JP4336600B2 - Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same - Google Patents

Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same Download PDF

Info

Publication number
JP4336600B2
JP4336600B2 JP2004089889A JP2004089889A JP4336600B2 JP 4336600 B2 JP4336600 B2 JP 4336600B2 JP 2004089889 A JP2004089889 A JP 2004089889A JP 2004089889 A JP2004089889 A JP 2004089889A JP 4336600 B2 JP4336600 B2 JP 4336600B2
Authority
JP
Japan
Prior art keywords
seed crystal
crystal
silicon single
single crystal
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004089889A
Other languages
Japanese (ja)
Other versions
JP2005272240A (en
Inventor
尚 松村
直 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2004089889A priority Critical patent/JP4336600B2/en
Publication of JP2005272240A publication Critical patent/JP2005272240A/en
Application granted granted Critical
Publication of JP4336600B2 publication Critical patent/JP4336600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、チョクラルスキー法によるシリコン単結晶引上用の種結晶およびこの種結を用いたシリコン単結晶の製造方法に関するものである。   The present invention relates to a seed crystal for pulling a silicon single crystal by the Czochralski method and a method for producing a silicon single crystal using this seeding.

チョクラルスキー法(CZ法)によってシリコン単結晶を製造する場合、シリコン種結晶をシリコン融液に接触させた際の熱衝撃よってシリコン種結晶に高密度で発生するスリップ転位がシリコン単結晶インゴットまで伝播される。このスリップ転位を消滅させるために、直径を3mm程度の結晶(以下、「ネック部」という。)に成長させて無転位結晶にした後、所定の直径まで結晶を広げて肩部を形成し、一定直径の単結晶を成長させるいわゆるダッシュネック法が採用されている。   When a silicon single crystal is produced by the Czochralski method (CZ method), slip dislocations that occur at high density in the silicon seed crystal due to thermal shock when the silicon seed crystal is brought into contact with the silicon melt can reach the silicon single crystal ingot. Propagated. In order to eliminate this slip dislocation, the crystal is grown to a dislocation-free crystal having a diameter of about 3 mm (hereinafter referred to as “neck portion”), and then the shoulder is formed by expanding the crystal to a predetermined diameter. A so-called dash neck method for growing a single crystal having a constant diameter is employed.

しかしながら、最近、大口径のシリコン単結晶(12インチ)の引上げ、引上げ単結晶の長尺化が要請されているところから、従来のダッシュネック法による種結晶ではネック部での強度不足が指摘されて、種々その対策が検討されてきた。   Recently, however, there has been a demand for pulling up a large-diameter silicon single crystal (12 inches) and lengthening the pulling single crystal, and it has been pointed out that the seed crystal by the conventional dash neck method has insufficient strength at the neck. Various countermeasures have been studied.

こうした問題に対応した先行技術としては、ダッシュネック法によらないで種結晶の先端を尖らせて、単結晶の大口径化、長尺化に対応したシリコン単結晶育成法が提案されている。この方法は、種結晶の先端を尖らせることによって融液への接触面積が小さくなり、種結晶の熱衝撃あるいは急激な温度勾配を形成しにくくするものである(特許文献1)。また、別の先行技術は、融液に接する種結晶の先端表面を熱の放射率が0.6〜0.9となるように加工するか、或いは酸化処理をして先端部にSiO膜を形成するものである(特許文献2)。また、ネッキングを行わないでスリップ転位を消滅させる種結晶として、種結晶中の酸素濃度を15ppma以下とし、かつ先端部が尖った形状または尖った先端を切り取った形状とするものがある(特許文献3)。さらに、同じくネッキングを行わないでスリップ転位を消滅させる種結晶として、種結晶に窒素をドープしたものが知られている(特許文献4)。また、種結晶に高濃度のB(ボロン)をドープすることで、スリップ転位の発生を減少させる先行技術も知られている(特許文献5)。
特開平10−203898号公報(特許請求の範囲) 特開平8−290994号公報(特許請求の範囲) 特開平11−292687号公報(特許請求の範囲) 特開2000−128691号公報(特許請求の範囲) 特開平4−139092号公報(特許請求の範囲)
As a prior art corresponding to such a problem, there has been proposed a silicon single crystal growth method corresponding to an increase in the diameter and length of a single crystal by sharpening the tip of the seed crystal without using the dash neck method. This method sharpens the tip of the seed crystal to reduce the contact area with the melt and makes it difficult to form a thermal shock or a rapid temperature gradient of the seed crystal (Patent Document 1). In another prior art, the tip surface of the seed crystal in contact with the melt is processed so that the heat emissivity is 0.6 to 0.9, or is oxidized and a SiO 2 film is formed on the tip. (Patent Document 2). In addition, as a seed crystal that eliminates slip dislocation without necking, there is a seed crystal in which the oxygen concentration in the seed crystal is 15 ppma or less and the tip is sharp or the sharp tip is cut off (Patent Document) 3). Furthermore, a seed crystal doped with nitrogen is known as a seed crystal that eliminates slip dislocation without performing necking (Patent Document 4). There is also known a prior art that reduces the occurrence of slip dislocation by doping a seed crystal with a high concentration of B (boron) (Patent Document 5).
Japanese Patent Laid-Open No. 10-203898 (Claims) JP-A-8-290994 (Claims) JP-A-11-292687 (Claims) JP 2000-128691 A (Claims) JP-A-4-139092 (Claims)

前記の先行技術には、それぞれ次のような問題点が存在している。即ち、特許文献1は、種結晶の先端を尖らせるので融液への接触面積が小さくなり、かつ先端の熱容量も少なくなり種結晶の熱衝撃或いは急激な温度勾配は形成されにくくなるが、結晶の無転位化には限界があった。即ち、種結晶の融液との接触部を小さくしても種結晶と融液との温度差が大きいことは依然として解消されていないので、この温度差に起因して種結晶を融液表面に接触させる際に生じる熱応力は転位発生応力を上回り、結局、種結晶内に転位が発生していた。   Each of the above prior arts has the following problems. That is, in Patent Document 1, since the tip of the seed crystal is sharpened, the contact area with the melt is reduced, and the heat capacity of the tip is also reduced, so that the thermal shock or rapid temperature gradient of the seed crystal is less likely to be formed. There was a limit to the dislocation elimination. That is, even if the contact portion of the seed crystal with the melt is made small, the large temperature difference between the seed crystal and the melt has not yet been eliminated. The thermal stress generated upon contact exceeded the dislocation generation stress, and eventually dislocations were generated in the seed crystal.

また、特許文献2の種結晶の表面を機械加工して表面の熱の放射率を高くする方法は、加工により導入される表面のひずみを完全に除くことができず、かえって熱衝撃による転位が増加しやすく無転位結晶は得にくいものであった。特許文献3の種結晶中の酸素濃度範囲を限定するものや、特許文献4の種結晶中に窒素をドープするものも完全に熱衝撃による転位の発生を抑制できるものではなく、さらに特許文献5のボロンを高濃度にドープした種結晶を用いた場合は、ボロンといった育成される単結晶の抵抗率を低下させる不純物を使っているので、低抵抗率の結晶成長以外には使用することができないといった難点があった。   Further, the method of machining the surface of the seed crystal of Patent Document 2 to increase the heat emissivity of the surface cannot completely remove the surface distortion introduced by the processing, but rather dislocation due to thermal shock. It was easy to increase and it was difficult to obtain dislocation-free crystals. Neither the oxygen concentration range in the seed crystal of Patent Document 3 nor the nitrogen crystal doped in the seed crystal of Patent Document 4 can completely suppress the occurrence of dislocation due to thermal shock. When a seed crystal doped with a high concentration of boron is used, impurities such as boron that lower the resistivity of the single crystal to be grown are used, so it cannot be used for crystal growth other than low resistivity. There were such difficulties.

従って、この発明は、シリコン単結晶引上用種結晶の先端部にボロンまたはリンなどの不純物を拡散させるか或いはカーボン膜を被覆することで、無転位化成功率を低下させることなく、シリコン単結晶の生産性を向上させることができる大口径、高重量のシリコン単結晶引上用種結晶を提供することを目的とするものである。   Accordingly, the present invention provides a silicon single crystal without reducing the dislocation-free success rate by diffusing impurities such as boron or phosphorus or coating a carbon film on the tip of the silicon single crystal pulling seed crystal. An object of the present invention is to provide a large-diameter, high-weight seed crystal for pulling a silicon single crystal that can improve the productivity.

この発明は、チョクラルスキー法によるシリコン単結晶引上で用いる種結晶であって、融液と接触する側の先端部表面に不純物が拡散された不純物拡散層が形成されており、前記不純物拡散層の内層が不純物非拡散層であり、前記不純物拡散層の厚さが5μm以上であり、かつ、前記不純物拡散層の不純物濃度が、1×10 20 atoms/cm 3 以上であることを特徴とするシリコン単結晶引上用種結晶(請求項1)、前記不純物がリンまたはボロンである請求項1に記載のシリコン単結晶引上用種結晶(請求項2)および前記請求項1または2に記載のシリコン単結晶引上用種結晶を用いてシリコン単結晶を引上げることを特徴とするシリコン単結晶の製造方法(請求項3)である。 The present invention relates to a seed crystal used for pulling a silicon single crystal by the Czochralski method, wherein an impurity diffusion layer in which impurities are diffused is formed on the surface of the tip portion on the side in contact with the melt, and the impurity diffusion Ri inner layer extrinsic diffusion layer der layer, wherein the thickness of the impurity diffusion layer has a 5μm or more and the impurity concentration of the impurity diffusion layer is 1 × 10 20 atoms / cm 3 or more for pulling a silicon single crystal seed crystal to (claim wherein 1) said impurity for pulling a silicon single crystal seed crystal of claim 1 which is phosphorus or boron (claim 2) and claim 1 or 2 A method for producing a silicon single crystal, wherein the silicon single crystal is pulled using the seed crystal for pulling up a silicon single crystal described in ( 3 ).

表面に高濃度不純物を拡散したこの発明の種結晶を用いると、大口径で長尺のシリコン単結晶を引上げる際にも、ネック部の直径を5〜10mmの範囲とすることができ、従来の種絞り部の直径の3mmと比較して大幅に径の太いネック部とすることが可能となるため、破断等による融液への落下を防止できる。また、これによると抵抗が1Ω・cm以上の高抵抗の結晶引上にも適用することが可能である。即ち、これによりシリコン融液との温度差を小さくすることができるので、融液と接触させる際に発生する熱応力は転位発生応力よりも容易に小さくなり、ネック開始時の転位密度をゼロにすることができる。 By using the seed crystal of the present invention in which high concentration impurities are diffused on the surface, the diameter of the neck portion can be in the range of 5 to 10 mm even when pulling up a large silicon single crystal having a large diameter. Since the neck portion having a diameter that is significantly thicker than the diameter of the seed restricting portion of 3 mm can be formed, it is possible to prevent a drop to the melt due to breakage or the like. Further, according to this, it is possible to apply to crystal pulling of high resistance having a resistance of 1 Ω · cm or more . In other words, since the temperature difference with the silicon melt can be reduced, the thermal stress generated when contacting with the melt is easily smaller than the dislocation generation stress, and the dislocation density at the beginning of the neck is reduced to zero. can do.

この発明は、チョクラルスキー法によるシリコン単結晶引上げに用いるシリコン種結晶であって、その特徴ある構成は、シリコン種結晶の先端部にボロン、リンなどの不純物を拡散させるものである。なお、先端部に不純物拡散層を形成させる場合は、P型半導体基板製造ではボロンを用い、N型半導体基板製造ではリンを用いる。種結晶それ自体は、いずれの場合も従来のシリコン種結晶がそのまま用いられる。 The present invention is a silicon seed crystal used for pulling a silicon single crystal by the Czochralski method, and its characteristic configuration is to diffuse impurities such as boron and phosphorus in the tip of the silicon seed crystal . When the impurity diffusion layer is formed at the tip, boron is used for manufacturing the P-type semiconductor substrate, and phosphorus is used for manufacturing the N-type semiconductor substrate. As the seed crystal itself, a conventional silicon seed crystal is used as it is in any case.

先端部に不純物を拡散させたものにあっては、種結晶の融液に接触する部分付近に1×1020atoms/cm3以上の高濃度のボロンまたはリンを拡散させる(SIMSによる測定値)。ボロンまたはリンの拡散濃度が1×1020atoms/cm3未満では、種結晶が融液と接触する際の熱衝撃を十分に緩和することができず、種結晶に転位が発生するのを十分に回避することができない。なお、上記種結晶を用いた場合の結晶育成においては、高濃度の不純物が拡散された不純物拡散層から結晶を成長させるとミスフイット転位が発生する恐れがあるが、種結晶の先端部を融液に接触させた後、上記不純物拡散層を完全に溶解させてから結晶育成を開始することで、ミスフイット転位の発生も抑制することができる。 In the case where impurities are diffused at the tip, boron or phosphorus with a high concentration of 1 × 10 20 atoms / cm 3 or more is diffused near the portion of the seed crystal in contact with the melt (measured by SIMS). . If the diffusion concentration of boron or phosphorus is less than 1 × 10 20 atoms / cm 3 , the thermal shock when the seed crystal comes into contact with the melt cannot be sufficiently relaxed, and it is sufficient that dislocation occurs in the seed crystal. Cannot be avoided. In the crystal growth using the seed crystal, misfit dislocations may occur when the crystal is grown from an impurity diffusion layer in which a high concentration of impurities is diffused. After the contact, the crystal growth is started after the impurity diffusion layer is completely dissolved, so that the occurrence of misfit dislocations can also be suppressed.

高濃度の不純物を拡散させたものの不純物拡散層は、従来のものの非拡散層と比べて体積が膨張し軟化した状態となっているので、先端部を融液と接触させると不純物が拡散している表面部が融液と容易に親和して種結晶の熱衝撃を緩和し、これによって種結晶の転位の発生が回避されるものと考えられる。こうした表面層の形成は上記のように、種結晶の先端表面部に1×1020atoms/cm3以上の高濃度の不純物を拡散させることによって達成されるものである。シリコン種結晶の先端部にボロン、リンなどの不純物を拡散させる方法は通常の拡散法がそのまま用いられる。即ち、図2に示すように、例えば、従来のシリコン種結晶30の先端表面にN型半導体製造の場合はP31を、またP型半導体製造の場合はB32を塗布し、これを温度1300℃、雰囲気Arガスで、20時間処理することによって、種結晶先端部にボロンまたはリンを拡散する。これによって得られる不純物拡散層の厚さは、少なくとも5μm以上であることが好ましい。前記不純物拡散層の厚さが5μm未満だと融液との接触時における熱衝撃を十分に緩和することが出来ない。より好ましくは5μm以上10μm以下である。 Although the impurity diffusion layer diffused a high concentration of impurities, the volume is expanded and softened as compared with the conventional non-diffusion layer. Therefore, when the tip is brought into contact with the melt, the impurity diffuses. It is considered that the surface portion that is easily affinized with the melt relaxes the thermal shock of the seed crystal, thereby avoiding the occurrence of dislocations in the seed crystal. As described above, the formation of such a surface layer is achieved by diffusing a high concentration impurity of 1 × 10 20 atoms / cm 3 or more into the tip surface portion of the seed crystal. As a method of diffusing impurities such as boron and phosphorus in the tip portion of the silicon seed crystal, a normal diffusion method is used as it is. That is, as shown in FIG. 2, for example, P 2 O 5 31 is applied to the tip surface of a conventional silicon seed crystal 30 in the case of N-type semiconductor manufacture, and B 2 O 3 32 is applied in the case of P-type semiconductor manufacture. Then, this is treated with an Ar gas at a temperature of 1300 ° C. for 20 hours to diffuse boron or phosphorus into the tip of the seed crystal. The thickness of the impurity diffusion layer obtained thereby is preferably at least 5 μm. If the thickness of the impurity diffusion layer is less than 5 μm, the thermal shock at the time of contact with the melt cannot be sufficiently mitigated. More preferably, it is 5 μm or more and 10 μm or less.

このように、この発明は種結晶の先端部に不純物の拡散を行い不純物を拡散層形成することでシリコン単結晶引上時の種結晶の転位発生を抑制することができるので、従来のように直径3mmの小さい種絞り部を形成する必要はなく、径が5mm以上の太いネック部でも無転位化成功率の高いシリコン単結晶を育成することができる。なお、種結晶の形状としては、円柱状や角形状の形状が一般的であり、本願発明はこれに適用できるものである。さらに、図1に示すように、種結晶の先端部を尖らせた形状とすることにより、熱衝撃によって発生する転位を抑制することができ、無転位結晶成功率をさらに向上することができる。 As described above, according to the present invention, since the impurity is diffused at the tip of the seed crystal and the impurity is formed as a diffusion layer, it is possible to suppress the occurrence of dislocation of the seed crystal when the silicon single crystal is pulled. There is no need to form a small seed drawing part having a diameter of 3 mm, and a silicon single crystal having a high success rate of dislocation can be grown even in a thick neck part having a diameter of 5 mm or more. Note that the shape of the seed crystal is generally a cylindrical shape or a square shape, and the present invention can be applied to this. Furthermore, as shown in FIG. 1, by making the tip of the seed crystal sharp, dislocations generated by thermal shock can be suppressed, and the success rate of dislocation-free crystals can be further improved.

下記に、種結晶の先端部に不純物を拡散させたシリコン単結晶引上用種結晶の実施例(1〜3)と、比較例(1,2)をそれぞれ説明する。これらの実施例および比較例には、引上げ時に用いた種結晶の形状、先端部の状態、種結晶径、ネック形成時のネック部の最小径、引上単結晶の目的径、結晶直胴部の長さ、前記直胴部の無転位化率をそれぞれ示した。なお、ここでいう無転位化率とは、上記条件で引上げた単結晶インゴットの直胴部を、ワイヤソーによりスライスした後に、酸性混合薬液によりエッチングを行い、前記ワイヤソーにより発生した破砕屑を完全に除去した後に、X線トポグラフにて評価したときの無転位化率である。   Examples (1-3) and comparative examples (1, 2) of the silicon single crystal pulling seed crystal in which impurities are diffused at the tip of the seed crystal will be described below. In these examples and comparative examples, the shape of the seed crystal used at the time of pulling, the state of the tip, the seed crystal diameter, the minimum diameter of the neck part at the time of neck formation, the target diameter of the pulled single crystal, the crystal straight body part And the dislocation-free rate of the straight body part are shown. Note that the dislocation-free rate here means that the straight body of the single crystal ingot pulled up under the above conditions is sliced with a wire saw and then etched with an acidic mixed chemical solution to completely remove crushed waste generated by the wire saw. This is the dislocation-free rate when evaluated by X-ray topography after removal.

(実施例1)
種結晶の形状: 先端の尖った形状(円柱形状)
先端部: ボロンを表面に濃度1×1021atoms/cm3拡散(SIMS;二次イオ
ン質量分析法)不純物拡散層10μm形成(SR法)
種結晶径: 直径20 mm
ネック部の最小径:5 mm
目的の径: 12インチ
結晶直胴長さ: 1.0m
無転位化率: 95%
(実施例2)
種結晶の形状: 先端の尖った形状(円柱形状)
先端部: ボロンを表面に濃度1×1021atoms/cm3拡散(SIMS;二次イオ
ン質量分析法)不純物拡散層10μm形成(SR法)
種結晶径: 直径20 mm
ネック部の最小径:10 mm
目的の径: 12インチ
結晶直胴長さ: 1.0m
無転位化率: 90%
(実施例3)
種結晶の形状: 先端が平坦な形状(円柱形状)
先端部: ボロンを表面に濃度1×1021atoms/cm3拡散(SIMS;二次イオ
ン質量分析法)不純物拡散層10μm形成(SR法)
種結晶径: 直径20 mm
ネック部の最小径:10 mm
目的の径: 12インチ
結晶直胴長さ: 1.0m
無転位化率: 80%
(比較例1)
種結晶の形状: 先端の尖った形状(円柱形状)
先端部: 不純物拡散層未形成の種結晶
種結晶径: 直径20 mm
ネック部の最小径:5 mm
目的の径: 12インチ
結晶直胴長さ: 1.0m
無転位化率: 55%
(比較例2)
種結晶の形状: 先端が平坦な形状(円柱形状)
先端部: 不純物拡散層未形成の種結晶
種結晶径: 直径20 mm
ネック部の最小径:5 mm
目的の径: 12インチ
結晶直胴長さ: 1.0m
無転位化率: 25%
上記実施例および比較例から次のようなことが確認される。先端が平坦な形状の種結晶を用いて先端部に不純物拡散層を形成しない場合(比較例2)は、ネック部の最小径が5mmでは無転位化率が25%と低く、例え先端部を尖った形状(比較例1)としても、無転位化率が55%までしか向上しない。しかし、先端が平坦な形状の種結晶を用いても、先端部に高濃度の不純物を拡散させた場合(実施例3)では、ネック部の最小径を10mmまで広げた場合でも無転位化率は80%まで向上する。さらに、先端部を尖った形状とした場合(実施例1,2)は、ネック部の最小径を10mmとしても90%以上の高い無転位化率のシリコン単結晶を得ることができる。これによって、径12インチへの大口径化、長尺化にたいしても十分に用度が保つことができるネック部を形成することができるとともに、無転位化率も向上することが分かる。
Example 1
Seed crystal shape: Sharp pointed shape (cylindrical shape)
Tip: 1 × 10 21 atoms / cm 3 diffusion (SIMS; secondary ion) on the surface of boron
Mass spectrometry) Impurity diffusion layer 10μm formation (SR method)
Seed crystal diameter: 20 mm diameter
Minimum neck diameter: 5 mm
Target diameter: 12 inches Crystal straight body length: 1.0m
No dislocation rate: 95%
(Example 2)
Seed crystal shape: Sharp pointed shape (cylindrical shape)
Tip: 1 × 10 21 atoms / cm 3 diffusion (SIMS; secondary ion) on the surface of boron
Mass spectrometry) Impurity diffusion layer 10μm formation (SR method)
Seed crystal diameter: 20 mm diameter
Minimum neck diameter: 10 mm
Target diameter: 12 inches Crystal straight body length: 1.0m
No dislocation rate: 90%
(Example 3)
Seed crystal shape: Flat tip (cylindrical shape)
Tip: 1 × 10 21 atoms / cm 3 diffusion (SIMS; secondary ion) on the surface of boron
Mass spectrometry) Impurity diffusion layer 10μm formation (SR method)
Seed crystal diameter: 20 mm diameter
Minimum neck diameter: 10 mm
Target diameter: 12 inches Crystal straight body length: 1.0m
Non-dislocation rate: 80%
(Comparative Example 1)
Seed crystal shape: Sharp pointed shape (cylindrical shape)
Tip: Seed crystal without impurity diffusion layer Seed crystal diameter: 20 mm diameter
Minimum neck diameter: 5 mm
Target diameter: 12 inches Crystal straight body length: 1.0m
Dislocation-free rate: 55%
(Comparative Example 2)
Seed crystal shape: Flat tip (cylindrical shape)
Tip: Seed crystal without impurity diffusion layer Seed crystal diameter: 20 mm diameter
Minimum neck diameter: 5 mm
Target diameter: 12 inches Crystal straight body length: 1.0m
Dislocation-free rate: 25%
The following is confirmed from the examples and comparative examples. When an impurity diffusion layer is not formed at the tip using a seed crystal with a flat tip (Comparative Example 2), the dislocation-free rate is as low as 25% when the minimum diameter of the neck is 5 mm. Even with a sharp shape (Comparative Example 1), the dislocation-free rate is improved only to 55%. However, even when a seed crystal having a flat tip is used, when high-concentration impurities are diffused in the tip (Example 3), the dislocation-free rate is obtained even when the minimum diameter of the neck is expanded to 10 mm. Improves to 80%. Further, when the tip portion has a sharp shape (Examples 1 and 2), a silicon single crystal having a high dislocation-free rate of 90% or more can be obtained even if the minimum diameter of the neck portion is 10 mm. As a result, it is possible to form a neck portion that can sufficiently maintain the utility even when the diameter is increased to 12 inches and the length is increased , and the dislocation-free rate is also improved.

この発明の一実施例の種結晶の一部を模式的に示した説明図で、(A)は、種結晶の先端部の全体を示したもの、(B)は先端部のうちのボロンが拡散しただけを示す説明図。 BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which showed a part of seed crystal of one Example of this invention typically, (A) showed the whole tip part of a seed crystal, (B) is boron of the tip part. Explanatory drawing which shows only spreading | diffusion . この発明の一実施例になる種結晶の製造方法を説明した説明図。Explanatory drawing explaining the manufacturing method of the seed crystal which becomes one Example of this invention .

10,30…シリコン単結晶、11,12…拡散層、31……P 塗膜、32……B塗膜。 10, 30 ... silicon single crystal, 11, 12 ... diffusion layer, 31 ...... P 2 O 5 coating, 32 ...... B 2 O 3 coating.

Claims (3)

チョクラルスキー法によるシリコン単結晶引上で用いる種結晶であって、融液と接触する側の先端部表面に不純物が拡散された不純物拡散層が形成されており、前記不純物拡散層の内層が不純物非拡散層であり、前記不純物拡散層の厚さが5μm以上であり、かつ、前記不純物拡散層の不純物濃度が、1×10 20 atoms/cm 3 以上であることを特徴とするシリコン単結晶引上用種結晶。 A seed crystal used for pulling a silicon single crystal by the Czochralski method, wherein an impurity diffusion layer in which impurities are diffused is formed on the surface of the tip portion on the side in contact with the melt, and the inner layer of the impurity diffusion layer is impurity Ri non-diffusing layer der, the thickness of the impurity diffusion layer is not less 5μm or more and the impurity concentration of the impurity diffusion layer, a silicon single, characterized in that it is 1 × 10 20 atoms / cm 3 or more Seed crystal for crystal pulling. 前記不純物がリンまたはボロンである請求項1に記載のシリコン単結晶引上用種結晶。 The silicon single crystal pulling seed crystal according to claim 1, wherein the impurity is phosphorus or boron. 前記請求項1または2に記載のシリコン単結晶引上用種結晶を用いてシリコン単結晶を引上げることを特徴とするシリコン単結晶の製造方法。 A method for producing a silicon single crystal, wherein the silicon single crystal is pulled using the seed crystal for pulling a silicon single crystal according to claim 1 or 2 .
JP2004089889A 2004-03-25 2004-03-25 Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same Expired - Lifetime JP4336600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089889A JP4336600B2 (en) 2004-03-25 2004-03-25 Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089889A JP4336600B2 (en) 2004-03-25 2004-03-25 Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same

Publications (2)

Publication Number Publication Date
JP2005272240A JP2005272240A (en) 2005-10-06
JP4336600B2 true JP4336600B2 (en) 2009-09-30

Family

ID=35172292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089889A Expired - Lifetime JP4336600B2 (en) 2004-03-25 2004-03-25 Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same

Country Status (1)

Country Link
JP (1) JP4336600B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239265B2 (en) 2007-09-07 2013-07-17 株式会社Sumco Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the seed crystal
CN102471927B (en) * 2009-07-17 2016-05-04 丰田自动车株式会社 The manufacture method of SiC monocrystalline
TWI541393B (en) * 2012-12-28 2016-07-11 中美矽晶製品股份有限公司 Seed used for crystalline silicon ingot casting
CN104152990A (en) * 2014-09-10 2014-11-19 山西中电科新能源技术有限公司 Polycrystalline-silicon high-efficiency silicon ingot seeding particle and preparation method thereof
CN104152988A (en) * 2014-09-10 2014-11-19 山西中电科新能源技术有限公司 Polycrystalline-silicon high-efficiency silicon ingot seeding device and seeding method thereof
CN104630884B (en) * 2015-01-23 2017-06-23 东海晶澳太阳能科技有限公司 A kind of fine melt efficient polycrystalline silicon ingot casting seed crystal and its preparation method and application
CN106222734A (en) * 2016-09-12 2016-12-14 江西赛维Ldk太阳能高科技有限公司 A kind of crystalline silicon ingot casting seed crystal and preparation method thereof and crystalline silicon and preparation method thereof
CN113604869A (en) * 2021-08-11 2021-11-05 晶澳太阳能有限公司 Growth method of monocrystalline silicon and seeding structure

Also Published As

Publication number Publication date
JP2005272240A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
KR101968381B1 (en) Method for manufacturing sic single- crystal substrate for epitaxial sic wafer
JP4760729B2 (en) Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
KR100939299B1 (en) Silicon wafer and method for producing same
US8133318B2 (en) Epitaxially coated silicon wafer with 110 orientation and method for producing it
JP2003124219A (en) Silicon wafer and epitaxial silicon wafer
JP2007022863A (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
JP4708697B2 (en) Epitaxial silicon wafer
JP4336600B2 (en) Seed crystal for pulling silicon single crystal and method for producing silicon single crystal using the same
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
WO2001016408A1 (en) Epitaxial silicon wafer
TWI606155B (en) 矽Ear crystal wafer manufacturing method and 矽 epitaxial wafer
JP2007266125A (en) Silicon epitaxial wafer and manufacturing method therefor
JP2010034330A (en) Epitaxial wafer and method of manufacturing the same
CN110603350B (en) Method for producing epitaxial silicon wafer and epitaxial silicon wafer
JP2008133188A (en) Silicon wafer
EP0772230A1 (en) Method of epitaxial growth of a film for semiconductor devices
JP2010205866A (en) Method of manufacturing silicon epitaxial wafer, and silicon epitaxial wafer
JP4590876B2 (en) Epitaxial silicon wafer manufacturing method and silicon wafer manufactured by the method
JP2010177355A (en) Silicon epitaxial wafer and method of manufacturing the same, and epitaxially growing silicon monocrystalline substrate
US11761118B2 (en) Carbon-doped silicon single crystal wafer and method for manufacturing the same
KR20060074804A (en) Internally gettered heteroepitaxial semiconductor wafers and methods of manufacturing such wafers
JP2011155130A (en) Epitaxial wafer and method of manufacturing the same
TWI566276B (en) Epitaxial wafer
JP2010098284A (en) Method for production of silicon wafer for epitaxial substrate, and method for production of epitaxial substrate
CN115135817B (en) Method for manufacturing semiconductor silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4336600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250