JP4335984B2 - Application method of annealing separator for unidirectional electrical steel sheet - Google Patents

Application method of annealing separator for unidirectional electrical steel sheet Download PDF

Info

Publication number
JP4335984B2
JP4335984B2 JP28831598A JP28831598A JP4335984B2 JP 4335984 B2 JP4335984 B2 JP 4335984B2 JP 28831598 A JP28831598 A JP 28831598A JP 28831598 A JP28831598 A JP 28831598A JP 4335984 B2 JP4335984 B2 JP 4335984B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing separator
binder
annealing
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28831598A
Other languages
Japanese (ja)
Other versions
JP2000119755A (en
Inventor
真樹 池田
修一 山崎
義行 牛神
健一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28831598A priority Critical patent/JP4335984B2/en
Publication of JP2000119755A publication Critical patent/JP2000119755A/en
Application granted granted Critical
Publication of JP4335984B2 publication Critical patent/JP4335984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一方向性電磁鋼板の仕上げ焼鈍の際に用いられる焼鈍分離剤に関するものである。
【0002】
【従来の技術】
一般的な一方向性電磁鋼板の製造方法としては、Si:4%以下を含有する硅素鋼スラブを熱延し、1回もしくは中間焼鈍を含め2回の冷延により最終板厚に仕上げ、湿潤雰囲気中の焼鈍により、脱炭とSiO2を主体とするサブスケールを形成させ、次いで、MgO を主体とする焼鈍分離剤を水に懸濁してスラリー状にて塗布、乾燥の後コイルに巻き取り、高温仕上げ焼鈍を行う。この高温仕上げ焼鈍により、鋼板中においてはゴス方位の二次再結晶粒が発達し、一方、鋼板表面においては、焼鈍分離剤中のMgO とサブスケール中のSiO2が反応して、フォルステライトを主体とするグラス皮膜が形成される。更に、仕上げ焼鈍後の一方向性電磁鋼板には、必要に応じて絶縁コーティングが施される。
【0003】
一方向性電磁鋼板の用途は主に変圧器、発電機等の鉄心材料である。
鉄心は、金型による打ち抜きもしくは剪断によって、所定形状に加工された一方向性電磁鋼板の積層によって製造される。打ち抜きもしくは剪断の際に問題となるのは返りである。返りが大きくなると鉄心積層体において端面短絡が起こり、鉄損の異常増加が起こる。現在製造されている一方向性電磁鋼板の表面には、前述のようにフォルステライトを主体とするグラス皮膜が形成されているが、この皮膜は硬質であるため、打ち抜きのための金型の摩耗が激しく、この打ち抜き返りを防止するためには金型の再研磨、あるいは交換を頻繁に行わなければならない。これは作業性を著しく低下させ、またコストの上昇を招く。従って、グラス皮膜のない鋼板であれば、打ち抜き性もしくは剪断加工性は大きく改善される。
【0004】
一方、鉄心材の磁気的特性として要求される項目の中で最も重要なものは鉄損である。鉄損が低いほど発電機、変圧器等に使用された場合の変換ロスが減少するからである。一方向性電磁鋼板の鉄損値を低減させる手段としては、鋼板板厚の減少、鋼中Si含有量の増加、鋼板の高磁束密度化、皮膜による鋼板への張力付与などが検討されてきた。最近では、鋼板に線状の歪みや溝を導入する磁区制御技術も開発されている。これらの鉄損低減技術は工業的にはほぼ完成されたと言ってよく、更なる低鉄損化を図るためには新しい手段を開発する必要がある。最近注目されている課題は、鋼板と皮膜界面の平坦化である。現行の一方向性電磁鋼板においてはグラス皮膜と鋼板との界面の凹凸が激しく、磁化過程における磁壁移動を阻害している。従って、グラス皮膜のない一方向性電磁鋼板を製造できたならば、更なる低鉄損化が図られる。
【0005】
また、一旦形成されたグラス皮膜を酸洗で除去する方法は良く知られている。しかしながら、フォルステライトは化学的に安定な化合物であり、比較的濃度の高くかつ温度の高い酸洗液に長時間浸漬しなければならない。従って、工業的な規模で酸洗を行うことは設備的にもコスト的にも困難が伴う。
仕上げ焼鈍後に酸洗する方法に代わって検討されてきた方法は、MgO に代えて不活性な酸化物焼鈍分離剤を用いる方法である。例えば、米国特許第3,785,882 号公報においては粗粒高純度アルミナを用いてグラス皮膜形成を防止する方法が開示されている。しかしながら、粗粒アルミナはスラリー状になりにくくかつ、塗布乾燥後の鋼板に対する付着性が極めて弱い。この粒径の粗大化による鋼板への付着性の劣化は、他の酸化物焼鈍分離剤においても同様である。同公報では有機系粘結剤の使用によって前述したような粗粒アルミナでも鋼板に対する付着性が確保できるとされている。
【0006】
しかしながら、有機系粘結剤を使用した場合には、特開昭53−22113 号公報にも示されているように浸炭が懸念される。
【0007】
【発明が解決しようとする課題】
本発明は、最終仕上げ焼鈍時にグラス皮膜が形成せず、焼鈍分離剤が焼き付かず、かつ浸炭がなく、その結果、打ち抜き性、磁気特性の良好な一方向性電磁鋼板が得られる焼鈍分離剤の塗布方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、一方向性電磁鋼板の仕上げ焼鈍に用いるアルミナを主成分とする焼鈍分離剤において、10t<ρf ηω<70tなる式を満たすωを定め、その条件で焼鈍分離剤を塗布することを特徴とする焼鈍分離剤の塗布方法を要旨とするものである。
【0009】
ここで、ωは焼鈍分離剤塗布量(g/m2)、ρは焼鈍分離剤中の粘結剤濃度(重量%)、f は粘結剤中C 濃度(重量分率)、ηは粘結剤化学式における(C-O)/C 比、t は鋼板の板厚(mm)である。
【0010】
【発明の実施の形態】
本発明者等は、まず、実際の一方向性電磁鋼板の焼鈍分離剤塗布工程における操業性に対するアルミナの平均粒径の影響について調査した。アルミナの平均粒径はマイクロトラックにより粒度分布を測定し、累積重量百分率において50%に相当する粒径から見積もった。その結果、次のようなことが判明した。平均粒径:1 μm 未満のアルミナを用いた場合には焼鈍分離剤塗布工程において全く問題がない。また、平均粒径:1 〜20μm の場合にはスラリー作製は可能であるが、スラリー塗布乾燥後の鋼板に対する付着性が悪く、コイルの巻き取りや搬送の際に焼鈍分離剤が剥離してしまう。更に、平均粒径:20μm を越えると沈降しやすくスラリーが作製しにくい。
【0011】
次に、仕上げ焼鈍後の焼鈍分離剤の鋼板に対する焼き付き性のアルミナ粒径依存性について調査した。その結果、平均粒径:1 μm 未満のアルミナからなるスラリーを塗布した場合にはアルミナの焼き付きが起こった。これは、粒径が細かくなると表面積が増大し、アルミナ粒子が活性化して焼結しやすくなることが原因であると思われる。一方、平均粒径:1 μm を越えるアルミナを用いた場合にはアルミナの焼き付きがなく、金属光沢を有する鋼板が得られる。
【0012】
以上の調査から、焼鈍分離剤として操業性の良い細粒アルミナを用いた場合にはアルミナの鋼板への焼き付きが発生し、一方、焼き付きのない粗粒アルミナを用いた場合には操業性が悪いことが判明した。従って、アルミナを焼鈍分離剤として用いるためには平均粒径:1 μm 以上のアルミナの鋼板に対する付着性を改善せねばならない。
【0013】
本発明者等は、焼き付きが発生しない平均粒径:1 μm 以上の粗粒アルミナスラリーの安定性、及び鋼板への付着性を改善するため、粘結剤の添加条件を詳しく検討した。アルミナスラリーはアルミナ粉を懸濁して作製するために、粘結剤は水溶性でなければならない。また、粘結剤がアルカリ金属等の無機物を含むならばアルミナの焼き付きを促進する恐れがあるため、無機物含有量のなるべく少ないものが望ましい。このような粘結剤としては、澱粉、セルロースエーテル、ポリビニルアルコール、ポリエチレングリコール等の水溶性高分子粘結剤があげられる。セルロースエーテルとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどが知られている。これらの各種水溶性高分子粘結剤をアルミナに添加してスラリーを作製し、鋼板に塗布乾燥したところ、粘結剤添加量によってスラリーの安定性、及び鋼板に対する付着性が改善された。しかしながら、有機系高分子粘結剤を使用した場合には、特開昭53−22113 号公報にも示されているように、浸炭による磁気特性の劣化が懸念される。
【0014】
浸炭の影響は鉄損への磁気時効効果として現れる。磁気時効は鋼中のC 量に影響され、C の含有量が少なければ時効は起きない。そこで、アルミナ塗布量、粘結剤濃度、粘結剤種類をパラメーターとして作製した、各種焼鈍分離剤を用いて仕上げ焼鈍を行った材料について、浸炭の影響を調べるため、150 ℃の温度で30日間の時効処理による鉄損増加率を調査した。図1はその結果を示したものである。焼鈍分離剤の各種パラメーターによって、鉄損増加率が予想できる。なお、ωは両面合計でのアルミナ塗布量(g/m2)、ρはアルミナ中粘結剤濃度( 重量%)、f は粘結剤中C 濃度(重量分率)、ηは粘結剤化学組成式における(C-O)/C 比、t は鋼板の板厚(mm)である。
【0015】
鉄損増加率は〔(時効処理後の鉄損(W17/50)−時効処理前の鉄損(W17/50))/時効処理前の鉄損(W17/50)(%)〕によって計算した。例えば、時効処理前に鉄損が0.9(W/kg) で時効処理後に1.1(W/kg) になったとすれば、(1.1-0.9)/0.9 ×100=22.2(%) と計算される。ρの計算は、例えば、アルミナ40g に対して粘結剤を10g 使用する場合、ρ=10/(10+40)×100=20(%)と計算される。f 、すなわち粘結剤中のC 濃度(重量分率)は、粘結剤の化学組成式より計算される。例えば、澱粉((C6H10O5)n ) の場合には以下のように計算される。
【0016】
【数1】

Figure 0004335984
またη、すなわち粘結剤化学式における(C-O)/C 比についても、粘結剤の化学組成式より計算される。例えば、澱粉((C6H10O5)n ) の場合には以下のように計算される。
【0017】
【数2】
Figure 0004335984
表1にいくつかの粘結剤についてのρ、ηの値を示す。
【0018】
【表1】
Figure 0004335984
【0019】
以上の調査から、磁気時効による鉄損劣化を防ぐには、10<ρf ηω<70tなる式を満たすことが必要であることがわかる。以上の検討により、アルミナ粉を仕上げ焼鈍時の焼鈍分離剤に使用する、一方向性電磁鋼板製造方法において、アルミナスラリー中に加える水溶性高分子粘結剤が、10<ρf ηω<70tなる式を満たす一方向性電磁鋼板用焼鈍分離剤を用いるなら、鋼板に対する付着性が良好で、かつ仕上げ焼鈍時に浸炭の極めて少ない一方向性電磁鋼板が製造できることが分かった。なお、ωはアルミナ塗布量(g/m2)、ρはアルミナ中粘結剤濃度(%) 、f は粘結剤中C (重量分率)、ηは粘結剤化学式における(C-O)/C 比、t は鋼板の板厚(mm)である。
【0020】
本発明は、仕上げ焼鈍により鋼板表面を鏡面化し、極めて鉄損の低い一方向性電磁鋼板を製造しようとする場合にも有効である。その場合には、実施例において示すように、脱炭焼鈍における酸素ポテンシャルを脱炭に必要な最小限に抑えて酸化層形成を抑制させるか、あるいは脱炭焼鈍後の鋼板に酸洗等を施して脱炭酸化膜を除去した後、本発明による焼鈍分離剤を塗布乾燥して仕上げ焼鈍を行えばよい。また、アルカリ金属不純物を含む焼鈍分離剤を用いることも有効である。更に、焼鈍分離剤スラリーに微量の防錆剤を添加するならば、なお一層仕上げ焼鈍後の鏡面化が良好となる。
【0021】
【実施例】
<実施例1 >
重量%で、C:0.046%, Si:3.12%, Mn:0.057%, S:0.022% を含有し、残部がFe及び不可避的不純物からなる電磁鋼熱延鋼帯を、980 ℃で3 分間の中間焼鈍を挟む2 回の冷間圧延により板厚0.35mmの冷延板とし、ついで湿潤雰囲気中で脱炭焼鈍を行った。次いで、この鋼板に表2に示す各種組成の焼鈍分離剤を水でスラリー化し、塗布乾燥後、仕上げ焼鈍を行った。また、その後150 ℃の温度で30日間の時効処理を行った。得られた鋼板の外観、打ち抜き性、時効による鉄損増加率(%)、残留炭素量を表2に示す。表2から明らかなように、本発明による焼鈍分離剤を用いた場合には、浸炭を抑制でき優れた一方向性電磁鋼板が製造できる。なお、打ち抜き性は直径5mm のスチールダイスにより打ち抜き作業を行った際に、カエリ高さが50μm に達する打ち抜き回数で評価している。また、時効による鉄損増加率は、〔(時効処理後の鉄損(W17/50)−時効処理前の鉄損(W17/50))/時効前の鉄損(W17/50)(%)〕により計算した。
【0022】
【表2】
Figure 0004335984
【0023】
<実施例2 >
重量%で、C:0.06%, Si:3.25%,酸可溶性Al:0.027%, N:0.008%, Mn:0.11%, S:0.007% を含有し、残部がFe及び不可避的不純物からなる電磁鋼熱延鋼帯を、1100℃で2 分間の焼鈍を行った後、冷間圧延により板厚0.23mmの冷延板とし、次いで湿潤雰囲気中で脱炭焼鈍を行った。続いて二次再結晶を安定化させるため、アンモニア雰囲気中で窒化処理を行った。その後、フッ酸中に浸漬することにより脱炭酸化膜を除去した。次いでこの鋼板に表3に示す各種組成の焼鈍分離剤を水でスラリー化し、塗布乾燥後、仕上げ焼鈍を行った。更に燐酸塩とコロイド状シリカを主体とするコーティング液を塗布焼き付け、レーザービームを照射して磁区細分化処理を行った。また、その後150 ℃の温度で30日間の時効処理を行った。得られた鋼板の外観、時効による鉄損増加率(%)、残留炭素量を表3に示す。表3から明らかなように、本発明による焼鈍分離剤を用いた場合には、極めて鉄損の低い一方向性電磁鋼板が製造できる。なお、時効による鉄損増加率は、〔(時効処理後の鉄損(W17/50)−時効処理前の鉄損(W17/50))/時効前の鉄損(W17/50)(%)〕により計算した。
【0024】
【表3】
Figure 0004335984
【0025】
<実施例3 >
重量%で、C:0.05%, Si:3.22%,酸可溶性Al:0.028%, N:0.008%, Mn:0.10%, S:0.008% を含有し、残部がFe及び不可避的不純物からなる電磁鋼熱延鋼帯を、1100℃で2 分間の焼鈍を行った後、冷間圧延により板厚0.23mmの冷延板とし、次いで湿潤雰囲気中で脱炭焼鈍を行った。続いて二次再結晶を安定化させるため、アンモニア雰囲気中で窒化処理を行った。次いでこの鋼板に表4に示す各種組成の焼鈍分離剤を水でスラリー化し、塗布乾燥後、仕上げ焼鈍を行った。更に燐酸塩とコロイド状シリカを主体とするコーティング液を塗布焼き付け、レーザービームを照射して磁区細分化処理を行った。また、その後150 ℃の温度で30日間の時効処理を行った。得られた鋼板の外観、時効による鉄損増加率(%)、残留炭素量を表4に示す。表4から明らかなように、本発明による焼鈍分離剤を用いた場合には、極めて鉄損の低い一方向性電磁鋼板が製造できる。なお、時効による鉄損増加率は、〔(時効処理後の鉄損(W17/50)−時効処理前の鉄損(W17/50))/時効前の鉄損(W17/50)(%)〕により計算した。
【0026】
【表4】
Figure 0004335984
【0027】
【発明の効果】
本発明による焼鈍分離剤を用いることにより、グラス皮膜が生成することなく、仕上げ焼鈍中の鋼板中への浸炭が小さく、かつ極めて鉄損の低い、あるいは打ち抜き性の良好な一方向性電磁鋼板を製造することができる。
【図面の簡単な説明】
【図1】時効処理による鉄損増加率を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an annealing separator used in the finish annealing of a unidirectional electrical steel sheet.
[0002]
[Prior art]
As a general method for producing a unidirectional electrical steel sheet, a silicon steel slab containing Si: 4% or less is hot-rolled, finished to the final sheet thickness by one or two cold rollings including intermediate annealing, and wet. Sub-scale mainly composed of decarburized and SiO 2 is formed by annealing in the atmosphere, and then an annealing separator composed mainly of MgO is suspended in water, applied in a slurry form, dried and wound on a coil. Perform high temperature finish annealing. By this high-temperature finish annealing, goth-oriented secondary recrystallized grains develop in the steel sheet, while MgO in the annealing separator reacts with SiO 2 in the subscale on the steel sheet surface to cause forsterite. A glass film as a main component is formed. Furthermore, the unidirectional electrical steel sheet after finish annealing is provided with an insulating coating as necessary.
[0003]
Applications of unidirectional electrical steel sheets are mainly iron core materials such as transformers and generators.
The iron core is manufactured by stacking unidirectional electrical steel sheets processed into a predetermined shape by punching or shearing with a mold. Return is the problem when punching or shearing. When the return increases, an end face short circuit occurs in the iron core laminate, resulting in an abnormal increase in iron loss. As described above, a glass film mainly composed of forsterite is formed on the surface of the unidirectional electrical steel sheet that is currently manufactured, but since this film is hard, the wear of the mold for punching In order to prevent this punching back, the mold must be re-polished or replaced frequently. This significantly reduces workability and increases the cost. Therefore, if it is a steel plate without a glass film, punching property or shear workability is greatly improved.
[0004]
On the other hand, the most important item required for the magnetic properties of the iron core is iron loss. This is because the lower the iron loss, the lower the conversion loss when used in generators, transformers, and the like. As means for reducing the iron loss value of a unidirectional electrical steel sheet, reduction of the steel sheet thickness, increase of the Si content in the steel, increase of the magnetic flux density of the steel sheet, and application of tension to the steel sheet by the coating have been studied. . Recently, a magnetic domain control technique for introducing linear strain and grooves into a steel sheet has been developed. It can be said that these iron loss reduction technologies have been almost completed industrially, and it is necessary to develop a new means in order to further reduce the iron loss. A problem that has recently attracted attention is the flattening of the interface between the steel sheet and the film. In the current unidirectional electrical steel sheet, the unevenness of the interface between the glass film and the steel sheet is severe, which inhibits domain wall movement in the magnetization process. Therefore, if a unidirectional electrical steel sheet without a glass coating can be manufactured, further reduction in iron loss can be achieved.
[0005]
In addition, a method of removing a glass film once formed by pickling is well known. However, forsterite is a chemically stable compound and must be immersed in a pickling solution having a relatively high concentration and high temperature for a long time. Therefore, pickling on an industrial scale is difficult both in terms of equipment and cost.
A method that has been studied in place of the method of pickling after finish annealing is a method using an inert oxide annealing separator instead of MgO. For example, US Pat. No. 3,785,882 discloses a method for preventing glass film formation using coarse-grained high-purity alumina. However, coarse-grained alumina is unlikely to become a slurry and has very weak adhesion to the steel sheet after coating and drying. The deterioration of the adhesion to the steel sheet due to the coarsening of the particle size is the same for other oxide annealing separators. According to the publication, the use of an organic binder can secure adhesion to a steel plate even with coarse-grained alumina as described above.
[0006]
However, when an organic binder is used, carburization is a concern as disclosed in JP-A-53-22113.
[0007]
[Problems to be solved by the invention]
The present invention does not form a glass film at the time of final finish annealing, does not seize the annealing separator, and does not carburize. As a result, an annealing separator that provides a unidirectional electrical steel sheet with good punchability and magnetic properties. The application method is provided.
[0008]
[Means for Solving the Problems]
In the annealing separator mainly composed of alumina used for finish annealing of a unidirectional electrical steel sheet, the present invention defines ω that satisfies the formula 10t <ρf ηω <70t , and applies the annealing separator under the conditions. The gist of the coating method of the featured annealing separation agent is as follows.
[0009]
Where ω is the annealing separator application amount (g / m 2 ), ρ is the binder concentration (wt%) in the annealing separator, f is the C concentration (weight fraction) in the binder, and η is the viscosity In the binder chemical formula, (CO) / C ratio, t is the thickness (mm) of the steel sheet.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors first investigated the influence of the average particle diameter of alumina on the operability in an annealing separator coating process of an actual unidirectional electrical steel sheet. The average particle size of alumina was estimated from the particle size corresponding to 50% in cumulative weight percentage by measuring the particle size distribution with Microtrac. As a result, the following was found. When alumina having an average particle size of less than 1 μm is used, there is no problem at all in the annealing separator coating process. In addition, when the average particle size is 1 to 20 μm, slurry preparation is possible, but the adhesion to the steel plate after slurry coating and drying is poor, and the annealing separator is peeled off during coil winding and conveyance. . Furthermore, when the average particle diameter exceeds 20 μm, the slurry tends to settle and it is difficult to produce a slurry.
[0011]
Next, investigation was made on the alumina particle size dependence of seizure of the annealing separator after finish annealing on the steel sheet. As a result, when a slurry made of alumina having an average particle size of less than 1 μm was applied, alumina seizure occurred. This seems to be because the surface area increases as the particle size becomes finer, and the alumina particles are activated and easily sintered. On the other hand, when alumina having an average particle size of more than 1 μm is used, there is no seizure of alumina and a steel sheet having a metallic luster is obtained.
[0012]
From the above investigations, when fine-grained alumina with good operability is used as an annealing separator, seizure occurs on the steel plate of alumina, whereas when coarse-grained alumina without seizure is used, operability is poor. It has been found. Therefore, in order to use alumina as an annealing separator, the adhesion of alumina having an average particle size of 1 μm or more to a steel sheet must be improved.
[0013]
In order to improve the stability of the coarse alumina slurry having an average particle diameter of 1 μm or more and no adhesion, and the adhesion to the steel sheet, the present inventors have examined in detail the addition conditions of the binder. In order to make an alumina slurry by suspending alumina powder, the binder must be water-soluble. Further, if the binder contains an inorganic substance such as an alkali metal, there is a risk of promoting the seizure of alumina, so that the inorganic substance content is preferably as small as possible. Examples of such a binder include water-soluble polymer binders such as starch, cellulose ether, polyvinyl alcohol, and polyethylene glycol. As cellulose ether, methyl cellulose, carboxyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose and the like are known. A slurry was prepared by adding these various water-soluble polymer binders to alumina, and the slurry was applied to a steel sheet and dried. As a result, the stability of the slurry and the adhesion to the steel sheet were improved by the amount of binder added. However, when an organic polymer binder is used, there is a concern about deterioration of magnetic properties due to carburization, as disclosed in Japanese Patent Application Laid-Open No. 53-22113.
[0014]
The effect of carburizing appears as a magnetic aging effect on iron loss. Magnetic aging is affected by the C content in steel, and aging does not occur if the C content is low. Therefore, in order to investigate the effect of carburizing on materials that were annealed using various annealing separators, which were prepared using the amount of alumina applied, binder concentration, and binder type as parameters, the temperature of 150 ° C was measured for 30 days. The rate of increase in iron loss due to aging treatment was investigated. FIG. 1 shows the result. The iron loss increase rate can be predicted by various parameters of the annealing separator. Ω is the total amount of alumina applied (g / m 2 ) on both sides, ρ is the binder concentration in alumina (wt%), f is the C concentration (weight fraction) in the binder, and η is the binder In the chemical composition formula, (CO) / C ratio, t is the thickness (mm) of the steel sheet.
[0015]
Iron loss increase rate was calculated by [(iron loss after aging treatment (W17 / 50)-iron loss before aging treatment (W17 / 50)) / iron loss before aging treatment (W17 / 50) (%)]] . For example, if the iron loss is 0.9 (W / kg) before aging treatment and 1.1 (W / kg) after aging treatment, it is calculated as (1.1-0.9) /0.9 × 100 = 22.2 (%). For example, when 10 g of binder is used for 40 g of alumina, ρ is calculated as ρ = 10 / (10 + 40) × 100 = 20 (%). f, that is, the C concentration (weight fraction) in the binder is calculated from the chemical composition formula of the binder. For example, in the case of starch ((C 6 H 10 O 5 ) n ), it is calculated as follows.
[0016]
[Expression 1]
Figure 0004335984
Also, η, that is, (CO) / C ratio in the binder chemical formula, is calculated from the chemical composition formula of the binder. For example, in the case of starch ((C 6 H 10 O 5 ) n ), it is calculated as follows.
[0017]
[Expression 2]
Figure 0004335984
Table 1 shows the values of ρ and η for several binders.
[0018]
[Table 1]
Figure 0004335984
[0019]
From the above investigations, it is clear that the following 10 < ρf ηω <70t must be satisfied to prevent iron loss deterioration due to magnetic aging. Based on the above study, the water-soluble polymer binder added to the alumina slurry in the unidirectional electrical steel sheet manufacturing method using alumina powder as an annealing separator during finish annealing is a formula where 10 < ρf ηω <70 t. It was found that if an annealing separator for a unidirectional electrical steel sheet that satisfies the above conditions is used, a unidirectional electrical steel sheet having good adhesion to the steel sheet and extremely low carburization during finish annealing can be produced. Ω is the amount of alumina applied (g / m 2 ), ρ is the binder concentration in alumina (%), f is the C (weight fraction) in the binder, and η is (CO) / C ratio, t is the thickness (mm) of the steel sheet.
[0020]
The present invention is also effective when a steel sheet surface is mirror-finished by finish annealing to produce a unidirectional electrical steel sheet with extremely low iron loss. In that case, as shown in the examples, the oxygen potential in decarburization annealing is suppressed to the minimum necessary for decarburization to suppress the formation of an oxide layer, or the steel plate after decarburization annealing is subjected to pickling or the like. Then, after removing the decarbonation film, the annealing separator according to the present invention may be applied and dried to perform final annealing. It is also effective to use an annealing separator containing alkali metal impurities. Furthermore, if a trace amount of a rust preventive agent is added to the annealing separator slurry, the mirror finish after the finish annealing is further improved.
[0021]
【Example】
<Example 1>
A magnetic steel hot-rolled steel strip containing C: 0.046%, Si: 3.12%, Mn: 0.057%, S: 0.022%, the balance being Fe and unavoidable impurities at 980 ° C for 3 minutes. A cold-rolled sheet having a thickness of 0.35 mm was obtained by cold rolling twice with intermediate annealing, followed by decarburization annealing in a humid atmosphere. Next, an annealing separator having various compositions shown in Table 2 was slurried with water on the steel sheet, and after application drying, finish annealing was performed. Thereafter, an aging treatment was performed at a temperature of 150 ° C. for 30 days. Table 2 shows the appearance, punchability, iron loss increase rate (%) due to aging, and residual carbon content of the obtained steel sheet. As is apparent from Table 2, when the annealing separator according to the present invention is used, carburization can be suppressed and an excellent unidirectional electrical steel sheet can be produced. The punching performance is evaluated by the number of punches that reach 50μm when the punching work is performed with a steel die with a diameter of 5mm. Also, the rate of increase in iron loss due to aging is [(iron loss after aging treatment (W17 / 50)-iron loss before aging treatment (W17 / 50)) / iron loss before aging (W17 / 50) (%) ] Was calculated.
[0022]
[Table 2]
Figure 0004335984
[0023]
<Example 2>
Electromagnetic steel containing C: 0.06%, Si: 3.25%, acid-soluble Al: 0.027%, N: 0.008%, Mn: 0.11%, S: 0.007% with the balance being Fe and inevitable impurities The hot-rolled steel strip was annealed at 1100 ° C. for 2 minutes, then cold-rolled to a cold-rolled sheet having a thickness of 0.23 mm, and then decarburized and annealed in a humid atmosphere. Subsequently, nitriding was performed in an ammonia atmosphere in order to stabilize secondary recrystallization. Thereafter, the decarboxylated film was removed by immersion in hydrofluoric acid. Next, an annealing separator having various compositions shown in Table 3 was slurried with water on this steel sheet, and after application drying, finish annealing was performed. Further, a coating solution mainly composed of phosphate and colloidal silica was applied and baked, and the magnetic domain was subdivided by irradiation with a laser beam. Thereafter, an aging treatment was performed at a temperature of 150 ° C. for 30 days. Table 3 shows the appearance of the obtained steel sheet, the rate of increase in iron loss due to aging (%), and the amount of residual carbon. As is apparent from Table 3, when the annealing separator according to the present invention is used, a unidirectional electrical steel sheet with extremely low iron loss can be produced. The rate of increase in iron loss due to aging is [(iron loss after aging treatment (W17 / 50)-iron loss before aging treatment (W17 / 50)) / iron loss before aging treatment (W17 / 50) (%) ] Was calculated.
[0024]
[Table 3]
Figure 0004335984
[0025]
<Example 3>
Electromagnetic steel containing C: 0.05%, Si: 3.22%, acid-soluble Al: 0.028%, N: 0.008%, Mn: 0.10%, S: 0.008% with the balance being Fe and inevitable impurities The hot-rolled steel strip was annealed at 1100 ° C. for 2 minutes, then cold-rolled to a cold-rolled sheet having a thickness of 0.23 mm, and then decarburized and annealed in a humid atmosphere. Subsequently, nitriding was performed in an ammonia atmosphere in order to stabilize the secondary recrystallization. Next, an annealing separator having various compositions shown in Table 4 was slurried with water on this steel sheet, and after application drying, finish annealing was performed. Further, a coating solution mainly composed of phosphate and colloidal silica was applied and baked, and the magnetic domain was subdivided by irradiation with a laser beam. Thereafter, an aging treatment was performed at a temperature of 150 ° C. for 30 days. Table 4 shows the appearance of the obtained steel sheet, the rate of increase in iron loss due to aging (%), and the amount of residual carbon. As is apparent from Table 4, when the annealing separator according to the present invention is used, a unidirectional electrical steel sheet with extremely low iron loss can be produced. The rate of increase in iron loss due to aging is [(iron loss after aging treatment (W17 / 50)-iron loss before aging treatment (W17 / 50)) / iron loss before aging treatment (W17 / 50) (%) ] Was calculated.
[0026]
[Table 4]
Figure 0004335984
[0027]
【The invention's effect】
By using the annealing separator according to the present invention, a unidirectional electrical steel sheet that does not generate a glass film, has low carburization into the steel sheet during finish annealing, and has extremely low iron loss or good punchability. Can be manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing an increase rate of iron loss by aging treatment.

Claims (1)

一方向性電磁鋼板を製造する際に、アルミナを主成分とし水溶性高分子粘結剤を含有する焼鈍分離剤を塗布する方法であって、塗布する鋼板の板厚tに対し、10t<ρfηω<70tなる式を満たすωを定め、その条件で焼鈍分離剤を塗布することを特徴とする焼鈍分離剤の塗布方法。
ここで、ωは焼鈍分離剤塗布量(g/m2)、ρは焼鈍分離剤中の粘結剤濃度(重量%)、f は粘結剤中C 濃度(重量分率)、ηは粘結剤化学式における(C-O)/C 比、t は鋼板の板厚(mm)である。
When manufacturing a unidirectional electrical steel sheet, a method of applying an annealing separator containing alumina as a main component and containing a water-soluble polymer binder, and the thickness t of the steel sheet to be applied is 10t <ρfηω An application method for an annealing separator, wherein ω satisfying the formula <70 t is determined, and the annealing separator is applied under the condition.
Here, ω is the amount of annealing separator applied (g / m 2 ), ρ is the binder concentration (wt%) in the annealing separator, f is the C concentration (weight fraction) in the binder, and η is the viscosity In the binder chemical formula, (CO) / C ratio, t is the thickness (mm) of the steel sheet.
JP28831598A 1998-10-09 1998-10-09 Application method of annealing separator for unidirectional electrical steel sheet Expired - Fee Related JP4335984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28831598A JP4335984B2 (en) 1998-10-09 1998-10-09 Application method of annealing separator for unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28831598A JP4335984B2 (en) 1998-10-09 1998-10-09 Application method of annealing separator for unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000119755A JP2000119755A (en) 2000-04-25
JP4335984B2 true JP4335984B2 (en) 2009-09-30

Family

ID=17728597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28831598A Expired - Fee Related JP4335984B2 (en) 1998-10-09 1998-10-09 Application method of annealing separator for unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4335984B2 (en)

Also Published As

Publication number Publication date
JP2000119755A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP5230194B2 (en) Oriented electrical steel sheet having excellent coating adhesion and method for producing the same
KR102071515B1 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP4916847B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP5130488B2 (en) Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2791812B2 (en) Method for forming insulating film of grain-oriented electrical steel sheet with excellent core workability, heat resistance and tension imparting property, and grain-oriented electrical steel sheet
CN113272459B (en) Method for producing grain-oriented electrical steel sheet
JP3301629B2 (en) Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JP4811390B2 (en) Bi-directional electrical steel sheet
JP4335984B2 (en) Application method of annealing separator for unidirectional electrical steel sheet
JP7568948B2 (en) Manufacturing method of electrical steel sheet
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7265186B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2680529B2 (en) Annealing Separator for Unidirectional Silicon Steel Sheet
JPH06192743A (en) Production of grain-oriented silicon steel sheet excellent in film property and magnetic property
JP2861702B2 (en) Grain-oriented electrical steel sheet having an insulating film excellent in workability and heat resistance, and method for producing the same
CN114106593A (en) Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof
JPH0718457A (en) Separation agent at annealing for grain oriented silicon steel sheet
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
EP4273280A1 (en) Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip
JPH09194948A (en) Production of grain-oriented silicon steel sheet good in insulated coating adhesion
JP5200433B2 (en) Manufacturing method of {100} texture silicon steel sheet
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees