JP4336225B2 - Flue gas desulfurization method - Google Patents

Flue gas desulfurization method Download PDF

Info

Publication number
JP4336225B2
JP4336225B2 JP2004059704A JP2004059704A JP4336225B2 JP 4336225 B2 JP4336225 B2 JP 4336225B2 JP 2004059704 A JP2004059704 A JP 2004059704A JP 2004059704 A JP2004059704 A JP 2004059704A JP 4336225 B2 JP4336225 B2 JP 4336225B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
activated carbon
exhaust gas
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059704A
Other languages
Japanese (ja)
Other versions
JP2005246221A (en
Inventor
英司 粟井
大 武田
孝雄 亀田
逸夫 乗京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Hokuriku Electric Power Co
Original Assignee
Chiyoda Corp
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Hokuriku Electric Power Co filed Critical Chiyoda Corp
Priority to JP2004059704A priority Critical patent/JP4336225B2/en
Publication of JP2005246221A publication Critical patent/JP2005246221A/en
Application granted granted Critical
Publication of JP4336225B2 publication Critical patent/JP4336225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

本発明は、活性炭系ハニカム形状触媒を用いて、排ガス中に含まれる亜硫酸ガス等の硫黄酸化物を接触硫酸化反応によって硫酸として回収除去する排煙脱硫方法に関するものである。   The present invention relates to a flue gas desulfurization method for recovering and removing sulfur oxides such as sulfurous acid gas contained in exhaust gas as sulfuric acid by catalytic sulfation reaction using an activated carbon-based honeycomb-shaped catalyst.

従来より、排ガス中に含まれる亜硫酸ガス等の硫黄酸化物を触媒および酸素の共存下に低温で酸化し、最終的に硫酸として回収する排煙脱硫方法が知られている(例えば、特許文献1参照)。
また、この排煙脱硫方法に用いられる触媒として、活性炭にフッ素樹脂を混合、担持した活性炭触媒が高い脱硫性能を有することが知られている(例えば、特許文献2および特許文献3参照)。この触媒は、燃焼排ガス、例えば石炭燃焼排ガス等では長時間に渡って安定な性能を示すことが確認されている。
Conventionally, there has been known a flue gas desulfurization method in which sulfur oxide such as sulfurous acid gas contained in exhaust gas is oxidized at a low temperature in the presence of a catalyst and oxygen and finally recovered as sulfuric acid (for example, Patent Document 1). reference).
Moreover, as a catalyst used for this flue gas desulfurization method, it is known that the activated carbon catalyst which mixed and carried the fluororesin on activated carbon has high desulfurization performance (for example, refer patent document 2 and patent document 3). It has been confirmed that this catalyst exhibits stable performance over a long period of time in combustion exhaust gas such as coal combustion exhaust gas.

このような排煙脱硫方法においては、工水、希硫酸などで触媒を洗浄すると、生成した硫酸が希釈されて触媒表面からの離脱速度が増加し、高性能となると共に性能が安定する効果があり、各種の具体的な方法が提案されている。この際、洗浄液としては、硫酸濃度が低い水溶液、もしくは工水が好適であると言われている(例えば、特許文献1および特許文献4参照)。   In such a flue gas desulfurization method, when the catalyst is washed with industrial water, dilute sulfuric acid, etc., the generated sulfuric acid is diluted to increase the separation rate from the catalyst surface, resulting in high performance and stable performance. There are various specific methods proposed. At this time, it is said that an aqueous solution having a low sulfuric acid concentration or industrial water is suitable as the cleaning liquid (see, for example, Patent Document 1 and Patent Document 4).

特開平10−230129号公報Japanese Patent Laid-Open No. 10-230129 特開平10−314586号公報Japanese Patent Laid-Open No. 10-314586 特開平11−290688号公報JP-A-11-290688 特開2000−70672号公報JP 2000-70672 A 特開平11−319575号公報JP 11-319575 A

しかしながら、高脱硫率を得るためには、触媒量を多くする必要があり、そのため触媒層高が高くなる。
本発明者らは、活性炭系ハニカム形状触媒を用いたときに、触媒層高を高くすると、低い触媒層高での脱硫率から予想される性能と比べて低下することを見出した。被処理ガス中の亜硫酸濃度が高く、処理ガス中の亜硫酸濃度を低くする時、つまり高脱硫率を得ようとした場合に、この両者の差が大きくなる。また、被処理ガスが水分不飽和の場合に特に顕著である。その原因を検討した結果、次のことがわかった。ラシヒリング等を充填した吸収塔ではスプレー等による初期の液分散が不十分でも充填層内で徐々に液分散が改善されていくのに対し、ハニカム形状触媒では横方向の混合均一化が起こらないため、触媒層内では改善されない。このため、洗浄液の導入量の少ないハニカムセル内では硫酸が高濃度となり、脱硫性能が低下する。特に、被処理排ガス中の水分濃度が低いと、高濃度の硫酸が生成しやすい。ハニカムセル内の硫酸濃度が上昇しないように、スプレー液量を増加させると、触媒表面を液が覆ってしまい、触媒と排ガスの接触を妨げ、脱硫性能を低下させる。
また、洗浄液の偏りは、被処理ガスの偏流を引き起こし、これによってさらに脱硫性能が低下する。
However, in order to obtain a high desulfurization rate, it is necessary to increase the amount of catalyst, so that the catalyst layer height becomes high.
The inventors have found that when an activated carbon-based honeycomb-shaped catalyst is used, if the catalyst layer height is increased, the performance is expected to be lower than expected from the desulfurization rate at a low catalyst layer height. When the sulfurous acid concentration in the gas to be treated is high and the sulfurous acid concentration in the gas to be treated is low, that is, when a high desulfurization rate is to be obtained, the difference between the two becomes large. This is particularly noticeable when the gas to be treated is water unsaturated. As a result of examining the cause, the following was found. In the absorption tower packed with Raschig rings etc., even if the initial liquid dispersion by spraying etc. is insufficient, the liquid dispersion gradually improves in the packed bed, whereas in the honeycomb-shaped catalyst, horizontal mixing and homogenization does not occur It is not improved in the catalyst layer. For this reason, sulfuric acid becomes a high concentration in the honeycomb cell where the introduction amount of the cleaning liquid is small, and the desulfurization performance is lowered. In particular, when the moisture concentration in the exhaust gas to be treated is low, a high concentration of sulfuric acid tends to be generated. If the amount of spray liquid is increased so that the sulfuric acid concentration in the honeycomb cell does not increase, the liquid covers the surface of the catalyst, preventing contact between the catalyst and the exhaust gas and desulfurization performance.
Further, the unevenness of the cleaning liquid causes a drift of the gas to be processed, which further deteriorates the desulfurization performance.

本発明は、前記事情に鑑みて為されたもので、活性炭系ハニカム形状触媒を用いて、排ガス中の硫黄酸化物を硫酸として回収する排煙脱硫方法において、安定で高い脱硫性能を効率的に得ることができる排煙脱硫方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a flue gas desulfurization method for recovering sulfur oxides in exhaust gas as sulfuric acid using an activated carbon-based honeycomb-shaped catalyst, stable and high desulfurization performance is efficiently achieved. An object is to provide a flue gas desulfurization method that can be obtained.

本発明は、発明者らの前述のような知見に基づいて為されたものである。すなわち、請求項1に記載の排煙脱硫方法は、活性炭系ハニカム形状触媒を上下間に空間を有するように積層して触媒層高1〜5mに構成した触媒層を上下方向に間隔をおいて複数段設け、
当該触媒層に排ガスを通過させて、排ガス中の硫黄酸化物を硫酸として回収する排煙脱硫方法であって、
排ガスを前記触媒層の活性炭系ハニカム形状触媒と下降流で接触させるとともに、
工水、および前記触媒層で生成した硫酸を含む希硫酸水溶液のうちの少なくとも1つを前記触媒層に上側から噴霧し、
上段の触媒層を流下する液量に対して下段の触媒層を流下する液量を多くするものとし、
前記触媒層に噴霧する液量を、排ガスが最初に通過する最上段の触媒層の液ガス比で0.05〜5.0L/m で、かつ排ガスが最後に通過する最下段の触媒層の液ガス比で30L/m 以下にすることを特徴とする。
The present invention has been made on the basis of the above-described knowledge of the inventors. That is, in the exhaust gas desulfurization method according to claim 1, the catalyst layers formed by stacking the activated carbon honeycomb-shaped catalyst so as to have a space between the upper and lower sides and having a catalyst layer height of 1 to 5 m are spaced apart in the vertical direction. Multiple stages,
A flue gas desulfurization method for passing exhaust gas through the catalyst layer and recovering sulfur oxide in the exhaust gas as sulfuric acid,
While contacting the exhaust gas with the activated carbon-based honeycomb-shaped catalyst of the catalyst layer in a downward flow,
Industrial water, and sprayed from above the catalyst layer of at least one of dilute sulfuric acid aqueous solution containing sulfuric acid produced in the catalyst layer,
The amount of liquid flowing down the lower catalyst layer is increased relative to the amount of liquid flowing down the upper catalyst layer,
The amount of liquid sprayed on the catalyst layer is 0.05 to 5.0 L / m 3 in terms of the liquid gas ratio of the uppermost catalyst layer through which the exhaust gas first passes , and the lowermost catalyst layer through which the exhaust gas passes last. The liquid gas ratio is 30 L / m 3 or less .

ここで、工水等の触媒層への噴霧は、噴霧用ノズルを設置して行うことができ、このような噴霧用ノズルとしては、スプレーノズル、穴空きパイプなど、液を分散できるものであればどのようなものでも良いが、スプレーノズルが好ましい。また、活性炭の種類は、石炭系でもピッチ系でもよく、炭素質を賦活させたものであればよい。使用する形状としてはハニカム形状の触媒であるが、原料活性炭は粒状、ペレット状、繊維状、シート状などであってもよい。   Here, spraying to the catalyst layer such as industrial water can be performed by installing a spray nozzle, and such a spray nozzle may be a spray nozzle, a perforated pipe, or the like that can disperse the liquid. Any type may be used, but a spray nozzle is preferable. Moreover, the type of activated carbon may be either coal-based or pitch-based, and any carbon-activated material may be used. The shape to be used is a honeycomb-shaped catalyst, but the raw activated carbon may be in the form of particles, pellets, fibers, sheets or the like.

請求項1に記載の発明においては、ハニカム形状触媒を一体化せずに、上下方向の途中に空間を有するように積層して触媒層を形成しているので、各触媒層内を通過している時のガス流れが乱流化され、これにより排ガスの混合化が図られるとともに、落下する液中の硫酸濃度が均一化して低下する。さらに、排ガスの偏流が改善される効果を有する。
また、工水および脱硫工程で生成した硫酸を含む希硫酸水溶液のうちの少なくとも1つを、触媒層に噴霧するので、触媒層内の硫酸濃度の上昇が抑えられる。落下する液を混合均一化させて硫酸濃度を低下させる効果は、ハニカム形状触媒の間に空間を設けることによって得られるが、触媒層に工水等を噴霧することにより大きな効果が得られる。
したがって、硫酸濃度の低下とガス流れの混合化の両方を改善し、その効果を効率的に発揮させるため、ハニカム形状触媒を一体化せずに、上下間に空間を有するように積層して触媒層を形成するとともに、各触媒層にそれぞれ工水等を噴霧する。
In the first aspect of the present invention, since the catalyst layers are formed by laminating the honeycomb-shaped catalyst so as to have a space in the vertical direction without integrating the honeycomb-shaped catalyst, the catalyst layers pass through each catalyst layer. The gas flow during turbulence is turbulent, thereby mixing the exhaust gas and making the concentration of sulfuric acid in the falling liquid uniform and lower. Furthermore, it has the effect that the drift of the exhaust gas is improved.
In addition, since at least one of the industrial water and the dilute sulfuric acid aqueous solution containing sulfuric acid generated in the desulfurization step is sprayed on the catalyst layer, an increase in sulfuric acid concentration in the catalyst layer can be suppressed. The effect of mixing and homogenizing the falling liquid to lower the sulfuric acid concentration can be obtained by providing a space between the honeycomb-shaped catalysts, but a great effect can be obtained by spraying industrial water or the like on the catalyst layer.
Therefore, in order to improve both the decrease in sulfuric acid concentration and the mixing of the gas flow, and to effectively exert the effect, the catalyst is laminated with a space between the upper and lower sides without integrating the honeycomb-shaped catalyst. A layer is formed, and industrial water or the like is sprayed on each catalyst layer.

また、触媒層の高さは、1〜5mが好適である。液の混合均一化には、触媒層の高さが1m以下では、触媒層内を上下で区切って空間を設けてもその効果がなく、一方5m以上では、触媒層内で液が充分に混合均一化されずにすでに脱硫性能の低下が顕著になっており、触媒層間に空間を設けて複層化し、触媒層に工水等を噴霧しても、多量の触媒を必要とし効果がない。活性炭系ハニカム形状触媒の間に設ける空間は、3cm〜30cmが好ましい。3cm未満では、上記の効果が得られず、30cmを超えても効果は変化しないか、もしくは液分散が悪化して、効果が低下する。
なお、この排煙脱硫方法は、一度脱硫された後の排ガスを2次脱硫する場合にも適用可能である。
Moreover, 1-5 m is suitable for the height of a catalyst layer. For uniform mixing of the liquid, if the height of the catalyst layer is 1 m or less, there is no effect even if a space is provided by dividing the inside of the catalyst layer vertically, whereas if it is 5 m or more, the liquid is sufficiently mixed in the catalyst layer. A reduction in desulfurization performance has already become remarkable without being made uniform, and even if a space is provided between the catalyst layers to form a multi-layer and sprayed with industrial water or the like on the catalyst layer, a large amount of catalyst is required and there is no effect. The space provided between the activated carbon honeycomb-shaped catalysts is preferably 3 cm to 30 cm. If it is less than 3 cm, the above effect cannot be obtained, and if it exceeds 30 cm, the effect does not change, or the liquid dispersion deteriorates and the effect decreases.
The flue gas desulfurization method can also be applied to the case where the exhaust gas once desulfurized is subjected to secondary desulfurization.

複数個の触媒層を上下方向に間隔をおいて設けることにより、落下する液を再分散させ、噴霧された工水等によって硫酸濃度を低下できる。   By providing a plurality of catalyst layers at intervals in the vertical direction, the falling liquid can be redispersed and the sulfuric acid concentration can be lowered by sprayed industrial water or the like.

排ガスを下降流で流すと、触媒層の上部で生成した硫酸が下部に流れるのに伴い、硫酸濃度が上昇し、下部の触媒層での脱硫性能が低下する。その対策として、排ガスを触媒層内を下降流で流し、工水、あるいは脱硫工程で生成した硫酸を含む希硫酸水溶液を流すと、脱硫性能が高く、安定になることが従来から知られている(例えば、特許文献5参照)。しかし、下段の触媒層では、上段の触媒層と比べて排ガス中の亜硫酸ガス濃度が低く、流下する液の硫酸濃度の上昇が脱硫性能に与える影響度が大きい。これに対しては、液量を増やすことによって、硫酸濃度の上昇を抑え、安定した性能を発揮することができる。また、液量を増やすと、液流れがガス流れの乱れを誘い、ガスの混合が改善される効果がある。他方、前述したように、液量を増加させると、触媒表面を液が覆い、触媒と排ガスとの接触を妨げ、性能を低下させる。そのため、請求項3に記載の発明のように、排ガスが最初に通過する触媒層の液ガス比を、0.05〜5.0L/m、好ましくは0.5〜2.0L/mとし、かつ排ガスが最後に通過する触媒層の液ガス比を30L/m以下にするのがよい。 When exhaust gas is flowed in a downward flow, the sulfuric acid concentration increases as the sulfuric acid generated in the upper part of the catalyst layer flows to the lower part, and the desulfurization performance in the lower catalyst layer decreases. As countermeasures, it is conventionally known that desulfurization performance is high and stable when exhaust gas is allowed to flow downward in the catalyst layer and a dilute sulfuric acid aqueous solution containing sulfuric acid generated in the process water or desulfurization process is flowed. (For example, refer to Patent Document 5). However, in the lower catalyst layer, the concentration of sulfurous acid gas in the exhaust gas is lower than that in the upper catalyst layer, and the increase in the sulfuric acid concentration of the flowing liquid has a great influence on the desulfurization performance. On the other hand, by increasing the liquid volume, it is possible to suppress an increase in sulfuric acid concentration and to exhibit stable performance. Further, when the amount of liquid is increased, the liquid flow invites disturbance of the gas flow, and there is an effect that gas mixing is improved. On the other hand, as described above, when the amount of the liquid is increased, the liquid covers the surface of the catalyst, the contact between the catalyst and the exhaust gas is hindered, and the performance is deteriorated. Therefore, as in the invention described in claim 3, the liquid gas ratio of the catalyst layer through which the exhaust gas first passes is 0.05 to 5.0 L / m 3 , preferably 0.5 to 2.0 L / m 3. In addition, the liquid gas ratio of the catalyst layer through which exhaust gas finally passes is preferably 30 L / m 3 or less.

請求項2に記載の排煙脱硫方法は、請求項1に記載の発明において、前記活性炭系ハニカム形状触媒は、粒状活性炭系触媒あるいは活性炭素繊維系触媒、または撥水化処理を施した粒状活性炭系触媒あるいは活性炭素繊維系触媒であることを特徴とする。 The flue gas desulfurization method according to claim 2 is the invention according to claim 1 , wherein the activated carbon-based honeycomb-shaped catalyst is a granular activated carbon-based catalyst or an activated carbon fiber-based catalyst, or a granular activated carbon subjected to water repellent treatment. It is characterized by being a system catalyst or an activated carbon fiber system catalyst.

撥水化処理は、撥水性樹脂を添着した活性炭でも、高温焼成した活性炭でも、テフロン(登録商標)を密着させた活性炭でもよい。撥水化処理をした活性炭は、亜硫酸ガスの酸化速度が速いため、ガスの乱れを起こす請求項1または請求項2に記載の発明や、硫酸濃度の低下およびガスの乱れを起こす請求項3に記載の発明において、特に効果的である。   The water repellent treatment may be activated carbon impregnated with a water repellent resin, activated carbon fired at high temperature, or activated carbon with Teflon (registered trademark) adhered thereto. The activated carbon subjected to water repellency treatment has a high oxidation rate of sulfurous acid gas, and therefore, the invention according to claim 1 or 2 that causes gas disturbance, or the invention according to claim 3 that causes a decrease in sulfuric acid concentration and gas disturbance. In the described invention, it is particularly effective.

本発明の排煙脱硫方法によれば、活性炭系ハニカム形状触媒を用いて、排ガス中の硫黄酸化物を硫酸として回収する排煙脱硫方法において、安定で高い脱硫性能を効率的に得ることができる。   According to the flue gas desulfurization method of the present invention, a stable and high desulfurization performance can be efficiently obtained in the flue gas desulfurization method using an activated carbon honeycomb-shaped catalyst to recover sulfur oxides in exhaust gas as sulfuric acid. .

以下、本発明の実施の形態を具体的に説明する。
図1は、本発明の実施の形態に係る排煙脱硫方法に用いる脱硫塔を示す模式図である。この脱硫塔1内には、複数個の触媒層2が、上下に間隔をおいて設けられている。各触媒層2の高さは1〜5mに設定されている。また、隣接する触媒層2の上下の間隔は、通常、1.0〜2.5m程度に設定されている。
Hereinafter, embodiments of the present invention will be specifically described.
FIG. 1 is a schematic diagram showing a desulfurization tower used in the flue gas desulfurization method according to the embodiment of the present invention. A plurality of catalyst layers 2 are provided in the desulfurization tower 1 at intervals in the vertical direction. The height of each catalyst layer 2 is set to 1 to 5 m. Moreover, the space | interval of the upper and lower sides of the adjacent catalyst layer 2 is normally set to about 1.0-2.5 m.

各触媒層2には、活性炭系ハニカム形状触媒が充填されている。この触媒としては、例えば、粒状活性炭系触媒あるいは活性炭素繊維系触媒、または撥水化処理を施した粒状活性炭系触媒あるいは活性炭素繊維系触媒を挙げることができる。このハニカム形状触媒は、例えば、図2(a)に示すように、触媒シートを平板および四角の凹凸板に加工し、これらを積層することにより形成することができるし、あるいは図2(b)に示すように、触媒シートを平板および波板に加工し、これらを積層することなどにより形成することができる。   Each catalyst layer 2 is filled with an activated carbon-based honeycomb-shaped catalyst. Examples of the catalyst include a granular activated carbon catalyst or an activated carbon fiber catalyst, or a granular activated carbon catalyst or an activated carbon fiber catalyst subjected to a water repellent treatment. For example, as shown in FIG. 2 (a), this honeycomb-shaped catalyst can be formed by processing a catalyst sheet into a flat plate and a square uneven plate and laminating them, or FIG. 2 (b). As shown in FIG. 4, the catalyst sheet can be formed into a flat plate and a corrugated plate and laminated.

各触媒層2は、図3に示すように、FRP(ガラス繊維入り強化プラスチック)等のケース3内に、活性炭系ハニカム形状触媒4を上部に空間を設けて充填し、このように活性炭系ハニカム形状触媒4を充填したケース3を複数個積層することにより構成されている。なお、活性炭系ハニカム形状触媒4は、ケース3内に、下部に空間を設けて充填するようにしてもよいし、あるいは上部および下部に空間を設けて充填するようにしてもよい。   As shown in FIG. 3, each catalyst layer 2 is filled with an activated carbon-based honeycomb-shaped catalyst 4 with a space in the upper part in a case 3 such as FRP (reinforced plastic with glass fiber). A plurality of cases 3 filled with the shape catalyst 4 are stacked. The activated carbon-based honeycomb-shaped catalyst 4 may be filled in the case 3 with a space in the lower part, or may be filled in with a space in the upper part and the lower part.

各触媒層2の上部にはそれぞれ、工水、および脱硫工程で生成した硫酸を含む希硫酸水溶液のうちの少なくとも1つが導管5により導入され、スプレーノズル等の噴霧用ノズル6によって、各触媒層2に上側から連続的にまたは間欠的に噴霧される。   At least one of the working water and the dilute sulfuric acid aqueous solution containing sulfuric acid generated in the desulfurization process is introduced into the upper part of each catalyst layer 2 through a conduit 5, and each catalyst layer is sprayed by a spray nozzle 6 such as a spray nozzle. 2 is sprayed continuously or intermittently from above.

脱硫塔1には、火力発電所用ボイラー等から排出された排ガスが上部から導入される。脱硫塔1内に導入された排ガスは、脱硫塔1内に設置された各触媒層2を通過することにより、排ガス中の亜硫酸ガス等の硫黄酸化物が触媒に吸着され、さらに排ガス中の酸素、水分により酸化されて希硫酸となる。この希硫酸は、脱硫塔1の下部から連続的または完結的に抜き出される。各触媒層2にはそれぞれ、工水、および脱硫工程で生成した硫酸を含む希硫酸水溶液のうちの1つまたは複数が噴霧用ノズル6から噴霧され、これにより各触媒層2内の硫酸濃度の上昇が抑えられる。   Exhaust gas discharged from a boiler for a thermal power plant or the like is introduced into the desulfurization tower 1 from above. The exhaust gas introduced into the desulfurization tower 1 passes through each catalyst layer 2 installed in the desulfurization tower 1 so that sulfur oxides such as sulfurous acid gas in the exhaust gas are adsorbed on the catalyst, and oxygen in the exhaust gas is further absorbed. Oxidized with moisture to dilute sulfuric acid. This dilute sulfuric acid is continuously or completely extracted from the lower part of the desulfurization tower 1. Each catalyst layer 2 is sprayed from the spray nozzle 6 with one or more of industrial water and dilute sulfuric acid aqueous solution containing sulfuric acid generated in the desulfurization step, whereby the concentration of sulfuric acid in each catalyst layer 2 is increased. The rise is suppressed.

次に、本発明を実施例によりさらに具体的に説明する。
(実施例1)
活性炭粉にポリテトラフルオロエチレン(PTFE)分散液を混合、混錬して得た触媒シートを、平板および波形に加工し積層する(図2(b)参照)ことにより、ハニカム形状触媒を得た。この触媒を、幅700mm、長さ400mm、高さ500mmの四角のFRP製ケースに充填した。この際、図3に示すように、ケース3の上部に高さ10mmの空間ができるようにした。このハニカム形状触媒4が収容されたケース3を5個積層したものを1つの触媒層2とし、図1に示すように、高さ1.5mの空間を設けて3段の触媒層2を、角形の反応塔1に設けた。これにより、各触媒層2の高さは、2.5mであり、各ハニカム形状触媒4の間にはそれぞれ、上下間に高さ50mmの空間が形成されている。つまり、各触媒層2には、上下間に高さ50mmの空間が4つ形成されている。また、各触媒層2の上部にそれぞれ、スプレーノズル6を設置し、液ガス比で1.0L/mの生成希硫酸を含む硫酸濃度3wt%の水溶液を各触媒層2に噴霧した。反応塔1に、下降流で亜硫酸ガス2000ppm、水分15vol%を含有する排ガスを触媒間ガス流速1m/sで通過させた。その結果、脱硫性能は97%であった。なお、粒状触媒の脱硫性能から推定される脱硫率は98%である。
Next, the present invention will be described more specifically with reference to examples.
Example 1
A catalyst sheet obtained by mixing and kneading polytetrafluoroethylene (PTFE) dispersion with activated carbon powder was processed into a flat plate and corrugated and laminated (see FIG. 2B) to obtain a honeycomb-shaped catalyst. . This catalyst was filled in a square FRP case having a width of 700 mm, a length of 400 mm, and a height of 500 mm. At this time, as shown in FIG. 3, a space having a height of 10 mm was formed above the case 3. A stack of five cases 3 containing the honeycomb-shaped catalyst 4 is formed as one catalyst layer 2, and as shown in FIG. The prismatic reaction tower 1 was provided. Thereby, the height of each catalyst layer 2 is 2.5 m, and a space having a height of 50 mm is formed between the honeycomb shaped catalysts 4 between the upper and lower sides. That is, each catalyst layer 2 has four spaces of 50 mm height between the upper and lower sides. Further, a spray nozzle 6 was installed on each catalyst layer 2, and an aqueous solution having a sulfuric acid concentration of 3 wt% containing 1.0 L / m 3 of a generated dilute sulfuric acid in a liquid gas ratio was sprayed on each catalyst layer 2. An exhaust gas containing 2000 ppm of sulfurous acid gas and 15 vol% of water was passed through the reaction tower 1 in a downward flow at an inter-catalyst gas flow rate of 1 m / s. As a result, the desulfurization performance was 97%. The desulfurization rate estimated from the desulfurization performance of the granular catalyst is 98%.

(実施例2)
被処理排ガスの水分を8vol%とし、各ハニカム形状触媒4の上下の空間高さを25cmとしたこと以外は実施例1と同一とした時の脱硫率は90%であった。
(Example 2)
The desulfurization rate was 90% when the same as in Example 1 except that the moisture of the exhaust gas to be treated was 8 vol% and the height of the space above and below each honeycomb-shaped catalyst 4 was 25 cm.

(比較例1)
実施例と同一のハニカム形状触媒を、上下間に空間を設けずに、実施例と同一の高さに反応塔1に充填して一体的な1層の触媒層とした。スプレーノズル6は、この触媒層の上部に設置し、液ガス比で3.0L/mの生成希硫酸をこの触媒層に噴霧した。反応塔1に、実施例1と同様に、下降流で亜硫酸ガス2000ppm含有排ガスを触媒間ガス流速1m/sで通過させた。その結果、脱硫率は84%であった。
(Comparative Example 1)
The same honeycomb-shaped catalyst as in the example was filled in the reaction tower 1 at the same height as in the example without providing a space between the upper and lower sides to form an integral catalyst layer. The spray nozzle 6 was installed on the upper part of the catalyst layer, and produced dilute sulfuric acid having a liquid gas ratio of 3.0 L / m 3 was sprayed onto the catalyst layer. Similarly to Example 1, the exhaust gas containing 2000 ppm of sulfurous acid gas was passed through the reaction tower 1 in a downward flow at a gas flow rate of 1 m / s between the catalysts. As a result, the desulfurization rate was 84%.

(比較例2)
比較例1と同一高さの触媒層が上下方向で3つに分けられ、各触媒層の間にそれぞれ1.5mの高さの空間が生じるように、比較例1と同一のハニカム形状触媒を反応塔1に充填した。各触媒層には、実施例1と異なり、触媒の上下方向に空間が形成されていない。また、各触媒層の上部にそれぞれ、スプレーノズル6を設置し、液ガス比で1.5L/mの生成希硫酸を各触媒層に噴霧した。反応塔1に、下降流で亜硫酸ガス2000ppm含有排ガスを触媒間ガス流速1m/sで通過させた。その結果、脱硫性能は92%であった。
(Comparative Example 2)
The catalyst layer having the same height as that of Comparative Example 1 was divided into three in the vertical direction, and the same honeycomb-shaped catalyst as that of Comparative Example 1 was formed so that a space of 1.5 m was formed between each catalyst layer. The reaction tower 1 was packed. In each catalyst layer, unlike Example 1, no space is formed in the vertical direction of the catalyst. Moreover, the spray nozzle 6 was installed in the upper part of each catalyst layer, respectively, and produced | generated dilute sulfuric acid of 1.5 L / m < 3 > was sprayed on each catalyst layer by the liquid gas ratio. An exhaust gas containing 2000 ppm of sulfurous acid gas was passed through the reaction tower 1 in a downward flow at an inter-catalyst gas flow rate of 1 m / s. As a result, the desulfurization performance was 92%.

(比較例3)
各触媒の上下空間の高さを40cmとし、スプレー噴霧する各層の液ガス比を0.01L/mとすること以外は実施例2と同一とした時の脱硫率は72%であった。
(Comparative Example 3)
The desulfurization rate was 72% when the same as in Example 2 except that the height of the upper and lower spaces of each catalyst was 40 cm and the liquid gas ratio of each layer to be sprayed was 0.01 L / m 3 .

本発明の実施の形態に係る排煙脱硫方法に用いる脱硫塔を示す模式図である。It is a schematic diagram which shows the desulfurization tower used for the flue gas desulfurization method which concerns on embodiment of this invention. ハニカム形状触媒の形成方法を説明するため図である。It is a figure for demonstrating the formation method of a honeycomb-shaped catalyst. 図1の触媒層を示す模式図である。It is a schematic diagram which shows the catalyst layer of FIG.

符号の説明Explanation of symbols

1 脱硫塔
2 触媒層
3 ケース
4 活性炭系ハニカム形状触媒
5 導管
6 スプレーノズル(噴霧用ノズル)
DESCRIPTION OF SYMBOLS 1 Desulfurization tower 2 Catalyst layer 3 Case 4 Activated carbon honeycomb-shaped catalyst 5 Conduit 6 Spray nozzle (nozzle for spraying)

Claims (2)

活性炭系ハニカム形状触媒を上下間に空間を有するように積層して触媒層高1〜5mに構成した触媒層を上下方向に間隔をおいて複数段設け、
当該触媒層に排ガスを通過させて、排ガス中の硫黄酸化物を硫酸として回収する排煙脱硫方法であって、
排ガスを前記触媒層の活性炭系ハニカム形状触媒と下降流で接触させるとともに、
工水、および前記触媒層で生成した硫酸を含む希硫酸水溶液のうちの少なくとも1つを前記触媒層に上側から噴霧し、
上段の触媒層を流下する液量に対して下段の触媒層を流下する液量を多くするものとし、
前記触媒層に噴霧する液量を、排ガスが最初に通過する最上段の触媒層の液ガス比で0.05〜5.0L/m で、かつ排ガスが最後に通過する最下段の触媒層の液ガス比で30L/m 以下にすることを特徴とする排煙脱硫方法。
A plurality of layers of catalyst layers each having a catalyst layer height of 1 to 5 m by stacking activated carbon-based honeycomb-shaped catalysts so as to have a space between the upper and lower sides are provided at intervals in the vertical direction;
A flue gas desulfurization method for passing exhaust gas through the catalyst layer and recovering sulfur oxide in the exhaust gas as sulfuric acid,
While contacting the exhaust gas with the activated carbon-based honeycomb-shaped catalyst of the catalyst layer in a downward flow,
Industrial water, and sprayed from above the catalyst layer of at least one of dilute sulfuric acid aqueous solution containing sulfuric acid produced in the catalyst layer,
The amount of liquid flowing down the lower catalyst layer is increased relative to the amount of liquid flowing down the upper catalyst layer,
The amount of liquid sprayed on the catalyst layer is 0.05 to 5.0 L / m 3 in terms of the liquid gas ratio of the uppermost catalyst layer through which the exhaust gas first passes , and the lowermost catalyst layer through which the exhaust gas passes last. The flue gas desulfurization method is characterized in that the liquid gas ratio is 30 L / m 3 or less .
前記活性炭系ハニカム形状触媒は、粒状活性炭系触媒あるいは活性炭素繊維系触媒、または撥水化処理を施した粒状活性炭系触媒あるいは活性炭素繊維系触媒であることを特徴とする請求項1に記載の排煙脱硫方法The activated carbon honeycomb-shaped catalyst according to claim 1, characterized in that the granular activated carbon-based catalyst or activated carbon fiber-based catalyst subjected granular activated carbon-based catalyst or activated carbon fiber-based catalyst, or a water repellent treatment Flue gas desulfurization method .
JP2004059704A 2004-03-03 2004-03-03 Flue gas desulfurization method Expired - Lifetime JP4336225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059704A JP4336225B2 (en) 2004-03-03 2004-03-03 Flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059704A JP4336225B2 (en) 2004-03-03 2004-03-03 Flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JP2005246221A JP2005246221A (en) 2005-09-15
JP4336225B2 true JP4336225B2 (en) 2009-09-30

Family

ID=35027220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059704A Expired - Lifetime JP4336225B2 (en) 2004-03-03 2004-03-03 Flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JP4336225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719117B2 (en) * 2006-09-28 2011-07-06 三菱重工業株式会社 Exhaust gas treatment method
CN113209816A (en) * 2020-01-21 2021-08-06 中国石油化工股份有限公司 Catalyst grading method for catalytic oxidation of sulfur-containing VOCs and method for catalytic oxidation of sulfur-containing VOCs

Also Published As

Publication number Publication date
JP2005246221A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US8524186B2 (en) Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas
WO2016208980A1 (en) Waste gas-treating scrubber formed of combination of gas-liquid contact means having multiple functions so as to be appropriate for treating according to waste gas properties
CN106714938A (en) A process for the oxidation of hydrogen sulfide to sulfur trioxide with subsequent sulfur trioxide removal and a plant for carrying out the process
KR20080071061A (en) Fluid mixer
CN104437046A (en) Catalytic cracking flue gas desulfurization and dust removal process and desulfurization and dust removal device
JP4895215B2 (en) Method for treating wastewater containing inorganic sulfur compounds
CA2327591A1 (en) Desulfurization of exhaust gases using activated carbon catalyst
JP4336225B2 (en) Flue gas desulfurization method
CN102527207A (en) Method for removing multiple pollutants at the same time through electrostatic enhanced catalytic oxidation device used therein
WO2016208981A1 (en) Waste gas-treating scrubber formed of combination of gas-liquid contact means having multiple functions so as to be appropriate for treating according to waste gas properties
JP3581565B2 (en) Catalyst pack structure of desulfurization reactor
JP4693537B2 (en) Flue gas desulfurization apparatus and flue gas desulfurization method
KR100733075B1 (en) Wet-type flue gas desulfurization apparatus equipped with a gas layered sieve plate
CN202490565U (en) Static-electricity enhancement-type catalytic oxidation device capable of simultaneously removing various contaminants
JP2008080248A (en) Wet process flue gas desulfurizer
CN105502308A (en) Waste sulfuric acid treatment method
JP2009149460A (en) Surface modification method of carbonaceous material, and carbonaceous material or activated carbon fiber
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
JP5198744B2 (en) Catalyst structure
CN210495900U (en) High-efficient single-tower desulfurization is dust removal defogging device in coordination
JP2008214784A (en) Activated carbon fiber and exhaust gas purification apparatus
JP4719117B2 (en) Exhaust gas treatment method
JP4658828B2 (en) Gas purification device
US10737258B2 (en) Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof
CN205055794U (en) Ammonia process dual cycle SOx/NOx control removes dust and washs absorption tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4336225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250