JP4333907B2 - Overdischarge prevention circuit for lithium ion secondary battery - Google Patents

Overdischarge prevention circuit for lithium ion secondary battery Download PDF

Info

Publication number
JP4333907B2
JP4333907B2 JP2003147560A JP2003147560A JP4333907B2 JP 4333907 B2 JP4333907 B2 JP 4333907B2 JP 2003147560 A JP2003147560 A JP 2003147560A JP 2003147560 A JP2003147560 A JP 2003147560A JP 4333907 B2 JP4333907 B2 JP 4333907B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003147560A
Other languages
Japanese (ja)
Other versions
JP2004349195A (en
Inventor
伸 鈴木
和典 圓岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003147560A priority Critical patent/JP4333907B2/en
Publication of JP2004349195A publication Critical patent/JP2004349195A/en
Application granted granted Critical
Publication of JP4333907B2 publication Critical patent/JP4333907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電圧の低下により放電を停止させるリチウムイオン二次電池の過放電防止回路に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は、マイコンや各種の小型家電機器の電源として使用されており、その電圧は充電に伴って上昇し、放電に伴って低下する。リチウムイオン二次電池に負荷(機器)を接続して状態において、残容量がなくなってもさらに放電させると、電池の性能が著しく低下する。このような著しい電池の性能の低下を防ぐためには、残容量がなくなった時点で放電電流を遮断することが必要になる。
【0003】
2つのサーミスタと2つの抵抗の直並列回路の組み合わせによる分圧回路にリチウムイオン二次電池の出力電圧を印加して、分圧回路の出力電圧を設定電圧と比較して放電末期電圧を補正することにより、電池の電圧が同じであっても、温度によって変化するリチウムイオン二次電池の残容量が少なくなったことを正確に検出できるようにした放電末期電圧の補正回路が提案されている(例えば、特許文献参照)。
【0004】
【特許文献1】
特開2002−260744号公報
【0005】
【発明が解決しようとする課題】
しかし、上記従来の回路は、分圧回路の出力電圧を設定電圧より低下したか否かを比較判定するために比較ICが必要であり、コストがかかると共に配置するためのスペースが必要になる。そのため、低コスト化、小型薄型化への対応が難しいという問題がある。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、電池電圧の低下による過放電の停止を、少ない素子による簡単な回路構成でコストの低減、小型薄型化を可能にするものである。
【0007】
そのために本発明は、電圧の低下により放電を停止させるリチウムイオン二次電池の過放電防止回路であって、リチウムイオン二次電池と出力端子との間に接続されて放電電流をスイッチングする半導体制御素子と、出力側電圧によって前記半導体制御素子の動作バイアスを印加する動作バイアス回路とを備え、前記半導体制御素子は、放電電流を流す極性の単方向半導体制御素子であり、逆極性に充電電流を流す単方向整流素子が並列接続され、前記動作バイアス回路に非線形抵抗素子を直列に接続して前記出力側電圧の低下により前記半導体制御素子をオフにして放電を停止させるように構成したことを特徴とするものである。
【0008】
さらに、前記動作バイアス回路は、複数の抵抗と前記非線形抵抗素子の直列接続回路からなる分圧回路であり、前記非線形抵抗素子は、定電圧ダイオードであり、前記半導体制御素子は、電界効果トランジスタからなることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るリチウムイオン二次電池の過放電防止回路の実施の形態を示す図であり、BATTはリチウムイオン二次電池、TRはトランジスタ(PNP)、ZDは定電圧ダイオード、Dはダイオード、C1〜C4はコンデンサ、R1〜R3は抵抗を示す。
【0010】
図1において、リチウムイオン二次電池BATTに対し、トランジスタTRは、出力端子との間に放電電流を流す極性に直列に接続され電圧の低下に伴い放電停止のスイッチング制御を行うPNP型の単方向半導体制御素子である。定電圧ダイオードZDは、電圧の低下に伴い放電停止のスイッチング制御を行う電圧を越えると定電圧を維持し、その電圧以下でオフになる非線形抵抗素子であり、抵抗R1、R2は、この定電圧ダイオードZDと出力側で直列接続され、トランジスタTRのベースバイアス回路を構成するものである。ダイオードDは、トランジスタTRと逆極性に並列接続され、リチウムイオン二次電池の充電電流を流す単方向整流素子である。
【0011】
リチウムイオン二次電池BATTは、残容量がなくなってもさらに放電させると、電池の性能が著しく低下する。このような著しい電池の性能の低下を招く電圧に合わせ、定電圧ダイオードZD、抵抗R1、R2の値が選定され、その電圧以下で定電圧ダイオードZDが高抵抗値になりトランジスタTRにベース電流が供給されなくなってトランジスタTRは非導通状態となる。
【0012】
過放電をしないように電池の電圧を比較等でモニタする従来の回路では、放電を停止させていても、モニタ回路にリチウムイオン二次電池BATTからその動作に必要な微小電流が供給されている。そのため、放電を停止した後であっても、結果的に僅かな電流でも放電が続けられることになる。本実施形態は、トランジスタTRの特性の飽和領域(最も電流の流れる電圧)を利用して、オン/オフを行うものであり、電圧が低下してオフにスイッチされると電流は流れなくなる。しかも、その動作バイアスを与える回路を出力側に接続することにより、トランジスタTRがオフになった状態では、ベースバイアス回路にも電流が流れなくなり、リチウムイオン二次電池BATTからの放電を完全に停止させることができる。しかも、ICを用いることなく、限りなく半導体1個のコストと最小の回路部品搭載数で構成することができる。
【0013】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、PNPトランジスタを用いたが、これらの回路をリチウムイオン二次電池BATTの(−)の給電ラインに設けることによりNPNトランジスタを用いて構成することもでき、また、単方向半導体制御素子であるトランジスタとダイオードとの組み合わせに変えて、双方向半導体制御素子であるFET(電界効果トランジスタ)を用いて構成することもできる。さらに、動作バイアス回路に定電圧ダイオードを接続したが、サーミスタなど定電圧ダイオード以外の非線形抵抗素子を組み合わせて使用してもよい。
【0014】
【発明の効果】
以上の説明から明らかなように、本発明によれば、電圧の低下により放電を停止させるリチウムイオン二次電池の過放電防止回路であって、リチウムイオン二次電池と出力端子との間に接続されて放電電流をスイッチングする半導体制御素子と、出力側電圧によって半導体制御素子の動作バイアスを印加する動作バイアス回路とを備え、半導体制御素子は、放電電流を流す極性の単方向半導体制御素子であり、逆極性に充電電流を流す単方向整流素子が並列接続され、動作バイアス回路に非線形抵抗素子を直列に接続して出力側電圧の低下により半導体制御素子をオフにして放電を停止させるように構成したので、特に低電圧での保護が必要とされ外部からの影響を避ける必要があるリチウムイオン二次電池において、ICなどを用いた放電停止回路を設けなくても、トランジスタの動作可能電圧を利用して、リチウムイオン二次電池の電圧の低下によりそれ以上の放電を切断することができ、所謂負荷開放により、電気的な外部からの影響を遮断することができる。
【0015】
したがって、リチウムイオン二次電池にとって、有効な保護が可能になり、保護のための回路の簡素化、コンパクト化が可能となる。しかも、従来のICによる構成に比べて実質的に1個のトランジスタによる構成になるので、検出部を削減でき回路消費を最小の状態にし、素子搭載数を削減できるので、小型化、軽量化、コストの低減が可能になる。
【図面の簡単な説明】
【図1】 本発明に係るリチウムイオン二次電池の過放電防止回路の実施の形態を示す図である。
【符号の説明】
BATT…リチウムイオン二次電池、TR…トランジスタ(PNP)、ZD…定電圧ダイオード、D…ダイオード、C1〜C4…コンデンサ、R1〜R3…抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an overdischarge prevention circuit for a lithium ion secondary battery that stops discharge due to a decrease in voltage.
[0002]
[Prior art]
Lithium ion secondary batteries are used as a power source for microcomputers and various small household electrical appliances, and the voltage increases with charging and decreases with discharging. If a load (apparatus) is connected to the lithium ion secondary battery and the battery is further discharged even if there is no remaining capacity, the performance of the battery is significantly reduced. In order to prevent such a significant decrease in battery performance, it is necessary to cut off the discharge current when there is no remaining capacity.
[0003]
The output voltage of the lithium ion secondary battery is applied to a voltage divider circuit that is a combination of two thermistors and two resistors in series and parallel, and the output voltage of the voltage divider circuit is compared with the set voltage to correct the end-of-discharge voltage. Thus, a correction circuit for the end-of-discharge voltage has been proposed in which it is possible to accurately detect that the remaining capacity of the lithium ion secondary battery, which changes with temperature, is reduced even when the battery voltage is the same ( For example, see Patent Literature).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-260744
[Problems to be solved by the invention]
However, the conventional circuit requires a comparison IC to compare and determine whether or not the output voltage of the voltage dividing circuit is lower than the set voltage, which is costly and requires a space for placement. Therefore, there is a problem that it is difficult to cope with cost reduction and reduction in size and thickness.
[0006]
[Means for Solving the Problems]
The present invention solves the above-described problems, and makes it possible to stop overdischarge due to a decrease in battery voltage, reduce costs, and reduce the size and thickness with a simple circuit configuration with a small number of elements.
[0007]
Therefore, the present invention is an overdischarge prevention circuit for a lithium ion secondary battery that stops discharge due to a voltage drop, and is a semiconductor control that is connected between the lithium ion secondary battery and an output terminal to switch a discharge current. An operation bias circuit that applies an operation bias of the semiconductor control element by an output side voltage, and the semiconductor control element is a unidirectional semiconductor control element having a polarity that allows a discharge current to flow, and a charge current having a reverse polarity. A unidirectional rectifying element to be flown is connected in parallel, and a non-linear resistance element is connected in series to the operation bias circuit, and the semiconductor control element is turned off due to a decrease in the output side voltage to stop discharging. It is what.
[0008]
Further, the operation bias circuit is a voltage dividing circuit including a series connection circuit of a plurality of resistors and the nonlinear resistance element, the nonlinear resistance element is a constant voltage diode, and the semiconductor control element is a field effect transistor. It is characterized by.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an overdischarge prevention circuit for a lithium ion secondary battery according to the present invention, where BATT is a lithium ion secondary battery, TR is a transistor (PNP), ZD is a constant voltage diode, and D is Diodes, C1 to C4 are capacitors, and R1 to R3 are resistors.
[0010]
In FIG. 1, a transistor TR is connected in series with a polarity that allows a discharge current to flow between an output terminal and a lithium ion secondary battery BATT. It is a semiconductor control element. The constant voltage diode ZD is a non-linear resistance element that maintains a constant voltage when exceeding a voltage for performing switching control for stopping discharge as the voltage drops, and is turned off below that voltage. The resistors R1 and R2 are constant voltage elements. The diode ZD and the output side are connected in series to form a base bias circuit of the transistor TR. The diode D is a unidirectional rectifying element that is connected in parallel with the transistor TR in a reverse polarity and that flows a charging current of the lithium ion secondary battery.
[0011]
If the lithium ion secondary battery BATT is further discharged even if there is no remaining capacity, the performance of the battery is significantly reduced. The voltage of the constant voltage diode ZD and the resistors R1 and R2 are selected in accordance with the voltage that causes a significant deterioration in the performance of the battery. Below that voltage, the constant voltage diode ZD becomes a high resistance value, and the base current is supplied to the transistor TR. The transistor TR becomes non-conductive because it is not supplied.
[0012]
In a conventional circuit that monitors the voltage of a battery by comparison or the like so as not to overdischarge, even when the discharge is stopped, a minute current necessary for the operation is supplied from the lithium ion secondary battery BATT to the monitor circuit. . Therefore, even after the discharge is stopped, as a result, the discharge can be continued even with a small current. In the present embodiment, the transistor TR is turned on / off using the saturation region of the characteristics of the transistor TR (the voltage through which the current flows most). When the voltage is lowered and switched off, the current does not flow. In addition, by connecting a circuit that provides the operation bias to the output side, when the transistor TR is turned off, no current flows through the base bias circuit, and the discharge from the lithium ion secondary battery BATT is completely stopped. Can be made. In addition, without using an IC, the semiconductor device can be configured with the cost of one semiconductor and the minimum number of circuit components mounted.
[0013]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the PNP transistor is used. However, these circuits can be configured using the NPN transistor by providing the circuit in the (−) feeding line of the lithium ion secondary battery BATT. Instead of a combination of a transistor that is a semiconductor control element and a diode, an FET (field effect transistor) that is a bidirectional semiconductor control element may be used. Furthermore, although the constant voltage diode is connected to the operation bias circuit, a non-linear resistance element other than the constant voltage diode such as a thermistor may be used in combination.
[0014]
【The invention's effect】
As is apparent from the above description, according to the present invention, there is provided an overdischarge prevention circuit for a lithium ion secondary battery that stops discharge due to a voltage drop, and is connected between the lithium ion secondary battery and the output terminal. A semiconductor control element that switches the discharge current and an operation bias circuit that applies an operation bias of the semiconductor control element by the output side voltage, and the semiconductor control element is a unidirectional semiconductor control element having a polarity that causes the discharge current to flow A unidirectional rectifying element that allows charging current to flow in reverse polarity is connected in parallel, and a non-linear resistance element is connected in series to the operating bias circuit, and the semiconductor control element is turned off and the discharge is stopped when the output voltage drops Therefore, discharge using an IC or the like in a lithium ion secondary battery that needs to be protected at a low voltage and must avoid external influences. Even without providing a shut-off circuit, it is possible to cut off the further discharge by lowering the voltage of the lithium ion secondary battery using the operable voltage of the transistor. The influence can be cut off.
[0015]
Therefore, effective protection is possible for the lithium ion secondary battery, and the circuit for protection can be simplified and made compact. In addition, since the configuration is substantially one transistor compared to the conventional IC configuration, the number of detectors can be reduced, the circuit consumption can be minimized, and the number of elements mounted can be reduced. Cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an overdischarge prevention circuit for a lithium ion secondary battery according to the present invention.
[Explanation of symbols]
BATT ... lithium ion secondary battery, TR ... transistor (PNP), ZD ... constant voltage diode, D ... diode, C1-C4 ... capacitor, R1-R3 ... resistance

Claims (4)

電圧の低下により放電を停止させるリチウムイオン二次電池の過放電防止回路であって、リチウムイオン二次電池と出力端子との間に接続されて放電電流をスイッチングする半導体制御素子と、出力側電圧によって前記半導体制御素子の動作バイアスを印加する動作バイアス回路とを備え、前記半導体制御素子は、放電電流を流す極性の単方向半導体制御素子であり、逆極性に充電電流を流す単方向整流素子が並列接続され、前記動作バイアス回路に非線形抵抗素子を直列に接続して前記出力側電圧の低下により前記半導体制御素子をオフにして放電を停止させるように構成したことを特徴とするリチウムイオン二次電池の過放電防止回路。An overdischarge prevention circuit for a lithium ion secondary battery that stops discharge due to a voltage drop, a semiconductor control element that is connected between the lithium ion secondary battery and an output terminal and switches a discharge current, and an output side voltage The semiconductor control element is a unidirectional semiconductor control element having a polarity for flowing a discharge current, and a unidirectional rectifier element for flowing a charging current in the reverse polarity. Lithium ion secondary characterized in that it is connected in parallel, and a non-linear resistance element is connected in series to the operation bias circuit, and the semiconductor control element is turned off and the discharge is stopped when the output side voltage decreases. Battery overdischarge prevention circuit. 前記動作バイアス回路は、複数の抵抗と前記非線形抵抗素子の直列接続回路からなる分圧回路であることを特徴とする請求項1記載のリチウムイオン二次電池の過放電防止回路。  2. The overdischarge prevention circuit for a lithium ion secondary battery according to claim 1, wherein the operation bias circuit is a voltage dividing circuit including a series connection circuit of a plurality of resistors and the nonlinear resistance element. 前記非線形抵抗素子は、定電圧ダイオードであることを特徴とする請求項1又は2記載のリチウムイオン二次電池の過放電防止回路。  3. The overdischarge prevention circuit for a lithium ion secondary battery according to claim 1, wherein the non-linear resistance element is a constant voltage diode. 前記半導体制御素子は、電界効果トランジスタからなることを特徴とする請求項1乃至3のいずれかに記載のリチウムイオン二次電池の過放電防止回路。  The overdischarge prevention circuit for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the semiconductor control element comprises a field effect transistor.
JP2003147560A 2003-05-26 2003-05-26 Overdischarge prevention circuit for lithium ion secondary battery Expired - Fee Related JP4333907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147560A JP4333907B2 (en) 2003-05-26 2003-05-26 Overdischarge prevention circuit for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147560A JP4333907B2 (en) 2003-05-26 2003-05-26 Overdischarge prevention circuit for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004349195A JP2004349195A (en) 2004-12-09
JP4333907B2 true JP4333907B2 (en) 2009-09-16

Family

ID=33534051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147560A Expired - Fee Related JP4333907B2 (en) 2003-05-26 2003-05-26 Overdischarge prevention circuit for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4333907B2 (en)

Also Published As

Publication number Publication date
JP2004349195A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4761454B2 (en) Charge / discharge protection circuit and power supply device
JP4186052B2 (en) Battery pack with charge control function
JP3848574B2 (en) Charge / discharge control device
US8193774B2 (en) Battery pack
US7956581B2 (en) Rechargeable battery pack
EP3525309A1 (en) Protection circuit
KR20070120910A (en) Overvoltage protection circuit and electronic device
JP2008148496A (en) Charging apparatus
EP3644473B1 (en) Battery protection circuit and battery pack comprising same
JPH0837737A (en) Secondary battery protective device
JP2006340450A (en) Battery protective circuit
US20200381929A1 (en) Battery protective circuit and battery pack comprising same
JPH04156233A (en) Charging equipment
JP2004515197A (en) Charger circuit
JP2925241B2 (en) Rechargeable battery device
JP2006121827A (en) Protection circuit for secondary battery
JP2009213196A (en) Device for adjusting capacity of battery pack
JP2005312140A (en) Charging and discharging control circuit
JP4333907B2 (en) Overdischarge prevention circuit for lithium ion secondary battery
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
US7397644B2 (en) Power supply device and electric circuit
JPH07169509A (en) Charge/discharge equipment
JPH09331638A (en) Electronic equipment, and device and method for charging
JP2004350468A (en) Discharge control circuit for lithium-ion secondary battery
JP2003087994A (en) Power supply backup circuit and reverse current consuming circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees