JP4336135B2 - Halogenated difluoroalkyl polycyclic compounds - Google Patents

Halogenated difluoroalkyl polycyclic compounds Download PDF

Info

Publication number
JP4336135B2
JP4336135B2 JP2003102526A JP2003102526A JP4336135B2 JP 4336135 B2 JP4336135 B2 JP 4336135B2 JP 2003102526 A JP2003102526 A JP 2003102526A JP 2003102526 A JP2003102526 A JP 2003102526A JP 4336135 B2 JP4336135 B2 JP 4336135B2
Authority
JP
Japan
Prior art keywords
group
general formula
formula
atom
difluoroalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003102526A
Other languages
Japanese (ja)
Other versions
JP2004307388A (en
Inventor
英之 三村
大輔 平山
賢治 徳久
昭治 荒井
Original Assignee
東ソ−・エフテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソ−・エフテック株式会社 filed Critical 東ソ−・エフテック株式会社
Priority to JP2003102526A priority Critical patent/JP4336135B2/en
Publication of JP2004307388A publication Critical patent/JP2004307388A/en
Application granted granted Critical
Publication of JP4336135B2 publication Critical patent/JP4336135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン化ジフルオロアルキル多環式化合物に関する。より詳細には、界面活性剤、コーティング剤、電子材料、有機合成用触媒等の原料として有用なハロゲン化ジフルオロアルキル多環式化合物およびその製造方法に関する。
【0002】
【従来の技術】
【非特許文献1】
環境科学会2002年会講演要旨p228
パーフルオロオクチルアイオダイド、パーフルオロヘキシルアイオダイド等のパーフルオロアルキルハライドは、ハロゲン原子をカルボン酸基、スルフィン酸基、スルホン酸基及びスルホン酸誘導体等に変換でき、強酸性を有する有機酸の原料となる。これらは、界面活性剤、コーティング剤、電子材料、有機合成用触媒等の用途で広く利用されている。
【0003】
しかし、このパーフルオロアルキルスルホン酸やパーフルオロアルキルカルボン酸は、炭素−フッ素の強い共有結合のため、極めて難分解性であり、生体内への蓄積が指摘され問題となっている(非特許文献1等)。
【0004】
一方、フッ素含量の少ない例えばトリフルオロメタンスルホン酸等は、蓄積性の問題は指摘されていないものの、揮発性を有するため、使用条件が限られたり、装置の腐食等の問題があった。
【0005】
また、これらパーフルオロアルキル化合物は、フッ素を含まない有機化合物との相溶性が十分でない場合があり、性能が十分に発揮されない問題もあった。
【0006】
このため、これらを代替する含フッ素アルキルハライド化合物として、パーフルオロオクチルハライドと同等以上の炭素数を有し、且つ、適度な酸性度を発現させるために必要な最低限のフッ素を有する含フッ素アルキルハライドが望まれていた。
【0007】
一方、ビシクロ[2.2.1]ヘプタン構造を含有する多環式化合物は、有機化合物との相溶性に優れるうえ、シクロペンタジエンを原料とし、Diels−Alder反応により、容易にその環骨格を合成できる特徴を有し、広く利用されている化合物である。しかしながら、ジフルオロアルキルカルボン酸やジフルオロアルキルスルホン酸等への変換可能なハロゲン化ジフルオロアルキル基を有するビシクロ[2.2.1]ヘプタン化合物については、これまで知られていない。
【0008】
【発明が解決しようとする課題】
本発明はこれらの課題に鑑みてなされたものである。即ち、有機化合物との相溶性に優れ、合成の容易なビシクロ[2.2.1]ヘプタン構造を有し、かつ、ジフルオロアルキルカルボン酸やジフルオロアルキルスルホン酸等への変換可能なハロゲン化ジフルオロアルキル基を有する多環式化合物およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、各種のハロゲン化ジフルオロアルキル多環式化合物およびその製造法を見出し、本発明を完成させるに至った。
【0010】
すなわち本発明は、下記の要旨に係るものである。
(1) 下記一般式(1)
【0011】
【化4】

Figure 0004336135
【0012】
(式中、nは0〜5の整数、mは0または1、pは0〜3の整数、Xは塩素原子、臭素原子またはヨウ素原子を表し、R1〜R14は、それぞれ独立に水素原子、炭素数1〜10の直鎖または分岐のアルキル基、ハロゲン原子、含酸素置換基または含窒素置換基からなる群から選ばれる置換基を表す。)
で示されるハロゲン化ジフルオロアルキル多環式化合物。
【0013】
(2) 前記一般式(1)においてm=1であるハロゲン化ジフルオロアルキル多環式化合物を製造する方法であって、
一般式(2)
【0014】
【化5】
Figure 0004336135
【0015】
(式中、nは0〜5の整数、pは0〜3の整数を表し、R1〜R14は、それぞれ独立に水素原子、炭素数1〜10の直鎖または分岐のアルキル基、ハロゲン原子、含酸素置換基または含窒素置換基からなる群から選ばれる置換基を表す。)
で表されるカルボニル基含有多環式化合物と一般式(3)
CF2YZ (3)
(式中、YおよびZは、それぞれ独立に、フッ素原子、塩素原子、臭素原子またはヨウ素原子を表す)
で表されるジハロジフルオロメタンを反応させ、一般式(4)
【0016】
【化6】
Figure 0004336135
【0017】
(式中、n、p及びR1〜R14は、前記定義に同じ)
で表されるジフルオロオレフィン基含有多環式化合物を得た後、前記一般式(4)で表されるジフルオロオレフィン基含有多環式化合物とハロゲン化水素を反応させることを特徴とする前記一般式(1)においてm=1であるハロゲン化ジフルオロアルキル多環式化合物の製造方法。
【0018】
【発明の実施の形態】
以下に、さらに詳細に本発明を説明する。
【0019】
前記一般式(1)において、nは0〜5の整数、mは0または1、pは0〜3の整数である。n、mおよびpがこの範囲において、有機化合物との相溶性に優れる等の多環式構造の特性が十分に発揮される。
【0020】
Xは塩素原子、臭素原子またはヨウ素原子である。これらのうち、ジフルオロアルキルカルボン酸やジフルオロアルキルスルホン酸等への変換が容易であることから、臭素原子またはヨウ素原子が好ましい。
【0021】
置換基R1〜R14は、水素原子、炭素数1〜10の直鎖または分岐のアルキル基、ハロゲン原子、含酸素置換基または含窒素置換基である。置換基R1〜R14は同一または異なっていてもよい。これら炭素数1〜10の直鎖または分岐のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、1−メチルプロピル基、2−メチルプロピル基、ペンチル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、2,2−ジメチルプロピル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、シクロプロピル基、シクロブチル基、ジメチルシクロプロピル基、メチルシクロブチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、ヘプチル基、オクチル基、シクロオクチル基、ノニル基、デシル基等が挙げられる。
【0022】
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0023】
含酸素置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、ヒドロキシル基、アセチル基、ベンゾイル基等のアシル基、蟻酸基、酢酸基の有機酸基等を挙げることができる。
【0024】
含窒素置換基としては、アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のアミノ基、シアノ基、ニトロ基等を挙げることができる。
【0025】
次に、本発明のハロゲン化ジフルオロアルキル多環式化合物の製造方法について説明する。
【0026】
前記一般式(1)においてm=1のハロゲン化ジフルオロアルキル多環式化合物は、前記一般式(2)で表されるカルボニル基含有多環式化合物と前記一般式(3)で表されるジハロジフルオロメタンを反応させ、前記一般式(4)で表されるジフルオロオレフィン基含有多環式化合物を得た後、ハロゲン化水素を反応させることにより得られる。
【0027】
前記一般式(2)の化合物は、例えば、米国特許4229600公報等に示されるように、カルボニル基含有オレフィン化合物とシクロペンタジエン構造含有化合物を反応させた後、炭素−炭素二重結合部位を水素化還元する方法等により得ることができる。
【0028】
前記一般式(2)の化合物と前記一般式(3)の化合物の反応は、Wittig反応として知られる反応を利用するものであり、通常、リン化合物、金属、溶媒等の存在下にて行われる。リン化合物としては、トリフェニルホスフィン、トリ−o−トリルホスフィン、トリメシチルホスフィン、トリ(m−クロロフェニル)ホスフィン、トリ(p−メトキシフェニル)ホスフィン等のアリールホスフィン類、トリメチルホスフィン、トリエチルホスフィン、トリ−n−ブチルホスフィン、トリ−t−ブチルホスフィン、トリオクチルホスフィン、トリシクロヘキシルホスフィン等のアルキルホスフィン類、トリメチルホスファイト、トリエチルホスファイト、トリブチルホスファイト、トリオクチルホスファイト、トリフェニルホスファイト等のホスファイト類等を用いることができる。また金属としては、Li、Na、K等のIa族金属、Mg、Ca等のIIa族金属、B、Al、Ga等のIIIa族金属、Cu、Ag等のIb族金属、Zn、Cd、Hg等のIIb族金属、またはこれらの塩を用いることができる。
【0029】
溶媒としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、メタノール、エタノール、イソプロパノール、t−ブタノールなどのアルコール類、酢酸エチル、酢酸イソプロピル、酢酸アミル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどのエステル類、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド、アセトニトリル、リン酸ヘキサメチルトリアミドなどの極性溶媒をあげることができる。
【0030】
前記一般式(2)の化合物に対し、前記一般式(3)の化合物はモル比0.1〜10、好ましくは0.5〜2の範囲で用いられる。前記一般式の(3)の化合物が、0.1未満の場合は、収率の点で、10を超える場合は副反応を生じる場合があり好ましくない。
【0031】
リン化合物は、前記一般式(2)の化合物に対し、モル比0.1〜10の範囲で用いられる。金属を用いる場合、前記一般式(2)の化合物に対し、モル比0.1〜10の範囲で用いられる。また、溶媒を用いる場合、前記一般式(2)の化合物に対し、重量比で0.1〜100の範囲で用いられる。また、反応温度は、通常、0〜150℃である。
【0032】
生成した前記一般式(4)の化合物は、反応液から直接蒸留分離したり、水および有機溶媒を加え、抽出分離することにより、反応液から分離することができる。また、反応液から分離することなく、次の反応に使用することもできる。
【0033】
前記一般式(4)の化合物をハロゲン化水素と反応させることにより、前記一般式(1)においてm=1の化合物を合成することができる。ハロゲン化水素としては、例えば塩化水素、臭化水素またはヨウ化水素が挙げられる。これらハロゲン化水素は、ガス状、または、水溶液、有機溶媒溶液等いずれを用いてもよい。また、ハロゲン含有化合物とプロトン性化合物を添加して、反応時に発生させてもよい。ハロゲン含有化合物としては、ハロゲン化金属化合物、ハロゲン化珪素化合物、ハロゲン化燐化合物等を挙げることができる。プロトン性化合物としては、水、アルコール類、有機カルボン酸類、燐酸、硫酸等の鉱酸類を挙げることができる。ハロゲン化水素は、前記一般式(4)の化合物に対し、モル比0.1〜10の範囲で用いられる。また、反応温度は、通常、0〜150℃である。
【0034】
生成した前記一般式(1)においてm=1の化合物は、反応液から直接蒸留分離したり、水および有機溶媒を加え、抽出分離することにより、反応液から分離することができる。
【0035】
なお、前記一般式(1)においてm=0の化合物は、例えば、ハロジフルオロメチル基含有オレフィン化合物とシクロペンタジエン構造含有化合物を反応させた後、炭素−炭素二重結合部位を水素化還元する方法等により得ることができる。
【0036】
【実施例】
以下に実施例を用いて本発明を詳細に説明するが、本発明はこの実施例によって限定されるものではない。
【0037】
実施例1
20L四つ口フラスコに攪拌機、温度計、還流冷却管を取り付け、N-メチルピロリドン 9.4L、トリフェニルホスフィン 3379g、ジフルオロジブロモメタン 1751g、2−ホルミル−ビシクロ[2.2.1]ヘプタン 1001g、を入れた。次に、亜鉛 843gを徐々に添加した。この間、反応温度は25℃から65℃に上昇した。反応後、還流冷却管の代わりに、リービッヒ冷却管を取り付け、10〜15kPaに減圧し、70〜125℃の留分を分取した。留出物を再度減圧蒸留し、6.8kPaの圧力で65〜66℃の留分を分取し、純度99%の2−(2,2−ジフルオロエテニル)−ビシクロ[2.2.1]ヘプタン 919gを得た(収率 74.5%)
GC−MS(EI)m/z:28,39,51,67,79,90,116,129,158
【0038】
実施例2
1L四つ口フラスコに温度計、ガス吹き込み管を取り付け、ヘキサン500L、2−(2,2−ジフルオロエテニル)−ビシクロ[2.2.1]ヘプタン 50.0gを入れた。ガス吹き込み管から乾燥臭化水素ガスを吹き込みながら80℃にて9時間反応させた。反応液に飽和炭酸水素ナトリウム水溶液を加えて中和し、有機層を減圧濃縮し、蒸留精製した。1kPaの圧力で、66〜67℃の留分を分取し、2−(2−ブロモ−2,2−ジフルオロエチル)−ビシクロ[2.2.1]ヘプタン 12gを得た(収率16%)。
1H−NMR(200MHz,CDCl3,δ,ppm):(図1参照)
19F−NMR(90MHz,CDCl3,δ,ppm):(図2参照)
GC−MS(EI)m/z:27,39,84,67,77,95,109,129,159,238,240
【0039】
実施例3
20L四つ口フラスコに温度計、滴下漏斗、還流冷却管を取り付け、アセトニトリル 8.2L、ヨウ化ナトリウム 1614gを入れ、溶解させた。次に滴下漏斗から、クロロトリメチルシラン 1170gを滴下し、続いて、水 97g、2−(2,2−ジフルオロエテニル)−ビシクロ[2.2.1]ヘプタン 850gを滴下した。滴下後、40℃にて15時間反応を継続させた。冷却後、水10Lを加え、下層を分取した。これを蒸留精製し、0.3〜0.6kPaの圧力で、76〜81℃の留分を分取し、2−(2−ヨード−2,2−ジフルオロエチル)−ビシクロ[2.2.1]ヘプタン 1374gを得た(収率 89%)。
1H−NMR(200MHz,CDCl3,δ,ppm):(図3参照)
19F−NMR(90MHz,CDCl3,δ,ppm):(図4参照)
GC−MS(EI)m/z:27,41,55,67,95,127,159
【0040】
実施例4
135mlオートクレーブに3−ブロモ−3,3−ジフルオロプロペン 16g、ジシクロペンタジエン 6.6gを入れ、170℃で12時間反応させた。次に、反応液に5%Pd/C 1.0gを加え、大気圧下で水素を12時間吹き込んだ。
反応混合物をろ過し、触媒を除去後、カラムクロマトグラフィにて精製し、2−ブロモジフルオロメチルビシクロ[2.2.1]ヘプタン 4.3gを得た(収率19%)。
GC−MS(EI)m/z:67,77,125,145
19F−NMR(90MHz,CDCl3,δ,ppm)
主異性体
-43.009 ( dd, J=153.8, 17.1 )、-49.177 ( dd, J=153.8, 17.1 )
副生異性体
-46.150 ( dd, J=151.4, 12.2 )、-52.070 ( dd, J=151.4, 19.5 )
【0041】
【発明の効果】
本発明によれば、有機化合物との相溶性に優れ、合成の容易なビシクロ[2.2.1]ヘプタン構造を有し、かつ、ジフルロアルキルカルボン酸やジフルオロアルキルスルホン酸等への変換可能なハロゲン化ジフルオロアルキル基を有する多環式化合物およびその製造方法を提供できる。
【図面の簡単な説明】
【図1】 実施例2で得た2−(2−ブロモ−2,2−ジフルオロエチル)−ビシクロ[2.2.1]ヘプタンの1H−NMR測定チャート
【図2】 実施例2で得た2−(2−ブロモ−2,2−ジフルオロエチル)−ビシクロ[2.2.1]ヘプタンの19F−NMR測定チャート
【図3】 実施例3で得た2−(2−ヨード−2,2−ジフルオロエチル)−ビシクロ[2.2.1]ヘプタンの1H−NMR測定チャート
【図4】 実施例3で得た2−(2−ヨード−2,2−ジフルオロエチル)−ビシクロ[2.2.1]ヘプタンの19F−NMR測定チャート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a halogenated difluoroalkyl polycyclic compound. More specifically, the present invention relates to a halogenated difluoroalkyl polycyclic compound useful as a raw material for surfactants, coating agents, electronic materials, organic synthesis catalysts, and the like, and a method for producing the same.
[0002]
[Prior art]
[Non-Patent Document 1]
Environmental Science Society 2002 Annual Meeting Abstract p228
Perfluoroalkyl halides such as perfluorooctyl iodide and perfluorohexyl iodide can convert halogen atoms into carboxylic acid groups, sulfinic acid groups, sulfonic acid groups, sulfonic acid derivatives, etc., and are raw materials of organic acids having strong acidity It becomes. These are widely used in applications such as surfactants, coating agents, electronic materials, and organic synthesis catalysts.
[0003]
However, these perfluoroalkyl sulfonic acids and perfluoroalkyl carboxylic acids are extremely difficult to decompose due to the strong covalent bond of carbon-fluorine, and they are problematic because of their accumulation in the living body (non-patent literature). 1).
[0004]
On the other hand, trifluoromethanesulfonic acid having a low fluorine content, for example, has not been pointed out an accumulation problem, but has volatility, and therefore has problems such as limited use conditions and corrosion of the apparatus.
[0005]
Further, these perfluoroalkyl compounds may not have sufficient compatibility with organic compounds not containing fluorine, and there is a problem that performance is not sufficiently exhibited.
[0006]
For this reason, as a fluorine-containing alkyl halide compound that substitutes for these, a fluorine-containing alkyl having a carbon number equal to or greater than that of perfluorooctyl halide and having the minimum fluorine necessary for expressing appropriate acidity Halide was desired.
[0007]
On the other hand, a polycyclic compound containing a bicyclo [2.2.1] heptane structure has excellent compatibility with an organic compound and also easily synthesizes a ring skeleton from a cyclopentadiene as a raw material by a Diels-Alder reaction. It is a widely used compound that has characteristics that can be achieved. However, a bicyclo [2.2.1] heptane compound having a halogenated difluoroalkyl group that can be converted into difluoroalkylcarboxylic acid, difluoroalkylsulfonic acid or the like has not been known so far.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of these problems. That is, difluoroalkyl halides that have a bicyclo [2.2.1] heptane structure that is excellent in compatibility with organic compounds and that can be easily synthesized, and that can be converted into difluoroalkylcarboxylic acids, difluoroalkylsulfonic acids, and the like. It aims at providing the polycyclic compound which has group, and its manufacturing method.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found various halogenated difluoroalkyl polycyclic compounds and production methods thereof, and have completed the present invention.
[0010]
That is, the present invention relates to the following gist.
(1) The following general formula (1)
[0011]
[Formula 4]
Figure 0004336135
[0012]
(In the formula, n is an integer of 0 to 5, m is 0 or 1, p is an integer of 0 to 3, X represents a chlorine atom, a bromine atom or an iodine atom, and R 1 to R 14 are each independently hydrogen. This represents a substituent selected from the group consisting of an atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a halogen atom, an oxygen-containing substituent or a nitrogen-containing substituent.
A difluoroalkyl polycyclic compound represented by the formula:
[0013]
(2) A method for producing a halogenated difluoroalkyl polycyclic compound in which m = 1 in the general formula (1),
General formula (2)
[0014]
[Chemical formula 5]
Figure 0004336135
[0015]
(Wherein n represents an integer of 0 to 5, p represents an integer of 0 to 3, R 1 to R 14 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, halogen, Represents a substituent selected from the group consisting of an atom, an oxygen-containing substituent or a nitrogen-containing substituent.)
A carbonyl group-containing polycyclic compound represented by the general formula (3)
CF 2 YZ (3)
(In the formula, Y and Z each independently represent a fluorine atom, a chlorine atom, a bromine atom or an iodine atom)
Is reacted with a dihalodifluoromethane represented by the general formula (4)
[0016]
[Chemical 6]
Figure 0004336135
[0017]
(Wherein n, p and R 1 to R 14 are the same as defined above)
After obtaining the difluoroolefin group-containing polycyclic compound represented by formula (4), the difluoroolefin group-containing polycyclic compound represented by formula (4) is reacted with a hydrogen halide. A method for producing a halogenated difluoroalkyl polycyclic compound in which m = 1 in (1).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
[0019]
In the general formula (1), n is an integer of 0 to 5, m is 0 or 1, and p is an integer of 0 to 3. When n, m and p are in this range, the characteristics of the polycyclic structure such as excellent compatibility with organic compounds are sufficiently exhibited.
[0020]
X is a chlorine atom, a bromine atom or an iodine atom. Of these, a bromine atom or an iodine atom is preferable because it can be easily converted into difluoroalkylcarboxylic acid, difluoroalkylsulfonic acid, or the like.
[0021]
The substituents R 1 to R 14 are a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a halogen atom, an oxygen-containing substituent, or a nitrogen-containing substituent. The substituents R 1 to R 14 may be the same or different. Examples of these linear or branched alkyl groups having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, a 1-methylpropyl group, a 2-methylpropyl group, Pentyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, cyclopropyl group, cyclobutyl group, dimethyl Examples include cyclopropyl group, methylcyclobutyl group, cyclopentyl group, hexyl group, cyclohexyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl group, heptyl group, octyl group, cyclooctyl group, nonyl group, decyl group and the like.
[0022]
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
[0023]
Examples of the oxygen-containing substituent include alkoxy groups such as methoxy group, ethoxy group and propoxy group, acyl groups such as hydroxyl group, acetyl group and benzoyl group, organic acid groups such as formic acid group and acetic acid group.
[0024]
Examples of the nitrogen-containing substituent include amino groups such as amino group, methylamino group, dimethylamino group, and diethylamino group, cyano group, and nitro group.
[0025]
Next, the manufacturing method of the halogenated difluoroalkyl polycyclic compound of this invention is demonstrated.
[0026]
In the general formula (1), the halogenated difluoroalkyl polycyclic compound with m = 1 is a carbonyl group-containing polycyclic compound represented by the general formula (2) and a divalent compound represented by the general formula (3). It can be obtained by reacting halodifluoromethane to obtain a difluoroolefin group-containing polycyclic compound represented by the general formula (4) and then reacting with hydrogen halide.
[0027]
The compound of the general formula (2) is obtained by reacting a carbonyl group-containing olefin compound and a cyclopentadiene structure-containing compound, as shown in, for example, US Pat. No. 4,229,600, and then hydrogenating a carbon-carbon double bond site. It can be obtained by a reduction method or the like.
[0028]
The reaction of the compound of the general formula (2) and the compound of the general formula (3) utilizes a reaction known as Wittig reaction, and is usually performed in the presence of a phosphorus compound, a metal, a solvent, or the like. . Examples of phosphorus compounds include triphenylphosphine, tri-o-tolylphosphine, trimesitylphosphine, tri (m-chlorophenyl) phosphine, tri (p-methoxyphenyl) phosphine, and other arylphosphines, trimethylphosphine, triethylphosphine, tri- Alkylphosphines such as n-butylphosphine, tri-t-butylphosphine, trioctylphosphine, tricyclohexylphosphine, phosphites such as trimethylphosphite, triethylphosphite, tributylphosphite, trioctylphosphite, triphenylphosphite Etc. can be used. Examples of the metal include a group Ia metal such as Li, Na and K, a group IIa metal such as Mg and Ca, a group IIIa metal such as B, Al and Ga, a group Ib metal such as Cu and Ag, Zn, Cd and Hg. Group IIb metals such as these, or salts thereof can be used.
[0029]
Solvents include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane and octane, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane, methanol, Alcohols such as ethanol, isopropanol and t-butanol, esters such as ethyl acetate, isopropyl acetate, amyl acetate, butyl acetate, methyl propionate and ethyl propionate, and halogenated hydrocarbons such as dichloromethane, chloroform and carbon tetrachloride , Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-di Chill-2-imidazolidinone, dimethyl sulfoxide, acetonitrile, can be mentioned polar solvents such as phosphoric acid hexamethyltriamide.
[0030]
The compound of the general formula (3) is used in a molar ratio of 0.1 to 10, preferably 0.5 to 2, with respect to the compound of the general formula (2). When the compound of the general formula (3) is less than 0.1, it is not preferable because the side reaction may occur when it exceeds 10 in terms of yield.
[0031]
The phosphorus compound is used in a molar ratio of 0.1 to 10 with respect to the compound of the general formula (2). When using a metal, it is used in a molar ratio of 0.1 to 10 with respect to the compound of the general formula (2). Moreover, when using a solvent, it is used in the range of 0.1-100 by weight ratio with respect to the compound of the said General formula (2). Moreover, reaction temperature is 0-150 degreeC normally.
[0032]
The generated compound of the general formula (4) can be separated from the reaction solution by direct distillation separation from the reaction solution, or by adding water and an organic solvent to extract and separate. Moreover, it can also be used for next reaction, without isolate | separating from a reaction liquid.
[0033]
By reacting the compound of the general formula (4) with hydrogen halide, a compound of m = 1 in the general formula (1) can be synthesized. Examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, and hydrogen iodide. These hydrogen halides may be used in the form of a gas or an aqueous solution or an organic solvent solution. Alternatively, a halogen-containing compound and a protic compound may be added and generated during the reaction. Examples of the halogen-containing compound include metal halide compounds, silicon halide compounds, and halogenated phosphorus compounds. Examples of protic compounds include mineral acids such as water, alcohols, organic carboxylic acids, phosphoric acid and sulfuric acid. The hydrogen halide is used in a molar ratio of 0.1 to 10 with respect to the compound of the general formula (4). Moreover, reaction temperature is 0-150 degreeC normally.
[0034]
The compound of m = 1 in the generated general formula (1) can be separated from the reaction solution by direct distillation separation from the reaction solution, or by adding water and an organic solvent to extract and separate.
[0035]
In addition, the compound of m = 0 in the said General formula (1) is the method of hydrogenating and reducing a carbon-carbon double bond part, for example after making a halo difluoromethyl group containing olefin compound and a cyclopentadiene structure containing compound react. Etc. can be obtained.
[0036]
【Example】
Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the examples.
[0037]
Example 1
A 20 L four-necked flask was equipped with a stirrer, thermometer, reflux condenser, N-methylpyrrolidone 9.4 L, triphenylphosphine 3379 g, difluorodibromomethane 1751 g, 2-formyl-bicyclo [2.2.1] heptane 1001 g, Put. Next, 843 g of zinc was gradually added. During this time, the reaction temperature rose from 25 ° C to 65 ° C. After the reaction, a Liebig condenser was attached instead of the reflux condenser, and the pressure was reduced to 10 to 15 kPa, and a fraction at 70 to 125 ° C. was fractionated. The distillate was distilled again under reduced pressure, and a fraction at 65 to 66 ° C. was separated at a pressure of 6.8 kPa, and 2- (2,2-difluoroethenyl) -bicyclo [2.2.1] having a purity of 99%. ] 919 g of heptane was obtained (yield 74.5%)
GC-MS (EI) m / z: 28, 39, 51, 67, 79, 90, 116, 129, 158
[0038]
Example 2
A 1 L four-necked flask was equipped with a thermometer and a gas blowing tube, and 500 L of hexane and 50.0 g of 2- (2,2-difluoroethenyl) -bicyclo [2.2.1] heptane were added. The reaction was carried out at 80 ° C. for 9 hours while blowing dry hydrogen bromide gas from the gas blowing tube. The reaction solution was neutralized with a saturated aqueous sodium hydrogen carbonate solution, and the organic layer was concentrated under reduced pressure and purified by distillation. A fraction at 66 to 67 ° C. was collected at a pressure of 1 kPa to obtain 12 g of 2- (2-bromo-2,2-difluoroethyl) -bicyclo [2.2.1] heptane (yield 16%). ).
1 H-NMR (200 MHz, CDCl 3 , δ, ppm): (see FIG. 1)
19 F-NMR (90 MHz, CDCl 3 , δ, ppm): (see FIG. 2)
GC-MS (EI) m / z: 27, 39, 84, 67, 77, 95, 109, 129, 159, 238, 240
[0039]
Example 3
A thermometer, a dropping funnel and a reflux condenser were attached to a 20 L four-necked flask, and 8.2 L of acetonitrile and 1614 g of sodium iodide were added and dissolved. Next, 1170 g of chlorotrimethylsilane was dropped from the dropping funnel, and subsequently, 97 g of water and 850 g of 2- (2,2-difluoroethenyl) -bicyclo [2.2.1] heptane were dropped. After dropping, the reaction was continued at 40 ° C. for 15 hours. After cooling, 10 L of water was added, and the lower layer was separated. This was purified by distillation, and a fraction at 76 to 81 ° C. was collected at a pressure of 0.3 to 0.6 kPa, and 2- (2-iodo-2,2-difluoroethyl) -bicyclo [2.2. 1] 1374 g of heptane was obtained (yield 89%).
1 H-NMR (200 MHz, CDCl 3 , δ, ppm): (see FIG. 3)
19 F-NMR (90 MHz, CDCl 3 , δ, ppm): (see FIG. 4)
GC-MS (EI) m / z: 27, 41, 55, 67, 95, 127, 159
[0040]
Example 4
In a 135 ml autoclave, 16 g of 3-bromo-3,3-difluoropropene and 6.6 g of dicyclopentadiene were added and reacted at 170 ° C. for 12 hours. Next, 1.0 g of 5% Pd / C was added to the reaction solution, and hydrogen was blown under atmospheric pressure for 12 hours.
The reaction mixture was filtered to remove the catalyst, and then purified by column chromatography to obtain 4.3 g of 2-bromodifluoromethylbicyclo [2.2.1] heptane (yield 19%).
GC-MS (EI) m / z: 67, 77, 125, 145
19 F-NMR (90 MHz, CDCl 3 , δ, ppm)
Main isomer
-43.009 (dd, J = 153.8, 17.1), -49.177 (dd, J = 153.8, 17.1)
By-product isomers
-46.150 (dd, J = 151.4, 12.2), -52.070 (dd, J = 151.4, 19.5)
[0041]
【The invention's effect】
According to the present invention, it has a bicyclo [2.2.1] heptane structure that is excellent in compatibility with organic compounds and can be easily synthesized, and can be converted into difluoroalkylcarboxylic acid, difluoroalkylsulfonic acid, and the like. A polycyclic compound having a halogenated difluoroalkyl group and a method for producing the same can be provided.
[Brief description of the drawings]
1 is a 1 H-NMR measurement chart of 2- (2-bromo-2,2-difluoroethyl) -bicyclo [2.2.1] heptane obtained in Example 2. FIG. 2 is obtained in Example 2. 19 F-NMR measurement chart of 2- (2-bromo-2,2-difluoroethyl) -bicyclo [2.2.1] heptane [FIG. 3] 2- (2-iodo-2 obtained in Example 3 , 2-Difluoroethyl) -bicyclo [2.2.1] heptane 1 H-NMR measurement chart FIG. 4 shows 2- (2-iodo-2,2-difluoroethyl) -bicyclo [ 2.2.1] 19 F-NMR measurement chart of heptane

Claims (2)

下記一般式(1)
Figure 0004336135
(式中、pは0〜3の整数、R 4 〜R14は、それぞれ独立に水素原子、炭素数1〜10の直鎖または分岐のアルキル基、ハロゲン原子、含酸素置換基または含窒素置換基からなる群から選ばれる置換基を表す。)
で示されるヨウ素化ジフルオロアルキル多環式化合物。
The following general formula (1)
Figure 0004336135
(In the formula, p is an integer of 0 to 3, R 4 to R 14 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a halogen atom, an oxygen-containing substituent, or a nitrogen-containing substituent. Represents a substituent selected from the group consisting of groups.)
A difluoroalkyl polycyclic compound represented by the formula:
前記一般式(1)で示されるハロゲン化ジフルオロアルキル多環式化合物を製造する方法であって、
一般式(2)
Figure 0004336135
(式中、式中、pは0〜3の整数、R 4 〜R14は、それぞれ独立に水素原子、炭素数1〜10の直鎖または分岐のアルキル基、ハロゲン原子、含酸素置換基または含窒素置換基からなる群から選ばれる置換基を表す。)
で表されるカルボニル基含有多環式化合物と一般式(3)
CFYZ (3)
(式中、YおよびZは、それぞれ独立に、フッ素原子、塩素原子、臭素原子またはヨウ素原子を表す)
で表されるジハロジフルオロメタンを反応させ、一般式(4)
Figure 0004336135
(式中、p及びR 4 〜R14は、前記定義に同じ)
で表されるジフルオロオレフィン基含有多環式化合物を得た後、前記一般式(4)で表されるジフルオロオレフィン基含有多環式化合物とヨウ化水素を反応させることを特徴とする前記一般式(1)で示されるハロゲン化ジフルオロアルキル多環式化合物の製造方法。
A method for producing a halogenated difluoroalkyl polycyclic compound represented by the general formula (1) , comprising:
General formula (2)
Figure 0004336135
(In the formula, p is an integer of 0 to 3, R 4 to R 14 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a halogen atom, an oxygen-containing substituent, or Represents a substituent selected from the group consisting of nitrogen-containing substituents.)
A carbonyl group-containing polycyclic compound represented by the general formula (3)
CF 2 YZ (3)
(In the formula, Y and Z each independently represent a fluorine atom, a chlorine atom, a bromine atom or an iodine atom)
Is reacted with a dihalodifluoromethane represented by the general formula (4)
Figure 0004336135
( Wherein p and R 4 to R 14 are the same as defined above)
After obtaining the difluoroolefin group-containing polycyclic compound represented by formula (4), the difluoroolefin group-containing polycyclic compound represented by formula (4) is reacted with hydrogen iodide. A method for producing the halogenated difluoroalkyl polycyclic compound represented by (1).
JP2003102526A 2003-04-07 2003-04-07 Halogenated difluoroalkyl polycyclic compounds Expired - Fee Related JP4336135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102526A JP4336135B2 (en) 2003-04-07 2003-04-07 Halogenated difluoroalkyl polycyclic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102526A JP4336135B2 (en) 2003-04-07 2003-04-07 Halogenated difluoroalkyl polycyclic compounds

Publications (2)

Publication Number Publication Date
JP2004307388A JP2004307388A (en) 2004-11-04
JP4336135B2 true JP4336135B2 (en) 2009-09-30

Family

ID=33465932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102526A Expired - Fee Related JP4336135B2 (en) 2003-04-07 2003-04-07 Halogenated difluoroalkyl polycyclic compounds

Country Status (1)

Country Link
JP (1) JP4336135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118530390B (en) * 2024-07-26 2024-10-11 苏州源起材料科技有限公司 Synthesis method of fluoroalkyl functionalized norbornyl fluorine-containing material

Also Published As

Publication number Publication date
JP2004307388A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US10618862B2 (en) Process for preparing (9e, 11z)-9,11-hexadecadienal
EP3392231B1 (en) 1-halo-6,9-pentadecadiene and method for producing (7z,10z)-7,10-hexadecadienal
US10737999B2 (en) 1-haloalkadiene and a process for preparing the same and a process for preparing (9e, 11z)-9,11-hexadecadienyl acetate
AU634213B2 (en) Preparation of 5,6,7-trinor-4,8-inter-m-phenylene pgi2 derivatives
JP6137492B2 (en) ω-halo-2-alkynal and process for producing conjugated Z-alkeneinyl acetate using the same
Shakhmaev et al. Fe-catalyzed synthesis of (4 E)-tridec-4-en-1-yl acetate, sex pheromone of tomato pinworm (Keiferia lycopersicella)
JPH10506626A (en) Method for purifying 2,6-diisopropylphenol
JP4336135B2 (en) Halogenated difluoroalkyl polycyclic compounds
ES2548272T3 (en) Methods for preparing 5-acetoxy- (E3) -3-pentenyl and (E3) -3-alkenyl acetate methoxymethyl ether
EP3505506B1 (en) Method for producing 3,7-dimethyl-7-octenol and method for producing 3,7-dimethyl-7-octenyl carboxylate compound
JP5047646B2 (en) Halogenated difluoroalkyladamantane compound and method for producing the same
WO1984004917A1 (en) 7-fluoroprostaglandins and process for their preparation
ES2970310T3 (en) 11-halo-3-undecene compound and a process for preparing the same and a process for preparing a 9-dodecenal compound
JPS6334127B2 (en)
JP7109000B2 (en) Method for producing prenyl carboxylates and prenols
US3818059A (en) Preparation of tridecatrienoic acid derivatives
US20070161827A1 (en) Method of synthesizing fluorinated diene alcohols
KR910001236B1 (en) Process for the preparation of 2-(4-amino phenyl0-2-methyl propyl alcohol
JP2008106053A (en) Method for producing 4,9-dibromodiamantane
CN111194302A (en) Synthesis of cyclopentenones with sulfonic acid reagents
JP2003137882A (en) Method for producing 2,3-dimethylthiophene
JPH0692886A (en) Production of 6,7-disubstituted-2-hydroxy-3-methylenebicyclo(3.3.0)octanes
JPH0118888B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4336135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees