JP4334698B2 - Protein enzyme degradation product - Google Patents

Protein enzyme degradation product Download PDF

Info

Publication number
JP4334698B2
JP4334698B2 JP24426999A JP24426999A JP4334698B2 JP 4334698 B2 JP4334698 B2 JP 4334698B2 JP 24426999 A JP24426999 A JP 24426999A JP 24426999 A JP24426999 A JP 24426999A JP 4334698 B2 JP4334698 B2 JP 4334698B2
Authority
JP
Japan
Prior art keywords
protein
enzyme
degradation product
solution
proteolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24426999A
Other languages
Japanese (ja)
Other versions
JP2001061445A (en
Inventor
元紀 小出
和彦 平野
武 打田
啓一 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP24426999A priority Critical patent/JP4334698B2/en
Publication of JP2001061445A publication Critical patent/JP2001061445A/en
Application granted granted Critical
Publication of JP4334698B2 publication Critical patent/JP4334698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ条件下で鶏卵蛋白質に蛋白分解酵素を処理した後に麹を作用させることにより得られる蛋白酵素分解物及び該蛋白酵素分解物を含有する食品、栄養剤に関するものである。
【0002】
【従来の技術】
従来、蛋白酵素分解物は蛋白分解酵素もしくは塩酸分解等による加水分解で得られ、原料蛋白質の供給源としては植物由来、動物由来の蛋白質が用いられる。植物由来の蛋白質としては、大豆、小麦、トウモロコシ等があり、動物由来の蛋白質としては、魚肉、畜肉、牛乳、鶏卵等がある。
【0003】
蛋白質を分解する方法は塩酸分解等で加水分解した後、中和する方法や、蛋白質分解酵素によって、ペプチドまで分解する方法。さらに、高温域で分解する方法などがある。
【0004】
しかしながら通常、蛋白分解酵素による蛋白質の分解では、蛋白分解物において独特の苦みを生じ、風味的にも嫌みが感じられ、その使用はかぎられたものとなっており、蛋白質を塩酸で加水分解した場合、加水分解中に変異原物質が副生されることが確認され、その安全性が問題となりつつある。
【0005】
また、原料となる蛋白質はその種類により栄養価が異なり例えば、母乳の必須アミノ酸を基準にした構成必須アミノ酸の百分比(アミノ酸スコア)は、牛肉(76)、米(50)、小麦(36)、とうもろこし(40)、魚(69)、大麦(43)となっており、アミノ酸バランスにおいてこれら原料の蛋白質が決して理想的な蛋白質とは言えないものである。また、従来の鶏卵蛋白酵素分解物のアミノ酸化率は、最も高いもので50〜55%であり、高度に分解されたものは存在しなかった。
【0006】
【発明が解決しようとする課題】
このような背景において、本発明は苦みのない、なおかつ味に厚味を持った蛋白酵素分解物を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題の解決に鋭意工夫を重ねた結果、鶏卵蛋白質をアルカリ条件下で蛋白分解酵素処理した後に、麹を作用させることにより、卵本来の風味が消去され、味の厚みが増大され、しかもアミノ酸化率の高い、鶏卵蛋白酵素分解物が得られるということを見出し本発明を完成した。
【0008】
すなわち、本発明は鶏卵蛋白質蛋にアルカリ条件下で蛋白分解酵素を処理した後に麹を作用させることを特徴とする蛋白酵素分解物、または該蛋白酵素分解物のアミノ酸化率が65%以上である蛋白酵素分解物である。
以下本発明を詳述する。
【0009】
【発明の実施の形態】
本発明において使用される鶏卵蛋白質としては、通常以下に述べる蛋白質が用いられる。すなわち、鶏卵液または鶏卵粉末を原料として有機溶剤抽出法もしくは超臨界抽出法にて脂質部分を取り除いた鶏卵蛋白質であり、液体、粉体の形態は問わない。また、卵黄蛋白、卵白蛋白の割合は任意の割合で使用可能であり、特に限定されるものではない。
【0010】
本発明の蛋白分解酵素とは、蛋白を加水分解するプロテアーゼ、ペプチダーゼの酵素であり、通常Rhizopus属、Aspergillus属、Mucor属、Bacillus属、Pseudomonas属、Streptococcus属、Escherichia属等の微生物由来、レンニン、パンクレアチン等の動物由来、パパイン、ブロメライン、フィシン等の植物に由来する酵素が用いられ、好ましくはRhizopus属、Aspergillus属、Bacillus属由来の酵素が望ましく、その精製品や粗製品が単独もしくは2種以上を併用して利用できるものであり、複数の組み合わせによる使用でも何ら問題はない。
【0011】
また本発明に使用する麹としては特に限定するものではないが麹菌の液体培養液(液体麹)、小麦ふすま等を培地とした固体培地に蛋白分解酵素を生産する麹菌を接種して得られる固体麹等があげられる。
【0012】
蛋白分解酵素は至適pHによってアルカリ性、中性、酸性に大きく分けられ、さらに基質を分解する部位によりエンド型とエキソ型に分けられるが、本発明ではこれら蛋白分解酵素をアルカリ条件下で使用することが好ましい。これら蛋白分解酵素の使用量は、用いる蛋白分解酵素の種類や組み合わせによって適宜決められるものであり、特に限定されるものではないが、通常基質である蛋白質1g当たりに対する蛋白分解酵素の活性単位で表され、通常10〜50,000単位、好ましくは1,00〜30,000単位、さらに好ましくは1,000〜10,000単位の範囲から任意に選ばれるものである。
【0013】
尚、上記活性単位の測定法として一例をあげれば、カゼインに蛋白分解酵素が作用するときにペプチド結合の切断に伴って増加する酸可溶性分解物(TCA可溶性分解物)の量を測定する方法があり、蛋白分解酵素がカゼインに30℃で作用するとき、反応初期の1分間に1マイクログラム(μg)のチロシンに相当する非蛋白性のフォリン試液呈色物質の増加をもたらす酵素量を1単位とするものである。
【0014】
測定法の詳細は、カゼイン溶液(注1)5mlを正確に量り、試験管に入れ、30±0.5℃で10分間加温した後、試料溶液(注2)1mlを正確に量って加え、直ちに振り混ぜ、30±0.5℃で正確に10分間放置し、トリクロル酢酸溶液5mlを加えてよく振り混ぜ、再び30±0.5℃で30分間放置した後、濾紙で濾過する。その濾液2mlを正確に量り、炭酸ナトリウム溶液5ml及び薄めたフォリン試液1mlを加えてよく振り混ぜ、30±0.5℃で30分間放置した後、この液について波長660nmにおける吸光度ATを測定する。別に試料溶液1mlにトリクロル酢酸溶液5mlを加え、次に、カゼイン溶液5mlを加えて振り混ぜ、30±0.5℃で30分間放置し、以下同様の操作にて吸光度AB測定する。
【0015】

Figure 0004334698
F:吸光度差が1.000に相当するチロシン量を検量線より求めた値(μg)W:試料溶液1ml中の試料の量(g)
【0016】
(注1)
1)酸性プロテアーゼの場合:カゼイン1.20g(無水物換算)を量り、0.05N乳酸100mlを加えて加温溶解し、0.5N水酸化ナトリウムを加えてpH3.0に調整し、Mcllvaine緩衝液40ml及び水を加えて200mlとする。
2)中性及びアルカリ性プロテアーゼの場合:カゼイン1.20g(無水物換算)を量り、0.05Nリン酸二ナトリウム溶液160mlを加えて加温溶解し、0.5N塩酸を加えてpH7.0に調整し、水を加えて200mlとする。
【0017】
(注2)
1)酸性プロテアーゼの場合:試料1.000gを正確に量り、水を加えて溶かし100mlとする。必要ならば遠心分離する。次いで蛋白分解力が25〜40単位/mlの範囲に入るように水を用いて希釈し、試料溶液とする。
2)中性及びアルカリ性プロテアーゼの場合:試料1.000gを正確に量り、酢酸カルシウム・塩化ナトリウム混液を加えて溶かし、100mlとする。必要ならば遠心分離する。次いで蛋白分解力が中性プロテアーゼの場合は30〜40単位/ml、アルカリ性プロテアーゼの場合は15〜20単位/mlの範囲に入るように酢酸カルシウム・塩化ナトリウム混液を用いて希釈して試料溶液とする。
【0018】
<試薬・試液の調製>
1)トリクロル酢酸溶液
酸性プロテアーゼの場合:トリクロル酢酸71.7gに水を加えて溶かし、1000mlとする。
中性及びアルカリ性プロテアーゼの場合:トリクロル酢酸18g及び酢酸ナトリウム(無水)18gに6N酢酸55ml及び水を加えて溶かし1000mlとする。
2)炭酸ナトリウム(0.55M)
炭酸ナトリウム(無水)58.3gに水を加えて溶かし、1000mlとする。
3)フォリン試液
市販品のフェノール試薬10mlに水を加えて30mlとする。
4)Mcllvaine緩衝液
0.2Mリン酸ナトリウム溶液に0.1Mクエン酸溶液を加えてpH3.0に調整する。
0.2Mリン酸ナトリウム溶液:リン酸ナトリウム(12水塩)71.6gを水に溶かし、1000mlとする。
0.1Mクエン酸溶液:クエン酸21.0gに水を加えて溶かし、1000mlとする。
5)酢酸カルシウム・塩化ナトリウム混液
酢酸カルシウム0.35g及び塩化ナトリウム0.58gを量り、水を加えて溶かした後、1N塩酸又は1N水酸化ナトリウム溶液を加えてpH6.0に調整し、水を加えて1000mlとする。
【0019】
<チロシン検量線の作成>
市販のチロシン標準品を105℃で3時間乾燥し、その0.500gを正確に量り、0.2N塩酸を加えて溶かし、正確に500mlとする。この液1ml、2ml、3ml及び4mlを正確に量り、それぞれに0.2N塩酸を加えて正確に100mlとする。それぞれの液2ml中にはチロシンが20μg、40μg、60μg及び80μg含まれる。それぞれの液2mlを正確に量り、炭酸ナトリウム溶液5ml及び薄めたフォリン試液1mlを加え、30±0.5℃で30分間放置した後、この液につき660nmにおける吸光度A1、A2、A3及びA4を測定する。別に0.2N塩酸2mlを用いて同様に操作して吸光度A0を測定する。これより縦軸に吸光度差(A1−A0、A2−A0、A3−A0及びA4−A0)を、横軸にそれぞれの液2ml中のチロシン量(μg)をとり検量線とする。
【0020】
以上の操作より、吸光度差1.000に対するチロシン量(Fμg)を求めるものである。
【0021】
本発明においては、まず鶏卵蛋白質の混合液を調整することから始まる。蛋白質の純度にもよるが、通常、粗蛋白値として1〜30%、好ましくは1〜20%、さらに好ましくは1〜10%に調整後、pHを9〜13の範囲に調整する。
【0022】
鶏卵蛋白質をアルカリ条件にすることにより、後の加水分解が加速的に向上し、アミノ酸化率65%以上の蛋白酵素分解物が容易に得られるものである。
【0023】
次に、pH調整した鶏卵蛋白質の混合液に、蛋白分解酵素を作用させ、さらに麹を作用させることにより、加水分解するものである。蛋白分解酵素の添加量としては前述の、基質蛋白質1g当たりに対する蛋白分解酵素の活性単位で表され、通常10〜50,000単位、好ましくは1,00〜30,000単位、さらに好ましくは1,000〜10,000単位の範囲から任意に選ばれるものである。
【0024】
その他加水分解の条件として、以下に限定されるものではないが、一例をあげると、一次反応で蛋白分解酵素を働かせる温度は蛋白分解酵素が働く温度域で有れば如何なる温度帯でも加水分解可能であるが、本発明の蛋白酵素分解物を得るためには、通常−5〜60℃の範囲で良く、好ましくは0〜40℃、さらに好ましくは10〜30℃が良い。
−5℃以下では完全に凍結してしまい蛋白質の効果的な分解が出来なくなるためであり、60℃以上では蛋白分解酵素の酵素活性が低下してしまい効率的な分解が出来なくなるためである。
次に、加水分解の時間は、1時間〜10日、さらに好ましくは1日〜5日であれば十分である。
【0025】
また、二次反応として麹を働かせる温度は、麹が働く温度域で有れば如何なる温度帯でも、加水分解可能であるが、本発明の蛋白分解物を得るためには、通常−5〜60℃の範囲で良く好ましくは、0〜40℃さらに好ましくは、0〜30℃が良い。
次に、加水分解の時間は、アミノ酸化率65%を得るに足る時間だけ分解すれば良く、基質の蛋白質の量、蛋白質分解酵素の量、加水分解の温度によって適宜決定されるが、通常、加水分解の温度が−5〜10℃であれば1時間〜120日、10〜20℃であれば1時間〜90日、20〜30℃であれば1時間〜70日で十分である。
【0026】
アルカリ条件下蛋白分解酵素を作用させた後、麹を加える時期については特に限定されるものでないが、好ましくは反応後のpHが9以下、さらに好ましくは8以下となった時点で加えることが望ましい。
【0027】
本発明は、アルカリ条件下で、鶏卵蛋白混合液に蛋白分解酵素を作用させた後に、麹を作用させ、加水分解することを特徴としており、鶏卵蛋白以外の蛋白原料では、アミノ酸化率65%以上のものは得られない。
【0028】
ここで、アミノ酸化率については、既知の種々の方法により測定可能であり、NaSO−TNBS法やHPLC法等により測定するものであり、一例としてNaSO−TNBS法によるアミノ酸化率の測定は、通常下記の方法により行われる。
【0029】
<方法>NaSO−TNBS法は蛋白質のTNP化に基づいたアミノ基の定量方法で、TNBS(2,4,6−トリニトロベンゼンスルホン酸ナトリウム塩−2HO)がアミノ基を持つ化合物と混合し、適度のアルカリ性にすると反応が始まり、橙色を呈するときの吸光度(420nm)を測定するものである。アミノ酸化率としては、TNBS法にて測定した値を用い下式にて算出するものである。
Figure 0004334698
【0030】
TNBS測定用試料(ホウ酸bufferで希釈した試料)0.5mlに呈色用緩衝液2.0ml、0.01M亜硫酸溶液0.5ml、TNBS溶液0.5mlを加えて、37℃×60分反応させた後、吸光度 420nmで測定する。
【0031】
<試薬>TNBS溶液:2,4,6−トリニトロベンゼンスルホン酸ナトリウム塩−2HO、100mgをとり、100ml の蒸留水に溶解する(0.00284M)。尚、この試薬を0.5mlを用いた場合、1.42μmoleのTNBSが含まれているので、0.5μmole程度までのアミノ酸の定量には支障はない。
呈色用緩衝液:0.15Mホウ酸ナトリウム緩衝液(ホウ砂3.81gを100mlの温水に溶かす)あるいは4M−ホウ酸カリウム緩衝液(ホウ酸24.7gに水酸化カリウムを入れ、溶解しながらpH9.2に調整を行う、後に蒸留水で100mlとする)を使用する。
【0032】
また、本発明で用いるアミノ酸化率の測定方法として以下の計算式でも算出可能である。尚、遊離のアミノ酸の測定は公知の測定方法であるフォルモール滴定により測定され、総アミノ酸量についてはケルダール法により測定するものである。
Figure 0004334698
このようにして製造した蛋白酵素分解物は、そのままで使用することも可能であるが、適宣、活性炭やイオン交換樹脂による処理によって、着色物質や焦げ臭などの原因となる香気成分を除去して使用することもできる。また、得られた蛋白酵素分解物は、素材として単品使用される他、天然エキスまたはその代替物、基本だし素材や風味調味料等に配合使用することができる。
【0033】
さらに、以上の工程で得られる蛋白酵素分解物は加水分解工程中に塩が加えられていないので、脱塩工程は必要なく、産業上、塩が存在していないことは有益である。
【0034】
かくして得られる本発明の蛋白酵素分解物は、アミノ酸単体・ジペプチド、トリペプチドで構成され、構成ペプチドを例示すれば、Asp−Glu、Glu−Ser、Ser−Gly、Val−Leu等のジペプチド、Asp−Glu−Ser、Glu−Leu−Ser等のトリペプチド等があげられる。本発明の蛋白酵素分解物は、食品分野、化粧品分野、医薬品分野などの素材として利用可能であるとともに、必要に応じて、味や栄養価、保存性等を向上させる目的で核酸系調味料、化学調味料、旨味調味料、味噌、醤油、塩、食塩、油脂等の素材と混合し使用することができる。
以下実施例をあげて本発明を具体的に説明するが、本発明はこれによって限定されるものではない。
【0035】
【実施例】
実施例1
脱脂卵黄粉末(蛋白質含有量82%)0.827kgに水10.72とエタノール2.68kgを加えて混合液を調製し、さらに苛性ソーダを加え、pH11に調整後、加水分解するために蛋白分解酵素として細菌アルカリプロテアーゼ(Bacillus subtilis起源:活性単位220,000単位/g)を対蛋白質1g当たり6,000単位を混合し、12℃、1週間処理した後に麹を0.34kg加え、これを12℃、8週間かけて分解した。
その後85℃で30分間加熱して酵素を失活させ、蛋白酵素分解物を得た。得られた蛋白酵素分解物をNo.2濾紙(ADOVANTEC TOYO製)を用いて濾過して、濾液9.7kgを得た。このもののアミノ酸化率を測定したところ、総アミノ態チッソ量(T.N)1.29、遊離アミノ態チッソ量(F.N)0.924、アミノ酸化率71.6%、その食塩含有量(モール法)は0%であった。
【0036】
比較例1
一方、小麦グルテン(蛋白質含有量76.6%)0.885kgに水10.72とエタノール2.68kgを加えて混合液を調製し、さらに苛性ソーダを加え、pH11に調整後、加水分解するために蛋白分解酵素として細菌アルカリプロテアーゼ(Bacillus subtilis起源:活性単位220,000単位/g)を対蛋白質1g当たり6,000単位を混合し、12℃、1週間処理した後に麹を0.34kg加え、これを12℃、8週間かけて分解した。
その後85℃で30分間加熱して酵素を失活させ、低分子ペプチド液を得た。
得られた低分子ペプチド液をNo.2濾紙(ADOVANTEC TOYO製)を用いて濾過して、濾液9.9kgを得た。このもののアミノ化率を測定したところ、総アミノ態チッソ量(T.N)1.31、遊離アミノ態チッソ量(F.N)0.65、アミノ酸化率49.0%、その食塩含有量(モール法)は0%であった。
【0037】
実施例1と比較例1で得られた蛋白酵素分解物を市販めんつゆに添加し、官能評価した。配合比は、市販めんつゆ100mlに本発明の蛋白酵素分解物0.5gを添加した。
【0038】
対照として、無添加めんつゆを用意し、三点比較法で味覚パネル30名による官能評価を実施した。結果を表1に示す。
【0039】
【表1】
Figure 0004334698
【0040】
実施例1と比較例1の結果より、アルカリ条件下で鶏卵蛋白質に、蛋白分解酵素を作用させた後に、麹を作用させ加水分解することにより、味に厚味を持ったアミノ酸化率65%以上の優れた品質の蛋白酵素分解物が得られたことは明らかである。
【0041】
実施例2
おから(蛋白質含有量4.0%)3.3kgと脱脂全卵粉末(蛋白質含量84.3%)0.65kgに水10.72Kgを加えて混合液を調製し、さらに苛性ソーダを加え、pH12に調整後、ブタノール2.68Kgを加え、加水分解するために蛋白分解酵素として細菌アルカリプロテアーゼ(Bacillus subtilis起源:活性単位220,000単位/g)を対蛋白質1g当たり8,000単位を混合し、15℃、5日間処理した後に麹を0.5kg加え、これを15℃、10週間かけて分解した。
その後85℃で30分間加熱して酵素を失活させ、蛋白分解液を得た。得られた蛋白分解液をNo.2濾紙(ADOVANTEC TOYO製)を用いて濾過して、濾液6.4kgを得、このもののアミノ酸化率を測定したところ、総アミノ態チッソ量(T.N)0.92、遊離アミノ態チッソ量(F.N)0.686、アミノ酸化率74.6%、その食塩含有量(モール法)は0%であった。
【0042】
比較例2
おから(蛋白質含有量4.0%)3.3kgと小麦グルテン(蛋白質含量85.2%)0.65kgに水11.4Kgを加えて混合液を調製し、さらに苛性ソーダを加え、pH12に調整後、加水分解するために蛋白分解酵素として細菌中性プロテアーゼ(Asperugillus oryzae起源:活性単位3000000単位/g)を対蛋白質1g当たり8000単位を混合し、15℃、5日間処理した後に麹を0.5kg加え、これを15℃、10週間かけて分解した。
その後85℃で30分間加熱して酵素を失活させ、蛋白分解液を得た。得られた蛋白分解液をNo.2濾紙(ADOVANTEC TOYO製)を用いて濾過して、このもののアミノ酸化率を測定したところ、総アミノ態チッソ量(T.N)0.95、遊離アミノ態チッソ量(F.N)0.536、アミノ酸化率56.4%、その食塩含有量(モール法)は0%であった。
【0043】
実施例2と比較例2の結果より、アルカリ条件下で鶏卵蛋白質に蛋白分解酵素を作用させた後に、麹を作用させることによりアミノ酸化率65%以上の優れた品質の蛋白酵素分解物が得られたことは明らかである。
【0044】
実施例3
脱脂卵黄粉末(蛋白質含有量83.3%)0.365kgと脱脂大豆(蛋白質含量82.0%)0.44kgに水10.72kgとエタノーノル2.50kgを加えて混合液を調製し、さらに苛性ソーダを加え、pH10に調整後、加水分解するために蛋白分解酵素として細菌アルカリプロテアーゼ(Bacillussubtilis起源:活性単位220,000単位/g)を対蛋白質1g当たり6,000単位を混合し、12℃、10日間処理した後に麹を0.2kg加え、12℃で11週間かけて分解した。
その後85℃で30分間加熱して酵素を失活させ、蛋白分解液を得た。得られた蛋白分解液をNo.2濾紙(ADOVANTEC TOYO製)を用いて濾過して、このもののアミノ酸化率を測定したところ、総アミノ態チッソ量(T.N)1.28、遊離アミノ態チッソ量(F.N)0.914、アミノ酸化率71.4%、その食塩含有量(モール法)は0%であった。
【0045】
比較例3
一方、小麦グルテン(蛋白質含有量76.6%)0.538kgと脱脂大豆(蛋白質含量82.0%)0.325kgに水10.72kgとエタノーノル2.50kgを加えて混合液を調整し、さらに苛性ソーダを加え、pH10に調整後、加水分解するために蛋白分解酵素として細菌アルカリプロテアーゼ(Bacillus subtilis起源:活性単位220,000単位/g)を対蛋白質1g当たり6,000単位を混合し、12℃、10日間処理した後に麹を0.2kg加え、12℃で11週間かけて分解した。
その後85℃で30分間加熱して酵素を失活させ、蛋白分解液を得た。得られた蛋白分解液をNo.2濾紙(ADOVANTEC TOYO製)を用いて濾過して、このもののアミノ酸化率を測定したところ、総アミノ態チッソ量(T.N)1.30、遊離アミノ態チッソ量(F.N)0.656、アミノ酸化率50.5%、その食塩含有量(モール法)は0%であった。
【0046】
実施例3と比較例3の結果より、アルカリ条件下で蛋白分解酵素を作用させた後に、麹を作用させることにより、アミノ酸化率65%以上の優れた品質の蛋白酵素分解物が得られたことは明らかである。
【0047】
実施例3と比較例3で得られた蛋白酵素分解物を市販めんつゆに添加し、官能評価を実施した。配合比は、市販めんつゆ100mlに本発明の蛋白酵素分解物0.5gを添加した。
【0048】
対照として、無添加めんつゆを用意し、三点比較法で味覚パネル30名による官能評価を実施した。結果を表2に示す。
【0049】
【表2】
Figure 0004334698
【0050】
実施例3と比較例3の結果より、アルカリ条件下で鶏卵蛋白質に、蛋白分解酵素を作用させた後に、麹を作用させることにより、味に厚味を持ったアミノ酸化率65%以上の優れた品質の蛋白酵素分解物が得られたことは明らかである。
【0051】
本発明の実施態様をあげれば、以下のとおりである。
(1)鶏卵蛋白質にアルカリ条件下で蛋白分解酵素を作用させた後に、麹を作用させることにより、味に厚味を持ったアミノ酸化率65%以上の蛋白酵素分解物に関するものである。
(2)前記(1)の蛋白酵素分解物を含む食品、飼料、肥料、栄養剤、化粧品、医薬品。
【0052】
(3)鶏卵蛋白質が、鶏卵液または鶏卵粉末を原料として有機溶剤抽出法もしくは超臨界抽出法にて脂質部分を取り除いた鶏卵蛋白質であり、液体、粉体の形態は問わず、卵黄蛋白質、卵白蛋白質の割合について特に限定なしに、任意の割合で使用する前記(1)〜(2)いずれか記載の蛋白酵素分解物。
(4)アルカリが、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物であり、これらの精製品や粗製品を使用する前記(1)〜(2)いずれか記載の蛋白酵素分解物。
【0053】
(5)蛋白分解酵素が、プロテアーゼ、ペプチダーゼで、Rhizopus属、Aspergillus属、Mucor属、Bacillus属、Pseudomonas属、Streptococcus属、Escherichia属等の微生物由来、レンニン、パンクレアチン等の動物由来、パパイン、ブロメライン、フィシン等の植物に由来する酵素であり、好ましくはRhizopus属、Aspergillus属、Bacillus属由来の酵素で、その精製品や粗製品を単独もしくは2種以上併用して利用する前記(1)〜(2)いずれか記載の蛋白酵素分解物。
(6)粗蛋白質の含量が1〜30%、好ましくは1〜20%、さらに好ましくは1〜10%の混液に調整する前記(1)〜(2)いずれか記載の蛋白酵素分解物。
【0054】
(7)蛋白分解酵素の添加量が、通常基質である蛋白質1g当たりに対する蛋白分解酵素の活性単位で表され、通常10〜50,000単位、好ましくは1,00〜30,000単位、さらに好ましくは1,000〜10,000単位の範囲から任意に選ばれるものである前記(1)〜(2)いずれか記載の蛋白酵素分解物。
(8)加水分解の温度が、通常−5〜50℃の範囲で良く、好ましくは0〜40℃、さらに好ましくは0〜30℃である前記(1)〜(2)いずれか記載の蛋白酵素分解物。
(9)加水分解時間が、加水分解の温度が−5〜10℃であれば1時間〜100日、10〜20℃であれば1時間〜70日、20〜30℃であれば1時間〜30日で十分である前記(1)〜(2)いずれか記載の蛋白酵素分解物。
【0055】
【発明の効果】
本発明の蛋白酵素分解物は、味に厚味を持ち、アミノ酸スコアが良好であり、食品、飼料、肥料、栄養剤、化粧品、医薬品等あらゆる分野に、アミノ酸源として広く利用可能な蛋白酵素分解物を提供するものである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a proteolytic enzyme obtained by treating a chicken egg protein with a proteolytic enzyme under alkaline conditions and then allowing a koji to act, and a food and a nutrient containing the proteolytic enzyme.
[0002]
[Prior art]
Conventionally, a proteolytic product is obtained by hydrolysis using a proteolytic enzyme or hydrochloric acid, and plant-derived and animal-derived proteins are used as a source of raw material protein. Plant-derived proteins include soybeans, wheat, corn and the like, and animal-derived proteins include fish meat, livestock meat, milk and chicken eggs.
[0003]
Proteins can be decomposed by hydrolyzing with hydrochloric acid or the like and then neutralized, or by proteolytic enzymes to decompose peptides. Furthermore, there is a method of decomposing in a high temperature range.
[0004]
However, in general, protein degradation by proteolytic enzymes causes unique bitterness in the proteolysate, and dislikes the taste, and its use is limited, and the protein is hydrolyzed with hydrochloric acid. In this case, it is confirmed that mutagen is by-produced during hydrolysis, and its safety is becoming a problem.
[0005]
In addition, the protein used as a raw material has a different nutritional value depending on the type. For example, the percentage of essential amino acids based on essential amino acids in breast milk (amino acid score) is beef (76), rice (50), wheat (36), Corn (40), fish (69), and barley (43). These amino acids are not ideal proteins in terms of amino acid balance. Moreover, the amino acid-ized rate of the conventional chicken egg protein enzyme degradation product is 50 to 55% at the highest, and there was no highly degraded product.
[0006]
[Problems to be solved by the invention]
In such a background, an object of the present invention is to provide a protein-enzyme degradation product having no bitterness and having a thick taste.
[0007]
[Means for Solving the Problems]
As a result of intensive efforts to solve the above-mentioned problems, the inventors of the present invention, after treating the egg protein with a proteolytic enzyme under alkaline conditions, let the straw act, thereby erasing the original flavor of the egg and increasing the thickness of the taste. The present invention was completed by finding that an egg yolk protein enzyme-degraded product having a high amino acidification rate can be obtained.
[0008]
That is, the present invention is a protein enzyme degradation product characterized in that cocoon egg protein protein is treated with a proteolytic enzyme under alkaline conditions and then subjected to cocoon, or the amino acidization rate of the protein enzyme degradation product is 65% or more It is a protein enzyme degradation product.
The present invention is described in detail below.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As the egg protein used in the present invention, the following proteins are usually used. That is, it is a chicken egg protein from which a lipid portion is removed by an organic solvent extraction method or a supercritical extraction method using chicken egg liquid or chicken egg powder as a raw material, and the form of liquid or powder is not limited. Moreover, the ratio of egg yolk protein and egg white protein can be used in any ratio, and is not particularly limited.
[0010]
The proteolytic enzyme of the present invention is a protease that hydrolyzes a protein, a peptidase enzyme, usually derived from microorganisms such as Rhizopus genus, Aspergillus genus, Mucor genus, Bacillus genus, Pseudomonas genus, Streptococcus genus, Escherichia genus, rennin, Enzymes derived from animals such as pancreatin and plants derived from plants such as papain, bromelain and ficin are used, preferably enzymes derived from the genus Rhizopus, Aspergillus, and Bacillus. The above can be used in combination, and there is no problem even when using a plurality of combinations.
[0011]
In addition, the koji used in the present invention is not particularly limited, but a solid obtained by inoculating koji mold producing proteolytic enzyme into a solid culture medium using koji mold liquid culture (liquid koji), wheat bran or the like.麹 etc.
[0012]
Proteolytic enzymes are roughly classified into alkaline, neutral, and acidic depending on the optimum pH, and further divided into endo-type and exo-type depending on the site that decomposes the substrate. In the present invention, these proteolytic enzymes are used under alkaline conditions. It is preferable. The amount of proteolytic enzyme used is appropriately determined depending on the type and combination of proteolytic enzymes used, and is not particularly limited, but is usually expressed in units of proteolytic enzyme activity per gram of protein as a substrate. In general, it is arbitrarily selected from the range of 10 to 50,000 units, preferably 1,000 to 30,000 units, and more preferably 1,000 to 10,000 units.
[0013]
As an example of the method for measuring the activity unit, there is a method for measuring the amount of acid-soluble degradation product (TCA-soluble degradation product) that increases with the cleavage of peptide bonds when a protease acts on casein. Yes, when proteolytic enzyme acts on casein at 30 ° C, the amount of enzyme that causes an increase in non-protein forin test solution colorant equivalent to 1 microgram (μg) of tyrosine in 1 minute of the initial reaction is 1 unit It is what.
[0014]
For details of the measurement method, accurately weigh 5 ml of casein solution (Note 1), put it in a test tube, heat at 30 ± 0.5 ° C for 10 minutes, and then accurately weigh 1 ml of sample solution (Note 2). In addition, immediately shake and leave at 30 ± 0.5 ° C. for exactly 10 minutes, add 5 ml of trichloroacetic acid solution, shake well, leave again at 30 ± 0.5 ° C. for 30 minutes, and filter through filter paper. 2 ml of the filtrate is accurately weighed, 5 ml of sodium carbonate solution and 1 ml of diluted forin reagent are added and shaken well, left at 30 ± 0.5 ° C. for 30 minutes, and then the absorbance AT at a wavelength of 660 nm is measured. Separately, 5 ml of the trichloroacetic acid solution is added to 1 ml of the sample solution, then 5 ml of the casein solution is added and shaken, left at 30 ± 0.5 ° C. for 30 minutes, and the absorbance AB is measured in the same manner.
[0015]
Figure 0004334698
F: Value obtained by calculating a tyrosine amount corresponding to an absorbance difference of 1.000 from a calibration curve (μg) W: Amount of sample in 1 ml of sample solution (g)
[0016]
(Note 1)
1) In the case of acid protease: 1.20 g (in terms of anhydride) of casein is weighed, 100 ml of 0.05N lactic acid is added and dissolved by heating, pH is adjusted to 3.0 by adding 0.5N sodium hydroxide, and the Mclvaine buffer is added. Add 40 ml of liquid and water to 200 ml.
2) In the case of neutral and alkaline protease: 1.20 g (in terms of anhydride) of casein was weighed, 160 ml of 0.05N disodium phosphate solution was added and dissolved by heating, and 0.5N hydrochloric acid was added to pH 7.0. Adjust and add water to 200 ml.
[0017]
(Note 2)
1) In the case of acidic protease: 1.000 g of a sample is accurately measured, and water is added to dissolve to make 100 ml. Centrifuge if necessary. Next, the sample solution is diluted with water so that the proteolytic power falls within the range of 25 to 40 units / ml.
2) In the case of neutral and alkaline protease: accurately measure 1.000 g of sample, add calcium acetate / sodium chloride mixture and dissolve to make 100 ml. Centrifuge if necessary. Next, dilute with a mixed solution of calcium acetate and sodium chloride so that the proteolytic power is in the range of 30-40 units / ml for neutral protease and 15-20 units / ml for alkaline protease. To do.
[0018]
<Preparation of reagents and reagent solutions>
1) Trichloroacetic acid solution
In the case of an acidic protease: water is added to 71.7 g of trichloroacetic acid to dissolve it to 1000 ml.
For neutral and alkaline proteases: Add 18 ml of trichloroacetic acid and 18 g of sodium acetate (anhydrous) to 55 ml of 6N acetic acid and water to make 1000 ml.
2) Sodium carbonate (0.55M)
Add water to 58.3 g of sodium carbonate (anhydrous) and dissolve to make 1000 ml.
3) Fallin reagent
Add water to 10 ml of a commercially available phenol reagent to make 30 ml.
4) Mclvaine buffer
Adjust the pH to 3.0 by adding 0.1 M citric acid solution to 0.2 M sodium phosphate solution.
0.2M sodium phosphate solution: 71.6 g of sodium phosphate (12 water salt) is dissolved in water to make 1000 ml.
0.1M citric acid solution: Add water to 21.0 g of citric acid and dissolve to make 1000 ml.
5) Calcium acetate / sodium chloride mixed solution
Weigh 0.35 g of calcium acetate and 0.58 g of sodium chloride, add water to dissolve, adjust to pH 6.0 by adding 1N hydrochloric acid or 1N sodium hydroxide solution, and add water to make 1000 ml.
[0019]
<Creation of tyrosine calibration curve>
A commercially available tyrosine standard product is dried at 105 ° C. for 3 hours, 0.500 g thereof is accurately weighed and dissolved by adding 0.2N hydrochloric acid to make exactly 500 ml. Weigh exactly 1 ml, 2 ml, 3 ml and 4 ml of this solution, and add 0.2N hydrochloric acid to each to make exactly 100 ml. In 2 ml of each solution, 20 μg, 40 μg, 60 μg and 80 μg of tyrosine are contained. Accurately measure 2 ml of each solution, add 5 ml of sodium carbonate solution and 1 ml of diluted forin test solution, leave at 30 ± 0.5 ° C. for 30 minutes, and then measure absorbance A1, A2, A3 and A4 at 660 nm for this solution. To do. Separately, 2 ml of 0.2N hydrochloric acid is used in the same manner to measure the absorbance A0. From this, the absorbance difference (A1-A0, A2-A0, A3-A0, and A4-A0) is plotted on the vertical axis, and the amount of tyrosine (μg) in 2 ml of each liquid is plotted on the horizontal axis, which is used as a calibration curve.
[0020]
From the above operation, the amount of tyrosine (F μg) for the absorbance difference of 1.000 is obtained.
[0021]
In the present invention, the process starts with the preparation of a mixed egg protein protein. Although it depends on the purity of the protein, the crude protein value is usually adjusted to 1 to 30%, preferably 1 to 20%, more preferably 1 to 10%, and then the pH is adjusted to a range of 9 to 13.
[0022]
By making the chicken egg protein alkaline, the subsequent hydrolysis can be accelerated, and a protein-enzyme degradation product with an amino acid conversion rate of 65% or more can be easily obtained.
[0023]
Next, it hydrolyzes by making a proteolytic enzyme act on the liquid mixture of the egg egg protein which adjusted pH, and also making a straw act. The amount of proteolytic enzyme added is represented by the above-mentioned activity unit of proteolytic enzyme per gram of substrate protein, usually 10 to 50,000 units, preferably 1,000 to 30,000 units, more preferably 1, It is arbitrarily selected from the range of 000 to 10,000 units.
[0024]
Other hydrolysis conditions are not limited to the following, but as an example, the temperature at which the proteolytic enzyme works in the primary reaction can be hydrolyzed in any temperature range as long as it is in the temperature range where the proteolytic enzyme works. However, in order to obtain the protein-enzyme degradation product of the present invention, it is usually in the range of −5 to 60 ° C., preferably 0 to 40 ° C., more preferably 10 to 30 ° C.
This is because if the temperature is -5 ° C. or lower, the protein is completely frozen and the protein cannot be effectively decomposed. If the temperature is 60 ° C. or higher, the enzymatic activity of the proteolytic enzyme is reduced and efficient decomposition cannot be performed.
Next, it is sufficient that the hydrolysis time is 1 hour to 10 days, more preferably 1 day to 5 days.
[0025]
The temperature at which soot acts as a secondary reaction can be hydrolyzed at any temperature range as long as it is in the temperature range at which soot works. However, in order to obtain the proteolysate of the present invention, it is usually −5 to 60. It may be in the range of ° C, preferably 0 to 40 ° C, more preferably 0 to 30 ° C.
Next, the hydrolysis time may be decomposed only for a time sufficient to obtain an amino acid conversion rate of 65%, and is appropriately determined depending on the amount of substrate protein, the amount of proteolytic enzyme, and the hydrolysis temperature. If the hydrolysis temperature is -5 to 10 ° C, 1 hour to 120 days, if it is 10 to 20 ° C, 1 hour to 90 days, and if it is 20 to 30 ° C, 1 hour to 70 days is sufficient.
[0026]
There is no particular limitation on the timing of adding soot after the protease is allowed to act under alkaline conditions, but it is preferably added when the pH after reaction is 9 or less, more preferably 8 or less. .
[0027]
The present invention is characterized in that after a proteolytic enzyme is allowed to act on a chicken egg protein mixture under alkaline conditions, koji is allowed to act and hydrolyze. With protein raw materials other than chicken egg protein, an amino acid conversion rate of 65% No more can be obtained.
[0028]
Here, the amino acid ratio can be measured by various known methods, and Na 2 SO 3 -Measured by TNBS method, HPLC method, etc. 2 SO 3 Measurement of the amino acid ratio by the TNBS method is usually performed by the following method.
[0029]
<Method> Na 2 SO 3 The TNBS method is a method for quantifying amino groups based on the TNP conversion of proteins. TNBS (2,4,6-trinitrobenzenesulfonic acid sodium salt-2H 2 When O) is mixed with a compound having an amino group and is made to be moderately alkaline, the reaction starts, and the absorbance (420 nm) when orange is measured is measured. The amino acid ratio is calculated by the following formula using a value measured by the TNBS method.
Figure 0004334698
[0030]
Add 0.5 ml of coloring buffer solution, 0.5 ml of 0.01M sulfite solution and 0.5 ml of TNBS solution to 0.5 ml of TNBS measurement sample (sample diluted with boric acid buffer), and react at 37 ° C for 60 minutes Then, the absorbance is measured at 420 nm.
[0031]
<Reagent> TNBS solution: 2,4,6-trinitrobenzenesulfonic acid sodium salt-2H 2 Take 100 mg of O and dissolve in 100 ml of distilled water (0.00284M). When 0.5 ml of this reagent is used, since 1.42 μmole of TNBS is contained, there is no problem in quantifying amino acids up to about 0.5 μmole.
Coloring buffer: 0.15M sodium borate buffer (3.81g borax dissolved in 100ml warm water) or 4M potassium borate buffer (potassium hydroxide in 24.7g boric acid dissolved) While adjusting the pH to 9.2, and later using distilled water to make 100 ml).
[0032]
In addition, as a method for measuring the amino acid ratio used in the present invention, it can also be calculated by the following formula. In addition, the measurement of a free amino acid is measured by the formol titration which is a well-known measuring method, and the total amino acid amount is measured by the Kjeldahl method.
Figure 0004334698
The proteolytic enzyme produced in this way can be used as it is, but properly, it removes aroma components that cause colored substances and burnt odor by treatment with activated carbon or ion exchange resin. Can also be used. Moreover, the obtained proteolytic enzyme can be used as a raw material alone or in combination with a natural extract or an alternative thereof, a basic stock material, a flavor seasoning or the like.
[0033]
Furthermore, since the protein enzyme degradation product obtained in the above steps does not contain salt during the hydrolysis step, there is no need for a desalting step, and it is beneficial that no salt exists industrially.
[0034]
The thus obtained protein-enzyme degradation product of the present invention is composed of simple amino acids, dipeptides, and tripeptides, and examples of the constituent peptides include dipeptides such as Asp-Glu, Glu-Ser, Ser-Gly, Val-Leu, and Asp. -Tripeptides such as Glu-Ser and Glu-Leu-Ser. The protein-enzyme degradation product of the present invention can be used as a raw material in the food field, cosmetic field, pharmaceutical field and the like, and, if necessary, a nucleic acid seasoning for the purpose of improving taste, nutritional value, preservability, It can be used by mixing with raw materials such as chemical seasonings, umami seasonings, miso, soy sauce, salt, salt, fats and oils.
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0035]
【Example】
Example 1
Degreased egg yolk powder (protein content 82%) 0.827 kg with water 10.72 kg and ethanol 2.68 kg to prepare a mixture, and then add caustic soda to adjust pH 11 and then hydrolyze it to proteolytic enzyme Bacterial alkaline protease (Bacillus subtilis origin: activity unit 220,000 units / g) was mixed with 6,000 units per gram of protein, treated at 12 ° C. for 1 week, and 0.34 kg of koji was added. Decomposed over 8 weeks.
Thereafter, the enzyme was inactivated by heating at 85 ° C. for 30 minutes to obtain a protein enzyme degradation product. The obtained protein enzyme degradation product is Filtration was performed using two filter papers (manufactured by ADOVANTEC TOYO) to obtain 9.7 kg of filtrate. When the amino acid conversion rate of this product was measured, the total amino nitrogen content (TN) 1.29, the free amino nitrogen content (FN) 0.924, the amino acid conversion rate 71.6%, and the salt content (Mole method) was 0%.
[0036]
Comparative Example 1
On the other hand, in order to hydrolyze after adding 0.82 kg of wheat gluten (protein content 76.6%) to 0.885 kg of water and adding 2.68 kg of ethanol to prepare a mixed solution, further adding caustic soda to pH 11 Bacterial alkaline protease (from Bacillus subtilis: active unit 220,000 units / g) as a proteolytic enzyme was mixed with 6,000 units per gram of protein, treated at 12 ° C. for 1 week, and 0.34 kg of koji was added. Was decomposed at 12 ° C. over 8 weeks.
Thereafter, the enzyme was inactivated by heating at 85 ° C. for 30 minutes to obtain a low molecular weight peptide solution.
The obtained low molecular weight peptide solution was No. Filtration was performed using two filter papers (manufactured by ADOVANTEC TOYO) to obtain 9.9 kg of filtrate. When the amination rate of this product was measured, the total amino nitrogen content (TN) 1.31, the free amino nitrogen content (FN) 0.65, the amino acid conversion rate 49.0%, and the salt content (Mole method) was 0%.
[0037]
The protein enzyme degradation products obtained in Example 1 and Comparative Example 1 were added to commercially available noodle soup and subjected to sensory evaluation. As for the blending ratio, 0.5 g of the protein enzyme degradation product of the present invention was added to 100 ml of commercially available noodle soup.
[0038]
As a control, an additive-free noodle soup was prepared, and sensory evaluation was performed by 30 taste panels using a three-point comparison method. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0004334698
[0040]
From the results of Example 1 and Comparative Example 1, the amino acidification rate of 65% with a rich taste was obtained by allowing a proteolytic enzyme to act on the egg protein under alkaline conditions and then hydrolyzing it with a koji. It is clear that the protein-enzyme degradation product of the above excellent quality was obtained.
[0041]
Example 2
A mixture is prepared by adding 10.72 kg of water to 3.3 kg of okara (protein content 4.0%) and 0.65 kg of defatted whole egg powder (protein content 84.3%), and then adding caustic soda to pH 12 After adding 2.68 Kg of butanol, bacterial alkaline protease (Bacillus subtilis origin: activity unit 220,000 units / g) as a proteolytic enzyme to mix with 8,000 units per gram of protein, After treating at 15 ° C. for 5 days, 0.5 kg of soot was added and decomposed over 15 weeks at 15 ° C.
Thereafter, the enzyme was inactivated by heating at 85 ° C. for 30 minutes to obtain a proteolytic solution. The obtained proteolytic solution was No. Filtration was performed using 2 filter papers (manufactured by ADOVANTEC TOYO) to obtain 6.4 kg of filtrate, and the amino acidification rate of this product was measured. The total amino acid amount (TN) was 0.92, the amount of free amino acid nitrogen (FN) 0.686, amino acid conversion rate 74.6%, its salt content (Mole method) was 0%.
[0042]
Comparative Example 2
Add 11.4 kg of water to 3.3 kg of okara (protein content 4.0%) and 0.65 kg of wheat gluten (protein content 85.2%) to prepare a mixture, and then add caustic soda to adjust the pH to 12. Thereafter, bacterial neutral protease (Aspergillus oryzae origin: activity unit: 3000000 units / g) as a proteolytic enzyme was mixed with 8000 units per gram of protein and treated with 15 ° C. for 5 days. 5 kg was added and decomposed at 15 ° C. for 10 weeks.
Thereafter, the enzyme was inactivated by heating at 85 ° C. for 30 minutes to obtain a proteolytic solution. The obtained proteolytic solution was No. 2 When filtered using a filter paper (manufactured by ADOVANTEC TOYO) and the amino acid conversion rate of this product was measured, the total amino nitrogen amount (TN) was 0.95, the free amino nitrogen amount (FN) was 0.00. 536, amino acid conversion rate 56.4%, salt content (Mole method) was 0%.
[0043]
From the results of Example 2 and Comparative Example 2, after the proteolytic enzyme was allowed to act on the egg protein under alkaline conditions, the quality of the proteolytic enzyme having an amino acid conversion rate of 65% or more was obtained by applying the koji. It is clear that this has been done.
[0044]
Example 3
Add 0.372 kg of defatted egg yolk powder (protein content 83.3%) and 0.44 kg of defatted soybean (protein content 82.0%) to prepare a mixed solution by adding 10.72 kg of water and 2.50 kg of ethanol. Further, caustic soda After adjusting to pH 10 and mixing with bacterial alkaline protease (from Bacillus subtilis: activity unit: 220,000 units / g) as a proteolytic enzyme to 6,000 units per gram of protein at 12 ° C., 10 ° C. After the treatment for 0.2 days, 0.2 kg of soot was added and decomposed at 12 ° C. over 11 weeks.
Thereafter, the enzyme was inactivated by heating at 85 ° C. for 30 minutes to obtain a proteolytic solution. The obtained proteolytic solution was No. When filtered using 2 filter paper (manufactured by ADOVANTEC TOYO) and the amino acid conversion rate of this product was measured, the total amount of amino nitrogen (TN) 1.28, the amount of free amino nitrogen (FN) 0. 914, amino acid conversion rate: 71.4%, salt content (Mole method) was 0%.
[0045]
Comparative Example 3
On the other hand, 0.538 kg of wheat gluten (protein content 76.6%) and 0.325 kg of defatted soybean (protein content 82.0%) were added with 10.72 kg of water and 2.50 kg of ethanol to prepare a mixed solution. Add caustic soda, adjust to pH 10 and then mix bacterial alkaline protease (Bacillus subtilis origin: active unit 220,000 units / g) as a proteolytic enzyme with 6,000 units per gram of protein, 12 ° C. After 10 days of treatment, 0.2 kg of soot was added and decomposed at 12 ° C. over 11 weeks.
Thereafter, the enzyme was inactivated by heating at 85 ° C. for 30 minutes to obtain a proteolytic solution. The obtained proteolytic solution was No. 2 When filtered using a filter paper (manufactured by ADOVANTEC TOYO) and the amino acid conversion rate of this product was measured, the total amount of amino nitrogen (TN) was 1.30, the amount of free amino nitrogen (FN) was 0.00. 656, amino acid conversion rate 50.5%, salt content (Mole method) was 0%.
[0046]
From the results of Example 3 and Comparative Example 3, an excellent quality protein enzyme degradation product having an amino acid conversion rate of 65% or more was obtained by allowing a proteolytic enzyme to act under an alkaline condition and then causing a koji to act. It is clear.
[0047]
The protein enzyme degradation product obtained in Example 3 and Comparative Example 3 was added to commercially available noodle soup, and sensory evaluation was performed. As for the blending ratio, 0.5 g of the protein enzyme degradation product of the present invention was added to 100 ml of commercially available noodle soup.
[0048]
As a control, an additive-free noodle soup was prepared, and sensory evaluation was performed by 30 taste panels using a three-point comparison method. The results are shown in Table 2.
[0049]
[Table 2]
Figure 0004334698
[0050]
From the results of Example 3 and Comparative Example 3, it was confirmed that the proteolytic enzyme was allowed to act on the egg protein under alkaline conditions, and then the koji was allowed to act so that the amino acidification ratio with a thick taste was 65% or more. It is clear that a high quality proteolytic product was obtained.
[0051]
The embodiments of the present invention are as follows.
(1) The present invention relates to a protein enzyme degradation product having an amino acid conversion rate of 65% or more with a rich taste by allowing a proteolytic enzyme to act on chicken egg protein under alkaline conditions and then causing a koji to act.
(2) Foods, feeds, fertilizers, nutrients, cosmetics and pharmaceuticals containing the protein enzyme degradation product of (1).
[0052]
(3) The chicken egg protein is a chicken egg protein obtained by removing the lipid portion from chicken egg liquid or chicken egg powder using an organic solvent extraction method or a supercritical extraction method. Regardless of the form of liquid or powder, egg yolk protein, egg white The protein enzyme degradation product according to any one of (1) to (2), wherein the protein ratio is used without any particular limitation.
(4) The protein / enzyme degradation product according to any one of (1) to (2) above, wherein the alkali is a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide, and these refined products and crude products are used. .
[0053]
(5) The protease is a protease or peptidase, derived from microorganisms such as Rhizopus genus, Aspergillus genus, Mucor genus, Bacillus genus, Pseudomonas genus, Streptococcus genus, Escherichia genus, rennin, pancreatin, etc. The enzyme derived from a plant such as ficin, preferably an enzyme derived from the genus Rhizopus, Aspergillus or Bacillus, wherein the purified product or crude product is used alone or in combination of two or more thereof (1) to ( 2) The protein enzyme degradation product according to any one of the above.
(6) The protein enzyme degradation product according to any one of (1) to (2) above, wherein the crude protein content is adjusted to a mixed solution of 1 to 30%, preferably 1 to 20%, more preferably 1 to 10%.
[0054]
(7) The amount of proteolytic enzyme added is usually expressed in units of proteolytic enzyme activity per gram of protein as a substrate, and is usually 10 to 50,000 units, preferably 1,00 to 30,000 units, more preferably Is a protein-enzyme degradation product according to any one of (1) to (2), which is arbitrarily selected from the range of 1,000 to 10,000 units.
(8) The protein enzyme according to any one of (1) to (2) above, wherein the hydrolysis temperature may be in the range of usually −5 to 50 ° C., preferably 0 to 40 ° C., more preferably 0 to 30 ° C. Decomposition product.
(9) The hydrolysis time is 1 hour to 100 days if the hydrolysis temperature is -5 to 10 ° C, 1 hour to 70 days if it is 10 to 20 ° C, and 1 hour if it is 20 to 30 ° C. 30. The protein enzyme degradation product according to any one of (1) to (2), wherein 30 days are sufficient.
[0055]
【The invention's effect】
The protein-enzyme degradation product of the present invention has a thick taste, a good amino acid score, and a protein-enzyme degradation that can be widely used as an amino acid source in all fields such as food, feed, fertilizer, nutrients, cosmetics, and pharmaceuticals. It provides things.

Claims (4)

鶏卵蛋白質をアルカリ条件下で、蛋白分解酵素を用い処理した後に、麹を作用させアミノ酸化率65%以上としたことを特徴とする蛋白酵素分解物。  A protein-enzyme degradation product obtained by treating chicken egg protein under alkaline conditions with a proteolytic enzyme, and then allowing a straw to act to make the amino acid conversion rate 65% or more. 麹を12℃〜15℃の温度下で作用させる事を特徴とする請求項1記載の蛋白酵素分解物。  The protein enzyme degradation product according to claim 1, wherein the koji is allowed to act at a temperature of 12 ° C to 15 ° C. 請求項1または2記載の蛋白酵素分解物を含有する食品。  A food containing the protein enzyme degradation product according to claim 1 or 2. 請求項1または2記載の蛋白酵素分解物を含有する栄養剤。  A nutrient containing the protein enzyme degradation product according to claim 1 or 2.
JP24426999A 1999-08-31 1999-08-31 Protein enzyme degradation product Expired - Lifetime JP4334698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24426999A JP4334698B2 (en) 1999-08-31 1999-08-31 Protein enzyme degradation product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24426999A JP4334698B2 (en) 1999-08-31 1999-08-31 Protein enzyme degradation product

Publications (2)

Publication Number Publication Date
JP2001061445A JP2001061445A (en) 2001-03-13
JP4334698B2 true JP4334698B2 (en) 2009-09-30

Family

ID=17116246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24426999A Expired - Lifetime JP4334698B2 (en) 1999-08-31 1999-08-31 Protein enzyme degradation product

Country Status (1)

Country Link
JP (1) JP4334698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045708A1 (en) 2019-09-02 2021-03-11 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi A load carrying system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162727A1 (en) * 2001-12-20 2003-07-10 Henkel Kgaa New alkaline protease from Bacillus gibsonii (DSM 14391) and washing and cleaning agents containing this new alkaline protease
DE10163884A1 (en) * 2001-12-22 2003-07-10 Henkel Kgaa New alkaline protease from Bacillus sp. (DSM 14392) and detergents and cleaning agents containing this new alkaline protease
EP1685764A1 (en) * 2005-01-27 2006-08-02 Globus Egg Sciences B.V. Anti-hypertensive functional food products
KR20060082015A (en) * 2005-01-11 2006-07-14 가부시키 가이샤 파마 푸즈 연구소 Composition for strengthening bone derived from egg
KR101530055B1 (en) 2005-10-11 2015-06-29 프로바이오티컬 에스.피.에이. Method for the preparation of anallergic probiotic bacterial cultures and related use
JP2007167041A (en) * 2005-12-26 2007-07-05 Taiyo Kagaku Co Ltd Method for producing albumen decompose product
NZ569603A (en) * 2006-01-04 2011-08-26 Leprino Foods Co Method of making a protein hydrolysate using a cold incubation phase (10 degrees Celsius or less)
JP2008167660A (en) * 2007-01-05 2008-07-24 Kikkoman Corp Liquid seasoning
KR101468004B1 (en) * 2012-06-22 2014-12-03 한국식품연구원 Method for preparing low antigenic egg white and hypoantigenic egg white produced thereby
WO2019159225A1 (en) * 2018-02-13 2019-08-22 キユーピー株式会社 Aged egg yolk, processed food using same and preparing method of aged egg yolk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045708A1 (en) 2019-09-02 2021-03-11 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi A load carrying system

Also Published As

Publication number Publication date
JP2001061445A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP3153237B2 (en) Protein hydrolyzate
JP2001506858A (en) Method for producing protein hydrolyzate
JP2004511241A (en) Protein hydrolyzate
JP4334698B2 (en) Protein enzyme degradation product
CN110592053A (en) Collagen hydrolysis complex enzyme, protein oligopeptide and preparation method thereof
US5427921A (en) Method of preparing yeast extract containing hydrolyzed non-yeast protein with yeast autolytic enzymes
US20090297661A1 (en) Methods For Flavor Enhancement
US20060193930A1 (en) Process for the preparation of protein hydrolysate from legumes
US6495342B2 (en) Nitrogenous composition resulting from the hydrolysis of maize gluten and a process for the preparation thereof
JPS62143697A (en) Production of oligopeptide mixture
ZA200306957B (en) Process for preparation of protein hydrolysate from soy flour.
JPH04126039A (en) Functional peptide
US6896917B2 (en) Process for preparation of protein-hydrolysate from soy flour
JP2932130B2 (en) Production method of protein seasoning liquid
JP4401555B2 (en) A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease.
JP2736829B2 (en) Production method of protein hydrolyzate without unpleasant taste
EP1365660B1 (en) Process for preparation of protein-hydrolysate from soy flour
JPH0347051A (en) Preparation of raw solution of seasoning
JP2000004896A (en) Hydrolysis of protein
JP2005087017A (en) Method for producing euphausiacea extract
JP2000007697A (en) Production of low-molecular peptide
JP2964370B2 (en) Seasoning liquid production method
JP6171802B2 (en) Seasoning production method
RU1807853C (en) Process for preparation of food additive
JPH09507478A (en) Process for producing peptide product and resulting product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4334698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term