JP4337214B2 - Cooling device for liquid-cooled internal combustion engine - Google Patents

Cooling device for liquid-cooled internal combustion engine Download PDF

Info

Publication number
JP4337214B2
JP4337214B2 JP2000062103A JP2000062103A JP4337214B2 JP 4337214 B2 JP4337214 B2 JP 4337214B2 JP 2000062103 A JP2000062103 A JP 2000062103A JP 2000062103 A JP2000062103 A JP 2000062103A JP 4337214 B2 JP4337214 B2 JP 4337214B2
Authority
JP
Japan
Prior art keywords
flow rate
radiator
liquid
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000062103A
Other languages
Japanese (ja)
Other versions
JP2001248439A (en
Inventor
和貴 鈴木
栄三 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000062103A priority Critical patent/JP4337214B2/en
Publication of JP2001248439A publication Critical patent/JP2001248439A/en
Application granted granted Critical
Publication of JP4337214B2 publication Critical patent/JP4337214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車載水冷内燃機関の冷却システムに用いると好適な、液冷式内燃機関の冷却装置に関するものである。
【0002】
【従来の技術】
従来の液冷式内燃機関の始動時における暖機性能および暖房性能の向上を狙ったものとして、特開平8−14043号公報がある。即ち、図4に示すように、液冷式内燃機関100からラジエータ200に冷却液を循環させるラジエータ回路210内に、冷却液を熱源とする暖房用放熱器310と液冷式内燃機関100と独立して作動するポンプ500とが設けられ、水温センサ620によって検出される冷却液温Tに応じてポンプ500の回転数(吐出流量)が制御手段(電子制御装置)600により制御されるものである。
【0003】
具体的には、冷却液温Tが低い始動時にはポンプ500を停止し、暖機促進冷却液温時においてはポンプ500を高速回転させる。また、冷却液温Tが比較的低い時期から暖房を効かせたい場合(ヒータスイッチ340がONされた場合)は、ポンプ500を高速回転させ、暖房用放熱器310を流通する放熱器回路320に冷却液を流し、冷却液温Tが高くなるに従って、ポンプ500の回転速度を低下させるように制御するものである。
【0004】
これにより、液冷式内燃機関の始動時において、冷却液温Tを速く上昇させ暖機性能を上げ、また、比較的冷却液温Tが低い場合でも暖房性能を向上させることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記装置では、ラジエータ回路210、ラジエータ200を迂回するバイパス回路300および放熱器回路320をそれぞれ流れる冷却液流量とポンプ500との関連については考慮されていない。即ち、暖機性能、暖房性能を向上させるために、冷却液温Tに応じて各回路、特にバイパス回路300あるいは放熱器回路320の冷却液流量を増加させるにあたって、冷却液流量を増加させようとする回路以外にも冷却液が流れるため、必要流量を確保するためにはポンプ500を高速回転させる必要があった。そのため、冷却装置としての動力を大きく消費することになる。
【0006】
本発明の目的は、上記点に鑑み、ポンプの消費動力を可及的に低減し、且つ始動時における液冷式内燃機関の暖機性能および暖房性能を向上する液冷式内燃機関の冷却装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、以下の技術的手段を採用する。
【0008】
請求項1に記載の発明では、液冷式内燃機関(100)から流出する冷却液を冷却した後、その冷却された冷却液を液冷式内燃機関(100)に向けて流出するラジエータ(200)と、
液冷式内燃機関(100)から流出する冷却液をラジエータ(200)を迂回させてこのラジエータ(200)の流出口側に導くバイパス回路(300)と、
液冷式内燃機関(100)から流出する冷却液を熱源とする暖房用放熱器(310)と、
バイパス回路(300)を流通する冷却液のバイパス流量(Vb)、ラジエータ(200)を流通する冷却液のラジエータ流量(Vr)を制御する流量制御弁(400)と、
液冷式内燃機関(100)と独立して作動し、冷却液を循環させるポンプ(500)と、
流量制御弁(400)およびポンプ(500)の作動を制御する制御手段(600)とを有する液冷式内燃機関の冷却装置において、
暖房用放熱器(310)からの冷却液流出口を流量制御弁(400)に連結し、
この流量制御弁(400)は、バイパス流量(Vb)、ラジエータ流量(Vr)に加えて、暖房用放熱器(310)を流通する冷却液の放熱器流量(Vh)も同時に制御し、
制御手段(600)は、液冷式内燃機関(100)の冷却液温(Tb)が所定値以下で、且つ、暖房用放熱器(310)を有する暖房用空調機(301)が作動している場合は、放熱器流量(Vh)を最大にし、ラジエータ流量(Vr)およびバイパス流量(Vb)を最小にし、ポンプ(500)の吐出流量を多くするように、流量制御弁(400)の開度およびポンプ(500)の吐出流量を制御することを特徴としている。
【0009】
請求項2に記載の発明では、制御手段(600)は、液冷式内燃機関(100)の冷却液温(Tb)が所定値以下で、且つ、暖房用空調機(301)が作動している場合は、流量制御弁(400)の開度を制御して、暖房用放熱器(310)を有する回路(320)を全開にし、ラジエータ(200)を有する回路(210)およびバイパス回路(300)を全閉にすることを特徴としている。
【0010】
請求項3に記載の発明では、制御手段(600)は、冷却液温(Tb)が所定値以下で、且つ、暖房用空調機(301)が作動していない場合は、主にバイパス回路(300)に冷却液を流し、ポンプ(500)の吐出流量を少なくするようにし、
冷却液温(Tb)が所定値より高い場合は、主に暖房用放熱器(310)に冷却液を流し、ポンプ(500)の吐出流量を多くするように、流量制御弁(400)の開度およびポンプ(500)の吐出流量を制御することを特徴としている。
【0011】
請求項4に記載の発明では、前記冷却液温(Tb)の所定値とは、前記液冷式内燃機関(100)の始動後の暖機終了時の冷却液温であることを特徴としている。
【0012】
請求項1〜4に記載の発明によれば、流量制御弁(400)により冷却液温(Tb)および暖房用空調機(301)の作動状態に応じて前記ラジエータ(200)、前記バイパス回路(300)、前記暖房用放熱器(310)の内、優先させて冷却液を流したい回路の選定ができ、その他の回路には冷却液を流さないようにするので、前記ポンプ(500)の消費動力を低減できる。
【0013】
そして、特に前記液冷式内燃機関(100)の始動後、暖機終了時の冷却液温と前記暖房用空調機(301)の作動状態を基準に前記バイパス回路(300)および前記暖房用放熱器(310)への流量調整を行うので、暖機性能および暖房性能を向上できる。
【0014】
また、前記ラジエータ(200)、前記バイパス回路(300)、前記暖房用放熱器(310)の流量を前記流量制御弁(400)で一体で調整できるようにしたので、前記暖房用放熱器(310)専用の流量調整バルブが廃止でき、安価に冷却装置が構成できる。
【0015】
尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0016】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る液冷式内燃機関の冷却装置を車両走行用の水冷式内燃機関に適用したものであり、図1は冷却装置全体の模式図を示したものである。
【0017】
ラジエータ200は、液冷式内燃機関(以下、エンジンと呼ぶ。)100内を循環する冷却水を冷却する熱交換器であり、このラジエータ200には空気を送風する送風機230が設けられている。この例では送風機230はラジエータ200側より空気を吸い込むタイプであり、また、送風機230の駆動モータは制御量としてのデューティを可変して回転数を連続的に可変でき、送風量を調整できる出力可変タイプである。デューティの増減に伴って送風機230の消費動力も増減する。
【0018】
エンジン100とラジエータ200との間は冷却水が循環するラジエータ回路210で連結されている。また、エンジン100から流出する冷却水をラジエータ200を迂回させてラジエータ回路210のうちラジエータ200の流出口側に冷却水を導くバイパス回路300が設けられている。そして、バイパス回路300とラジエータ回路210との合流部位220には、ラジエータ200、バイパス回路300および後述する暖房用放熱器310内を流通する冷却水の流量を制御する流量制御弁400が設けられており、この流量制御弁400より冷却水流れ下流側(エンジン100側)には、エンジン100と独立して作動し、冷却水を循環させる電動ポンプ(以下、ポンプと呼ぶ。)500が設けられている。このポンプ500は、上記送風機230と同様に、制御量としてのデューティを可変して回転数を連続的に可変でき、吐出流量を調整できる出力可変タイプである。デューティの増減に伴ってポンプ500の消費動力も増減する。
【0019】
また、エンジン100から流出する冷却水を熱源とする暖房用放熱器(以下、ヒータと呼ぶ。)310と放熱器用送風機(以下、ヒータブロワと呼ぶ。)330とを有する暖房用空調機301が設けられいる。ヒータ310から流出する側の冷却水流路を、流量制御弁400に連結し、放熱器回路(以下、ヒータ回路と呼ぶ。)320を形成している。暖房用空調機301を作動させるとヒータブロワ330が作動し、送風される空気はヒータ310で熱交換され温風となり、図示しないダクトを通り車室内に送られる。
【0020】
ここで、流量制御弁400は、モータにより開閉するバルブが内部に設けられており、ラジエータ200内を流通する冷却水の流量(以下、この流量をラジエータ流量Vrと呼ぶ。)と、バイパス回路300内を流通する冷却水の流量(以下、この流量をバイパス流量Vbと呼ぶ。)に加えて、ヒータ310内を流通する冷却水の流量(以下、放熱器流量、即ちヒータ流量Vhと呼ぶ。)をバルブ開度を可変することにより、制御するものである。即ち、各流量Vr、Vb、Vhの和はポンプ500が吐出するポンプ流量Vpであり、流量制御弁400のバルブ開度によってポンプ流量Vpが各流量Vr、Vb、Vhに分配されるものである。具体的には、各回路210、300、320の流路のいずれか一つの回路を全開状態にし、他の2つの回路を全閉状態にし、全開にした回路の流量を最大(全閉にした他の回路の流量は最少)にする。またヒータ回路320を全開状態に固定してヒータ流量Vhを最大にし、ラジエータ回路210およびバイパス回路300の開度を増減させ、ラジエータ流量Vrとバイパス流量Vbとの分配割合を調節する。ラジエータ回路210のバルブ開度θ(以下、θはラジエータ回路210の開度を示すものとする。)が0%でラジエータ流量Vrは最少(バイパス流量Vbは最大)となり、バルブ開度θが100%でラジエータ流量Vrは最大(バイパス流量Vbは最少)となる。更にはヒータ回路320を全閉状態に固定してヒータ流量Vhを最少にし、ラジエータ回路210およびバイパス回路300の開度を増減させラジエータ流量Vrとバイパス流量Vbとの分配割合を調節する。
【0021】
また、ポンプ500、流量制御弁400および送風機230を制御する電子制御装置(以下ECUと呼ぶ。)600が設けられており、このECU600には、エンジン100の吸気管内の圧力(以下、吸気圧と呼ぶ。)Paを検出する圧力センサ610(圧力検出手段)、エンジン100の回転数Neを検出する回転センサ624(回転数検出手段)、外気温Taを検出する外気温センサ626(温度検出手段)、ポンプ500に流入する冷却水の水温(以下、ポンプ入口水温と呼ぶ。)Tpを検出する第1水温センサ621(温度検出手段)、バイパス回路300を流通する冷却水の水温(以下、バイパス水温と呼ぶ。)Tbを検出する第2水温センサ622(温度検出手段)、流量制御弁400のバルブ開度を検出するポテンショメータ424(開度検出手段)、ヒータブロワ330および空気調和装置700からの検出信号が入力されており、ECU600はこれらの検出信号に基づいて、ポンプ500、流量制御弁400および送風機230を制御する。また、ECU600には各センサ610、624、626、621、622および空気調和装置700からの検出信号に基づいて読み込まれた目標水温Tmap(後述する。)の読み込み回数Nをカウントするカウンタ(図示せず。)が設けられている。
【0022】
次に、本実施形態の作動を図2に示すフローチャートに基づいて説明する。
【0023】
車両のイグニッションスイッチ(図示せず)が投入されると、ECU600に電源が投入されECU600が作動する。まず、ステップS50で、カウンタがリセットされ、読み込み回数Nは0となる。次に、ステップS100で、エンジン100の負荷状態を把握するために、各センサ610、624、626、621、622および空気調和装置700の検出信号を読み込む。エンジン100の負荷は、バイパス水温Tbおよびポンプ入口水温Tpに影響を及ぼすものとして、主に吸気圧Paと回転数Neをパラメータとして検出される。両パラメータが大きいほどエンジン100の負荷は大きいものとなる。
【0024】
ステップS110で、図示しない水温制御マップから目標水温Tmapを読み込む。水温制御マップとは、外気温Ta、空気調和装置700の作動状態、吸気圧Paと回転数Neに応じて制御すべき冷却水の目標水温値を予め割り付けたものであり、目標水温Tmapとは、この目標水温値を意味する。例えば吸気圧Paが高く(エンジン100のスロットル弁開度が大きい状態)、回転数Neが大きいほどエンジン100の負荷は高い状態にあり、目標水温Tmapを低めの値になるようにしており、一方、吸気圧Paが低く(スロットル弁開度が小さい状態)、回転数Neも小さくなるとエンジン100の負荷は低い状態になるため、目標水温Tmapを高めの値になるようにしている。
【0025】
ステップS112で、目標水温Tmapの読み込み回数NをN+1とする。続くステップS115で、読み込み回数Nが1か否かを判定し、Nが1であればエンジン100が始動直後であると判定し、ステップS118に進む。否と判定した場合は、後述するステップS118での処理は不要のため、ステップS120に進む。
【0026】
ステップS118で、図示しないマップから初期値として、ポンプ500の基本デューティと流量制御弁400の基本バルブ開度を決定し、ポンプ500を作動させ、流量制御弁400のバルブを開く。ポンプ500のデューティが大きいほどポンプ回転数は上昇して各回路210、300、320内を流れる冷却水の流量は大きくなり、ポンプ500自身の消費動力も大きくなる。また、流量制御弁400のバルブ開度が大きい回路ほどその回路を流れる流量は増加する。
【0027】
ステップS120で、水温センサ622で検出されるバイパス水温Tbが、暖機終了水温Tw1より低いか否かを判定し、低い場合はステップS130に進む。因みに、暖機終了水温Tw1は、エンジン100の始動後、冷却水温やエンジン100内の潤滑油温等が上昇することによりエンジン100の作動部の摩擦損失等が減少し、理論空燃比での運転を継続し、エンジン100が安定して作動する冷却水の温度であり、本実施形態では80度C前後の値として設定している。
【0028】
ステップS130で、ヒータブロワ330が作動しているか否かを判定し、作動していないと判定すると、ステップS160に進み暖機優先制御を行う。即ち、冷却水温を速く上昇させるために流量制御弁400のバルブ開度はバイパス回路300を全開とし、ラジエータ回路210とヒータ回路320は全閉となるように制御し、ステップS170で、ポンプ400のデューティをステップS118で設定した基本デューティよりも下げる方向に制御し、バイパス回路300のみに低流量の冷却水を循環させる。
【0029】
しかし、ステップS130で、ヒータブロワ330が作動している場合(乗員がエンジン100を始動後、早い時期から暖房用空調機301を作動させた場合)は、ステップS140に進みヒータ優先制御を行う。即ち、暖房用空調機301をより効率的に効かせるために、流量制御弁400のバルブは、ヒータ回路320を全開とし、ラジエータ回路210とバイパス回路300は全閉となるように制御し、ステップS150で、ポンプ400のデューティをステップS118で設定した基本デューティよりも上げる方向に制御し、ヒータ回路320のみに高流量の冷却水を循環させる。
【0030】
ステップS120で、バイパス水温Tbが暖機終了水温Tw1を越え、高くなった場合は、ステップS180で更に、目標水温Tmapより低いか否かを判定し、低い場合はステップS140に進み上記ヒータ優先制御を行う。
【0031】
ステップS180で、否と判定された場合は、ステップS190で、ポンプ入口水温Tpが目標水温Tmapを基準とする所定範囲内(本実施形態では、目標水温を基準として±2度の範囲)にあるか否かを判定し、ポンプ入口水温Tpが所定範囲内の場合はステップS200に進み、ステップS118、ないしは後述するステップS220、S240、S250、S270で設定されたポンプデューティとバルブ開度が保持される。
【0032】
ステップS190で、ポンプ入口水温Tpが所定範囲内にない場合は、冷却装置の冷却能力を適正化しポンプ入口水温Tpを目標水温Tmapに調整するため、ステップS210に進む。
【0033】
ステップS210で更に、ポンプ入口水温Tpが目標水温Tmapより高いか否かを判定し、高い場合は、ステップS220で、まず冷却装置の消費動力を増加させずにポンプ入口水温Tpを下げるために、流量制御弁400を優先作動させてラジエータ回路210のバルブ開度θを所定量大きくする。これにより、ラジエータ流量Vrが増加し、ラジエータ200の放熱能力を上げることでポンプ入口水温Tpを下げる。ステップS230で、バルブ開度θが100%か否かを判定し、100%に達していれば、ステップS240で、ポンプ500のデューティを所定量変更して、ポンプ500の回転数を変化させる。この場合、ポンプ入口水温Tpを下げるために、ポンプ500のデューティを上げポンプ回転数を上昇させて吐出流量を増加させる方向に制御される。ステップS230で、バルブ開度θが100%に達していない場合は、ステップS220で開かれたバルブ開度θが維持される。
【0034】
一方、ステップS210で、ポンプ入口水温Tpが目標水温Tmapよりも低いと判定された場合は、ステップS250に進み、まず冷却装置の消費動力がより少なくて済むように、ポンプ500を優先作動させてそのデューティを所定量変更し、ポンプ500の回転数を変化させる。この場合、ポンプ入口水温Tpを上げるために、ポンプ500のデューティを下げポンプ回転数を低下させて吐出流量を減少させる方向に制御される。ステップS260で、ポンプ500のデューティが最小値に達したか否かを判定し、最小値に達した場合は、更に、ステップS270で、流量制御弁400のバルブ開度θを所定量下げ、ラジエータ流量Vrを減少させ、ラジエータ200の放熱能力を下げることでポンプ入口水温Tpを上げる。ステップS260で、ポンプ500のデューティが最小値に達していない場合は、ステップS250で制御されたポンプ500のデューティが維持される。そして、ステップS230、S240、S260、S270は、ステップS100に戻ることを繰り返すことにより、ポンプ入口水温Tpが目標水温Tmapに収束するようにフィードバック制御される。
【0035】
尚、上記フローチャート内のステップS150、S170、S200、S240、S250においては送風機230の送風量は、ポンプ500と送風機230の消費動力とが最も小さくなるように決定し、作動させる。
【0036】
以上の構成および作動により、流量制御弁400によりバイパス水温Tb、ポンプ入口水温Tpに応じてラジエータ200とバイパス回路300に加えてヒータ310の内、優先させて冷却水を流したい回路の選定ができ、その他の回路には冷却水を流さないようにするので、ポンプ500の消費動力を低減できる。
【0037】
そして、エンジン100の始動時における暖機性能および暖房性能を向上できる。具体的には図3に示すように(回路内の流量とエンジン100の出口側冷却水温を示す)、暖機優先制御(A部)においては、バイパス回路300のみに低流量(従来技術のVb’に対してVb)の冷却水を循環させているので、ポンプ500の消費動力を低減できる。そして、エンジン100の壁温の上昇が速くなり、冷却水との温度差が大きくなるため、冷却水の昇温時間が短縮され暖機性能が向上する。理論空燃比でエンジン100を運転できるストイキ化水温(本実施形態では60度C前後)に至る時間を本発明と従来技術とで比較すると、ΔTの短縮が図れ、延いてはエンジン100の燃費が向上できる。また、ヒータ優先制御(B部)においては、従来技術で、バイパス回路300とヒータ回路320に冷却水が循環されるのに対して、ヒータ回路320のみに高流量(従来技術のVb”+Vhに対してVhのみ)の冷却水を循環させているので、ポンプ500の仕事をヒータ回路320に集中でき、必要最小限の消費動力で暖房性能を向上できる。
【0038】
加えて、送風機230を流量制御弁400同様、ポンプ500と組み合わせて作動させているので更にポンプ500の消費動力を低減することができる。
【0039】
更に、ラジエータ200、バイパス回路300、ヒータ310の流量調整の機能を流量制御弁400で一体で設けたので、ヒータ310専用の流量調整バルブが廃止でき安価に冷却装置が構成できる。
【0040】
尚、エンジン100の負荷を検出するパラメータとして、本実施形態では吸気圧Pa、回転数Neを用いたが、冷却水の水温Tp、Tbに影響を及ぼすようなエンジン状態および車両の走行状況を示すパラメータであれば、例えば車速Vv、エンジン100のスロットル弁開度や吸入空気量などのパラメータも利用できる。
【0041】
また、本実施形態では、電動式ポンプを前提に構成説明したが、油圧式ポンプでも同様の効果が得られる。
【図面の簡単な説明】
【図1】本実施形態を示す冷却装置全体の模式図である。
【図2】冷却装置の制御フローチャートである。
【図3】本発明と従来技術での冷却水温の比較を示すグラフである。
【図4】従来技術を示す冷却装置全体の模式図である。
【符号の説明】
100 エンジン(液冷式内燃機関)
200 ラジエータ
210 ラジエータ回路
220 合流部
230 送風機
300 バイパス回路
301 暖房用空調機
310 ヒータ(暖房用放熱器)
320 ヒータ回路(放熱器回路)
330 ヒータブロワ(放熱器送風機)
400 流量制御弁
424 ポテンショメータ
500 電動ポンプ(ポンプ)
600 ECU(電子制御装置)
610 圧力センサ
621 第1水温センサ
622 第2水温センサ
624 回転センサ
626 外気温センサ
700 空気調和装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling apparatus for a liquid-cooled internal combustion engine that is suitable for use in, for example, a cooling system for an on-vehicle water-cooled internal combustion engine.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 8-14043 discloses an improvement in warm-up performance and heating performance at the start of a conventional liquid-cooled internal combustion engine. That is, as shown in FIG. 4, in a radiator circuit 210 that circulates coolant from the liquid-cooled internal combustion engine 100 to the radiator 200, the heating radiator 310 that uses the coolant as a heat source and the liquid-cooled internal combustion engine 100 are independent. And a pump 500 that operates, and the number of revolutions (discharge flow rate) of the pump 500 is controlled by the control means (electronic control device) 600 in accordance with the coolant temperature T detected by the water temperature sensor 620. .
[0003]
Specifically, the pump 500 is stopped at the start-up time when the coolant temperature T is low, and the pump 500 is rotated at a high speed at the warm-up promoting coolant temperature. Further, when heating is desired to be effective from a time when the coolant temperature T is relatively low (when the heater switch 340 is turned on), the pump 500 is rotated at a high speed, and the radiator circuit 320 that circulates the radiator 310 for heating is used. Control is performed so that the rotational speed of the pump 500 decreases as the coolant temperature T increases and the coolant temperature T increases.
[0004]
As a result, when the liquid-cooled internal combustion engine is started, the coolant temperature T can be quickly increased to improve the warm-up performance, and the heating performance can be improved even when the coolant temperature T is relatively low.
[0005]
[Problems to be solved by the invention]
However, in the above apparatus, the relationship between the coolant flow rate flowing through the radiator circuit 210, the bypass circuit 300 bypassing the radiator 200, and the radiator circuit 320 and the pump 500 is not considered. That is, in order to improve the warming-up performance and the heating performance, when increasing the coolant flow rate of each circuit, particularly the bypass circuit 300 or the radiator circuit 320, according to the coolant temperature T, the coolant flow rate is increased. Since the coolant flows in addition to the circuit to perform, it is necessary to rotate the pump 500 at a high speed in order to ensure the required flow rate. Therefore, power as a cooling device is consumed greatly.
[0006]
An object of the present invention is to provide a cooling apparatus for a liquid-cooled internal combustion engine that reduces the power consumption of the pump as much as possible and improves the warm-up performance and heating performance of the liquid-cooled internal combustion engine at the start. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following technical means.
[0008]
In the first aspect of the invention, after cooling the coolant flowing out from the liquid-cooled internal combustion engine (100), the radiator (200) that flows out the cooled coolant toward the liquid-cooled internal combustion engine (100). )When,
A bypass circuit (300) for bypassing the coolant flowing out from the liquid-cooled internal combustion engine (100) to the radiator (200) and leading to the outlet side of the radiator (200);
A heating radiator (310) that uses a coolant flowing out of the liquid-cooled internal combustion engine (100) as a heat source;
A flow rate control valve (400) for controlling the bypass flow rate (Vb) of the coolant flowing through the bypass circuit (300), the radiator flow rate (Vr) of the coolant flowing through the radiator (200), and
A pump (500) that operates independently of the liquid-cooled internal combustion engine (100) and circulates the coolant;
In a cooling apparatus for a liquid-cooled internal combustion engine having a flow control valve (400) and a control means (600) for controlling the operation of a pump (500),
The coolant outlet from the radiator (310) for heating is connected to the flow control valve (400),
The flow control valve (400) simultaneously controls the radiator flow rate (Vh) of the coolant flowing through the heating radiator (310) in addition to the bypass flow rate (Vb) and the radiator flow rate (Vr),
The control means (600) is configured such that a cooling air temperature (Tb ) of the liquid cooling internal combustion engine (100) is equal to or lower than a predetermined value and a heating air conditioner (301) having a heating radiator (310) is operated. When the flow control valve (400) is open , the radiator flow rate (Vh) is maximized, the radiator flow rate (Vr) and the bypass flow rate (Vb) are minimized, and the discharge flow rate of the pump (500) is increased. And the discharge flow rate of the pump (500) is controlled.
[0009]
In the invention according to claim 2, the control means (600) is configured such that the coolant temperature (Tb) of the liquid-cooled internal combustion engine (100) is equal to or lower than a predetermined value and the heating air conditioner (301) is activated. If so, the opening of the flow control valve (400) is controlled to fully open the circuit (320) having the heating radiator (310), and the circuit (210) having the radiator (200) and the bypass circuit (300 ) Is fully closed .
[0010]
In the invention according to claim 3, when the coolant temperature (Tb) is not more than a predetermined value and the heating air conditioner (301) is not in operation , the control means (600) mainly controls the bypass circuit ( 300), the coolant is allowed to flow, and the discharge flow rate of the pump (500) is reduced.
When the coolant temperature (Tb) is higher than the predetermined value, the flow rate control valve (400) is opened so that the coolant flows mainly through the heating radiator (310) and the discharge flow rate of the pump (500) is increased. And the discharge flow rate of the pump (500) is controlled .
[0011]
The invention according to claim 4 is characterized in that the predetermined value of the coolant temperature (Tb) is the coolant temperature at the end of warm-up after the start of the liquid-cooled internal combustion engine (100). .
[0012]
According to invention of Claims 1-4, according to the operating state of coolant temperature (Tb) and a heating air conditioner (301) by a flow control valve (400), the radiator (200), the bypass circuit ( 300), among the heating radiators (310), a circuit in which cooling liquid is to be given priority can be selected, and the cooling liquid is not allowed to flow in other circuits, so that the consumption of the pump (500) Power can be reduced.
[0013]
In particular, after starting the liquid-cooled internal combustion engine (100), the bypass circuit (300) and the heating heat dissipation are based on the coolant temperature at the end of warm-up and the operating state of the heating air conditioner (301). Since the flow rate to the vessel (310) is adjusted, warm-up performance and heating performance can be improved.
[0014]
Moreover, since the flow rate of the radiator (200), the bypass circuit (300), and the heating radiator (310) can be adjusted integrally by the flow control valve (400), the heating radiator (310 ) A dedicated flow control valve can be abolished and a cooling device can be constructed at low cost.
[0015]
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, the cooling device for a liquid-cooled internal combustion engine according to the present invention is applied to a water-cooled internal combustion engine for vehicle travel, and FIG. 1 is a schematic diagram of the entire cooling device.
[0017]
The radiator 200 is a heat exchanger that cools cooling water circulating in the liquid-cooled internal combustion engine (hereinafter referred to as the engine) 100, and the radiator 200 is provided with a blower 230 that blows air. In this example, the blower 230 is a type that sucks air from the radiator 200 side, and the drive motor of the blower 230 can vary the rotation speed by changing the duty as a control amount, and the output can be adjusted to adjust the blower amount. Type. As the duty increases or decreases, the power consumption of the blower 230 also increases or decreases.
[0018]
The engine 100 and the radiator 200 are connected by a radiator circuit 210 in which cooling water circulates. In addition, a bypass circuit 300 is provided that guides the cooling water flowing out from the engine 100 to the outlet side of the radiator 200 in the radiator circuit 210 by bypassing the radiator 200. A flow rate control valve 400 that controls the flow rate of cooling water flowing through the radiator 200, the bypass circuit 300, and a heating radiator 310 described later is provided at a junction 220 between the bypass circuit 300 and the radiator circuit 210. An electric pump (hereinafter referred to as a pump) 500 that operates independently of the engine 100 and circulates the cooling water is provided downstream of the flow rate control valve 400 (on the engine 100 side). Yes. Similar to the blower 230, the pump 500 is a variable output type capable of continuously varying the number of rotations by varying the duty as the control amount and adjusting the discharge flow rate. As the duty increases or decreases, the power consumption of the pump 500 also increases or decreases.
[0019]
Further, a heating air conditioner 301 having a heating radiator (hereinafter referred to as a heater) 310 and a radiator fan (hereinafter referred to as a heater blower) 330 using cooling water flowing out from the engine 100 as a heat source is provided. Yes. The cooling water flow path on the side flowing out from the heater 310 is connected to the flow control valve 400 to form a radiator circuit (hereinafter referred to as a heater circuit) 320. When the air conditioner 301 for heating is operated, the heater blower 330 is operated, and the air blown is heat-exchanged by the heater 310 to become hot air, and is sent to the vehicle interior through a duct (not shown).
[0020]
Here, the flow rate control valve 400 is provided with a valve that is opened and closed by a motor. The flow rate of cooling water flowing through the radiator 200 (hereinafter, this flow rate is referred to as the radiator flow rate Vr) and the bypass circuit 300. In addition to the flow rate of cooling water flowing through the interior (hereinafter, this flow rate is referred to as bypass flow rate Vb), the flow rate of cooling water flowing through the heater 310 (hereinafter referred to as radiator flow rate, ie, heater flow rate Vh). Is controlled by varying the valve opening. That is, the sum of the flow rates Vr, Vb, and Vh is the pump flow rate Vp discharged from the pump 500, and the pump flow rate Vp is distributed to the flow rates Vr, Vb, and Vh depending on the valve opening degree of the flow rate control valve 400. . Specifically, one of the circuits 210, 300, and 320 is fully opened, the other two circuits are fully closed, and the flow rate of the fully opened circuit is maximized (fully closed). The flow rate of the other circuits is minimized). Further, the heater circuit 320 is fixed in a fully opened state, the heater flow rate Vh is maximized, the opening degrees of the radiator circuit 210 and the bypass circuit 300 are increased and decreased, and the distribution ratio between the radiator flow rate Vr and the bypass flow rate Vb is adjusted. When the valve opening degree θ of the radiator circuit 210 (hereinafter, θ represents the opening degree of the radiator circuit 210) is 0%, the radiator flow rate Vr is minimum (bypass flow rate Vb is maximum), and the valve opening amount θ is 100. %, The radiator flow rate Vr is maximized (bypass flow rate Vb is minimized). Further, the heater circuit 320 is fixed in a fully closed state to minimize the heater flow rate Vh, and the opening degree of the radiator circuit 210 and the bypass circuit 300 is increased or decreased to adjust the distribution ratio between the radiator flow rate Vr and the bypass flow rate Vb.
[0021]
In addition, an electronic control unit (hereinafter referred to as ECU) 600 that controls the pump 500, the flow control valve 400 and the blower 230 is provided. Pressure sensor 610 (pressure detection means) for detecting Pa, rotation sensor 624 (rotation speed detection means) for detecting the rotation speed Ne of the engine 100, and outside air temperature sensor 626 (temperature detection means) for detecting the outside air temperature Ta. , A first water temperature sensor 621 (temperature detection means) for detecting the temperature of cooling water flowing into the pump 500 (hereinafter referred to as pump inlet water temperature) Tp, and the temperature of the cooling water flowing through the bypass circuit 300 (hereinafter referred to as bypass water temperature). The second water temperature sensor 622 (temperature detecting means) for detecting Tb, and the potentiometer for detecting the valve opening degree of the flow control valve 400. 424 (opening detection means), a detection signal from the heater blower 330 and an air conditioning apparatus 700 has been entered, ECU 600, based on these detection signals, controls the pump 500, the flow control valve 400 and the blower 230. Further, the ECU 600 counts the number N of readings of a target water temperature Tmap (described later) read based on detection signals from the sensors 610, 624, 626, 621, 622 and the air conditioner 700 (not shown). Z.) is provided.
[0022]
Next, the operation of the present embodiment will be described based on the flowchart shown in FIG.
[0023]
When an ignition switch (not shown) of the vehicle is turned on, power is turned on to ECU 600 and ECU 600 is activated. First, in step S50, the counter is reset and the number of readings N becomes zero. Next, in step S100, the detection signals of the sensors 610, 624, 626, 621, 622 and the air conditioner 700 are read in order to grasp the load state of the engine 100. The load of the engine 100 is detected mainly using the intake pressure Pa and the rotational speed Ne as parameters, which affect the bypass water temperature Tb and the pump inlet water temperature Tp. The larger the parameters, the greater the load on engine 100.
[0024]
In step S110, a target water temperature Tmap is read from a water temperature control map (not shown). The water temperature control map is obtained by assigning in advance target water temperature values of cooling water to be controlled in accordance with the outside air temperature Ta, the operating state of the air conditioner 700, the intake pressure Pa and the rotation speed Ne. What is the target water temperature Tmap? This means the target water temperature value. For example, as the intake pressure Pa is higher (the throttle valve opening of the engine 100 is larger) and the rotational speed Ne is larger, the load of the engine 100 is higher, and the target water temperature Tmap is set to a lower value. When the intake pressure Pa is low (throttle valve opening is small) and the rotational speed Ne is small, the load on the engine 100 is low, so the target water temperature Tmap is set to a higher value.
[0025]
In step S112, the number N of reads of the target water temperature Tmap is set to N + 1. In subsequent step S115, it is determined whether or not the number of readings N is 1. If N is 1, it is determined that the engine 100 has just started, and the process proceeds to step S118. If NO is determined, the process proceeds to step S120 because the process in step S118 described later is unnecessary.
[0026]
In step S118, the basic duty of the pump 500 and the basic valve opening of the flow control valve 400 are determined as initial values from a map (not shown), the pump 500 is operated, and the valve of the flow control valve 400 is opened. As the duty of the pump 500 increases, the pump rotation speed increases, the flow rate of the cooling water flowing through each circuit 210, 300, 320 increases, and the power consumption of the pump 500 itself increases. Moreover, the flow rate which flows through the circuit increases, so that the valve opening degree of the flow control valve 400 is large.
[0027]
In step S120, it is determined whether or not the bypass water temperature Tb detected by the water temperature sensor 622 is lower than the warm-up end water temperature Tw1, and if it is lower, the process proceeds to step S130. Incidentally, the warm-up end water temperature Tw1 is decreased by the frictional loss of the operating portion of the engine 100 due to the rise of the cooling water temperature, the lubricating oil temperature in the engine 100, etc. after the engine 100 is started. The temperature of the cooling water at which the engine 100 operates stably is set as a value around 80 degrees C in this embodiment.
[0028]
In step S130, it is determined whether or not the heater blower 330 is operating. If it is determined that the heater blower 330 is not operating, the process proceeds to step S160 and warm-up priority control is performed. That is, in order to increase the coolant temperature quickly, the valve opening degree of the flow rate control valve 400 is controlled so that the bypass circuit 300 is fully opened, and the radiator circuit 210 and the heater circuit 320 are fully closed. The duty is controlled to be lower than the basic duty set in step S118, and low-flow cooling water is circulated only in the bypass circuit 300.
[0029]
However, if the heater blower 330 is operating in step S130 (when the occupant operates the heating air conditioner 301 from an early stage after starting the engine 100), the process proceeds to step S140 to perform heater priority control. That is, in order to make the heating air conditioner 301 work more efficiently, the valve of the flow control valve 400 is controlled so that the heater circuit 320 is fully opened, and the radiator circuit 210 and the bypass circuit 300 are fully closed. In S150, the duty of the pump 400 is controlled to be higher than the basic duty set in Step S118, and a high flow rate of cooling water is circulated only in the heater circuit 320.
[0030]
If the bypass water temperature Tb exceeds the warm-up end water temperature Tw1 in step S120 and becomes higher, it is further determined in step S180 whether or not it is lower than the target water temperature Tmap, and if it is lower, the process proceeds to step S140 and the heater priority control is performed. I do.
[0031]
If it is determined NO in step S180, in step S190, the pump inlet water temperature Tp is within a predetermined range based on the target water temperature Tmap (in this embodiment, a range of ± 2 degrees with respect to the target water temperature). If the pump inlet water temperature Tp is within the predetermined range, the process proceeds to step S200, and the pump duty and valve opening set in step S118 or steps S220, S240, S250, and S270 described later are maintained. The
[0032]
When the pump inlet water temperature Tp is not within the predetermined range in step S190, the process proceeds to step S210 in order to optimize the cooling capacity of the cooling device and adjust the pump inlet water temperature Tp to the target water temperature Tmap.
[0033]
In step S210, it is further determined whether or not the pump inlet water temperature Tp is higher than the target water temperature Tmap. If higher, in step S220, first, in order to lower the pump inlet water temperature Tp without increasing the power consumption of the cooling device, The flow control valve 400 is preferentially operated to increase the valve opening degree θ of the radiator circuit 210 by a predetermined amount. As a result, the radiator flow rate Vr is increased, and the heat dissipation capability of the radiator 200 is increased to lower the pump inlet water temperature Tp. In step S230, it is determined whether or not the valve opening θ is 100%. If it has reached 100%, in step S240, the duty of the pump 500 is changed by a predetermined amount to change the rotational speed of the pump 500. In this case, in order to lower the pump inlet water temperature Tp, the duty of the pump 500 is increased and the pump rotational speed is increased to increase the discharge flow rate. If the valve opening degree θ does not reach 100% in step S230, the valve opening degree θ opened in step S220 is maintained.
[0034]
On the other hand, if it is determined in step S210 that the pump inlet water temperature Tp is lower than the target water temperature Tmap, the process proceeds to step S250, and first, the pump 500 is preferentially operated so that less power is consumed by the cooling device. The duty is changed by a predetermined amount, and the rotational speed of the pump 500 is changed. In this case, in order to raise the pump inlet water temperature Tp, the duty of the pump 500 is lowered and the pump rotation speed is lowered to reduce the discharge flow rate. In step S260, it is determined whether or not the duty of the pump 500 has reached the minimum value. If the minimum value has been reached, the valve opening θ of the flow control valve 400 is further decreased by a predetermined amount in step S270, and the radiator The pump inlet water temperature Tp is raised by decreasing the flow rate Vr and lowering the heat dissipation capability of the radiator 200. If the duty of the pump 500 has not reached the minimum value in step S260, the duty of the pump 500 controlled in step S250 is maintained. Steps S230, S240, S260, and S270 are feedback controlled so that the pump inlet water temperature Tp converges to the target water temperature Tmap by repeating the return to step S100.
[0035]
In steps S150, S170, S200, S240, and S250 in the above flowchart, the air flow of the blower 230 is determined and operated so that the power consumption of the pump 500 and the blower 230 is minimized.
[0036]
With the above configuration and operation, the flow control valve 400 can select a circuit in which the cooling water is to flow preferentially in the heater 310 in addition to the radiator 200 and the bypass circuit 300 according to the bypass water temperature Tb and the pump inlet water temperature Tp. Since the cooling water is prevented from flowing through the other circuits, the power consumption of the pump 500 can be reduced.
[0037]
And the warming-up performance and heating performance at the time of starting of the engine 100 can be improved. Specifically, as shown in FIG. 3 (indicating the flow rate in the circuit and the cooling water temperature on the outlet side of the engine 100), in the warm-up priority control (part A), a low flow rate (Vb of the prior art) Since the cooling water of Vb) is circulated with respect to ', the power consumption of the pump 500 can be reduced. And since the rise of the wall temperature of the engine 100 becomes faster and the temperature difference with the cooling water becomes larger, the temperature rise time of the cooling water is shortened and the warm-up performance is improved. When the time to reach the stoichiometric water temperature at which the engine 100 can be operated at the stoichiometric air-fuel ratio (around 60 degrees C in this embodiment) is compared between the present invention and the prior art, ΔT can be shortened and the fuel efficiency of the engine 100 can be improved. It can be improved. In the heater priority control (B section), the cooling water is circulated in the bypass circuit 300 and the heater circuit 320 in the conventional technique, whereas the high flow rate (Vb ″ + Vh in the conventional technique is increased) only in the heater circuit 320. On the other hand, since the cooling water (only Vh) is circulated, the work of the pump 500 can be concentrated in the heater circuit 320, and the heating performance can be improved with the minimum necessary power consumption.
[0038]
In addition, since the blower 230 is operated in combination with the pump 500 like the flow control valve 400, the power consumption of the pump 500 can be further reduced.
[0039]
Furthermore, since the flow rate adjustment function of the radiator 200, the bypass circuit 300, and the heater 310 is integrally provided by the flow rate control valve 400, the flow rate adjustment valve dedicated to the heater 310 can be eliminated and a cooling device can be configured at low cost.
[0040]
In this embodiment, the intake pressure Pa and the rotational speed Ne are used as parameters for detecting the load of the engine 100. However, the engine state and the running state of the vehicle that affect the coolant temperature Tp and Tb are shown. For example, parameters such as the vehicle speed Vv, the throttle valve opening of the engine 100, and the intake air amount can be used.
[0041]
In the present embodiment, the configuration has been described on the assumption that the electric pump is used. However, the same effect can be obtained with a hydraulic pump.
[Brief description of the drawings]
FIG. 1 is a schematic view of an entire cooling device showing an embodiment of the present invention.
FIG. 2 is a control flowchart of a cooling device.
FIG. 3 is a graph showing a comparison of cooling water temperature between the present invention and the prior art.
FIG. 4 is a schematic diagram of the entire cooling device showing the prior art.
[Explanation of symbols]
100 engine (liquid-cooled internal combustion engine)
200 Radiator 210 Radiator Circuit 220 Merging Port 230 Blower 300 Bypass Circuit 301 Heating Air Conditioner 310 Heater (Heating Radiator)
320 Heater circuit (heatsink circuit)
330 Heater blower (radiator blower)
400 Flow control valve 424 Potentiometer 500 Electric pump (pump)
600 ECU (electronic control unit)
610 Pressure sensor 621 First water temperature sensor 622 Second water temperature sensor 624 Rotation sensor 626 Outside air temperature sensor 700 Air conditioner

Claims (4)

液冷式内燃機関(100)から流出する冷却液を冷却した後、その冷却された冷却液を前記液冷式内燃機関(100)に向けて流出するラジエータ(200)と、
前記液冷式内燃機関(100)から流出する冷却液を前記ラジエータ(200)を迂回させてこのラジエータ(200)の流出口側に導くバイパス回路(300)と、
前記液冷式内燃機関(100)から流出する冷却液を熱源とする暖房用放熱器(310)と、
前記バイパス回路(300)を流通する冷却液のバイパス流量(Vb)、前記ラジエータ(200)を流通する冷却液のラジエータ流量(Vr)を制御する流量制御弁(400)と、
前記液冷式内燃機関(100)と独立して作動し、冷却液を循環させるポンプ(500)と、
前記流量制御弁(400)および前記ポンプ(500)の作動を制御する制御手段(600)とを有する液冷式内燃機関の冷却装置において、
前記暖房用放熱器(310)からの冷却液流出口を前記流量制御弁(400)に連結し、
この流量制御弁(400)は、前記バイパス流量(Vb)、前記ラジエータ流量(Vr)に加えて、前記暖房用放熱器(310)を流通する冷却液の放熱器流量(Vh)も同時に制御し、
前記制御手段(600)は、前記液冷式内燃機関(100)の冷却液温(Tb)が所定値以下で、且つ、前記暖房用放熱器(310)を有する暖房用空調機(301)が作動している場合は、前記放熱器流量(Vh)を最大にし、前記ラジエータ流量(Vr)および前記バイパス流量(Vb)を最小にし、前記ポンプ(500)の吐出流量を多くするように、前記流量制御弁(400)の開度および前記ポンプ(500)の吐出流量を制御することを特徴とする液冷式内燃機関の冷却装置。
A radiator (200) that cools the coolant flowing out from the liquid-cooled internal combustion engine (100) and then flows the cooled coolant toward the liquid-cooled internal combustion engine (100);
A bypass circuit (300) for bypassing the coolant flowing out from the liquid-cooled internal combustion engine (100) to the radiator (200) and leading to the outlet of the radiator (200);
A heating radiator (310) that uses a coolant flowing out of the liquid-cooled internal combustion engine (100) as a heat source;
A flow rate control valve (400) for controlling the bypass flow rate (Vb) of the coolant flowing through the bypass circuit (300), the radiator flow rate (Vr) of the coolant flowing through the radiator (200), and
A pump (500) that operates independently of the liquid-cooled internal combustion engine (100) and circulates a coolant;
In a cooling apparatus for a liquid-cooled internal combustion engine, comprising a flow rate control valve (400) and a control means (600) for controlling the operation of the pump (500).
A coolant outlet from the heating radiator (310) is connected to the flow control valve (400);
The flow control valve (400) simultaneously controls the radiator flow rate (Vh) of the coolant flowing through the heating radiator (310) in addition to the bypass flow rate (Vb) and the radiator flow rate (Vr). ,
The control means (600) includes a heating air conditioner (301) having a cooling liquid temperature (Tb) of the liquid-cooled internal combustion engine (100) equal to or lower than a predetermined value and having the heating radiator (310). When operating, the radiator flow rate (Vh) is maximized, the radiator flow rate (Vr) and the bypass flow rate (Vb) are minimized, and the discharge flow rate of the pump (500) is increased. A cooling device for a liquid-cooled internal combustion engine, wherein the opening degree of the flow control valve (400) and the discharge flow rate of the pump (500) are controlled.
前記制御手段(600)は、前記液冷式内燃機関(100)の冷却液温(Tb)が所定値以下で、且つ、前記暖房用空調機(301)が作動している場合は、前記流量制御弁(400)の開度を制御して、前記暖房用放熱器(310)を有する回路(320)を全開にし、前記ラジエータ(200)を有する回路(210)および前記バイパス回路(300)を全閉にすることを特徴とする請求項1に記載の液冷式内燃機関の冷却装置。 When the coolant temperature (Tb) of the liquid-cooled internal combustion engine (100) is equal to or lower than a predetermined value and the heating air conditioner (301) is operating, the control means (600) By controlling the opening degree of the control valve (400), the circuit (320) having the heating radiator (310) is fully opened, and the circuit (210) having the radiator (200) and the bypass circuit (300) are 2. The cooling device for a liquid-cooled internal combustion engine according to claim 1, wherein the cooling device is fully closed . 前記制御手段(600)は、前記冷却液温(Tb)が所定値以下で、且つ、前記暖房用空調機(301)が作動していない場合は、主に前記バイパス回路(300)に冷却液を流し、前記ポンプ(500)の吐出流量を少なくするようにし、
前記冷却液温(Tb)が前記所定値より高い場合は、主に前記暖房用放熱器(310)に冷却液を流し、前記ポンプ(500)の吐出流量を多くするように、前記流量制御弁(400)の開度および前記ポンプ(500)の吐出流量を制御することを特徴とする請求項1または請求項2に記載の液冷式内燃機関の冷却装置。
When the coolant temperature (Tb) is not more than a predetermined value and the heating air conditioner (301) is not operating, the control means (600) mainly supplies coolant to the bypass circuit (300). In order to reduce the discharge flow rate of the pump (500),
When the coolant temperature (Tb) is higher than the predetermined value, the flow rate control valve is configured so that the coolant flows mainly through the heating radiator (310) and the discharge flow rate of the pump (500) is increased. The cooling device for a liquid-cooled internal combustion engine according to claim 1 or 2 , wherein the opening degree of (400) and the discharge flow rate of said pump (500) are controlled.
前記冷却液温(Tb)の所定値とは、前記液冷式内燃機関(100)の始動後の暖機終了時の冷却液温であることを特徴とする請求項1〜請求項3のいずれかに記載の液冷式内燃機関の冷却装置。Any predetermined value of the coolant temperature (Tb) and the of claims 1 to 3, wherein the liquid is a coolant temperature during the warm-up completion after the start of the cooled internal combustion engine (100) A cooling apparatus for a liquid-cooled internal combustion engine according to claim 1.
JP2000062103A 2000-03-07 2000-03-07 Cooling device for liquid-cooled internal combustion engine Expired - Fee Related JP4337214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062103A JP4337214B2 (en) 2000-03-07 2000-03-07 Cooling device for liquid-cooled internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062103A JP4337214B2 (en) 2000-03-07 2000-03-07 Cooling device for liquid-cooled internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001248439A JP2001248439A (en) 2001-09-14
JP4337214B2 true JP4337214B2 (en) 2009-09-30

Family

ID=18582156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062103A Expired - Fee Related JP4337214B2 (en) 2000-03-07 2000-03-07 Cooling device for liquid-cooled internal combustion engine

Country Status (1)

Country Link
JP (1) JP4337214B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886988B2 (en) * 2004-10-27 2011-02-15 Ford Global Technologies, Llc Switchable radiator bypass valve set point to improve energy efficiency
JP2011020478A (en) * 2009-07-13 2011-02-03 Denso Corp Air conditioner for vehicle
JP6060797B2 (en) * 2012-05-24 2017-01-18 株式会社デンソー Thermal management system for vehicles
JP5949176B2 (en) * 2012-05-31 2016-07-06 アイシン精機株式会社 Control device for internal combustion engine
JP6561007B2 (en) * 2016-04-06 2019-08-14 株式会社デンソー Air conditioner for vehicles

Also Published As

Publication number Publication date
JP2001248439A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
US10371041B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
JP6264443B2 (en) COOLING SYSTEM CONTROL DEVICE AND COOLING SYSTEM CONTROL METHOD
CN108026824B (en) Cooling device for internal combustion engine for vehicle and control method for cooling device
US10605150B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
JP2004360509A (en) Cooling system for internal combustion engine
CN110094254A (en) Engine-cooling system and method
US10107176B2 (en) Cooling device of internal combustion engine for vehicle and control method thereof
JP2004150277A (en) Ventilator for heat exchanger for vehicle, and control method thereof
JP4140160B2 (en) Cooling device for liquid-cooled internal combustion engine
WO2016159008A1 (en) Cooling system for internal combustion engine, and control method thereof
JP4133446B2 (en) Thermostat abnormality detection device
EP1101915A2 (en) Cooling system and method of internal combustion engine
JP4604858B2 (en) Vehicle heating system
JP4337214B2 (en) Cooling device for liquid-cooled internal combustion engine
JP2004316472A (en) Cooling system for internal combustion engine
JPH1071837A (en) Cooling system equipment of internal combustion engine for vehicle
JP4337212B2 (en) Cooling device for liquid-cooled internal combustion engine
JP4029638B2 (en) Cooling device for heat generating equipment
JP2002213242A (en) Cooling controller for movable body
JPS5874824A (en) Cooling device of engine
JPS63120814A (en) Engine cooling system
JP2004144042A (en) Cooling device of liquid cooled type heat engine
JP2007186089A (en) Warming-up device for vehicular equipment
KR100384584B1 (en) A heating device of car
JP6572824B2 (en) Vehicle cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees