JP5776990B2 - Corrosion fatigue damage evaluation method - Google Patents

Corrosion fatigue damage evaluation method Download PDF

Info

Publication number
JP5776990B2
JP5776990B2 JP2013256757A JP2013256757A JP5776990B2 JP 5776990 B2 JP5776990 B2 JP 5776990B2 JP 2013256757 A JP2013256757 A JP 2013256757A JP 2013256757 A JP2013256757 A JP 2013256757A JP 5776990 B2 JP5776990 B2 JP 5776990B2
Authority
JP
Japan
Prior art keywords
test piece
mold
fatigue damage
test
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013256757A
Other languages
Japanese (ja)
Other versions
JP2014044221A (en
Inventor
公太 片岡
公太 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013256757A priority Critical patent/JP5776990B2/en
Publication of JP2014044221A publication Critical patent/JP2014044221A/en
Application granted granted Critical
Publication of JP5776990B2 publication Critical patent/JP5776990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、腐食環境下で繰り返し荷重を受けて使用される部品について、それに発生する腐食疲労損傷を試験片を用いて簡便に再現して評価する方法に関するものである。そして、特に金型の内冷孔に発生する腐食疲労損傷を評価するのに、最適な該評価方法に関するものである。   The present invention relates to a method for easily reproducing and evaluating corrosion fatigue damage occurring on a part used under repeated loading in a corrosive environment using a test piece. In particular, the present invention relates to an evaluation method that is optimal for evaluating corrosion fatigue damage occurring in the inner cold holes of a mold.

従来、一般鋼材等を対象とする耐応力腐食割れ性の評価には、試験片を腐食槽に浸して一定の引張荷重を負荷し、その破断までの時間で該特性を比較評価する定荷重応力腐食割れ試験方法(非特許文献1)や、予亀裂を導入した試験片にボルトやくさびなどで亀裂面を開口させるような荷重(Wedge Opening Loading;WOL)を負荷して、その亀裂の進展速度や亀裂が進展しなくなる応力拡大係数の下限値(下限界応力拡大係数)を求めて比較する応力腐食割れ標準試験法(非特許文献2)などが用いられていた。これらの試験方法は、主として海洋構造物やより耐食性を必要とする構造物などに利用される一般鋼材を対象としており、一定荷重状態での試験となっている。   Conventionally, stress corrosion cracking resistance evaluation for general steel materials, etc., has been carried out by immersing a test piece in a corrosion tank and applying a constant tensile load, and comparing the characteristics with the time until the fracture. Corrosion cracking test method (Non-patent Document 1) or a load that opens a crack surface with bolts or wedges (Wedge Opening Loading; WOL) is applied to a test piece into which a precrack has been introduced. The stress corrosion cracking standard test method (Non-patent Document 2) for obtaining and comparing the lower limit (lower limit stress intensity factor) of the stress intensity factor at which cracks do not progress has been used. These test methods mainly target general steel materials used for offshore structures or structures that require more corrosion resistance, and are tests under a constant load condition.

一方、本発明の評価すべき損傷とは、腐食環境下で繰り返し荷重を受けて使用される部品等(以下、疲労部材とも記す)に発生する腐食疲労損傷を想定している。つまり、ダイカスト等の金型分野であれば、その内冷孔に発生する割れ(クラック)部分には、該部が工業用水などの冷却媒体に曝された状態で、金型を使用するサイクル毎に熱応力や型締め力、鋳造圧力などの応力が繰り返し作用して生じる損傷の形態、いわゆる腐食疲労の状況で生じる形態である。従って、本発明の評価する損傷形態が、繰り返し応力の大いに作用する「疲労」という点では、上記非特許文献の試験方法では正確な状態を再現できなかった。   On the other hand, the damage to be evaluated according to the present invention is assumed to be corrosion fatigue damage that occurs in parts and the like (hereinafter also referred to as fatigue members) that are used under repeated loads in a corrosive environment. In other words, in the field of molds such as die casting, the cracks generated in the inner cold holes are exposed to a cooling medium such as industrial water for each cycle in which the mold is used. This is a form of damage caused by repeated application of thermal stress, clamping force, casting pressure, and other stresses, that is, a form caused in the state of so-called corrosion fatigue. Accordingly, the test method of the above non-patent literature cannot reproduce an accurate state in that the damage form evaluated by the present invention is “fatigue” in which repeated stress greatly acts.

そこで、金型の水冷孔部で発生する損傷を評価する手法としては、内冷孔に通水した試験片を外部から繰り返し加熱・冷却することで、使用中の金型の実状をより正確に再現するような試験方法が提案されている(特許文献1)。この手法は、熱応力を繰り返し発生させることにより、内冷孔に疲労を再現できるという点で優れたものである。   Therefore, as a method of evaluating the damage that occurs in the water cooling hole of the mold, the actual condition of the mold in use can be more accurately obtained by repeatedly heating and cooling the test piece that has passed through the inner cooling hole from the outside. A test method that can be reproduced has been proposed (Patent Document 1). This method is excellent in that fatigue can be reproduced in the inner cold hole by repeatedly generating thermal stress.

特開2007−298467号公報JP 2007-298467 A

JISハンドブック(鉄鋼I)「ステンレス鋼の応力腐食割れ試験方法(JIS G0576)」、2008年、p.880〜882JIS Handbook (Steel I) “Stress corrosion cracking test method for stainless steel (JIS G0576)”, 2008, p. 880-882 「応力腐食割れ標準試験法−日本学術振興会第129委員会基準−」、1985年7月25日発行"Stress Corrosion Cracking Standard Test Method-Japan Society for the Promotion of Science 129 Committee Standard", published on July 25, 1985

特許文献1に開示される試験方法は、疲労部材に発生する疲労現象を再現できる点では有利である。しかし、腐食環境下に曝される部位(つまり、内冷孔)に対しては、該部位に発生させる応力は、その内冷孔表面と加熱表面間の温度分布による熱応力のみで担うため、発生させることのできる応力の範囲には限界がある。また、加熱・冷却のサイクルに時間を要するため、加速試験が困難である。つまり、金型の場合だと、その実際に使用されたときの内冷孔から割れが発生するサイクル数は10の3乗回から10の5乗回程度であるところ、特許文献1の手法では、この再現試験を短期間で実施できないという課題がある。   The test method disclosed in Patent Document 1 is advantageous in that it can reproduce a fatigue phenomenon occurring in a fatigue member. However, for the part exposed to the corrosive environment (that is, the inner cold hole), the stress generated in the part is solely due to the thermal stress due to the temperature distribution between the inner cold hole surface and the heating surface, There is a limit to the range of stresses that can be generated. In addition, since the heating / cooling cycle takes time, the acceleration test is difficult. In other words, in the case of a mold, the number of cycles in which cracks occur from the inner cold holes when actually used is about 10 3 to 10 5, There is a problem that this reproduction test cannot be performed in a short period of time.

さらに、特許文献1の実施となると、それには上記の試験片以外に、試験片を設置する試験機にこそ特別な仕様のものを用意しなければならない。以上は、疲労をともなう耐応力腐食割れ性の迅速かつ簡便な評価を行う際の課題となり、該特性に斯かる部品の材質的問題を早期解決するにとっては、少なからず障害となる。   Furthermore, when it is practiced by Patent Document 1, in addition to the above-mentioned test pieces, a test machine having a special specification must be prepared for a testing machine for installing the test pieces. The above is a problem when a quick and simple evaluation of stress corrosion cracking resistance with fatigue is performed, and it is not a shortcoming in order to quickly solve the material problem of the parts having such characteristics.

本発明の目的は、上記の課題に鑑み、発生させ得る応力の範囲(実際の使用条件の再現性)、試験時間および試験装置の問題を解決することで、実際の金型といった疲労部材に発生する腐食疲労損傷を試験片を用いて簡便に再現できる、腐食疲労損傷の評価方法を提供することである。   The object of the present invention is to solve the problems of the range of stress that can be generated (reproducibility of actual use conditions), test time, and test equipment in view of the above-mentioned problems, and is generated in a fatigue member such as an actual mold. It is to provide a method for evaluating corrosion fatigue damage that can easily reproduce the corrosion fatigue damage to be performed using a test piece.

本発明者は、実際使用中の疲労部材に発生している繰り返し応力について鋭意検討したところ、それらの応力状況は、総合的には、試験片の表面に“機械的に”荷重を掛けることで再現できるという知見を得た。そして、この知見をもとに、さらなる検討を行ったことで、本発明に到達した。   The present inventor has intensively studied the repeated stresses generated in the fatigue members that are actually in use, and these stress states are generally determined by applying a “mechanically” load to the surface of the test piece. The knowledge that it can reproduce was obtained. And based on this knowledge, it reached the present invention by performing further examination.

すなわち本発明は、内部に形成した空間に腐食媒体を導入した試験片の相対する二つの表面であり、腐食環境を形成しない表面に、繰り返し荷重を掛け、該荷重を掛けた後の試験片の腐食媒体が導入された内部空間の表面または断面を観察することを特徴とする腐食疲労損傷の評価方法である。 That is, the present invention is two opposite surfaces of a test piece in which a corrosive medium is introduced into a space formed inside, and a load is repeatedly applied to a surface that does not form a corrosive environment, and the test piece after the load is applied This is a corrosion fatigue damage evaluation method characterized by observing the surface or cross section of an internal space into which a corrosion medium is introduced .

そして、上記の方法を、金型分野における腐食疲労損傷の評価に適用したものである。すなわち、金型の材質からなる素材片に、該金型の内冷孔を模した内部空間を形成し、この内部空間に該金型の冷却媒体を模した腐食媒体を導入した試験片を準備して、この試験片の相対する二つの表面であり、腐食環境を形成しない表面に、繰り返し荷重を掛け、該荷重を掛けた後の試験片の腐食媒体が導入された内部空間の表面または断面を観察することを特徴とする腐食疲労損傷の評価方法である。 And it is intended that the above method was applied to evaluate the corrosion fatigue damage in the mold field. That is, a test piece is prepared by forming an internal space imitating the inner cooling hole of the mold on a material piece made of the mold material and introducing a corrosive medium imitating the cooling medium of the mold into the inner space. Then, the surface or cross section of the internal space into which the corrosive medium of the test piece after the load is repeatedly applied to the two surfaces facing each other, which do not form a corrosive environment, and the load is applied. This is a method for evaluating corrosion fatigue damage characterized by observing.

本発明において、好ましくは、前記内部空間の表面または断面の観察は、亀裂の有無を確認するものである。また、好ましくは、前記繰り返し荷重を掛ける試験片の相対する二つの表面は、前記試験片の外表面であって、前記試験片の肉厚を介して前記内部空間に対向する外表面である。そして、このとき、前記内部空間が前記試験片の一端面から他端面に直線状に形成されたものであり、前記繰り返し荷重が、前記内部空間の伸びる方向に対し、直交する方向から掛けられることが、より好ましい。または、このとき、前記試験片の形状が直方体状であることが、より好ましい。 In the present invention, the observation of the surface or cross section of the internal space preferably confirms the presence or absence of cracks. Preferably, the two opposing surfaces of the test piece to which the repeated load is applied are the outer surfaces of the test piece, and are the outer surfaces facing the internal space through the thickness of the test piece. At this time, the internal space is formed linearly from one end surface to the other end surface of the test piece, and the repeated load is applied from a direction orthogonal to the direction in which the internal space extends. Is more preferable. Or at this time, it is more preferable that the shape of the said test piece is a rectangular parallelepiped shape.

本発明によれば、腐食疲労損傷の評価試験にあたり、その試験片への発生応力範囲の広範化の達成、つまり実際の使用条件の再現性を向上することができる。また、試験時間の短縮および試験装置の制約も飛躍的に達成および解除することができる。よって、疲労部材、好ましくは金型の内冷孔に発生する腐食疲労損傷を、試験片を用いて簡便に再現するために欠くことのできない技術となる。   According to the present invention, in the corrosion fatigue damage evaluation test, it is possible to achieve a broadening of the generated stress range on the test piece, that is, to improve the reproducibility of the actual use conditions. In addition, the test time can be shortened and the limitations of the test apparatus can be achieved and released dramatically. Therefore, it becomes an indispensable technique for easily reproducing the corrosion fatigue damage generated in the fatigue member, preferably the inner cold hole of the mold, using the test piece.

本発明に用いる試験片の一例を示す模式図である。It is a schematic diagram which shows an example of the test piece used for this invention. 本発明に用いる試験方法の一例を示す模式図である。It is a schematic diagram which shows an example of the test method used for this invention. 試験片の空間表面に発生した応力腐食割れを示す拡大写真であって、本発明に斯かる観察の一例を説明するものである。It is an enlarged photograph which shows the stress corrosion crack which generate | occur | produced in the space surface of a test piece, Comprising: An example of the observation which concerns on this invention is demonstrated. 図3の応力腐食割れの破面を示す走査型電子顕微鏡写真であって、本発明に斯かる観察の一例を説明するものである。It is a scanning electron micrograph which shows the fracture surface of the stress corrosion crack of FIG. 3, Comprising: An example of the observation which concerns on this invention is demonstrated.

上述したように、本発明の重要な特徴は、実際の疲労部材に発生する応力を、その試験片のレベルであっても表面に機械的に荷重を掛けることで再現できるところにある。そして、この荷重は、本発明にとっては“繰り返し荷重”でなくてはならないところ、これは任意の繰り返し荷重を負荷できる既存の試験機でも与えることが可能であるから、これによる評価方法の迅速、簡便化を達成したところにも特徴がある。以下、本発明の評価方法について、その構成要件毎に説明する。   As described above, an important feature of the present invention is that the stress generated in an actual fatigue member can be reproduced by mechanically applying a load to the surface even at the level of the test piece. And this load must be a “repetitive load” for the present invention. However, since this can be given by an existing testing machine capable of applying an arbitrary repeated load, the evaluation method based on this can be performed quickly. It is also characterized by the achievement of simplification. Hereinafter, the evaluation method of the present invention will be described for each constituent requirement.

(1)内部に形成した空間に腐食媒体を導入した試験片とする。
本発明に必要な腐食環境は、従来の「腐食雰囲気中に試験片を設置して形成する(つまり、試験片の表面側に腐食環境を形成する)」ものではなくて、「試験片中に形成した空間に腐食媒体を導入して形成する(つまり、試験片の内部に腐食環境を形成する)」ものである。よって、既存の簡便な疲労試験機を利用して、試験片の表面より繰り返し荷重を掛けることができる。
(1) A test piece in which a corrosive medium is introduced into a space formed inside.
The corrosive environment necessary for the present invention is not the conventional one that “forms by installing a test piece in a corrosive atmosphere (that is, forms a corrosive environment on the surface side of the test piece)” It is formed by introducing a corrosive medium into the formed space (that is, forming a corrosive environment inside the test piece). Therefore, a load can be repeatedly applied from the surface of the test piece using an existing simple fatigue tester.

(2)試験片の表面に、繰り返し荷重を掛けるものとする。
本発明の場合、実際の疲労部材に対しては、それに熱応力が発生するような場合であっても、該応力は機械的な荷重を付加することで再現できるので、試験片には熱応力の導入は必ずしも必要としない。よって、疲労試験機には、熱応力を発生させるための加熱機構や、それに伴う冷却機構といった特別な設備も不要である。したがって、既存の疲労試験機を利用することで、発生させ得る応力の制御範囲を広範にし、繰り返し荷重のサイクルタイムも短縮できるので、迅速かつ簡便な評価が行える。
(2) A load is repeatedly applied to the surface of the test piece.
In the case of the present invention, even if a thermal stress is generated in an actual fatigue member, the stress can be reproduced by applying a mechanical load. The introduction of is not necessarily required. Therefore, the fatigue testing machine does not require special equipment such as a heating mechanism for generating thermal stress and a cooling mechanism associated therewith. Therefore, by using an existing fatigue testing machine, the control range of the stress that can be generated can be broadened and the cycle time of the repeated load can be shortened, so that quick and simple evaluation can be performed.

(3)上記の荷重を掛けた後の試験片の内部空間の表面または断面を観察する腐食疲労損傷の評価方法である。
本発明の腐食疲労損傷の評価とは、通常の評価項目に加えては、試験片における亀裂の有無や進展状況、破壊の有無、そのときの荷重の大きさや負荷回数を、腐食環境との対比によって行うこと等、応力腐食割れの評価に関するデータの1種以上の採取をいう。そして、その評価のためには、試験片の内部空間の表面または断面(例えば、亀裂発生面や破面も含む)の観察が必要である。もちろん、試験片の内部空間の表面および断面の両方を観察して評価することもできる。
(3) This is a method for evaluating corrosion fatigue damage by observing the surface or cross section of the internal space of the test piece after applying the above load.
In the evaluation of corrosion fatigue damage of the present invention, in addition to the usual evaluation items, the presence or absence of cracks in the test piece, the progress of breakage, the presence or absence of fracture, the magnitude and number of loads at that time are compared with the corrosive environment. One or more types of data relating to the evaluation of stress corrosion cracking. For the evaluation, it is necessary to observe the surface or cross section of the internal space of the test piece (for example, including a crack generation surface and a fracture surface). Of course, both the surface and cross section of the internal space of the test piece can be observed and evaluated.

そして、上記した本発明の評価方法は、それを金型の内冷孔に発生する腐食疲労損傷の評価に適応することで、大きな効果を発揮する。すなわち、金型の内冷孔に生じる腐食疲労損傷を試験片を用いて評価する方法であって、該金型の材質と、該金型の内部に形成される内冷孔と、この内冷孔に導入される冷却媒体および、使用中の該金型の内部に生じる繰り返し応力に対しては、下記の構成要件の通りである。   And the above-described evaluation method of the present invention exerts a great effect by applying it to the evaluation of corrosion fatigue damage occurring in the inner cold hole of the mold. That is, a method for evaluating corrosion fatigue damage occurring in an inner cold hole of a mold by using a test piece, the material of the mold, the inner cold hole formed inside the mold, and the inner cooling hole. The cooling medium introduced into the holes and the repetitive stress generated inside the mold in use are as follows.

(4)金型の材質からなる素材片に、該金型の内冷孔を模した空間を形成し、この空間に該金型の冷却媒体を模した腐食媒体を導入した試験片を準備する。
つまり、内部に内冷孔を有した実際の金型を、その腐食環境とともに模した試験片を作成する工程である。よって、試験片の材質は、その実際の金型に倣っては、JISに規定される各種工具鋼やその改良鋼に限らず、他の材質であっても当然に適用され得る。そして、腐食媒体についても、その実際の金型に使用される冷却媒体の様態に倣えばよく、試験条件に操作の必要性があれば、種類や濃度等の詳細を変更してもよい。そして、腐食媒体は、水蒸気やミスト、また気体など、液体に限られるものではない。
(4) A test piece in which a space imitating the inner cooling hole of the mold is formed in the material piece made of the mold material and a corrosive medium imitating the cooling medium of the mold is introduced into this space is prepared. .
That is, it is a step of creating a test piece that imitates an actual mold having internal cold holes in the interior together with its corrosive environment. Therefore, the material of the test piece is not limited to various tool steels and their improved steels stipulated in JIS, as long as the actual mold is used, but other materials can naturally be applied. The corrosive medium may also follow the state of the cooling medium used in the actual mold, and the details such as the type and concentration may be changed if the test conditions require operation. The corrosive medium is not limited to liquid such as water vapor, mist, or gas.

(5)この試験片の表面に、繰り返し荷重を掛け、該荷重を掛けた後の試験片の空間の表面または断面を観察する。
試験片の表面に荷重を掛ける本発明にとって、その荷重は、好ましくは使用中の金型の内部に生じる繰り返し応力に相当した荷重である。相当した荷重とは、その実際に使用中の金型の内部(つまり内冷孔を含む部位)に発生している応力が、それを模した試験片の空間にも発生し得る表面荷重をいう。そして、この表面荷重の設定値は、実際の金型内部に発生する応力値をそのままに再現できるものである以外には、加速試験等を行うための、操作値であっても勿論よい。
(5) A load is repeatedly applied to the surface of the test piece, and the surface or cross section of the space of the test piece after the load is applied is observed.
For the present invention in which a load is applied to the surface of the test piece, the load is preferably a load corresponding to a repetitive stress generated inside the mold in use. The equivalent load refers to the surface load that can be generated in the space of the test specimen simulating the stress generated inside the mold in use (that is, the portion including the inner cold hole). . The set value of the surface load may of course be an operation value for performing an acceleration test or the like, in addition to being able to reproduce the stress value generated inside the actual mold as it is.

そして、金型を想定した場合であっても、本発明の評価方法は試験片に熱が発生しないようにもできる。この場合、試験片に導入する腐食媒体には、実際の金型では必要な“冷却作用そのもの”は要しない。よって、実際の金型、そして特許文献1の評価方法でも必要である冷却媒体(または腐食媒体)の循環を省略でき、腐食媒体を試験片内に封入することもできる。これは試験片および試験装置の構造をより簡便にし、したがって、既存の疲労試験機を利用することをも可能とする。   And even if it is a case where a metal mold | die is assumed, the evaluation method of this invention can also make it not generate | occur | produce a heat | fever in a test piece. In this case, the corrosive medium introduced into the test piece does not require the “cooling action itself” that is necessary in an actual mold. Therefore, it is possible to omit the circulation of the cooling medium (or the corrosive medium) which is also necessary in the actual mold and the evaluation method of Patent Document 1, and the corrosive medium can be enclosed in the test piece. This simplifies the structure of the test specimen and the test apparatus, and thus makes it possible to use an existing fatigue tester.

図1は、本発明の評価方法に供する試験片の一例を示す模式図である。これは、実際のダイカスト金型の内冷孔に発生し得る腐食疲労損傷を再現および評価するためのものである。試験片1は、素材片2の空間3の内部に下記の腐食媒体5を両端の密栓4で封止してなる。素材片2のサイズは外形15mm角×60mmLで、L方向に直径約10mmの貫通孔を15mm角の中心に形成させたものである。また、素材片2の材質は、本実施例の想定する実際のダイカスト金型と同様に、SKD61を1030℃で焼入処理し、焼戻して45HRCに調質したものである。素材片2の空間3は、実際のダイカスト金型の内冷孔に相当するものであり、冷却媒体を模した腐食媒体5として3.5%NaCl水溶液を封入した。   FIG. 1 is a schematic diagram showing an example of a test piece used for the evaluation method of the present invention. This is for reproducing and evaluating the corrosion fatigue damage that can occur in the inner cold hole of an actual die-casting mold. The test piece 1 is formed by sealing the following corrosive medium 5 in the space 3 of the material piece 2 with the sealing plugs 4 at both ends. The size of the material piece 2 is an outer shape of 15 mm square × 60 mm L, and a through hole having a diameter of about 10 mm is formed in the L direction in the center of the 15 mm square. Further, the material of the material piece 2 is obtained by quenching SKD61 at 1030 ° C. and tempering it to 45 HRC in the same manner as the actual die casting mold assumed in the present embodiment. The space 3 of the material piece 2 corresponds to an internal cold hole of an actual die casting mold, and a 3.5% NaCl aqueous solution is enclosed as a corrosion medium 5 imitating a cooling medium.

そして、図2の模式図に従っては、図示しない油圧サーボ試験機を用いて、2Hzのサイクルスピードで試験片1の相対する二つの表面に荷重を負荷した。その際、亀裂の発生の有無は、負荷試験の途中で定期的に試験片1を試験装置から外して、その空間3の表面をマイクロスコープで観察することで確認した。   Then, according to the schematic diagram of FIG. 2, a load was applied to two opposing surfaces of the test piece 1 at a cycle speed of 2 Hz using a hydraulic servo tester (not shown). At that time, the presence or absence of cracks was confirmed by periodically removing the test piece 1 from the test apparatus during the load test and observing the surface of the space 3 with a microscope.

図3は、空間3の表面に約800MPaの引張応力(最大主応力)が作用する負荷試験において、その約6万サイクル(総試験時間8時間程度)経過後の空間表面に発生した亀裂を、その表面より観察した拡大写真である。ここで、空間の表面に発生する応力は、コンピューターを利用した有限要素法での応力解析によって求めた。そして、この亀裂破面を割り出して観察した結果が、図4に示す走査型電子顕微鏡写真である。図4より、亀裂破面は腐食をともなった粒界破壊の形態を呈しており、これは実際の金型で発生する内冷孔割れ(応力腐食割れ)の破面と同じ疲労損傷形態であった。   FIG. 3 shows a crack generated on the surface of the space after about 60,000 cycles (total test time of about 8 hours) in a load test in which a tensile stress (maximum principal stress) of about 800 MPa acts on the surface of the space 3, It is the enlarged photograph observed from the surface. Here, the stress generated on the surface of the space was obtained by a stress analysis by a finite element method using a computer. The result of determining and observing the crack fracture surface is a scanning electron micrograph shown in FIG. From Fig. 4, the crack fracture surface shows a form of intergranular fracture accompanied by corrosion, which is the same fatigue damage pattern as the fracture surface of internal cold hole cracking (stress corrosion cracking) that occurs in an actual mold. It was.

本発明の評価方法は、上記の実施例に限定されるものではなく、試験片の材質や寸法を任意に変更することが可能であるし、腐食媒体も水道水、地下水、工業用水など任意に選ぶことができる。そして、この腐食媒体は、実施例のように封入することもできれば、図1の密栓4を所定のジョイント(接続子)に変更することで、そこに通水装置を接続すれば、常に流水させたり、断続的に流水・停止を繰り替えしたりしながら、冷却水としても循環させることができる。   The evaluation method of the present invention is not limited to the above examples, and the material and dimensions of the test piece can be arbitrarily changed, and the corrosive medium can be arbitrarily changed to tap water, groundwater, industrial water, etc. You can choose. And if this corrosive medium can also be sealed as in the embodiment, it is possible to always let water flow by changing the sealing plug 4 of FIG. 1 to a predetermined joint (connector) and connecting a water passage device there. Or it can be circulated as cooling water while intermittently flowing and stopping.

また、試験片に発生した亀裂の評価は、その内部空間の表面または断面を目視や顕微鏡等によって観察し、亀裂の有無や大きさ等を測定することに加えては、超音波探傷、透過エックス線、磁気探傷等でも亀裂を検出することができ、これらの1手段以上を併用することもできる。そして、試験後には、発生した亀裂部位を破壊して、直接その大きさを測定することもできる。   In addition, the evaluation of the cracks generated in the test piece was conducted by observing the surface or cross section of the internal space with the naked eye or a microscope, and measuring the presence or size of cracks, ultrasonic flaw detection, transmission X-ray. Cracks can also be detected by magnetic flaw detection or the like, and one or more of these means can be used in combination. And after a test, the crack site | part which generate | occur | produced can be destroyed and the magnitude | size can also be measured directly.

1 試験片
2 素材片
3 空間
4 密栓
5 腐食媒体
1 Test piece 2 Material piece 3 Space 4 Seal plug 5 Corrosion medium

Claims (5)

金型の材質からなる素材片に、該金型の内冷孔を模した内部空間を形成し、この内部空間に該金型の冷却媒体を模した腐食媒体を導入した試験片を準備して、この試験片の相対する二つの表面であり、腐食環境を形成しない表面に、繰り返し荷重を掛け、該荷重を掛けた後の試験片の腐食媒体が導入された内部空間の表面または断面を観察することを特徴とする腐食疲労損傷の評価方法。 An internal space imitating the inner cooling hole of the mold is formed in the material piece made of the mold material, and a test piece is prepared in which a corrosive medium imitating the cooling medium of the mold is introduced into the inner space. The surface or cross section of the internal space where the corrosion medium of the test piece is introduced after repeatedly applying the load to the two surfaces of the test piece that do not form a corrosive environment. evaluation method of be that corrosion fatigue damage is characterized in that. 前記内部空間の表面または断面の観察は、亀裂の有無を確認するものであることを特徴とする請求項1に記載の腐食疲労損傷の評価方法。 The method for evaluating corrosion fatigue damage according to claim 1, wherein the observation of the surface or cross section of the internal space is for confirming the presence or absence of a crack. 前記繰り返し荷重を掛ける試験片の相対する二つの表面は、前記試験片の外表面であって、前記試験片の肉厚を介して前記内部空間に対向する外表面であることを特徴とする請求項1または2に記載の腐食疲労損傷の評価方法。 The two opposite surfaces of the test piece to which the repeated load is applied are outer surfaces of the test piece, and are outer surfaces facing the internal space through a thickness of the test piece. Item 3. The method for evaluating corrosion fatigue damage according to Item 1 or 2 . 前記内部空間が前記試験片の一端面から他端面に直線状に形成されたものであり、前記繰り返し荷重が、前記内部空間の伸びる方向に対し、直交する方向から掛けられることを特徴とする請求項に記載の腐食疲労損傷の評価方法。 The internal space is formed linearly from one end surface to the other end surface of the test piece, and the repeated load is applied from a direction orthogonal to the direction in which the internal space extends. Item 4. The method for evaluating corrosion fatigue damage according to Item 3 . 前記試験片の形状が直方体状であることを特徴とする請求項またはに記載の腐食疲労損傷の評価方法。 The method for evaluating corrosion fatigue damage according to claim 3 or 4 , wherein the shape of the test piece is a rectangular parallelepiped.
JP2013256757A 2013-12-12 2013-12-12 Corrosion fatigue damage evaluation method Active JP5776990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256757A JP5776990B2 (en) 2013-12-12 2013-12-12 Corrosion fatigue damage evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256757A JP5776990B2 (en) 2013-12-12 2013-12-12 Corrosion fatigue damage evaluation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008280037A Division JP5521311B2 (en) 2008-10-30 2008-10-30 Evaluation Method for Corrosion Fatigue Damage of Mold Materials

Publications (2)

Publication Number Publication Date
JP2014044221A JP2014044221A (en) 2014-03-13
JP5776990B2 true JP5776990B2 (en) 2015-09-09

Family

ID=50395555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256757A Active JP5776990B2 (en) 2013-12-12 2013-12-12 Corrosion fatigue damage evaluation method

Country Status (1)

Country Link
JP (1) JP5776990B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792638B (en) * 2015-03-20 2018-03-16 北京航空航天大学 A kind of device and method for being used to test metal erosion crack Propagation
KR101865270B1 (en) 2017-07-13 2018-06-07 부경대학교 산학협력단 Methiod for counting fatigue damage in frequency domain applicable to multi-spectral loading pattern

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243391B2 (en) * 1972-01-08 1977-10-29
JPS6388739U (en) * 1986-11-28 1988-06-09
JPH03210452A (en) * 1990-01-16 1991-09-13 Nippon Steel Corp Method for testing rotary bending corrosion fatigue of actual pipe
JP4330964B2 (en) * 2003-09-29 2009-09-16 株式会社グローバル・ニュークリア・フュエル・ジャパン Pre-cracking method for outer surface of zirconium-based alloy tubular member
JP4817253B2 (en) * 2005-12-01 2011-11-16 独立行政法人物質・材料研究機構 Material testing equipment and material specimens
JP2007298467A (en) * 2006-05-02 2007-11-15 Daido Steel Co Ltd Evaluation test method, and device therefor

Also Published As

Publication number Publication date
JP2014044221A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
Fissolo et al. Crack initiation under thermal fatigue: An overview of CEA experience. Part I: Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue
Meneghetti Analysis of the fatigue strength of a stainless steel based on the energy dissipation
Martínez-Pañeda et al. Fracture toughness characterization through notched small punch test specimens
Pevec et al. Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs
JP5521311B2 (en) Evaluation Method for Corrosion Fatigue Damage of Mold Materials
Ewest et al. A modified compliance method for fatigue crack propagation applied on a single edge notch specimen
Dong et al. Fatigue crack initiation assessment of welded joints accounting for residual stress
Darras et al. Analysis of damage in 5083 aluminum alloy deformed at different strainrates
Bao et al. A review of the metal magnetic memory technique
Huang et al. Pit to crack transition behavior in proportional and non-proportional multiaxial corrosion fatigue of 304 stainless steel
Singh et al. Crack initiation and growth behaviour of circumferentially cracked pipes under cyclic and monotonic loading
JP5776990B2 (en) Corrosion fatigue damage evaluation method
Dong et al. Metal magnetic memory testing for early damage assessment in ferromagnetic materials
Yan et al. Statistical method for the fatigue life estimation of coke drums
Boroński Testing low-cycle material properties with micro-specimens
Lopez-Covaleda et al. Semi in-situ observation of crack initiation in compacted graphite iron during thermo mechanical fatigue
FI109555B (en) Procedure for generating defects and residual stresses
Yoon et al. Estimation of high‐temperature fracture parameters for small punch specimen with a surface crack
JP2012247271A (en) Use limit prediction method of steel structure
Schmiedt et al. Influence of condensate corrosion on tensile and fatigue properties of brazed stainless steel joints AISI 304L/BNi‐2 for automotive exhaust systems: Einfluss von Kondensatkorrosion auf die Zug‐und Ermüdungseigenschaften der Edelstahllötverbindungen 1.4307/Ni 620 für Automobilabgassysteme
JP2009002713A (en) Local cooler and local cooling method
Kumar et al. Evaluation of Residual Stress by X-Ray Diffraction and Correlative Stress Modelling
Kim et al. Creep-fatigue test of a SA 316SS structure and comparative damage evaluations based upon elastic and inelastic approaches
Medjedoub et al. Experimental conditions and environment effects on thermal fatigue damage accumulation and life of die-casting steel X38CrMoV5 (AISI H11)
Blouin et al. Brittle fracture analysis of dissimilar metal weld joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5776990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350