JP4337045B2 - Liquid gasket evaluation method - Google Patents

Liquid gasket evaluation method Download PDF

Info

Publication number
JP4337045B2
JP4337045B2 JP2004173692A JP2004173692A JP4337045B2 JP 4337045 B2 JP4337045 B2 JP 4337045B2 JP 2004173692 A JP2004173692 A JP 2004173692A JP 2004173692 A JP2004173692 A JP 2004173692A JP 4337045 B2 JP4337045 B2 JP 4337045B2
Authority
JP
Japan
Prior art keywords
flat surface
liquid gasket
evaluation method
flat
inclined surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173692A
Other languages
Japanese (ja)
Other versions
JP2005351402A (en
Inventor
宣夫 竹井
稔 俣野
知則 濱田
尚広 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004173692A priority Critical patent/JP4337045B2/en
Publication of JP2005351402A publication Critical patent/JP2005351402A/en
Application granted granted Critical
Publication of JP4337045B2 publication Critical patent/JP4337045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasket Seals (AREA)

Description

本発明は、部品同士の合わせ面に塗布して固形化させることにより上記合わせ面をシールする、いわゆる、液状ガスケットの評価方法、とくに、液状ガスケットの動的耐久性を評価できるようにした方法に関する。   The present invention relates to a so-called liquid gasket evaluation method in which the above-mentioned mating surfaces are sealed by applying and solidifying the mating surfaces between components, and in particular, a method capable of evaluating the dynamic durability of the liquid gasket. .

液状ガスケットに対する従来の評価方法は、液状ガスケットを固形化させて作成したテストピース自体の硬さ、伸び、引張り強さ、体積変化等の物性試験を行ったり、図4に例示されているように、相互に向き合った2枚の平板31、32の周縁部間に供試の液状ガスケット33を環状に塗布し、平板31、32をボルトにより緊締して液状ガスケット33が固形化した後、平板31、32間及び固形化した液状ガスケット33で形成された空間34内にオイル等で流体圧をかけて、そのオイル等が空間34内から周囲に漏れ出すかどうかを確認して、液状ガスケットの良否を判定するようにしていた。   Conventional evaluation methods for liquid gaskets include physical property tests such as hardness, elongation, tensile strength, and volume change of test pieces themselves prepared by solidifying liquid gaskets, as illustrated in FIG. The liquid gasket 33 to be tested is applied in an annular shape between the peripheral portions of the two flat plates 31 and 32 facing each other, and the flat plates 31 and 32 are tightened with bolts to solidify the liquid gasket 33, and then the flat plate 31. , 32 and the space 34 formed by the solidified liquid gasket 33 is subjected to fluid pressure with oil or the like, and it is checked whether the oil or the like leaks from the space 34 to the surroundings. I was going to judge.

しかしながら、液状ガスケットを塗布した部品同士の合わせ面は、各部品の熱膨張係数が異なる場合に温度変化が繰り返されると、各部品の相対的な熱変形量の差異に応じて相互に繰り返し擦れ合うこととなるため、各部品間に塗布されていた液状ガスケットは圧縮負荷と同時に剪断負荷を繰り返し受けることとなるが、このような動的負荷に対する液状ガスケットの耐久性を試験することは一般的に行われておらず、また、液状ガスケットに対する従来の前記評価方法ではこのような耐久性の良否を判断することが困難であるので、実機による耐久試験を行う必要があり、試験コストや試験時間の増加が問題となっていた。   However, when the temperature change is repeated when the thermal expansion coefficient of each part is different, the mating surfaces of the parts to which the liquid gasket is applied will repeatedly rub against each other according to the difference in relative thermal deformation amount of each part. Therefore, the liquid gasket applied between each part is repeatedly subjected to a shearing load simultaneously with the compression load. However, it is a common practice to test the durability of the liquid gasket against such a dynamic load. In addition, since it is difficult to judge the quality of such durability by the conventional evaluation method for liquid gaskets, it is necessary to conduct an endurance test using an actual machine, which increases test cost and test time. Was a problem.

なお、出願人は、本出願時点において、本発明に関連する適切な先行技術文献情報の存在を知らないものである。   The applicant does not know the existence of appropriate prior art document information related to the present invention at the time of this application.

本発明は、液状ガスケットの動的耐久性を比較的簡単に、かつ、迅速に評価できるようにしようとするものである。   The present invention is intended to make it possible to relatively easily and quickly evaluate the dynamic durability of a liquid gasket.

このため、本発明にかかる液状ガスケット評価方法は、それぞれほぼ対応する第1平坦面と上記第1平坦面に連続して形成された第1傾斜面と上記第1傾斜面に連続して形成され上記第1平坦面に平行な第2平坦面と上記第2平坦面に連続して形成された第2傾斜面と上記第2傾斜面に連続して形成され上記第1平坦面に平行な第3平坦面とをそなえて熱膨張係数が異なる2部品を上記各面で相互に重ね合わせ、上記2部品の上記第1平坦面同士をノックピンにより相互に位置決めして、上記2部品を緊締し、かつ、上記各面間に塗布されていた液状ガスケットを固形化させた状態で、上記2部品に共通した温度変化を繰り返し与えるようにしている。   For this reason, the liquid gasket evaluation method according to the present invention is formed continuously on the first flat surface, the first inclined surface formed continuously with the first flat surface, and the first inclined surface. A second flat surface parallel to the first flat surface, a second inclined surface formed continuously with the second flat surface, and a second flat surface formed continuously with the second inclined surface and parallel to the first flat surface. 3 parts having two flat surfaces and different thermal expansion coefficients are superposed on each other, the first flat surfaces of the two parts are positioned to each other with a knock pin, and the two parts are tightened, And the temperature change common to said 2 components is repeatedly given in the state which solidified the liquid gasket applied between each said surface.

すなわち、各平坦面及び各傾斜面を相互に重ね合わせた2部品が、ノックピンにより第1平坦面同士で相互に位置決めして緊締され、かつ、上記各面間に塗布されていた液状ガスケットを固形化させた状態で、2部品に共通した温度変化が繰り返し与えられると、2部品の熱膨張係数が異なるため、ノックピンにより相互に位置決めされた第1平坦面同士から離れるほど温度変化に基づく平坦面に沿った2部品の相対的変位量が大きくなり、また、平坦面と傾斜面との接続部分では2部品の熱膨張方向が交叉していて、重ね合わされた2部品間の擦れが増大する結果、2部品の各面間に塗布されて固形化していた液状ガスケットは、第1平坦面からもっとも離れ、かつ、平坦面と傾斜面との接続部分である第2傾斜面と第3平坦面との接続部でもっとも大きな動的負荷を繰り返し受けるので、この部分でもっとも破断しやすいこととなり、すなわち、固形化した液状ガスケットは比較的少ない繰り返し温度変化数に応じて破断することとなり、従って、2部品間に相対的変位が繰り返し与えられる場合での液状ガスケットの動的耐久性を、比較的簡単に、かつ、迅速に評価することができるようになる。   That is, the two parts obtained by superimposing the flat surfaces and the inclined surfaces on each other are positioned and fastened to each other by the knock pins, and the liquid gasket applied between the surfaces is solidified. If the temperature change common to the two parts is repeatedly given in the state of being made into a state, the thermal expansion coefficients of the two parts are different, so that the flat surface based on the temperature change as the distance from the first flat surfaces positioned by the knock pins increases. As a result, the relative displacement amount of the two parts along the surface increases, and the thermal expansion direction of the two parts intersects at the connection portion between the flat surface and the inclined surface, and the friction between the two overlapping parts increases. The liquid gasket that has been applied and solidified between the surfaces of the two parts is farthest from the first flat surface, and the second inclined surface and the third flat surface, which are connecting portions between the flat surface and the inclined surface, Connection Since the largest dynamic load is repeatedly received, it is easy to break at this portion, that is, the solidified liquid gasket breaks according to a relatively small number of repeated temperature changes, and therefore, relative to the two parts. It becomes possible to evaluate the dynamic durability of the liquid gasket in a relatively simple and quick manner when a mechanical displacement is repeatedly applied.

以下、図面に基づき本発明の実施例について説明する。
図1及び図2において、それぞれ浅いコップ状のAl材からなる第1治具1とFe材からなる第2治具2とは、それぞれ周縁部に第1平坦面11、21と、第1平坦面11、21の両端にそれぞれ折れ角αで連続して形成された第1傾斜面12、22と、第1傾斜面12、22にそれぞれ折れ角αで連続して形成され第1平坦面11、21にそれぞれ平行な第2平坦面13、23と、第2平坦面13、23にそれぞれ折れ角αで連続して形成されそれぞれ第1傾斜面12、22と反対側へ傾斜した第2傾斜面14、24と、第2傾斜面14、24にそれぞれ折れ角αで連続して形成され第1平坦面11、21とそれぞれ同一面内に位置する第3平坦面15、25とをそなえ、すなわち、上記各面が第1平坦面11、21及び第3平坦面15、25の各中央部分を通り第1平坦面11、21に垂直な面対称に形成されて環状に接続されており、上記各面がそれぞれ対応するように第1治具1及び第2治具2が相互に重ね合わされている。
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2, each of the first jig 1 made of a shallow cup-shaped Al material and the second jig 2 made of an Fe material has first flat surfaces 11 and 21 at the periphery thereof, and a first flat surface. The first inclined surfaces 12 and 22 formed continuously at the folding angle α at both ends of the surfaces 11 and 21, respectively, and the first flat surface 11 formed at the first inclined surfaces 12 and 22 continuously at the bending angle α, respectively. , 21 are parallel to the second flat surfaces 13 and 23, and the second flat surfaces 13 and 23 are continuously formed at the folding angles α, respectively, and are inclined to the opposite sides of the first inclined surfaces 12 and 22, respectively. The first and second flat surfaces 11 and 21 and the third flat surfaces 15 and 25, which are continuously formed on the second inclined surfaces 14 and 24 at the folding angle α, respectively, and are located in the same plane, That is, the above surfaces are the first flat surfaces 11, 21 and the third flat surfaces 15, 2 The first jig 1 and the second jig 2 are formed so as to be symmetrical with respect to the first flat surfaces 11 and 21 and are connected in an annular shape so that the respective surfaces correspond to each other. They are superimposed on each other.

また、第1治具1及び第2治具2にはそれぞれ第1平坦面11、21、第2平坦面13、23及び第3平坦面15、25にボルト孔3が形成されていると共に、それぞれの周縁部間全体に液状ガスケット4が塗布され、各ボルト孔3と上記周縁部間に塗布されている液状ガスケット4とを挿通する図示しないボルトの締め付け力により第1治具1及び第2治具2が緊締されて、液状ガスケット4の膜厚が調整されている。   In addition, the first jig 1 and the second jig 2 have bolt holes 3 formed in the first flat surfaces 11 and 21, the second flat surfaces 13 and 23, and the third flat surfaces 15 and 25, respectively. The liquid gasket 4 is applied to the whole between the peripheral portions, and the first jig 1 and the second jig 2 are tightened by the tightening force of a bolt (not shown) that passes through each bolt hole 3 and the liquid gasket 4 applied between the peripheral portions. The jig 2 is tightened to adjust the film thickness of the liquid gasket 4.

さらに、第1治具1及び第2治具2の第1平坦面11、21、及びまたは、第3平坦面15、25は、後記のようにそれぞれ2本のノックピンにより第1平坦面11、21の中心部分(ボルト孔3の中心位置)からのノックピン位置角度βで位置決めされていて、以上によりテスト物件5が構成されている。   Further, the first flat surfaces 11 and 21 and / or the third flat surfaces 15 and 25 of the first jig 1 and the second jig 2 are respectively formed by two dowel pins as described below. 21 is positioned at a knock pin position angle β from the center portion 21 (center position of the bolt hole 3), and the test article 5 is configured as described above.

次に、上記液状ガスケット4の動的耐久性評価方法について説明する。
まず、液状ガスケット4の評価が比較的短時間で可能なように、各ボルト孔3と第1治具1及び第2治具2の周縁部間に塗布されている液状ガスケット4とを挿通する4本のボルト(径6mm)の締め付けトルクを12Nmに設定して、液状ガスケット4の膜厚を適度の大きさに調整し、かつ、液状ガスケット4がほぼ完全に固形化するように常温で約70時間放置する。
Next, a method for evaluating the dynamic durability of the liquid gasket 4 will be described.
First, each of the bolt holes 3 and the liquid gasket 4 applied between the peripheral portions of the first jig 1 and the second jig 2 are inserted so that the liquid gasket 4 can be evaluated in a relatively short time. The tightening torque of the four bolts (diameter 6 mm) is set to 12 Nm, the film thickness of the liquid gasket 4 is adjusted to an appropriate size, and at about room temperature so that the liquid gasket 4 is almost completely solidified. Leave for 70 hours.

その後、前処理として、相互に重ね合わされた第1治具1及び第2治具2の中央部分に形成された空間6内にエンジンオイルを充填した状態で、テスト物件5を冷熱槽内に配置し、エンジンにおける液状ガスケット使用部位のほぼ最高温度である150°Cに約200時間保持して、液状ガスケット4の内在的劣化を適度に促進させておくことにより、液状ガスケット4の動的耐久性テストに要する時間を短縮化できるようにする。   After that, as a pretreatment, the test article 5 is placed in the cooling bath in a state where the engine oil is filled in the space 6 formed in the central portion of the first jig 1 and the second jig 2 that are overlapped with each other. In addition, the liquid gasket 4 is maintained at 150 ° C., which is the highest temperature at which the liquid gasket is used, for about 200 hours, and the inherent deterioration of the liquid gasket 4 is moderately promoted. The time required for testing can be shortened.

上記前処理の後に、空間6内のエンジンオイルを0.15MPaに加圧した状態で、テスト物件5が配置された冷熱槽内の雰囲気温度を−30°Cに2時間と150°Cに2時間との冷熱サイクルが繰り返されるように変化させる。
すなわち、テスト物件5における第1治具1及び第2治具2に共通して同じ温度変化を与えて、それらの間の熱膨張差が大きくなるように、固形化した液状ガスケット4が受けるほぼ最高温度の150°Cを上限温度に設定し、かつ、下限温度を−30°Cに設定することにより冷熱温度差を極力大きくし、また、雰囲気温度が変わっても固形化した液状ガスケット4の温度は徐々に変化して、全体が雰囲気温度へほぼ到達するまでに約1時間30分を要するので、雰囲気温度をそれぞれ1時間30分以上、例えば2時間の間一定に保持してからその後に雰囲気温度を変化させるようにしており、また、空間6内のエンジンオイルを加圧することにより、固形化した液状ガスケット4の破断に応じてエンジンオイルが漏れ出しやすいようにして、固形化した液状ガスケット4の破断が容易に検出できるようにしている。
After the pre-treatment, with the engine oil in the space 6 pressurized to 0.15 MPa, the ambient temperature in the cooling / heating tank in which the test article 5 is placed is set to −30 ° C. for 2 hours and 150 ° C. for 2 hours. Change so that the cooling cycle with time is repeated.
That is, almost the same temperature change is given to the first jig 1 and the second jig 2 in the test article 5, and the solidified liquid gasket 4 receives so that the difference in thermal expansion between them increases. The maximum temperature 150 ° C is set as the upper limit temperature, and the lower limit temperature is set at -30 ° C, so that the temperature difference between the cooling and heating is increased as much as possible. The temperature changes gradually, and it takes about 1 hour and 30 minutes for the whole to reach the ambient temperature. Therefore, after maintaining the ambient temperature constant for 1 hour and 30 minutes, for example, 2 hours, respectively, The ambient temperature is changed, and the engine oil in the space 6 is pressurized so that the engine oil easily leaks in response to the breakage of the solidified liquid gasket 4. The breakage of the solidified liquid gasket 4 can be easily detected.

この場合、折れ角α及びノックピン位置角度βを下記のように変化させて、固形化した液状ガスケット4の破断により空間6内からエンジンオイルが外方へ漏れ出すまで、上記冷熱サイクルを繰り返した。
(1)図3(a)に示されているように、ノックピン位置角度βが45°と−135°との2個所、すなわち、テスト物件5の一直径上の2個所にそれぞれノックピンA、Aを設定し、折れ角αをそれぞれ135°とした場合。
(2)上記(1)の場合と同様にノックピンA、Aを設定し、折れ角αをそれぞれ150°とした場合。
(3)図3(b)に示されているように、ノックピン位置角度βが60°と−120°との2個所、すなわち、テスト物件5の一直径上の2個所にそれぞれノックピンB、Bを設定し、折れ角αをそれぞれ135°とした場合。
(4)上記(3)の場合と同様にノックピンB、Bを設定し、折れ角αをそれぞれ150°とした場合。
(5)図3(c)に示されているように、ノックピン位置角度βが45°と−45との2個所にそれぞれノックピンC、Cを設定し、折れ角αをそれぞれ135°とした場合。
(6)上記(5)の場合と同様にノックピンC、Cを設定し、折れ角αをそれぞれ150°とした場合。
In this case, the folding cycle α and the knock pin position angle β were changed as follows, and the above cooling cycle was repeated until engine oil leaked outward from the space 6 due to the fracture of the solidified liquid gasket 4.
(1) As shown in FIG. 3 (a), knock pins A and A are provided at two locations where the knock pin position angle β is 45 ° and −135 °, ie, two locations on one diameter of the test article 5. Is set and the bending angle α is set to 135 °.
(2) When knock pins A and A are set as in the case of (1) above, and the bending angle α is 150 °.
(3) As shown in FIG. 3B, knock pins B and B are provided at two locations where the knock pin position angle β is 60 ° and −120 °, that is, two locations on one diameter of the test article 5 respectively. Is set and the bending angle α is set to 135 °.
(4) When knock pins B and B are set in the same manner as in (3) above, and the bending angle α is set to 150 °.
(5) As shown in FIG. 3 (c), when the knock pins C and C are set at two positions of the knock pin position angle β of 45 ° and −45, respectively, and the bending angle α is set to 135 °, respectively. .
(6) When knock pins C and C are set in the same manner as in (5) above, and the bending angle α is set to 150 °.

その結果、上記(5)、(6)の場合は比較的少ない冷熱サイクル数で図3(c)のX部(第2平坦面13、23と第2傾斜面14、24との接続部、第2傾斜面14、24と第3平坦面15、25との接続部)からエンジンオイルが漏れ出し、上記(1)〜(4)の場合はそれぞれ上記(5)、(6)の場合の約1.5倍以上の冷熱サイクル数で図3(a)、図3(b)のY部(それぞれノックピンA、Aから離れた第1平坦面11、21と第1傾斜面12、22との接続部、第1傾斜面12、22と第2平坦面13、23との接続部)からエンジンオイルが漏れ出した。   As a result, in the case of the above (5) and (6), the X portion (the connection portion between the second flat surfaces 13, 23 and the second inclined surfaces 14, 24) of FIG. The engine oil leaks from the second inclined surfaces 14 and 24 and the third flat surfaces 15 and 25), and the cases (1) to (4) are the same as the cases (5) and (6), respectively. 3 (a) and FIG. 3 (b) at the number of cooling cycles of about 1.5 times or more (first flat surfaces 11 and 21 and first inclined surfaces 12 and 22 apart from the knock pins A and A, respectively) Engine oil leaked from the connecting portion of the first inclined surfaces 12 and 22 and the second flat surfaces 13 and 23).

すなわち、上記(5)、(6)の場合、相互に重ね合わされノックピンC、Cにより相互に位置決めして緊締された第1治具1及び第2治具2は、共通して同じ温度変化が繰り返し与えられると、それぞれの熱膨張係数が異なるため、ノックピンC、Cから離れるほど温度変化に基づく平坦面11、21、15、25に沿った相対的変位量が大きくなり、また、第2平坦面13、23と第2傾斜面14、24との接続部や第2傾斜面14、24と第3平坦面15、25傾斜面との接続部Xではそれぞれ熱膨張方向が交叉していて、重ね合わされた第1治具1及び第2治具2間の擦れが増大する結果、上記接続部Xにおける固形化液状ガスケット4は大きな動的負荷を繰り返し受けるので、この部分でもっとも破断しやすいこととなり、従って、固形化した液状ガスケット4は比較的少ない繰り返し冷熱サイクル数に応じて破断することとなるため、緊締された2部品間に相対的変位が繰り返し与えられる場合での液状ガスケット4の動的耐久性を比較的簡単に、かつ、迅速に評価することができることとなって、大層便利であり、実用的価値がすこぶる大きい。   That is, in the case of (5) and (6) above, the first jig 1 and the second jig 2 that are overlapped with each other and positioned and tightened with the knock pins C and C have the same temperature change in common. When repeatedly applied, the respective thermal expansion coefficients are different, so that the relative displacement amount along the flat surfaces 11, 21, 15, 25 based on the temperature change increases as the distance from the knock pins C, C increases. The thermal expansion directions intersect each other at the connection portion between the surfaces 13, 23 and the second inclined surfaces 14, 24 and the connection portion X between the second inclined surfaces 14, 24 and the third flat surfaces 15, 25, As a result of an increase in rubbing between the first jig 1 and the second jig 2 that are superposed, the solidified liquid gasket 4 at the connecting portion X is repeatedly subjected to a large dynamic load, and is therefore most easily broken at this portion. And therefore Since the solidified liquid gasket 4 is broken in accordance with a relatively small number of repeated cooling and heating cycles, the dynamic durability of the liquid gasket 4 in the case where relative displacement is repeatedly applied between two tightened parts. Since it can be evaluated relatively easily and quickly, it is very convenient and has a great practical value.

なお、上記実施例では、第1治具1及び第2治具2の相互に重ね合わされた各面が環状に接続されているが、これらの各面がそれぞれ直線状等の他の形状に構成されるようにし、あるいは、第1平坦面に対して第1傾斜面と第2傾斜面とが同じ方向に傾斜するように変更し、あるいは、各平坦面と各傾斜面とが接続する折れ角を適宜変更し、あるいは、液状ガスケットの材質に応じて加える冷熱サイクルの上下温度を適宜変更しても、上記実施例と同様な作用効果をそれぞれ奏することが可能であるのはいうまでもない。   In addition, in the said Example, although each surface where the 1st jig | tool 1 and the 2nd jig | tool 2 were mutually piled up was connected cyclically | annularly, these each surface is each comprised in other shapes, such as linear form. Or the bend angle at which the first inclined surface and the second inclined surface are inclined in the same direction with respect to the first flat surface or the flat surface and the inclined surface are connected to each other. It goes without saying that the same effects as those of the above-described embodiment can be obtained by appropriately changing the above or by appropriately changing the upper and lower temperatures of the cooling cycle applied according to the material of the liquid gasket.

本発明の実施例における概略上面図。The schematic top view in the Example of this invention. 図1のII−II矢視縦断面図。The II-II arrow longitudinal cross-sectional view of FIG. 上記実施例の説明図。Explanatory drawing of the said Example. 従来方法の説明図。Explanatory drawing of the conventional method.

符号の説明Explanation of symbols

1 第1治具
2 第2治具
3 ボルト孔
4 液状ガスケット
5 テスト物件
6 空間
11、21 第1平坦面
12、22 第1傾斜面
13、23 第2平坦面
14、24 第2傾斜面
15、25 第3平坦面
α 折れ角
β ノックピン位置角度
DESCRIPTION OF SYMBOLS 1 1st jig | tool 2 2nd jig | tool 3 Bolt hole 4 Liquid gasket 5 Test article 6 Space 11, 21 1st flat surface 12, 22 1st inclined surface 13, 23 2nd flat surface 14, 24 2nd inclined surface 15 , 25 3rd flat surface α Folding angle β Knock pin position angle

Claims (7)

それぞれほぼ対応する第1平坦面と上記第1平坦面に連続して形成された第1傾斜面と上記第1傾斜面に連続して形成され上記第1平坦面に平行な第2平坦面と上記第2平坦面に連続して形成された第2傾斜面と上記第2傾斜面に連続して形成され上記第1平坦面に平行な第3平坦面とをそなえて熱膨張係数が異なる2部品を上記各面で相互に重ね合わせ、上記2部品の上記第1平坦面同士をノックピンにより相互に位置決めして、上記2部品を緊締し、かつ、上記各面間に塗布されていた液状ガスケットを固形化させた状態で、上記2部品に共通した温度変化を繰り返し与えるようにした液状ガスケット評価方法。 A first flat surface substantially corresponding to the first flat surface, a first inclined surface formed continuously with the first flat surface, and a second flat surface formed continuously with the first inclined surface and parallel to the first flat surface; The coefficient of thermal expansion differs between the second inclined surface formed continuously with the second flat surface and the third flat surface formed continuously with the second inclined surface and parallel to the first flat surface. Liquid gaskets that are applied to each other by overlapping each other on each surface, positioning the first flat surfaces of the two components with a knock pin, tightening the two components, A liquid gasket evaluation method in which a temperature change common to the above two parts is repeatedly given in a solidified state. 請求項1において、上記第2傾斜面が上記第1傾斜面と反対方向へ傾斜した液状ガスケット評価方法。 2. The liquid gasket evaluation method according to claim 1, wherein the second inclined surface is inclined in a direction opposite to the first inclined surface. 請求項2において、上記第1平坦面と上記第3平坦面とが同一面内に位置する液状ガスケット評価方法。 3. The liquid gasket evaluation method according to claim 2, wherein the first flat surface and the third flat surface are located in the same plane. 請求項1〜請求項3のいずれかにおいて、上記第1平坦面と上記第1傾斜面とのなす角度が約135°〜150°であり、かつ、上記第3平坦面と上記第2傾斜面とのなす角度が約135°〜150°である液状ガスケット評価方法。 The angle between the first flat surface and the first inclined surface is about 135 ° to 150 ° in any one of claims 1 to 3, and the third flat surface and the second inclined surface. The liquid gasket evaluation method in which the angle formed by is about 135 ° to 150 °. 請求項1〜請求項4のいずれかにおいて、上記各面が上記第1平坦面及び上記第3平坦面の各中央部分を通り上記第1平坦面に垂直な面対称に形成されて環状に接続された液状ガスケット評価方法。 5. The ring according to claim 1, wherein each of the surfaces passes through the central portions of the first flat surface and the third flat surface and is formed in a plane symmetry perpendicular to the first flat surface. Liquid gasket evaluation method. 請求項5において、上記ノックピンが2本使用され、上記両ノックピンが上記垂直面からそれぞれ約45°の位置へ対称的に分散配置された液状ガスケット評価方法。 6. The liquid gasket evaluation method according to claim 5, wherein the two knock pins are used, and both the knock pins are symmetrically distributed at positions of about 45 degrees from the vertical plane. 請求項5または請求項6において、上記液状ガスケットに囲まれた上記2部品間に流体圧が負荷された液状ガスケット評価方法。 7. The liquid gasket evaluation method according to claim 5, wherein fluid pressure is applied between the two parts surrounded by the liquid gasket.
JP2004173692A 2004-06-11 2004-06-11 Liquid gasket evaluation method Expired - Fee Related JP4337045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173692A JP4337045B2 (en) 2004-06-11 2004-06-11 Liquid gasket evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173692A JP4337045B2 (en) 2004-06-11 2004-06-11 Liquid gasket evaluation method

Publications (2)

Publication Number Publication Date
JP2005351402A JP2005351402A (en) 2005-12-22
JP4337045B2 true JP4337045B2 (en) 2009-09-30

Family

ID=35586036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173692A Expired - Fee Related JP4337045B2 (en) 2004-06-11 2004-06-11 Liquid gasket evaluation method

Country Status (1)

Country Link
JP (1) JP4337045B2 (en)

Also Published As

Publication number Publication date
JP2005351402A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US10067023B2 (en) Differential pressure measuring pickup
KR102096199B1 (en) Cylinder head gasket and stainless steel sheet for cylinder head gasket
JP2009526927A5 (en)
Lin et al. Failure modes and fatigue life estimations of spot friction welds in cross-tension specimens of aluminum 6061-T6 sheets
KR20060042917A (en) Cylinder head gasket
JP6412116B2 (en) Static gasket and method of construction
Deladi Static friction in rubber-metal contacts with application to rubber pad forming processes
JP4337045B2 (en) Liquid gasket evaluation method
JP2012021503A (en) Oil jet for cooling piston
JP2018200188A (en) Thermal fatigue test method, test piece, thermal fatigue test apparatus
KR101280343B1 (en) Method for evaluating corrosion fatigue damage
Karohika et al. Analysis of contact width and contact stress of three-layer corrugated metal gasket
WO2018131418A1 (en) Test jig and test method
Abid Determination of gasketed and non-gasketed flanged pipe joint’s capacity subjected to combined loading: an experimental approach
WO2018154918A1 (en) Metal gasket
KR200487255Y1 (en) Apparatus for testing and evaluating pipe joint
JP5776990B2 (en) Corrosion fatigue damage evaluation method
WO2010143592A1 (en) Metallic gasket
Col et al. About the neglected influence of gradients on strain localisation
WO2015105086A1 (en) Cylinder head gasket
JP2010266275A (en) Pressure proof testing packing and pressure proof testing jig
Wróbel et al. Testing of beveled crimp connections made on a prototype stand
JP5224169B2 (en) Cylinder head gasket
TW201506399A (en) Shear stress testing device for flat plate
CN214471715U (en) High-pressure-resistant testing machine for hydraulic impact test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R151 Written notification of patent or utility model registration

Ref document number: 4337045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140710

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees