号AXSの最小値,最大値のサンプリング値IL,IHを用い、スキャナ角度信号KXSの正規化にはスキャナ角度信号KXSの最小値,最大値のサンプリング値JL,JHを用いても構わない。
【0049】
また、スキャナ制御信号AXSおよびスキャナ角度信号KXSを正規化してから一次式で近似しているが、正規化せずに一次式で近似しても構わない。
(6) CPU19は、手順(4)で求めたスキャナ制御信号AXSに関わる正規サンプリング値IS(X)のうち、レーザ光L1の一方向(例えば図3の左側→右側の方向)の走査に対応する部分(図5の時間t1から時間t2までの期間に相当)を、一次式(3)の近似直線IS(X)に置き換える。近似直線IS(X)の係数a,bは、式(1)の正規サンプリング値IS(X)との対応により求めることができる。
【0050】
S(X)=aX+b ……(3)
同様に、CPU19は、手順(5)で求めたスキャナ角度信号KXSに関わる正規サンプリング値JS(X)のうち、レーザ光L1の一方向(図3の左側→右側の方向)の走査に対応する部分(図5の時間t1から時間t2までの期間に相当)を、一次式(4)の近似直線JS(X)に置き換える。近似直線JS(X)の係数c,dは、式(2)の正規サンプリング値JS(X)との対応により求めることができる。
【0051】
S(X)=cX+d ……(4)
ここで、2つの近似直線IS(X),JS(X)を図示すると、図6のようになる。図6の横軸は番号X(=1,2,…)であり、縦軸は正規サンプリング値である。また、横軸の番号Xはサンプリング順を表すため、横軸のスケールは、番号Xとサンプリング時間Ptの積に応じた“時間”と考えることもできる。
【0052】
一次式(3),(4)の近似式に置き換える部分は、時間t1から時間t2の間に限られず、例えば、スキャナ制御信号AXSの最小値と最大値との間、スキャナ角度信号KXSの最小値と最大値との間でも構わない。なお、この場合には、スキャナ制御信号AXSの近似式とスキャナ角度信号KXSの近似式とで傾きが異なり、時間によって遅延時間が異なる場合があるが、その場合には、近似した範囲での遅延時間の中から最適な遅延時間を選択する。最適な遅延時間は画像を見ながら選択しても構わないし、近似した範囲での最大値、平均値、最小値などを選択しても構わない。
【0053】
(7) 最後にCPU19は、手順(6)で求めた近似直線IS(X),JS(X)に基づいて、遅延時間ΔTを算出する。
ただし、遅延時間ΔTの算出に先立って、スキャナ角度信号KXSに関わる近似直線JS(X)とスキャナ制御信号AXSに関わる近似直線IS(X)との、横軸方向のずれ量ΔXを計算する。つまり、手順(6)で求めた近似直線IS(X)の係数a,bと近似直線JS(X)の係数c,dを次の式(5)に代入することにより、近似直線IS(X),JS(X)のずれ量ΔXを計算する。
【0054】
ΔX=b/a−d/c ……(5)
そして、近似直線IS(X),JS(X)のずれ量ΔXと、サンプリング時間Ptとの積(次の式(6))に基づいて、遅延時間ΔTを計算する。CPU19は、計算結果の遅延時間ΔTを記憶装置20に記憶させる。
ΔT=Pt・(b/a−d/c) ……(6)
このように、本実施形態のレーザ走査顕微鏡10では、スキャナ制御回路15からのスキャナ制御信号AXとスキャナドライバ14Xからのスキャナ角度信号KXを画像サンプリング回路17に逐次検知させ、フレームメモリ24からスキャナ制御信号AXSとスキャナ角度信号KXSをCPU19に出力し、その後、上記した手順(1)〜(7)の処理を実行することにより、簡単に遅延時間ΔTを自動測定することができる。
【0055】
また、CPU19からスキャナ制御回路15に設定するスキャナ制御パターン(スキャン速度,スキャン範囲,スキャン周波数などの走査条件)を変更するだけで、スキャナ制御回路15が走査条件の設定に応じたスキャナ制御信号AXを生成するため、走査条件に適した遅延時間ΔTを簡単に自動測定することもできる。
したがって、レーザ走査顕微鏡10の納品後にユーザがソフトウエアで新たに追加設定した走査条件であっても、同様に、その走査条件に適した遅延時間ΔTを簡単に自動測定することができる。その結果、新たな走査条件の下でも、試料21上での位置ずれや歪みのない良好な画像を生成することができる。
【0056】
さらに、遅延時間ΔTの測定を試料21の画像を生成する直前に行うことにより、スキャナドライバ14Xの調整状態に適した遅延時間ΔTを簡単に自動測定できるため、スキャナドライバ14Xの調整状態に拘わらず、良好な画像を生成することができる。
また、レーザ走査顕微鏡10の納品後の任意のタイミングで簡単に遅延時間ΔTを自動測定できるため、ユーザ側におけるメンテナンス作業時間を短縮することができる。その結果、メンテナンスコストの低下が図られ、常に、良好な画像が生成可能となる。
【0057】
さらに、遅延時間ΔTの測定が非常に簡単であるため、レーザ走査顕微鏡10の製造時における遅延時間ΔTの測定時間を短縮することや、遅延時間ΔTの測定自体を省略することができる。その結果、製造時間を短縮でき、製造コストの低下が図られる。
また、本実施形態のレーザ走査顕微鏡10では、スキャナドライバ14Xからのスキャナ角度信号KXを画像サンプリング回路17に検知させるだけでなく、スキャナ制御回路15からのスキャナ制御信号AXも画像サンプリング回路17に検知させて、その結果を用いて遅延時間ΔTを測定するため、遅延時間ΔTの測定精度を向上させることができる。
【0058】
前述のように、フレームメモリ24からCPU19に出力されるスキャナ角度信号KXSにはA/Dコンバータ23における変換誤差が含まれるが、その変換誤差は、同じA/Dコンバータ23を介してフレームメモリ24から出力されるスキャナ制御信号AXSを用いることにより相殺できるからである。
さらに、本実施形態のレーザ走査顕微鏡10では、上記の手順(6)で図6に示す近似直線IS(X),JS(X)を求め、これらの近似直線IS(X),JS(X)に基づいて遅延時間ΔTを算出するため、遅延時間ΔTを精度よく測定できる。
【0059】
(変形例)
上記した実施形態では、図6の近似直線I(X),J(X)に基づいて遅延時間ΔTを算出したが、本発明はこれに限定されない。
例えば、手順(5)で求めたスキャナ角度信号KXSに関わる正規サンプリング値J(X)のうち、実際の回転角度が所定角度θとなる番号X(つまりタイミングt=X・Pt)を求め、さらに、手順(4)で求めたスキャナ制御信号AXSに関わる正規サンプリング値I(X)のうち、設定値の回転角度が所定角度θとなる番号X(つまりタイミングt=X・Pt)を求め、これらのタイミングtとタイミングtとの差に基づいて、遅延時間ΔTを算出してもよい所定角度θは、中央の角度が好ましい。この方法によれば、非常に短時間で遅延時間ΔTを測定できる。
【0060】
また、1つの所定角度θにおけるタイミング差(=t1−t2)に限らず、複数の所定角度θ,φ,…の各々のタイミング差に基づいて、例えば平均化することにより、遅延時間ΔTを算出してもよい。タイミング差を求める所定角度θ,φ,…の数を増やすことにより、測定精度を向上させることができる。
さらに、上記した実施形態では、遅延時間ΔTの測定に当たって、スキャナ制御回路15からのスキャナ制御信号AXも画像サンプリング回路17に検知させたが、スキャナ制御信号AXを検知させなくても構わない。この場合、CPU19がスキャナ制御パターン(走査条件)に基づいて生成したスキャナ制御信号AXを用いることで、同様に遅延時間ΔTを測定できる。
【0061】
また、上記した実施形態では、2つのガルバノスキャナ13X,13Yのうち、高速回転する方(13X)の遅延時間ΔTのみを考慮して試料21の画像を生成したが、本発明はこれに限定されない。高速回転する方(13X)に加えて、低速回転する方(13Y)の遅延時間を考慮してもよい。この場合、試料21の画像をさらに良好に生成できる。
【0062】
さらに、上記した実施形態では、試料21上でレーザ光L1を2次元的に走査する際、レーザ光L1をX軸方向に高速で往復走査しながら、Y軸方向に低速で走査した(図3)が、本発明はこれに限定されない。例えば、X軸方向の1ライン走査の終了後、Y軸方向に1ライン分だけシフトさせてもよい。
また、上記した実施形態では、レーザ光の往復移動のうち往路のみ(または復路のみ)を利用して試料を2次元走査したが、往路と復路との双方を利用して2次元走査してもよい。この場合には、測定時間を短縮できる。
【0063】
さらに、上記した実施形態では、2つのガルバノスキャナ(13X,13Y)を設けたが、レーザ光L1をX方向,Y方向に走査可能な1つのスキャナを設けた場合にも、本発明を適用できる。スキャナが1つであっても、X軸用のスキャナドライバ14XとY軸用のスキャナドライバ14Yとは各々必要となる。
また、上記した実施形態では、レーザ光源11と対物レンズ(不図示)の間にガルバノスキャナを配置したが、ガルバノスキャナに代えて、他のスキャナ(反射部材)を設けても構わない。
【0064】
【発明の効果】
以上説明したように、本発明によれば、納品後に追加された新たな走査条件の下でも良好な画像を生成することができる。
【図面の簡単な説明】
【図1】レーザ走査顕微鏡10の全体構成を示すブロック図である。
【図2】画像サンプリング回路17の構成を示すブロック図である。
【図3】ラスタスキャンを説明する図である。
【図4】スキャナドライバ14Xへのスキャナ制御信号AXを説明する図である。
【図5】ガルバノスキャナ13Xの遅延時間ΔTを説明する図である。
【図6】遅延時間ΔTを算出する際に求めた近似直線IS(X),JS(X)の説明図である。
【符号の説明】
10 レーザ走査顕微鏡
11 レーザ光源
12 光分離モジュール
13X,13Y ガルバノスキャナ
14X,14Y スキャナドライバ
15 スキャナ制御回路
16 光検出器
17 画像サンプリング回路
18 クロック生成回路
19 CPU
20 記憶装置
21 試料
21a 観察対象領域
22 セレクタ
23 A/Dコンバータ
24 フレームメモリ
25 アドレスカウンタ
26 書き込み制御信号生成回路

Claims (3)

  1. レーザ光を射出する光源と、
    前記レーザ光を偏向する光学部材と、
    前記光学部材を駆動して前記レーザ光の偏向角度を変えることにより、前記レーザ光を試料上で走査する駆動手段と、
    前記駆動手段に前記偏向角度の制御信号を入力する第1指示手段と、
    前記レーザ光の走査により前記試料から発生する光の強度を検出して、該強度に関わる第1の時系列信号を出力する光検出手段と、
    前記第1の時系列信号の一部を指示されたタイミングで取得して、前記試料の観察対象範囲の画像を生成する画像生成手段と、
    前記画像生成手段による前記画像の生成に先立ち、前記光学部材による実際の前記偏向角度を逐次検知して、該実際の偏向角度に関わる第2の時系列信号を取得するとともに、前記制御信号により設定された前記偏向角度を逐次検知して、該設定された偏向角度に関わる第3の時系列信号を取得する検知手段と、
    前記画像生成手段による前記画像の生成に先立ち、前記第2の時系列信号及び前記第3の時系列信号に基づいて、前記実際の偏向角度が前記設定された偏向角度となるまでの遅延時間を測定する測定手段と、
    前記画像生成手段による前記画像の生成時、前記制御信号と前記遅延時間とに基づいて、前記画像生成手段に前記一部の取得タイミングを指示する第2指示手段とを備え
    前記画像生成手段及び前記検知手段は、共通の画像サンプリング回路であって、
    該画像サンプリング回路には、前記第1の時系列信号、前記第2の時系列信号、及び前記第3の時系列信号の間で取得すべき信号を切り換えるセレクタが含まれ、
    該画像サンプリング回路は、該セレクタの切り替えにより、前記画像生成手段として前記第1時系列信号を取得する状態と、前記検知手段として前記第2の時系列信号を取得する状態と、前記検知手段として前記第3の時系列信号を取得する状態との間で切り換わる
    ことを特徴とするレーザ走査顕微鏡。
  2. 請求項1に記載のレーザ走査顕微鏡において、
    前記第2の時系列信号及び前記第3の時系列信号のそれぞれは、1周期がN個の離散的なサンプリング値からなる信号であって、
    前記測定手段は、前記第2の時系列信号のうち前記レーザ光の一方向の走査に対応する部分を第1の近似直線に置き換え、かつ、前記第3の時系列信号のうち前記レーザ光の一方向の走査に対応する部分を第2の近似直線に置き換え、前記第1の近似直線および前記第2の近似直線に基づいて、前記遅延時間を測定する
    ことを特徴とするレーザ走査顕微鏡。
  3. 請求項1に記載のレーザ走査顕微鏡において、
    前記第2の時系列信号及び前記第3の時系列信号のそれぞれは、1周期がN個の離散的なサンプリング値からなる信号であって、
    前記測定手段は、前記第2の時系列信号のうち前記実際の偏向角度が所定角度となる第1のタイミングを求め、かつ、前記第3の時系列信号のうち前記設定された偏向角度が前記所定角度となる第2のタイミングを求め、前記第1のタイミングと前記第2のタイミングとの差に基づいて、前記遅延時間を測定する
    ことを特徴とするレーザ走査顕微鏡。
JP2003001444A 2003-01-07 2003-01-07 レーザ走査顕微鏡 Expired - Fee Related JP4337346B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001444A JP4337346B2 (ja) 2003-01-07 2003-01-07 レーザ走査顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001444A JP4337346B2 (ja) 2003-01-07 2003-01-07 レーザ走査顕微鏡

Publications (2)

Publication Number Publication Date
JP2004212807A JP2004212807A (ja) 2004-07-29
JP4337346B2 true JP4337346B2 (ja) 2009-09-30

Family

ID=32819467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001444A Expired - Fee Related JP4337346B2 (ja) 2003-01-07 2003-01-07 レーザ走査顕微鏡

Country Status (1)

Country Link
JP (1) JP4337346B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849139B1 (ko) 2007-01-26 2008-07-31 한국전광(주) 주사광원 엑스선 현미경 시스템
EP2237096A4 (en) 2007-12-13 2013-02-27 Nikon Corp LASER SCAN MICROSCOPE
JP5581707B2 (ja) * 2010-01-28 2014-09-03 株式会社ニコン 制御方法
JP5712758B2 (ja) * 2011-04-18 2015-05-07 コニカミノルタ株式会社 画像形成装置及び画像形成装置制御方法
JP6438211B2 (ja) * 2014-04-16 2018-12-12 キヤノン株式会社 眼科装置及び制御方法

Also Published As

Publication number Publication date
JP2004212807A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
US10226162B2 (en) Calibration apparatus
WO2002089661A1 (en) Optical imaging device and optical imaging detecting method
JP4526988B2 (ja) 微小高さ測定方法及びそれに用いる微小高さ測定装置並びに変位ユニット
US10488647B2 (en) Method for measuring scanning pattern of optical scanning apparatus, apparatus for measuring scanning pattern, and method for calibrating image
US7554722B2 (en) Scanning microscope with scanner frequency derived from pulsed laser
JP2008233883A (ja) 走査型レーザ顕微鏡
JP4337346B2 (ja) レーザ走査顕微鏡
JP2002098901A (ja) 走査型レーザ顕微鏡
JP5581707B2 (ja) 制御方法
JP5598740B2 (ja) 走査型顕微鏡
JPH0886622A (ja) 形状計測装置
US6859294B2 (en) Method for ascertaining position values, and scanning microscope
JP6812149B2 (ja) 走査型顕微鏡、及び、走査型顕微鏡の制御方法
JP4303465B2 (ja) 共焦点顕微鏡
JP3708277B2 (ja) 走査型光学測定装置
JPH11271626A (ja) 走査型レーザ顕微鏡
JP2012073551A (ja) 走査型顕微鏡
CN100489639C (zh) 图像模糊校正装置
JP2000267011A (ja) 走査型レーザー顕微鏡
JPH11237554A (ja) 走査型光学顕微鏡
US11243388B2 (en) Sampling circuit and laser scanning microscope
JP2004170573A (ja) カラー共焦点顕微鏡システムとその調整に使用される二次元テストパターン
JP7516728B2 (ja) 走査測定方法及び走査測定装置
JP6128862B2 (ja) 顕微鏡装置および顕微鏡システム
US12007544B2 (en) Method and apparatus for capturing an image of an object using a scanning microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees