JP4334184B2 - Cylindrical roller bearing and shaft assembly and design method thereof - Google Patents

Cylindrical roller bearing and shaft assembly and design method thereof Download PDF

Info

Publication number
JP4334184B2
JP4334184B2 JP2002194138A JP2002194138A JP4334184B2 JP 4334184 B2 JP4334184 B2 JP 4334184B2 JP 2002194138 A JP2002194138 A JP 2002194138A JP 2002194138 A JP2002194138 A JP 2002194138A JP 4334184 B2 JP4334184 B2 JP 4334184B2
Authority
JP
Japan
Prior art keywords
inner ring
shaft
seconds
taper angle
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002194138A
Other languages
Japanese (ja)
Other versions
JP2004036741A (en
Inventor
秀斗 鳥澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002194138A priority Critical patent/JP4334184B2/en
Publication of JP2004036741A publication Critical patent/JP2004036741A/en
Application granted granted Critical
Publication of JP4334184B2 publication Critical patent/JP4334184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、工作機械の主軸等に使用される、軸受内径面をテーパ面とした円筒ころ軸受と軸との組立体およびその設計方法に関する。
【0002】
【従来の技術】
軸受に高速性および高精度を要求される工作機械の主軸等において、内輪内径面をテーパ面とした転がり軸受を使用したものがある。この様な用途では、軸受のラジアル隙間が過大の場合に、主軸精度の悪化の問題を、ラジアル隙間が過小の場合には軸受の異常発熱および早期剥離等の問題を発生することがあり、軸受のラジアル隙間調整が重要となっている。このため上記テーパ面の作用により、軸に嵌め合った内輪を膨張させ、その膨張量を軸方向の圧入の深さで調整することによって、ラジアル隙間を調整可能としている。
【0003】
図4は、この種の従来の軸受の一例を示す。複列の軸受1は、内輪鍔付きの円筒ころ軸受であり、内輪2および外輪3に、軸方向に並ぶ2列の軌道面2a,2b,3a,3bを有している。外輪3の軌道面3a,3bは連続した円筒面に形成されている。各列の転動体4a,4bは、保持器(図示せず)により保持されている。内輪2の内径面2cはテーパ面とされ、軸6のテーパ部分6aの外周に嵌め合っている。軸受のラジアル内部隙間δは、上記のようにテーパ面を利用して軸6を圧入し、内輪2を膨張させることで、調整が可能である。
【0004】
【発明が解決しようとする課題】
内輪2の内径面2cはテーパ形状であるため、各軌道面2a,2bで内輪内径面から軌道面2a,2bまでの肉厚t1,t2が異なる。嵌め合いによる軌道面2a,2bの膨張量は、肉厚の大小によって変化するため、図5に強調して示すように、2列の軌道面2a,2b間でラジアル隙間の相互差δS が出る。この相互差δS は、各列間の膨張量差Sとなる。
この相互差δS が大きい場合、ラジアル隙間が小さい列の転動体4aに軸受荷重が集中するため、軸受の異常発熱および早期剥離が発生する恐れがある。また軸6と内輪2とのテーパ角度精度が悪く、軸6と内輪2とで極端に不均一な嵌め合いをする場合、上記発熱,早期剥離の不具合が発生する確率が高くなる。
【0005】
この発明の目的は、嵌め合い後における複列の軌道面間のラジアル隙間の相互差が小さく、軸受の異常発熱および早期剥離を防止することのできる円筒ころ軸受と軸との組立体およびその設計方法を提供することである
【0007】
【課題を解決するための手段】
この発明の円筒ころ軸受と軸との組立体は、内輪の内径面をテーパ面とした複列の円筒ころ軸受と、上記内輪の内径面に締まり嵌め状態に嵌合するテーパ部を有する軸とよりなり、上記内輪の内径面を所望の基準テーパ角度を狙って製作し、かつ軸の上記テーパ部分のテーパ角度を上記基準テーパ角度に対して−3秒を狙って製作したときに、上記軸のテーパ部分および内輪内径面の狙い角度に対するテーパ角度の許容差を、
軸受幅が37mmより大きい場合は、軸、内輪共に、−3秒〜+3秒の範囲とし、
軸受幅が37mm以下の場合は、軸、内輪共に、−6秒〜+6秒の範囲、
としたことを特徴とする。
この構成の場合、軸のテーパ部分および内輪内径面の狙い角度に対する加工後のテーパ角度の許容差を上記の範囲としたため、軸と軸受とを嵌め合った後の2列の軌道面間で、ラジアル隙間の相互差が所定値よりも小さくなる。そのため、片方の転動体列への軸受荷重の集中がなく、軸受の異常発熱や早期剥離が防止される。
【0008】
の発明の円筒ころ軸受と軸との組立体の設計方法は、内輪の内径面をテーパ面とした複列の円筒ころ軸受と、上記内輪の内径面に締まり嵌め状態に嵌合するテーパ部分を有する軸とよりなり、上記内輪における複列の軌道面の膨張量差が所定値以下となるテーパ角度の差であって、このテーパ角度の差と軸受幅との関係を、有限要素法解析および実験検証に基づいて求め、上記軸のテーパ部分と内輪の内径面とのテーパ角度の差(軸のテーパ角度−内輪内径面のテーパ角度)を、求めたテーパ角度の差と軸受幅との関係から
軸受幅が37mmより大きい場合は、−9秒〜+3秒の範囲とし、
軸受幅が37mm以下の場合は、−15秒〜+9秒の範囲、
としたことを特徴とする。この場合、軸と軸受とを嵌め合った後の2列の軌道面間で、ラジアル隙間の相互差が所定値よりも小さくなる。そのため、片方の転動体列への軸受荷重の集中がなく、軸受の異常発熱や早期剥離が防止される。
【0009】
【発明の実施の形態】
この発明の基礎となる第1の提案例および実施形態に係る転がり軸受と軸との組立体を図1と共に説明する。この転がり軸受と軸との組立体は、複列の転がり軸受1と軸6とよりなり、転がり軸受1の内輪2の内径面2cがテーパ面とされ、軸6が内輪2の内径面2cに嵌合するテーパ部分6aを有するものである。軸6は、例えば工作機械における主軸である。
転がり軸受1の内輪2および外輪3は、軸方向に並ぶ2列の軌道面2a,2b,3a,3bを有し、対向する軌道面間に、各列の転動体4a,4bが配置されている。各列の転動体4a,4bは、各列毎に設けられた保持器5に保持されている。この転がり軸受1は、円筒ころ軸受であって、転動体4はころからなる。内輪2は、両側および中央に鍔7,8を有し、外輪3は鍔無しのものとされて、2列の軌道面3a,3bは連続した円筒面に形成されている。
内輪2、外輪3、および転動体4a,4bの材質は、軸受鋼等の鋼製とされている。以上を基本構成とする。
【0010】
第1の提案例は上記基本構成において、軸6のテーパ部分6aと内輪2の内径面2cとのテーパ角度の差(軸のテーパ角度−内輪内径面のテーパ角度)を、
軸受幅Bが37mmより大きい場合は、−9秒〜+3秒の範囲とし、
軸受幅Bが37mm以下の場合は、−15秒〜+9秒の範囲、
としたものである。
【0011】
この発明の一実施形態を説明する。この実施形態は上記基本構成において、内輪2の内径面2cを所望の基準テーパ角度を狙って製作し、かつ軸6のテーパ部分6aのテーパ角度を上記基準テーパ角度に対して−3秒を狙って製作する。この場合に、上記軸6のテーパ部分6aおよび内輪内径面2cの狙い角度に対するテーパ角度の許容差を、
軸受幅Bが37mmより大きい場合は、軸6、内輪2共に、−3秒〜+3秒の範囲とし、
軸受幅Bが37mm以下の場合は、軸6、内輪2共に、−6秒〜+6秒の範囲とする。
上記所望の基準テーパ角度は、例えば、通常に採用されているテーパ比である基準テーパ比1/12または1/30とする。
【0012】
これら第1の提案例および実施形態の構成によると、いずれも、2列の軌道面2a,2b間でラジアル隙間の相互差が小さくなり、転がり軸受1の異常発熱および早期剥離を防止することができる。以下にその理由を説明する。
【0013】
軸6に嵌め合った内輪2の、2列の軌道面2a,2bの膨張量差は、
(1) 軸6のテーパ角度と内輪内径面2cのテーパ角度との角度差、および
(2) 内輪2の締代、
を基に計算され、以下の式で表されることがFEM(有限要素法)解析および実験検証を行った結果、判明した。
S=a×Δα+b×Y+c ……(1)
ただし、
S:内輪の2列の軌道面の膨張量差(μm)、
(=内輪内径面の大径側の軌道径膨張量−小径側の軌道径膨張量)、
Δα:軸テーパ角度と内輪内径面テーパ角度との角度差(秒)、
(=軸テーパ角度−軸受内径面テーパ角度)、
Y:内輪内径面小径側の軌道面の軸方向中心に与えられる内輪の締代(μm)
a,b,c:使用する軸と軸受の組合せ毎に設定される定数。
定数a,b,cは、FEM解析または実験によって決定される数値である。
【0014】
工作機械の主軸として通常使用される内輪の締代Yの範囲において、2列の軌道面2a,2bの膨張量差Sが±1μm以下となる軸テーパ角度と内輪内径面テーパ角度との角度差Δαを、上記(1)式を用いて種々の型番の軸受について計算した結果、図2を得た。膨張量差Sを±1μm以下としたのは、これまでの経験から、軸受に異常発熱および早期剥離等の問題が生じないとわかる略最大の範囲として規定したものである。同図の縦軸には軸受幅Bをとっている。
【0015】
図2より、軸受幅Bが37mmより大きい軸受では、角度差Δαを約−9秒から+3秒(中央値−3秒)とし、軸受幅Bが37mm以下の軸受では、角度差Δαを約−15秒から+9秒(中央値−3秒)とすれば、2列の軌道面2a,2bの膨張量差Sが±1μm以下となることがわかる。厳密に言えば、型番毎に角度差Δαの範囲が異なりその中央値も異なることが図2よりわかるが、型番毎に狙い値(中央値)を変更するのは製作の都合上不便である。したがって、上記の様に角度差Δαの範囲を決定した。
【0016】
通常の軸受は、内輪内径面2cのテーパ面として基準テーパ比1/12または1/30が用いられ製作される。図2より角度差Δαは中央値−3秒とすれば良いことがわかっているため、軸のテーパ角度としては内輪内径面のテーパ基準角度−3秒で製作すれば良いことになる。
また、上記角度差Δαの範囲を軸受と軸のテーパ角度に許容差として振り当てると、軸受内径面のテーパ面を所望の基準角度を狙って製作し、軸のテーパ部分を、内輪内径面の基準角度−3秒を狙って製作したときに、軸受幅Bが37mmより大きい場合は、軸6、内輪2ともに±3秒となり、軸受幅Bが37mm以下の場合、軸6、内輪2ともに±6秒となる。このようにして軸6と内輪2のテーパ角度を製作すると、内輪2と軸6とが嵌め合った後、2列の軌道面2a,2b間でのラジアル隙間の相互差は±1μmとなる。そのため、転がり軸受1の異常発熱および早期剥離を防止することができる。
【0017】
つぎに、この発明の他の参考提案例を図3と共に説明する。この参考提案例は、図1と共に説明した基本構成において、その転がり軸受1につき、計算によって内輪2の2列の軌道面2a,2bの膨張量差を見込み、その量を軸受単体時のラジアル隙間相互差(各列のラジアル隙間の差)として与えておくものである。
例えば、軸受組み込み時に内輪2のA列の軌道面2aのラジアル隙間よりもB列の方が1μm大きく膨張することが計算される場合、軸受単体時ではB列の軌道面2bのラジアル隙間をA列よりも1μm小さくしておく。B列のラジアル隙間を小さくするには、例えばB列の転動体4bにA列の転動体4aよりも大きなものを用いる。
この結果、転がり軸受1を軸6に組み込んだ時のラジアル隙間を各列の軌道面2a,2bで同一とすることができる。この方法は、内輪内径面のテーパ角度と同一角度に軸6のテーパ角度を現合加工する場合に特に有効である。軸6のテーパ角度を内輪内径面2cに現合加工する場合にこの方法を用いれば、角度差Δαにばらつきが無く、常に角度差Δα=0となるため、より正確に膨張量差Sを小さくすることができる。また、軸6と内輪内径面2cのテーパ角度を測定したうえで、軸受単体時のラジアル隙間相互差を計算によって決定し、採用しても良い。
【0019】
【実施例】
(実施例1)
図1と共に説明した第1の提案例において、転がり軸受1の各部の寸法を次の値とした。すなわち内輪2の内径D1=130mm、外径D2=200mm、軸受幅B=52mmとした。軸6は中空軸であり、内径dは78mmである。
この寸法の転がり軸受1の場合、上記(1)式は下記(2)式となることがFEM解析によって求められた。
S=0.1064×Δα+0.0092×Y+0.004 ……(2)
この時、軸6のテーパ部分6aのテーパ角度を、基準角度+9秒±3秒、内輪内径面2cのテーパ角度を基準角度+12秒±3秒で加工した。つまり、角度差Δα=−9〜+3となる。
【0020】
この実施例の軸受1の場合、工作機械の主軸として通常使用される内輪2の締代Yの範囲は、20〜70μmであり、角度差ΔαとYを(2)式に代入すると、S=−0.77〜+0.97μmとなる。したがって、軸6と内輪2との嵌め合いによる2列の軌道面2a,2bの膨張量差Sは1μm以下に抑えられる。そのため、軸受1に異常発熱および早期剥離が発生する可能性を低くすることができる。
【0021】
試験例
図3と共に説明した他の参考提案例において、実施例1と同じく、図1のように軸受内輪2の内径D1=130mm、外径D2=200mm、軸受幅B=52mmとした。軸6は中空軸であり、内径dは78mmである。
この場合に、軸6のテーパ部分6aのテーパ角度が基準角度+6秒、内輪内径面2cのテーパ角度が基準角度+14秒となっていることが分かった。つまり、角度差Δα=6−14=−8、である。
内輪2の締代Yの範囲は、20〜70μmであるため、(2)式により軸6と内輪2との嵌め合いによる2列の軌道面2a,2cの膨張量差Sを計算すると、S=−0.66〜−0.20μmとなり、中央値は約−0.4μmとなった。このとき、軸受単体時において、内輪内径面2cの小径側の軌道面2bに大径側軌道面2aよりも径が0.2μm大きい転動体4bを入れれば、軸6と内輪2との嵌め合いによる2列の軌道面2a,2bの膨張量差Sは、S=−0.26〜+0.20μmに抑えられる。そのため、転がり軸受1に異常発熱および早期剥離が発生する可能性を低くすることが可能になる。
【0022】
【発明の効果】
の発明の円筒ころ軸受と軸との組立体は、内輪の内径面をテーパ面とした複列の円筒ころ軸受と、上記内輪の内径面に嵌合するテーパ部を有する軸とよりなるものにおいて、内輪の内径面を所望の基準テーパ角度を狙って製作し、かつ軸の上記テーパ部分のテーパ角度を上記基準テーパ角度に対して−3秒を狙って製作したときに、上記軸のテーパ部分および内輪内径面の狙い角度に対するテーパ角度の許容差を所定の範囲としたため、嵌め合い後における複列の軌道面間のラジアル隙間の相互差が小さく、軸受の異常発熱および早期剥離を防止することができる
の発明の円筒ころ軸受と軸との組立体の設計方法は、内輪の内径面をテーパ面とした複列の円筒ころ軸受と、上記内輪の内径面に締まり嵌め状態に嵌合するテーパ部分を有する軸とよりなり、上記内輪における複列の軌道面の膨張量差が所定値以下となるテーパ角度の差であって、このテーパ角度の差と軸受幅との関係を、有限要素法解析および実験検証に基づいて求め、上記軸のテーパ部分と内輪の内径面とのテーパ角度の差(軸のテーパ角度−内輪内径面のテーパ角度)を、求めたテーパ角度の差と軸受幅との関係から軸受幅が37mmより大きい場合は、−9秒〜+3秒の範囲とし、軸受幅が37mm以下の場合は、−15秒〜+9秒の範囲としたため、嵌め合い後における複列の軌道面間のラジアル隙間の相互差が小さく、軸受の異常発熱および早期剥離を防止することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態に係る転がり軸受と軸との組立体の断面図である。
【図2】同組立体において、膨張量差が所定値以下となる軸受幅とテーパ角度差との関係を示す図である。
【図3】 他の参考提案例に係る転がり軸受と軸との組立体の断面図である。
【図4】従来例の断面図である。
【図5】同従来例の作用説明図である。
【符号の説明】
1…転がり軸受
2…内輪
2a,2b…軌道面
2c…内径面
3…外輪
4…転動体
6…軸
6a…テーパ部分
[0001]
BACKGROUND OF THE INVENTION
The invention is used in the spindle or the like of a machine tool, relates a bearing bore in the assembly and the design how the cylindrical roller bearing and the axis of the tapered surface.
[0002]
[Prior art]
Some spindles of machine tools that require high speed and high accuracy in bearings use rolling bearings having an inner ring inner diameter surface as a tapered surface. In such applications, if the radial clearance of the bearing is excessive, problems such as deterioration of the spindle accuracy may occur, and if the radial clearance is excessively small, problems such as abnormal heat generation and early peeling of the bearing may occur. The radial clearance adjustment is important. For this reason, the radial gap can be adjusted by expanding the inner ring fitted to the shaft by the action of the tapered surface and adjusting the amount of expansion with the depth of press-fitting in the axial direction.
[0003]
FIG. 4 shows an example of this type of conventional bearing. The double row bearing 1 is a cylindrical roller bearing with an inner ring collar, and has two rows of raceway surfaces 2a, 2b, 3a, 3b arranged in the axial direction on the inner ring 2 and the outer ring 3. The raceways 3a and 3b of the outer ring 3 are formed in a continuous cylindrical surface. The rolling elements 4a and 4b in each row are held by a cage (not shown). An inner diameter surface 2 c of the inner ring 2 is a tapered surface and is fitted to the outer periphery of the tapered portion 6 a of the shaft 6. The radial internal clearance δ of the bearing can be adjusted by press-fitting the shaft 6 using the tapered surface and expanding the inner ring 2 as described above.
[0004]
[Problems to be solved by the invention]
Since the inner diameter surface 2c of the inner ring 2 has a tapered shape, the wall surfaces t1 and t2 from the inner ring inner diameter surface to the raceway surfaces 2a and 2b are different in the raceway surfaces 2a and 2b. Since the amount of expansion of the raceway surfaces 2a and 2b due to the fitting varies depending on the thickness, as shown in FIG. 5, the mutual difference δ S between the radial gaps between the two rows of raceway surfaces 2a and 2b is increased. Get out. This mutual difference δ S becomes an expansion amount difference S between the columns.
If this mutual difference δ S is large, the bearing load concentrates on the rolling elements 4a in the rows with small radial gaps, so that abnormal heat generation and early separation of the bearings may occur. In addition, the accuracy of the taper angle between the shaft 6 and the inner ring 2 is poor, and when the shaft 6 and the inner ring 2 are extremely non-uniformly fitted, the probability of occurrence of the above heat generation and early peeling problems increases.
[0005]
An object of the present invention is an assembly of a cylindrical roller bearing and a shaft and a design thereof, in which the radial gap between the raceways of the double row after fitting is small, and abnormal heat generation and early separation of the bearing can be prevented. Is to provide a method .
[0007]
[Means for Solving the Problems]
The assembly of this inventions the cylindrical roller bearing and the shaft, the axis having a cylindrical roller bearing of double row inner ring having an inner diameter surface and a tapered surface, the tapered portion fitted state interference fit to the inner diameter surface of the inner ring When the inner diameter surface of the inner ring is manufactured aiming at a desired reference taper angle, and the taper angle of the taper portion of the shaft is manufactured aiming at −3 seconds with respect to the reference taper angle, The tolerance of the taper angle with respect to the target angle of the taper part of the shaft and the inner ring inner surface,
If the bearing width is larger than 37 mm, both the shaft and inner ring should be in the range of -3 seconds to +3 seconds.
When the bearing width is 37 mm or less, both the shaft and inner ring are in the range of -6 seconds to +6 seconds.
It is characterized by that.
In the case of this configuration, since the tolerance of the taper angle after processing with respect to the target angle of the taper portion of the shaft and the inner ring inner surface is within the above range, between the two rows of raceway surfaces after fitting the shaft and the bearing, The difference between the radial gaps becomes smaller than a predetermined value. For this reason, there is no concentration of bearing load on one of the rolling element rows, and abnormal heat generation and early separation of the bearing are prevented.
[0008]
Design method for the assembly of the cylindrical roller bearing and the shaft of this invention, a cylindrical roller bearing of double row inner ring having an inner diameter surface and a tapered surface, the tapered portion to be fitted in a state close fit to the inner diameter surface of the inner ring The difference in the taper angle at which the difference in expansion between the raceways of the double row in the inner ring is not more than a predetermined value, and the relationship between the taper angle difference and the bearing width is analyzed by a finite element method. The difference in taper angle between the taper portion of the shaft and the inner ring inner surface (the taper angle of the shaft minus the taper angle of the inner ring inner surface) is determined by the difference between the calculated taper angle and the bearing width. From the relationship, if the bearing width is larger than 37 mm, the range is -9 seconds to +3 seconds.
When the bearing width is 37 mm or less, the range is from -15 seconds to +9 seconds,
It is characterized by that. In this case, the difference in radial gap between the two rows of raceway surfaces after fitting the shaft and the bearing becomes smaller than a predetermined value. For this reason, there is no concentration of bearing load on one of the rolling element rows, and abnormal heat generation and early separation of the bearing are prevented.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The assembly of the rolling bearing and the shaft according to the first proposal Examples and shaped state that is a basis of the present invention will be described in conjunction with FIG. The assembly of the rolling bearing and the shaft is composed of a double row rolling bearing 1 and a shaft 6, the inner surface 2 c of the inner ring 2 of the rolling bearing 1 is a tapered surface, and the shaft 6 is formed on the inner surface 2 c of the inner ring 2. It has the taper part 6a to fit. The shaft 6 is a main shaft in a machine tool, for example.
The inner ring 2 and the outer ring 3 of the rolling bearing 1 have two rows of raceway surfaces 2a, 2b, 3a, 3b arranged in the axial direction, and the rolling elements 4a, 4b in each row are arranged between the raceway surfaces facing each other. Yes. The rolling elements 4a and 4b in each row are held in a cage 5 provided for each row. The rolling bearing 1 is a cylindrical roller bearing, and the rolling element 4 is composed of rollers. The inner ring 2 has flanges 7 and 8 on both sides and the center, the outer ring 3 has no flanges, and the two rows of raceway surfaces 3a and 3b are formed in a continuous cylindrical surface.
The materials of the inner ring 2, the outer ring 3, and the rolling elements 4a and 4b are made of steel such as bearing steel. The above is the basic configuration.
[0010]
In the first proposed example , the difference in taper angle between the tapered portion 6a of the shaft 6 and the inner diameter surface 2c of the inner ring 2 (shaft taper angle−taper angle of the inner ring inner diameter surface)
When the bearing width B is larger than 37 mm, the range is -9 seconds to +3 seconds.
When the bearing width B is 37 mm or less, a range of -15 seconds to +9 seconds,
It is what.
[0011]
An embodiment of the present invention will be described. This implementation embodiment in the above basic structure, the inner surface 2c of the inner ring 2 made aiming at the desired reference taper angle, and the -3 seconds taper angle of the tapered portions 6a of the shaft 6 with respect to the reference taper angle Aim to produce. In this case, the tolerance of the taper angle with respect to the target angle of the tapered portion 6a of the shaft 6 and the inner ring inner surface 2c is as follows.
When the bearing width B is larger than 37 mm, both the shaft 6 and the inner ring 2 are in the range of -3 seconds to +3 seconds,
When the bearing width B is 37 mm or less, both the shaft 6 and the inner ring 2 are set in the range of −6 seconds to +6 seconds.
The desired reference taper angle is, for example, a reference taper ratio of 1/12 or 1/30, which is a taper ratio usually employed.
[0012]
According to the configuration of the first proposed embodiment Oyo BiMinoru facilities embodiment, any two rows of the raceway surfaces 2a, the smaller the relative difference of the radial clearance between 2b, preventing overheating and premature flaking of the rolling bearing 1 can do. The reason will be described below.
[0013]
The difference in expansion between the two rows of raceway surfaces 2a and 2b of the inner ring 2 fitted to the shaft 6 is
(1) An angular difference between the taper angle of the shaft 6 and the taper angle of the inner ring inner surface 2c, and
(2) Inner ring 2 tightening allowance,
As a result of FEM (finite element method) analysis and experiment verification, it was found that the calculation was based on
S = a × Δα + b × Y + c (1)
However,
S: Expansion amount difference (μm) between two raceways of the inner ring,
(= Large-diameter track diameter expansion amount of the inner ring inner diameter surface−Small-diameter track diameter expansion amount),
Δα: Angle difference (in seconds) between shaft taper angle and inner ring inner surface taper angle,
(= Shaft taper angle-bearing inner surface taper angle),
Y: Inner ring tightening margin (μm) given to the axial center of the raceway surface on the inner ring inner diameter surface smaller diameter side
a, b, c: Constants set for each combination of shaft and bearing used.
The constants a, b, and c are numerical values determined by FEM analysis or experiment.
[0014]
In the range of the inner ring interference allowance Y that is normally used as the main spindle of a machine tool, the angular difference between the shaft taper angle at which the expansion difference S between the two rows of raceway surfaces 2a and 2b is ± 1 μm or less and the inner ring inner surface taper angle As a result of calculating Δα for the bearings of various model numbers using the above equation (1), FIG. 2 was obtained. The reason why the expansion difference S is set to ± 1 μm or less is defined as a substantially maximum range where it is understood from the experience so far that problems such as abnormal heat generation and early peeling do not occur in the bearing. The vertical axis in FIG.
[0015]
From FIG. 2, for bearings with a bearing width B greater than 37 mm, the angle difference Δα is about −9 to +3 seconds (median −3 seconds), and for bearings with a bearing width B of 37 mm or less, the angle difference Δα is about − From 15 seconds to +9 seconds (median value -3 seconds), it can be seen that the expansion difference S between the two rows of raceway surfaces 2a and 2b is ± 1 μm or less. Strictly speaking, it can be seen from FIG. 2 that the range of the angle difference Δα is different for each model number, and the median value thereof is different, but it is inconvenient to change the target value (median value) for each model number. Therefore, the range of the angle difference Δα was determined as described above.
[0016]
A normal bearing is manufactured using a reference taper ratio of 1/12 or 1/30 as a taper surface of the inner ring inner surface 2c. Since it is known from FIG. 2 that the angle difference [Delta] [alpha] should be a median value of -3 seconds, the taper angle of the shaft may be manufactured at a taper reference angle of the inner ring inner diameter surface of -3 seconds.
Moreover, when the range of the angle difference Δα is assigned as a tolerance to the taper angle between the bearing and the shaft, the taper surface of the bearing inner diameter surface is manufactured aiming at a desired reference angle, and the taper portion of the shaft is formed on the inner ring inner surface. When the bearing is manufactured with a reference angle of -3 seconds, if the bearing width B is greater than 37 mm, both the shaft 6 and the inner ring 2 are ± 3 seconds. If the bearing width B is 37 mm or less, both the shaft 6 and the inner ring 2 are ± 6 seconds. When the taper angle between the shaft 6 and the inner ring 2 is manufactured in this way, after the inner ring 2 and the shaft 6 are fitted, the mutual difference in radial gap between the two rows of raceway surfaces 2a and 2b becomes ± 1 μm. Therefore, abnormal heat generation and early peeling of the rolling bearing 1 can be prevented.
[0017]
Next, another reference proposal example of the present invention will be described with reference to FIG. This example of the reference proposal is based on the basic configuration described with reference to FIG. 1, and the difference in expansion between the two raceways 2a and 2b of the inner ring 2 is estimated by calculation for the rolling bearing 1, and this amount is used as a radial clearance when the bearing alone. It is given as a mutual difference (difference between radial gaps in each row).
For example, when it is calculated that the B row expands by 1 μm larger than the radial clearance of the raceway surface 2a of the A row of the inner ring 2 when the bearing is assembled, the radial clearance of the raceway surface 2b of the B row is A It is 1 μm smaller than the row. In order to reduce the radial gap in the B row, for example, a larger rolling element 4b in the B row than the rolling element 4a in the A row is used.
As a result, the radial clearance when the rolling bearing 1 is incorporated into the shaft 6 can be made the same on the raceway surfaces 2a and 2b of each row. This method is particularly effective when the taper angle of the shaft 6 is formed at the same angle as the taper angle of the inner ring inner surface. If this method is used when the taper angle of the shaft 6 is formed on the inner ring inner surface 2c, the angle difference Δα will not vary and the angle difference Δα = 0 will always be obtained, so the expansion amount difference S can be reduced more accurately. can do. Further, after measuring the taper angle between the shaft 6 and the inner ring inner surface 2c, the radial difference between the bearings alone may be determined by calculation and adopted.
[0019]
【Example】
Example 1
In the 1st proposal example demonstrated with FIG. 1, the dimension of each part of the rolling bearing 1 was made into the following value. That is, the inner diameter D1 of the inner ring 2 was 130 mm, the outer diameter D2 was 200 mm, and the bearing width B was 52 mm. Shaft 6 is a hollow shaft, the inner diameter d i is 78mm.
In the case of the rolling bearing 1 having this size, it was determined by FEM analysis that the above equation (1) becomes the following equation (2).
S = 0.1064 × Δα + 0.0092 × Y + 0.004 (2)
At this time, the taper angle of the taper portion 6a of the shaft 6 was processed with a reference angle +9 seconds ± 3 seconds, and the taper angle of the inner ring inner surface 2c was processed with a reference angle + 12 seconds ± 3 seconds. That is, the angle difference Δα = −9 to +3.
[0020]
In the case of the bearing 1 of this embodiment, the range of the tightening allowance Y of the inner ring 2 that is normally used as the main shaft of the machine tool is 20 to 70 μm. When the angle difference Δα and Y are substituted into the equation (2), S = −0.77 to +0.97 μm. Therefore, the expansion amount difference S between the two rows of raceway surfaces 2a and 2b due to the fitting between the shaft 6 and the inner ring 2 is suppressed to 1 μm or less. Therefore, the possibility of abnormal heat generation and early peeling in the bearing 1 can be reduced.
[0021]
( Test example )
In other reference proposal examples described in conjunction with FIG. 3, as in the first embodiment, the inner diameter D1 of the bearing inner ring 2 is 130 mm, the outer diameter D2 is 200 mm, and the bearing width B is 52 mm as shown in FIG. Shaft 6 is a hollow shaft, the inner diameter d i is 78mm.
In this case, it was found that the taper angle of the taper portion 6a of the shaft 6 was the reference angle +6 seconds, and the taper angle of the inner ring inner surface 2c was the reference angle +14 seconds. That is, the angle difference Δα = 6-14 = −8.
Since the range of the tightening allowance Y of the inner ring 2 is 20 to 70 μm, if the expansion amount difference S between the two rows of raceway surfaces 2a and 2c due to the fitting of the shaft 6 and the inner ring 2 is calculated by the equation (2), S = −0.66 to −0.20 μm, and the median was about −0.4 μm. At this time, when the rolling element 4b having a diameter 0.2 μm larger than that of the large-diameter side raceway surface 2a is inserted into the small-diameter side raceway surface 2b of the inner ring inner diameter surface 2c when the bearing alone is used, the shaft 6 and the inner ring 2 are fitted. The expansion amount difference S between the two rows of raceway surfaces 2a and 2b is suppressed to S = −0.26 to +0.20 μm. Therefore, it is possible to reduce the possibility of abnormal heat generation and early peeling in the rolling bearing 1.
[0022]
【The invention's effect】
Assembly of the inventions of the cylindrical roller bearing and the shaft of this becomes more a shaft having a cylindrical roller bearing of double row inner ring having an inner diameter surface and a tapered surface, the tapered portion fitted to the inner diameter surface of the inner ring When the inner diameter surface of the inner ring is manufactured aiming at a desired reference taper angle and the taper angle of the taper portion of the shaft is aimed at -3 seconds with respect to the reference taper angle, The tolerance of the taper angle with respect to the target angle of the tapered part and the inner ring inner surface is set within a predetermined range, so that the radial gap between the raceways of the double row after fitting is small, preventing abnormal heat generation and premature peeling of the bearing. it can be.
Design method for the assembly of the cylindrical roller bearing and the shaft of this invention, a cylindrical roller bearing of double row inner ring having an inner diameter surface and a tapered surface, the tapered portion to be fitted in a state close fit to the inner diameter surface of the inner ring The difference in the taper angle at which the difference in expansion between the raceways of the double row in the inner ring is not more than a predetermined value, and the relationship between the taper angle difference and the bearing width is analyzed by a finite element method. The difference in taper angle between the taper portion of the shaft and the inner ring inner surface (the taper angle of the shaft minus the taper angle of the inner ring inner surface) is determined by the difference between the calculated taper angle and the bearing width. From the relationship, when the bearing width is larger than 37 mm, the range is -9 seconds to +3 seconds. When the bearing width is 37 mm or less, the range is -15 seconds to +9 seconds. The difference in radial clearance between Atmospheric heating and premature flaking can be prevented.
[Brief description of the drawings]
FIG. 1 is a sectional view of an assembly of a rolling bearing and a shaft according to a first embodiment of the present invention.
FIG. 2 is a view showing a relationship between a bearing width and a taper angle difference at which a difference in expansion amount is a predetermined value or less in the assembly.
FIG. 3 is a cross-sectional view of an assembly of a rolling bearing and a shaft according to another reference proposal example .
FIG. 4 is a cross-sectional view of a conventional example.
FIG. 5 is an operation explanatory diagram of the conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Inner ring 2a, 2b ... Raceway surface 2c ... Inner diameter surface 3 ... Outer ring 4 ... Rolling element 6 ... Shaft 6a ... Tapered part

Claims (2)

内輪の内径面をテーパ面とした複列の円筒ころ軸受と、上記内輪の内径面に締まり嵌め状態に嵌合するテーパ部を有する軸とよりなり、
上記内輪の内径面を所望の基準テーパ角度を狙って製作し、かつ軸の上記テーパ部分のテーパ角度を上記基準テーパ角度に対して−3秒を狙って製作したときに、上記軸のテーパ部分および内輪内径面の狙い角度に対するテーパ角度の許容差を、
軸受幅が37mmより大きい場合は、軸、内輪共に、−3秒〜+3秒の範囲とし、
軸受幅が37mm以下の場合は、軸、内輪共に、−6秒〜+6秒の範囲、
としたことを特徴とする円筒ころ軸受と軸との組立体。
It consists of a double row cylindrical roller bearing having an inner diameter surface of the inner ring as a tapered surface, and a shaft having a tapered portion that fits into the inner diameter surface of the inner ring.
When the inner diameter surface of the inner ring is manufactured aiming at a desired reference taper angle, and the taper angle of the taper portion of the shaft is aimed at -3 seconds with respect to the reference taper angle, the taper portion of the shaft And the tolerance of the taper angle with respect to the target angle of the inner ring inner surface,
If the bearing width is larger than 37 mm, both the shaft and inner ring should be in the range of -3 seconds to +3 seconds.
When the bearing width is 37 mm or less, both the shaft and inner ring are in the range of -6 seconds to +6 seconds.
An assembly of a cylindrical roller bearing and a shaft characterized by the above.
内輪の内径面をテーパ面とした複列の円筒ころ軸受と、上記内輪の内径面に締まり嵌め状態に嵌合するテーパ部分を有する軸とよりなり、上記内輪における複列の軌道面の膨張量差が所定値以下となるテーパ角度の差であって、このテーパ角度の差と軸受幅との関係を、有限要素法解析および実験検証に基づいて求め、
上記軸のテーパ部分と内輪の内径面とのテーパ角度の差(軸のテーパ角度−内輪内径面のテーパ角度)を、求めたテーパ角度の差と軸受幅との関係から
軸受幅が37mmより大きい場合は、−9秒〜+3秒の範囲とし、
軸受幅が37mm以下の場合は、−15秒〜+9秒の範囲、
としたことを特徴とする円筒ころ軸受と軸との組立体の設計方法。
A double row cylindrical roller bearing having a tapered inner surface on the inner ring, and a shaft having a tapered portion that fits tightly on the inner surface of the inner ring, and the expansion amount of the double row raceway surface in the inner ring The difference in taper angle at which the difference is a predetermined value or less, and the relationship between the taper angle difference and the bearing width is determined based on finite element method analysis and experimental verification,
The difference in taper angle between the tapered part of the shaft and the inner ring inner diameter surface (taper taper angle−taper angle of the inner ring inner diameter surface) is determined from the relationship between the obtained taper angle difference and the bearing width. In this case, the range is from -9 seconds to +3 seconds.
When the bearing width is 37 mm or less, the range is from -15 seconds to +9 seconds,
A method for designing an assembly of a cylindrical roller bearing and a shaft, characterized in that
JP2002194138A 2002-07-03 2002-07-03 Cylindrical roller bearing and shaft assembly and design method thereof Expired - Fee Related JP4334184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194138A JP4334184B2 (en) 2002-07-03 2002-07-03 Cylindrical roller bearing and shaft assembly and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194138A JP4334184B2 (en) 2002-07-03 2002-07-03 Cylindrical roller bearing and shaft assembly and design method thereof

Publications (2)

Publication Number Publication Date
JP2004036741A JP2004036741A (en) 2004-02-05
JP4334184B2 true JP4334184B2 (en) 2009-09-30

Family

ID=31702904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194138A Expired - Fee Related JP4334184B2 (en) 2002-07-03 2002-07-03 Cylindrical roller bearing and shaft assembly and design method thereof

Country Status (1)

Country Link
JP (1) JP4334184B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749736B2 (en) * 2005-02-17 2011-08-17 Ntn株式会社 Double row taper hole bearing for printing machine and support device for printing blanket cylinder
US20070211975A1 (en) * 2006-03-07 2007-09-13 S & S Cycle, Inc. Inner primary bearing race
JP2007255601A (en) * 2006-03-23 2007-10-04 Ntn Corp Double row roller bearing and method for assembling the same

Also Published As

Publication number Publication date
JP2004036741A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US7311363B2 (en) Bearing apparatus for a wheel of vehicle
JP4715745B2 (en) Oblique contact type double row ball bearing and pinion shaft support bearing device
JP2006250178A (en) Bearing unit for supporting wheel and method for manufacturing the same
US10054164B2 (en) Rolling bearing
WO2005080809A1 (en) Skew contact double ball bearing and pre-load adding method therefor
JP4334184B2 (en) Cylindrical roller bearing and shaft assembly and design method thereof
JP4959514B2 (en) Wheel bearing device
JP2002283804A (en) Bearing device for drive axle
EP1624205B1 (en) Bearing apparatus for a wheel of vehicle
JP2006342830A (en) Preload applying method of double-row tapered roller bearing unit
RU2300575C2 (en) Antifriction bearing for flying vehicles
JP7367379B2 (en) Manufacturing method of inner ring for hub unit bearing
JP2969970B2 (en) Assembly method of preload type double row ball bearing
JP5047633B2 (en) Wheel bearing device
JP4904980B2 (en) Axle bearing device
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP4494128B2 (en) Vehicle bearing device
JP5891720B2 (en) Hub unit bearing
JPS61175313A (en) Rolling bearing with spacer
WO2021002255A1 (en) Crossed roller bearing
JP2023055544A (en) Manufacturing method of outer ring of wheel support rolling bearing unit, and wheel support rolling bearing unit
JP2006250290A (en) Roller bearing
JP2004232666A (en) Ball screw with spline
JP2009204075A (en) Rolling bearing
JP2023130566A (en) Bearing ring and conical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4334184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees