JP4333577B2 - Fuel property determination device for internal combustion engine - Google Patents

Fuel property determination device for internal combustion engine Download PDF

Info

Publication number
JP4333577B2
JP4333577B2 JP2004373716A JP2004373716A JP4333577B2 JP 4333577 B2 JP4333577 B2 JP 4333577B2 JP 2004373716 A JP2004373716 A JP 2004373716A JP 2004373716 A JP2004373716 A JP 2004373716A JP 4333577 B2 JP4333577 B2 JP 4333577B2
Authority
JP
Japan
Prior art keywords
fuel
upstream
air
fuel ratio
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004373716A
Other languages
Japanese (ja)
Other versions
JP2006177312A (en
Inventor
亮児 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004373716A priority Critical patent/JP4333577B2/en
Publication of JP2006177312A publication Critical patent/JP2006177312A/en
Application granted granted Critical
Publication of JP4333577B2 publication Critical patent/JP4333577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の燃料性状を判別する技術に関する。   The present invention relates to a technique for determining fuel properties of an internal combustion engine.

内燃機関等の燃料としてエタノール、メタノール、メチルエステル等のバイオ燃料が知られている。このようなバイオ燃料と化石系燃料(軽油やガソリンなど)の混合燃料が使用される場合に、酸化触媒の前後に空燃比センサを配置し、これら空燃比センサの出力信号を選択的に用いて燃料噴射量の制御を行うことにより、バイオ燃料濃度の変動にかかわらず正確な空燃比制御を行おうとする技術が提案されている(たとえば、特許文献1を参照)。
特開平5−209549号公報 特開2003−254037号公報 特許第2861377号公報
Biofuels such as ethanol, methanol, and methyl ester are known as fuels for internal combustion engines and the like. When such a mixed fuel of biofuel and fossil fuel (light oil, gasoline, etc.) is used, air-fuel ratio sensors are arranged before and after the oxidation catalyst, and the output signals of these air-fuel ratio sensors are selectively used. There has been proposed a technique for performing accurate air-fuel ratio control regardless of variation in biofuel concentration by controlling the fuel injection amount (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 5-209549 JP 2003-254037 A Japanese Patent No. 2861377

ところで、排気行程中に燃料噴射弁から燃料を噴射させ、或いは排気通路に設けられた燃料添加弁から燃料を噴射させることにより触媒へ未燃の燃料を供給する場合には、触媒上流端に燃料が付着し易い。触媒上流端に燃料が付着すると、触媒下流の空燃比(排気中の酸素濃度)が変化する。上記した従来の技術では触媒上流端に燃料が付着した場合に、混合燃料中のバイオ燃料濃度が変化したものとみなされて燃料噴射量が制御される可能性がある。   By the way, when unburned fuel is supplied to the catalyst by injecting fuel from the fuel injection valve during the exhaust stroke or by injecting fuel from the fuel addition valve provided in the exhaust passage, the fuel is supplied to the upstream end of the catalyst. Is easy to adhere. When fuel adheres to the upstream end of the catalyst, the air-fuel ratio (oxygen concentration in the exhaust) downstream of the catalyst changes. In the conventional technique described above, when fuel adheres to the upstream end of the catalyst, it is considered that the biofuel concentration in the mixed fuel has changed, and the fuel injection amount may be controlled.

本発明は、上記した実情に鑑みてなされたものであり、その目的は燃料中の異種燃料濃度の変化を正確に把握することが可能な技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of accurately grasping the change in the concentration of different fuels in the fuel.

本発明は、上記した課題を解決するために、排気浄化触媒の上下流に配置された上流側空燃比センサ及び下流側空燃比センサと、上流側空燃比センサより上流から排気浄化触媒へ向けて内燃機関の燃料を供給する燃料供給手段とを備えた内燃機関において、燃料供給手段が燃料供給を行ったときの下流側空燃比センサ出力とベース空燃比との偏差を積算するとともに上流側空燃比センサ出力をモニタし、その積算値が予め定められた基準値(下流側基準値)と略同等であることを条件に前記した上流側空燃比センサ出力をパラメータとして燃料性状を判定するようにした。   In order to solve the above-described problems, the present invention provides an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor disposed upstream and downstream of the exhaust purification catalyst, and an upstream air-fuel ratio sensor from the upstream toward the exhaust purification catalyst. In an internal combustion engine having a fuel supply means for supplying fuel for the internal combustion engine, the difference between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supply means supplies the fuel is integrated and the upstream air-fuel ratio The sensor output is monitored, and the fuel property is determined by using the upstream air-fuel ratio sensor output as a parameter on the condition that the integrated value is substantially equal to a predetermined reference value (downstream reference value). .

詳細には、本発明にかかる内燃機関の燃料性状判定装置は、燃料供給手段が正常に燃料供給を行ったときの下流側空燃比センサ出力とベース空燃比との偏差の積算値を下流側基準値として記憶する第1記憶手段と、予め想定された性状の基準燃料を燃料供給手段が正常に供給したときの上流側空燃比センサの出力を上流側基準値として記憶する第2記憶手段と、燃料供給手段が燃料供給を行ったときに下流側空燃比センサ出力とベース空燃比との偏差を積算する演算手段と、演算手段の演算値と下流側基準値の差が所定量以下であることを条件に上流側空燃比センサの出力と上流側基準値を比較し、両者の差が許容範囲を超えていれば現在の燃料性状が基準燃料とは異なる性状であると判定する判定手段と、を備えるようにした。ベース空燃比は、燃料供給手段から燃料が供給されていないときの排気空燃比であり、二次空気などの添加等が無い限り内燃機関の空燃比と同等となる。   Specifically, the internal combustion engine fuel property determination apparatus according to the present invention uses the downstream reference value as the integrated value of the deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supply means normally supplies fuel. First storage means for storing the value as a value, second storage means for storing the output of the upstream air-fuel ratio sensor when the fuel supply means normally supplies the reference fuel having the assumed property as the upstream reference value, The calculating means for integrating the deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supplying means supplies the fuel, and the difference between the calculated value of the calculating means and the downstream reference value is not more than a predetermined amount. A determination means for comparing the output of the upstream air-fuel ratio sensor and the upstream reference value on the condition, and determining that the current fuel property is different from the reference fuel if the difference between the two exceeds an allowable range; I was prepared to. The base air-fuel ratio is the exhaust air-fuel ratio when no fuel is supplied from the fuel supply means, and is equivalent to the air-fuel ratio of the internal combustion engine unless secondary air or the like is added.

バイオ燃料などの異種燃料が混合された燃料(以下、異種混合燃料と称する)は、異種
燃料が混合されていない燃料(基準燃料)とは異なる蒸発性(蒸発可能な温度)を有する。このため、燃料供給手段が異種混合燃料を供給した場合と基準燃料を供給した場合とでは、燃料供給量が同量であっても上流側空燃比センサの出力が異なるようになる。
A fuel in which different types of fuels such as biofuels are mixed (hereinafter referred to as different types of mixed fuels) has a different evaporability (evaporable temperature) than a fuel in which different types of fuels are not mixed (reference fuel). For this reason, the output of the upstream air-fuel ratio sensor differs between the case where the fuel supply means supplies the heterogeneous mixed fuel and the case where the reference fuel is supplied even if the fuel supply amount is the same.

例えば、燃料中のバイオ燃料濃度が高くなると燃料の蒸発性が低下するため、燃料供給手段から供給された燃料が上流側空燃比センサに到達するまでに蒸発しきれなくなる。供給燃料が上流側空燃比センサに到達するまでに蒸発しきれなくなると、上流側空燃比センサは実際の空燃比よりリーンな信号を出力する。この傾向は、燃料中のバイオ燃料濃度が高くなるほど顕著となる。   For example, when the concentration of biofuel in the fuel increases, the evaporability of the fuel decreases, so that the fuel supplied from the fuel supply means cannot evaporate until it reaches the upstream air-fuel ratio sensor. If the supplied fuel cannot evaporate before reaching the upstream air-fuel ratio sensor, the upstream air-fuel ratio sensor outputs a signal that is leaner than the actual air-fuel ratio. This tendency becomes more prominent as the biofuel concentration in the fuel increases.

従って、上流側空燃比センサの出力が予め定められた上流側基準値とは異なる値を示している時には、内燃機関の燃料が基準燃料とは異なる燃料性状を有しているとみなすことができる。このように上流側空燃比センサの出力をパラメータとすることにより、排気浄化触媒の上流側端面に供給燃料が付着した場合等であってもその影響を受けることなく燃料性状を判定することが可能となる。   Therefore, when the output of the upstream air-fuel ratio sensor shows a value different from a predetermined upstream reference value, it can be considered that the fuel of the internal combustion engine has a fuel property different from that of the reference fuel. . In this way, by using the output of the upstream air-fuel ratio sensor as a parameter, it is possible to determine the fuel properties without being affected even if the supplied fuel adheres to the upstream end face of the exhaust purification catalyst. It becomes.

尚、比較対象となる上流側空燃比センサ出力及び上流側基準値としては、(1)燃料供給手段の燃料供給によって上流側空燃比センサ出力がベース空燃比よりリッチ側へ変化し始めた時から上流側空燃比センサ出力がベース空燃比に復帰するまでの期間(以下、上流側空燃比変化期間と称する)におけるベース空燃比と上流側空燃比センサ出力との偏差の積算値(以下、上流側空燃比積算偏差量と称する)、(2)上流側空燃比変化期間における上流側空燃比センサ出力の最小値、(3)上流側空燃比変化期間における上流側空燃比センサ出力とベース空燃比との偏差の最大値等を用いることができる。   The upstream air-fuel ratio sensor output and the upstream reference value to be compared are as follows: (1) When the upstream air-fuel ratio sensor output starts to change from the base air-fuel ratio to the rich side due to the fuel supply of the fuel supply means. An integrated value (hereinafter, upstream side) of the deviation between the base air-fuel ratio and the upstream air-fuel ratio sensor output during a period until the upstream side air-fuel ratio sensor output returns to the base air-fuel ratio (hereinafter referred to as upstream air-fuel ratio change period). (2) Minimum value of upstream air-fuel ratio sensor output during upstream air-fuel ratio change period, (3) Upstream air-fuel ratio sensor output and base air-fuel ratio during upstream air-fuel ratio change period The maximum value of the deviation can be used.

ところで、上流側空燃比センサの出力は、燃料中の異種燃料濃度が変化した場合に加え、燃料供給手段が劣化や故障等によって規定量の燃料を供給できなくなった場合にも変化する。例えば、燃料供給手段の劣化や故障等によって実際の燃料供給量が目標供給量より多く又は少なくなると、燃料性状が同一であっても上流側空燃比センサの出力が基準値より低く又は高くなる。   Incidentally, the output of the upstream side air-fuel ratio sensor changes not only when the concentration of the different fuel in the fuel changes, but also when the fuel supply means cannot supply a specified amount of fuel due to deterioration or failure. For example, if the actual fuel supply amount becomes larger or smaller than the target supply amount due to deterioration or failure of the fuel supply means, the output of the upstream air-fuel ratio sensor becomes lower or higher than the reference value even if the fuel properties are the same.

このように燃料供給手段の劣化や故障等によって実際の燃料供給量が目標供給量と異なった場合に上記した燃料性状の判定が行われると、燃料性状が変化していないにも拘わらず燃料性状が変化したと誤判定される可能性がある。例えば、燃料供給手段の実際の燃料供給量が目標供給量を下回っている時に上記した燃料性状の判定が行われると、基準燃料より蒸発性の低い異種燃料の濃度が高いと誤判定される可能性がある。   As described above, when the actual fuel supply amount is different from the target supply amount due to deterioration or failure of the fuel supply means, when the fuel property determination is performed, the fuel property is not changed even though the fuel property is not changed. May be erroneously determined to have changed. For example, if the above-described fuel property determination is performed when the actual fuel supply amount of the fuel supply means is lower than the target supply amount, it may be erroneously determined that the concentration of the heterogeneous fuel having lower evaporation than the reference fuel is high. There is sex.

従って、燃料性状を正確に判定するためには、上流側空燃比センサ出力と基準値との差が燃料添加弁の劣化に因るものであるか、或いは異種燃料濃度の変化に因るものであるか区別する必要がある。   Therefore, in order to accurately determine the fuel property, the difference between the upstream air-fuel ratio sensor output and the reference value is due to the deterioration of the fuel addition valve or due to the change in the different fuel concentration. It is necessary to distinguish whether there is.

これに対し、本発明の内燃機関の燃料性状判定装置は、燃料供給手段が正常に燃料供給を行ったときの下流側空燃比センサ出力とベース空燃比との偏差の積算値を下流側基準値として記憶する第1記憶手段と、燃料供給手段が実際に燃料供給を行った時に下流側空燃比センサ出力とベース空燃比との偏差の積算値(以下、下流側空燃比積算偏差量と称する)を演算する演算手段とを備え、下流側空燃比積算偏差量と下流側基準値の差が所定量以下であることを条件に上流側空燃比センサの出力と上流側基準値を比較するようにした。   In contrast, the fuel property determination apparatus for an internal combustion engine according to the present invention uses the downstream reference value as the integrated value of the deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supply means normally supplies fuel. As an integrated value of the deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supply means actually supplies fuel (hereinafter referred to as downstream air-fuel ratio integrated deviation amount) And calculating the output of the upstream air-fuel ratio sensor and the upstream reference value on condition that the difference between the downstream air-fuel ratio integrated deviation amount and the downstream reference value is equal to or less than a predetermined amount. did.

燃料供給手段から供給された燃料量は、下流側空燃比センサ出力がベース空燃比より低く(リッチに)なり始めた時からベース空燃比へ復帰する時までの期間(以下、下流側空燃比変化期間と称する)における下流側空燃比センサ出力とベース空燃比との偏差を積算
した値(下流側空燃比積算偏差量)と相関する。この相関関係は、異種燃料濃度が変化した場合や排気浄化触媒の上流側端面に供給燃料が付着した場合であっても成立する。
The amount of fuel supplied from the fuel supply means is the period from the time when the downstream air-fuel ratio sensor output begins to become lower (rich) than the base air-fuel ratio to the time when the output returns to the base air-fuel ratio (hereinafter referred to as downstream air-fuel ratio change) This is correlated with the value (downstream air-fuel ratio integrated deviation amount) obtained by integrating the deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio. This correlation holds even when the concentration of different fuels changes or when the supplied fuel adheres to the upstream end face of the exhaust purification catalyst.

これは、以下の要因に因ると考えられる。すなわち、異種燃料濃度の変化により燃料の蒸発性が変化した場合であっても、燃料供給手段から供給された燃料が排気浄化触媒を通過する際に該排気浄化触媒によって蒸発及び還元反応を誘発されるため、下流側空燃比センサの出力は燃料供給量に相応の値となる。また、供給燃料が排気浄化触媒の上流側端面等に付着した場合は、その付着量の分だけ下流側空燃比センサ出力が一時的に高くなる(リーン寄りの値となる)が、その付着燃料が排気浄化触媒によって蒸発及び還元反応を誘発されるため、下流側空燃比積算偏差量は付着燃料分も加味された値となる。   This is thought to be due to the following factors. That is, even when the evaporability of the fuel changes due to the change in the concentration of the different fuel, when the fuel supplied from the fuel supply means passes through the exhaust purification catalyst, the exhaust purification catalyst induces evaporation and reduction reactions. Therefore, the output of the downstream air-fuel ratio sensor becomes a value corresponding to the fuel supply amount. In addition, when the supplied fuel adheres to the upstream end face or the like of the exhaust purification catalyst, the downstream air-fuel ratio sensor output temporarily increases (becomes a lean value) by the amount of the adhering fuel. However, since the evaporation and reduction reactions are induced by the exhaust purification catalyst, the downstream side air-fuel ratio integrated deviation amount is a value that takes into account the amount of attached fuel.

従って、下流側空燃比積算偏差量は燃料供給手段から実際に供給された燃料量に相応した量となるため、下流側空燃比積算偏差量と下流側基準値との差が所定量以下であれば、燃料供給手段が正常に燃料供給を行ったとみなすことができる。そして、下流側空燃比積算偏差量と下流側基準値との差が所定量以下であることを条件に上流側空燃比センサ出力と上流側基準値との比較が行われれば、燃料性状を正確に判定することができる。すなわち、燃料供給手段の劣化によって上流側空燃比センサの出力が変化した場合に、燃料性状が変化したと誤判定されることがなくなる。   Therefore, since the downstream air-fuel ratio integrated deviation amount corresponds to the amount of fuel actually supplied from the fuel supply means, the difference between the downstream air-fuel ratio integrated deviation amount and the downstream reference value is not more than a predetermined amount. Thus, it can be considered that the fuel supply means has normally supplied the fuel. If the comparison between the upstream air-fuel ratio sensor output and the upstream reference value is made on condition that the difference between the downstream air-fuel ratio integrated deviation amount and the downstream reference value is equal to or less than a predetermined amount, the fuel property is accurately determined. Can be determined. That is, when the output of the upstream air-fuel ratio sensor changes due to deterioration of the fuel supply means, it is not erroneously determined that the fuel property has changed.

本発明によれば、内燃機関の燃料中に異種燃料が混合された場合や異種燃料の濃度が変化した場合に、その事象を正確に判定することが可能となる。   According to the present invention, when different types of fuel are mixed in the fuel of the internal combustion engine or when the concentration of different types of fuel changes, it is possible to accurately determine the event.

以下、本発明の具体的な実施形態について図面に基づいて説明する。
図1は、本発明を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)である。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine).

内燃機関1には、エキゾーストマニフォルド2が接続されている。エキゾーストマニフォルド2は、ターボチャージャ3のタービンハウジング30を介して排気管4に連通している。尚、エキゾーストマニフォルド2には、該エキゾーストマニフォルド2内を流れる排気中へ燃料を添加する燃料添加弁5が取り付けられている。   An exhaust manifold 2 is connected to the internal combustion engine 1. The exhaust manifold 2 communicates with the exhaust pipe 4 via the turbine housing 30 of the turbocharger 3. The exhaust manifold 2 is provided with a fuel addition valve 5 for adding fuel to the exhaust gas flowing through the exhaust manifold 2.

排気管4の途中には、吸蔵還元型NOx触媒を担持したパティキュレートフィルタ6が配置されている。パティキュレートフィルタ6より上流の排気管4には、上流側A/Fセンサ7が取り付けられている。パティキュレートフィルタ6より下流の排気管4には、下流側A/Fセンサ8が取り付けられている。パティキュレートフィルタ6より下流の排気管4には、排気温度センサ9が取り付けられている。   In the middle of the exhaust pipe 4, a particulate filter 6 carrying an NOx storage reduction catalyst is arranged. An upstream A / F sensor 7 is attached to the exhaust pipe 4 upstream of the particulate filter 6. A downstream A / F sensor 8 is attached to the exhaust pipe 4 downstream of the particulate filter 6. An exhaust temperature sensor 9 is attached to the exhaust pipe 4 downstream of the particulate filter 6.

このように構成された内燃機関1には、ECU10が併設されている。ECU10には、前述した上流側A/Fセンサ7、下流側A/Fセンサ8、排気温度センサ9に加えアクセルポジションセンサ11、クランクポジションセンサ12、エアフローメータ13等の各種センサが電気的に接続されている。ECU10は、上記した各種センサの出力信号に基づいて燃料噴射制御等の既知の制御に加え、本発明の要旨となる燃料性状判定制御を実行する。   The internal combustion engine 1 configured as described above is provided with an ECU 10. In addition to the upstream A / F sensor 7, the downstream A / F sensor 8, and the exhaust gas temperature sensor 9, various sensors such as an accelerator position sensor 11, a crank position sensor 12, and an air flow meter 13 are electrically connected to the ECU 10. Has been. The ECU 10 executes fuel property determination control, which is the gist of the present invention, in addition to known control such as fuel injection control based on the output signals of the various sensors described above.

ECU10は、リッチスパイク制御やPM強制再生制御等のように燃料添加弁5から燃料添加が行われるときに燃料性状判定制御を実行する。尚、ECU10は、燃料添加弁5から燃料添加が行われるたびに燃料性状判定制御を実行してもよいが、燃料の給油が行われない限り燃料性状が変化することはないため給油後に初めて燃料添加が実行される時に
のみ燃料性状判定制御を実行すればよい。
The ECU 10 executes fuel property determination control when fuel is added from the fuel addition valve 5 such as rich spike control or PM forced regeneration control. The ECU 10 may execute the fuel property determination control every time fuel is added from the fuel addition valve 5, but the fuel property does not change unless fuel is supplied. The fuel property determination control may be executed only when the addition is executed.

燃料性状判定制御では、ECU10は、燃料添加弁5が燃料添加を行ったときの上流側A/Fセンサ7の出力をパラメータとして燃料性状を判定する。本実施例の燃料性状判定制御は、燃料中に含まれる異種燃料の濃度を判定することを主な目的としている。   In the fuel property determination control, the ECU 10 determines the fuel property using the output of the upstream A / F sensor 7 when the fuel addition valve 5 performs fuel addition as a parameter. The main purpose of the fuel property determination control of this embodiment is to determine the concentration of the different fuel contained in the fuel.

圧縮着火式内燃機関1の基準燃料としては軽油が想定されているが、近年では排気エミッションの低減を目的としてバイオ燃料と軽油の混合燃料(異種混合燃料)が用いられることが予想される。   Light oil is assumed as a reference fuel for the compression ignition internal combustion engine 1, but in recent years, it is expected that a mixed fuel of biofuel and light oil (heterogeneous mixed fuel) is used for the purpose of reducing exhaust emissions.

内燃機関1の燃料として異種混合燃料が用いられた場合、バイオ燃料の混合割合(濃度)によって燃料の蒸発性(蒸発可能な温度)が変動する。例えば、燃料中のバイオ燃料濃度が高くなると燃料の蒸発性が低下(蒸発可能な温度が上昇)するため、そのような燃料が燃料添加弁5から添加されると、添加燃料が上流側A/Fセンサ7へ到達するまでに蒸発し切れなくなる。   When a heterogeneous mixed fuel is used as the fuel for the internal combustion engine 1, the fuel evaporability (evaporable temperature) varies depending on the mixing ratio (concentration) of the biofuel. For example, if the concentration of biofuel in the fuel increases, the evaporability of the fuel decreases (the evaporable temperature increases). Therefore, when such fuel is added from the fuel addition valve 5, the added fuel becomes upstream A / It will not evaporate until it reaches the F sensor 7.

A/Fセンサは液状の燃料には反応し難いため、蒸発し切れていない添加燃料が上流側A/Fセンサ7を通過すると、上流側A/Fセンサ7の出力が実際の空燃比より高い(リーン)値を示すことになる。   Since the A / F sensor does not easily react to liquid fuel, when the added fuel that has not evaporated completely passes through the upstream A / F sensor 7, the output of the upstream A / F sensor 7 is higher than the actual air-fuel ratio. (Lean) value.

図2は、バイオ燃料濃度が高い異種混合燃料と、バイオ燃料濃度が低い異種混合燃料と、基準燃料(軽油の濃度が100%の燃料)とを燃料添加弁5から各々同量添加した場合の上流側A/Fセンサ7の出力を示す図である。図中の実線はバイオ燃料濃度が低い異種混合燃料を添加した時の上流側A/Fセンサ7の出力A/F1を示し、図中の一点鎖線はバイオ燃料濃度が高い異種混合燃料を添加した時の上流側A/Fセンサ7の出力A/F2を示し、図中の点線は基準燃料を添加した時の上流側A/Fセンサ7の出力A/Fsを示している。   FIG. 2 shows a case in which the same amount of a heterogeneous mixed fuel having a high biofuel concentration, a heterogeneous mixed fuel having a low biofuel concentration, and a reference fuel (a fuel having a light oil concentration of 100%) are added from the fuel addition valve 5. It is a figure which shows the output of the upstream A / F sensor. The solid line in the figure shows the output A / F1 of the upstream side A / F sensor 7 when the heterogeneous mixed fuel having a low biofuel concentration is added, and the one-dot chain line in the figure shows the addition of the heterogeneous mixed fuel having a high biofuel concentration The output A / F2 of the upstream A / F sensor 7 at the time is shown, and the dotted line in the figure shows the output A / Fs of the upstream A / F sensor 7 when the reference fuel is added.

図2からも明らかなように、異種混合燃料が添加された時の上流側A/Fセンサ7の出力A/F1、A/F2は基準燃料が添加された時の出力A/Fsより総じてリーンな値を示しており、その傾向はバイオ燃料濃度が高くなるほど顕著となっている。   As apparent from FIG. 2, the outputs A / F1 and A / F2 of the upstream side A / F sensor 7 when the different fuel mixture is added are generally leaner than the outputs A / Fs when the reference fuel is added. This tendency is more pronounced as the biofuel concentration increases.

この現象を定量的に検出する方法としては、(1)上流側空燃比変化期間(図2中のt1からt2までの期間)における上流側空燃比積算偏差量Σ△A/F(図2中の斜線で示した部分の面積)を求め、同一条件下で基準燃料が添加された時の上流側空燃比積算偏差量Σ△A/Fsと比較する方法、(2)上流側空燃比変化期間における上流側A/Fセンサ7の出力A/Fの最小値A/F1min、A/F2minを求め、同一条件下で基準燃料が添加された時の最小値A/Fsminと比較する方法、(3)上流側空燃比変化期間における上流側A/Fセンサ7の出力A/Fとベース空燃比A/Fbとの偏差の最大値(A/Fb−A/F1min、A/Fb−A/F2min)を求め、同一条件下で基準燃料が添加された時の最大値(A/Fb−A/Fsmin)と比較する方法を例示することができる。   As a method for quantitatively detecting this phenomenon, (1) the upstream air-fuel ratio integrated deviation amount ΣΔA / F (in FIG. 2) during the upstream air-fuel ratio change period (the period from t1 to t2 in FIG. 2). (2) The upstream air-fuel ratio change period, and the upstream air-fuel ratio integrated deviation amount ΣΔA / Fs when the reference fuel is added under the same conditions A minimum value A / F1min and A / F2min of the output A / F of the upstream side A / F sensor 7 at A, and a comparison with the minimum value A / Fsmin when the reference fuel is added under the same conditions (3 ) Maximum deviation (A / Fb-A / F1min, A / Fb-A / F2min) between the output A / F of the upstream A / F sensor 7 and the base air-fuel ratio A / Fb during the upstream air-fuel ratio change period The maximum value when the reference fuel is added under the same conditions (A / F b-A / Fsmin) can be exemplified.

本実施例の燃料性状判定制御では、上記した(1)の方法を用いるものとする。その際、基準燃料が添加された場合の上流側空燃比積算変化量Σ△A/Fsを予め実験的に求めておき、その上流側空燃比積算偏差量Σ△A/Fsを上流側基準値としてECU10のROMに記憶しておくものとする。   In the fuel property determination control of this embodiment, the method (1) described above is used. At this time, the upstream air-fuel ratio integrated change amount ΣΔA / Fs when the reference fuel is added is experimentally obtained in advance, and the upstream air-fuel ratio integrated deviation amount ΣΔA / Fs is determined as the upstream reference value. Is stored in the ROM of the ECU 10.

上記した(1)の方法が用いられた場合に、ECU10は、上流側空燃比積算偏差量Σ△A/Fが上流側基準値ΣA/Fsより小さく且つ両者の差が許容範囲を超えていれば、
燃料中にバイオ燃料が混合されていると判定する。そして、ECU10は、上流側空燃比積算偏差量Σ△A/Fと上流側基準値ΣA/Fsの差が大きくなるほどバイオ燃料濃度が高いと判定する。
When the above method (1) is used, the ECU 10 determines that the upstream air-fuel ratio integrated deviation amount ΣΔA / F is smaller than the upstream reference value ΣA / Fs and the difference between the two exceeds the allowable range. If
It is determined that biofuel is mixed in the fuel. Then, the ECU 10 determines that the biofuel concentration is higher as the difference between the upstream air-fuel ratio integrated deviation amount ΣΔA / F and the upstream reference value ΣA / Fs increases.

尚、燃料性状が同じであっても排気温度が異なると、上流側A/Fセンサ7の出力が変化するため、上流側基準値Σ△A/Fsは、排気温度をパラメータとする二次元マップとしてROMに記憶されていてもよい。その際にパラメータとして用いられる排気温度としては、排気温度センサ9の出力を用いることができる。   Even if the fuel properties are the same, if the exhaust temperature is different, the output of the upstream A / F sensor 7 changes. Therefore, the upstream reference value ΣΔA / Fs is a two-dimensional map using the exhaust temperature as a parameter. May be stored in the ROM. As the exhaust temperature used as a parameter at that time, the output of the exhaust temperature sensor 9 can be used.

また、上記した上流側空燃比変化期間において内燃機関1の運転状態が変化すると、それに応じてベース空燃比A/Fbや燃料添加弁5に要求される添加燃料量が変化するため、内燃機関1が定常運転状態にあるとき、好ましくはアイドル運転状態にあるときに燃料性状判定制御が行われることが好ましい。   Further, when the operating state of the internal combustion engine 1 changes during the upstream air-fuel ratio change period described above, the base air-fuel ratio A / Fb and the amount of added fuel required for the fuel addition valve 5 change accordingly. It is preferable that the fuel property determination control is performed when the engine is in the steady operation state, preferably in the idle operation state.

上記したような方法によれば、燃料添加弁5から供給された燃料がパティキュレートフィルタ6の上流側端面等に付着した場合であっても、その影響を受けることなくバイオ燃料濃度を判定することができる。   According to the method as described above, even when the fuel supplied from the fuel addition valve 5 adheres to the upstream end face or the like of the particulate filter 6, the biofuel concentration is determined without being affected by the influence. Can do.

ところで、上流側A/Fセンサ7の出力は、バイオ燃料濃度の変化に加え、燃料添加弁5の劣化や故障などによっても変化する。すなわち、燃料添加弁5の劣化や故障などにより該燃料添加弁5から実際に添加される燃料量が目標添加量より多く又は少なくなると、燃料性状が同じであっても上流側空燃比積算偏差量Σ△A/Fが変化する。このため、燃料添加弁5の実際の添加燃料量が目標添加量と異なっている時に燃料性状の判定が行われると、誤判定を招く可能性がある。   By the way, the output of the upstream A / F sensor 7 changes not only due to the change in the biofuel concentration but also due to deterioration or failure of the fuel addition valve 5. That is, if the amount of fuel actually added from the fuel addition valve 5 becomes larger or smaller than the target addition amount due to deterioration or failure of the fuel addition valve 5, the upstream air-fuel ratio integrated deviation amount even if the fuel properties are the same. ΣΔA / F changes. For this reason, if the fuel property determination is performed when the actual amount of fuel added to the fuel addition valve 5 is different from the target addition amount, an erroneous determination may be caused.

例えば、燃料添加弁5の実際の添加燃料量が目標添加量より少なくなった場合に燃料性状の判定が実行されると、燃料中のバイオ燃料濃度が変化していないにも拘わらずバイオ燃料濃度が上昇した(或いは、実際のバイオ燃料濃度より高い)と誤判定される可能性がある。また、燃料添加弁5の実際の添加燃料量が目標添加量より多くなった場合に燃料性状の判定が行われると、燃料中のバイオ燃料濃度が上昇しているにも拘わらずバイオ燃料濃度が変化していない(或いは、実際のバイオ燃料濃度より低い)と誤判定される可能性がある。   For example, when the fuel property determination is executed when the actual amount of fuel added to the fuel addition valve 5 is less than the target addition amount, the biofuel concentration is not changed even though the biofuel concentration in the fuel has not changed. May increase (or be higher than the actual biofuel concentration). In addition, when the fuel property determination is performed when the actual amount of fuel added to the fuel addition valve 5 exceeds the target addition amount, the biofuel concentration is increased despite the increase in the biofuel concentration in the fuel. There is a possibility of misjudging that it has not changed (or is lower than the actual biofuel concentration).

このため、燃料性状を正確に判定するためには、上流側空燃比積算偏差量Σ△A/Fの変化が燃料添加弁5の劣化や故障に因るものであるか、或いはバイオ燃料濃度の変化に因るものであるか区別する必要がある。   For this reason, in order to accurately determine the fuel property, the change in the upstream air-fuel ratio integrated deviation amount ΣΔA / F is caused by the deterioration or failure of the fuel addition valve 5, or the biofuel concentration It is necessary to distinguish whether it is due to change.

そこで、本実施例では、ECU10は、上流側空燃比積算偏差量Σ△A/Fによる燃料性状の判定を行う前に、燃料添加弁5の劣化判定を行うようにした。   Therefore, in this embodiment, the ECU 10 determines the deterioration of the fuel addition valve 5 before determining the fuel property based on the upstream air-fuel ratio integrated deviation amount ΣΔA / F.

具体的には、ECU10は、燃料添加弁5が燃料添加を行ったときに、上流側空燃比積算偏差量Σ△A/Fに加え、下流側空燃比積算偏差量Σ△A/Fdも演算し、その下流側空燃比積算偏差量Σ△A/Fdをパラメータとして燃料添加弁5の劣化判定を行うようにした。   Specifically, when the fuel addition valve 5 performs fuel addition, the ECU 10 calculates the downstream air-fuel ratio integrated deviation amount ΣΔA / Fd in addition to the upstream air-fuel ratio integrated deviation amount ΣΔA / F. Then, the deterioration determination of the fuel addition valve 5 is performed using the downstream side air-fuel ratio integrated deviation amount ΣΔA / Fd as a parameter.

下流側空燃比積算偏差量Σ△A/Fdは添加燃料の性状に関わらず燃料添加弁5の実際の添加燃料量と相関する。図3は、異種混合燃料と基準燃料とを燃料添加弁5から各々同量添加した場合の下流側A/Fセンサ8の出力を示す図である。図中の実線は異種混合燃料を添加した時の下流側A/Fセンサ8の出力A/Fdを示し、図中の点線は基準燃料を添加した時の下流側A/Fセンサ8の出力A/Fdsを示している。   The downstream side air-fuel ratio integrated deviation amount ΣΔA / Fd correlates with the actual added fuel amount of the fuel addition valve 5 regardless of the nature of the added fuel. FIG. 3 is a diagram illustrating the output of the downstream A / F sensor 8 when the same amount of the different fuel mixture and the reference fuel is added from the fuel addition valve 5. The solid line in the figure shows the output A / Fd of the downstream A / F sensor 8 when the different mixed fuel is added, and the dotted line in the figure shows the output A of the downstream A / F sensor 8 when the reference fuel is added. / Fds is shown.

図3において、異種混合燃料が添加された場合の下流側空燃比変化期間(図3中のt3からt5までの期間)は基準燃料が添加された場合の下流側空燃比変化期間(図3中のt3からt4までの期間)に対して長くなるものの、異種混合燃料が添加された場合の下流側A/Fセンサ8の出力の最小値A/Fdminは基準燃料が添加された場合の下流側A/Fセンサ8の出力の最小値A/Fdsminより高くなる。このため、異種混合燃料が添加された場合の下流側空燃比積算偏差量Σ△A/Fd(図3中の縦線で塗りつぶされた部分の面積)と基準燃料が添加された場合の下流側空燃比積算偏差量Σ△A/Fds(図3中の横線で塗りつぶされた部分の面積)とは略等しくなる。この相関関係は、異種混合燃料中のバイオ燃料濃度が変化しても成立する。   In FIG. 3, the downstream air-fuel ratio change period (period from t3 to t5 in FIG. 3) when the different fuel mixture is added is the downstream air-fuel ratio change period (FIG. 3) when the reference fuel is added. The minimum value A / Fdmin of the output of the downstream side A / F sensor 8 when the mixed fuel is added is the downstream side when the reference fuel is added. It becomes higher than the minimum value A / Fdsmin of the output of the A / F sensor 8. For this reason, the downstream side air-fuel ratio integrated deviation amount ΣΔA / Fd (the area of the portion filled with the vertical line in FIG. 3) when the different fuel mixture is added and the downstream side when the reference fuel is added The air-fuel ratio integrated deviation amount ΣΔA / Fds (the area of the portion painted with a horizontal line in FIG. 3) is substantially equal. This correlation holds even if the biofuel concentration in the heterogeneous mixed fuel changes.

従って、燃料添加弁5が基準燃料を正常に添加した場合の下流側空燃比積算偏差量Σ△A/Fdsを下流側基準値として予めROMに記憶しておき、その下流側基準値Σ△A/Fdsと燃料添加弁5が燃料添加を行った時に演算された下流側空燃比積算偏差量Σ△A/Fdとを比較することにより、燃料添加弁5が劣化しているか否かを判定することができる。   Therefore, the downstream air-fuel ratio integrated deviation amount ΣΔA / Fds when the fuel addition valve 5 normally adds the reference fuel is stored in the ROM in advance as the downstream reference value, and the downstream reference value ΣΔA. / Fds is compared with the downstream air-fuel ratio integrated deviation amount ΣΔA / Fd calculated when the fuel addition valve 5 performs fuel addition to determine whether or not the fuel addition valve 5 has deteriorated. be able to.

以下、燃料性状判定制御について図4のフローチャートに沿って説明する。図4のフローチャートは、燃料性状判定制御ルーチンを示すフローチャートである。この燃料性状判定制御ルーチンは所定期間毎にECU10が繰り返し実行するルーチンである。   Hereinafter, the fuel property determination control will be described with reference to the flowchart of FIG. The flowchart of FIG. 4 is a flowchart showing a fuel property determination control routine. This fuel property determination control routine is a routine repeatedly executed by the ECU 10 at predetermined intervals.

燃料性状判定制御ルーチンでは、ECU10は、先ず燃料添加フラグの値が“1”であるか否かを判別する。燃料添加フラグは、燃料添加弁5から燃料添加を開始するときに“1”がセットされ、燃料添加弁5からの燃料添加が終了されたときに“0”がリセットされるフラグである。   In the fuel property determination control routine, the ECU 10 first determines whether or not the value of the fuel addition flag is “1”. The fuel addition flag is a flag that is set to “1” when fuel addition is started from the fuel addition valve 5 and is reset to “0” when fuel addition from the fuel addition valve 5 is finished.

前記S101において否定判定された場合は、ECU10は本ルーチンの実行を一旦終了する。前記S101において肯定判定された場合は、ECU10はS102へ進み、アイドルフラグの値が“1”であるか否かを判別する。アイドルフラグは、内燃機関1がアイドル運転状態にあるときに“1”がセットされ、アイドル運転状態にないときは“0”がリセットされるフラグである。   If a negative determination is made in S101, the ECU 10 once ends the execution of this routine. If an affirmative determination is made in S101, the ECU 10 proceeds to S102 and determines whether or not the value of the idle flag is “1”. The idle flag is a flag that is set to “1” when the internal combustion engine 1 is in an idle operation state and is reset to “0” when the internal combustion engine 1 is not in an idle operation state.

前記S102において否定判定された場合は、ECU10は本ルーチンの実行を一旦終了する。前記S102において肯定判定された場合は、ECU10はS103へ進み、パティキュレートフィルタ6に担持された吸蔵還元型NOx触媒が活性状態にあるか否かを判別する。   If a negative determination is made in S102, the ECU 10 once ends the execution of this routine. When an affirmative determination is made in S102, the ECU 10 proceeds to S103, and determines whether or not the NOx storage reduction catalyst carried by the particulate filter 6 is in an active state.

前記S103において否定判定された場合は、ECU10は本ルーチンの実行を一旦終了する。これは吸蔵還元型NOx触媒が活性状態にないときは、該吸蔵還元型NOx触媒が燃料添加弁5から供給された燃料の蒸発及び還元反応を誘発させることができなくなり、あるいはパティキュレートフィルタ6の上流側端面に付着した添加燃料の蒸発及び還元反応を誘発することができなくなり、以て下流側空燃比積算偏差量Σ△A/Fdと添加燃料量との相関が成立しなくなる可能性があるからである。   If a negative determination is made in S103, the ECU 10 once ends the execution of this routine. This is because when the NOx storage reduction catalyst is not in an active state, the NOx storage reduction catalyst cannot induce the evaporation and reduction reaction of the fuel supplied from the fuel addition valve 5, or the particulate filter 6 There is a possibility that the evaporation and reduction reaction of the added fuel adhering to the upstream end face cannot be induced, and thus the correlation between the downstream air-fuel ratio integrated deviation amount ΣΔA / Fd and the added fuel amount may not be established. Because.

前記S103において肯定判定された場合は、ECU10は、S104へ進み、上流側空燃比積算偏差量Σ△A/Fと下流側空燃比積算偏差量Σ△A/Fdを演算する。   If an affirmative determination is made in S103, the ECU 10 proceeds to S104, and calculates an upstream air-fuel ratio integrated deviation amount ΣΔA / F and a downstream air-fuel ratio integrated deviation amount ΣΔA / Fd.

S105では、ECU10は、予めROMに記憶されている上流側基準値ΣA/Fsと下流側基準値Σ△A/Fdsを読み込む。   In S105, the ECU 10 reads the upstream reference value ΣA / Fs and the downstream reference value ΣΔA / Fds stored in advance in the ROM.

S106では、ECU10は、下流側空燃比積算偏差量Σ△A/Fdと下流側基準値Σ△A/Fdsとの偏差の絶対値(|Σ△A/Fd−Σ△A/Fds|)が所定量A以下であるか否かを判別する。所定量Aは、下流側A/Fセンサ8の検出誤差などに鑑みて設定される値である。   In S106, the ECU 10 calculates the absolute value (| ΣΔA / Fd−ΣΔA / Fds |) of the deviation between the downstream air-fuel ratio integrated deviation amount ΣΔA / Fd and the downstream reference value ΣΔA / Fds. It is determined whether or not it is a predetermined amount A or less. The predetermined amount A is a value set in view of the detection error of the downstream A / F sensor 8 and the like.

前記S106において肯定判定された場合(|Σ△A/Fd−Σ△A/Fds|≦A)は、ECU10は、S107へ進み、上流側空燃比積算偏差量Σ△A/Fと上流側基準値ΣA/Fsとの偏差に基づいて燃料中のバイオ燃料濃度を判定する。   If an affirmative determination is made in S106 (| ΣΔA / Fd−ΣΔA / Fds | ≦ A), the ECU 10 proceeds to S107, where the upstream air-fuel ratio integrated deviation amount ΣΔA / F and the upstream reference Based on the deviation from the value ΣA / Fs, the biofuel concentration in the fuel is determined.

例えば、ECU10は、上流側空燃比積算偏差量Σ△A/Fと上流側基準値ΣA/Fsの偏差が許容範囲内にあればバイオ燃料濃度が0%であると判定する。上流側空燃比積算偏差量Σ△A/Fが上流側基準値ΣA/Fsより小さく且つ両者の偏差が許容範囲を超えていれば、ECU10は、燃料中にバイオ燃料が混合されているとみなすとともに、前記した偏差をパラメータとしてバイオ燃料濃度を判定する。   For example, the ECU 10 determines that the biofuel concentration is 0% if the deviation between the upstream air-fuel ratio integrated deviation amount ΣΔA / F and the upstream reference value ΣA / Fs is within an allowable range. If the upstream air-fuel ratio integrated deviation amount ΣΔA / F is smaller than the upstream reference value ΣA / Fs and the deviation between the two exceeds the allowable range, the ECU 10 considers that biofuel is mixed in the fuel. At the same time, the biofuel concentration is determined using the above deviation as a parameter.

上流側空燃比積算偏差量Σ△A/Fと上流側基準値ΣA/Fsの偏差(ΣA/Fs−ΣA/F)に基づいてバイオ燃料濃度を判定する場合に、ECU10は、前記偏差が大きくなるほどバイオ燃料濃度が高いと判定する。尚、バイオ燃料濃度と偏差との関係を予めマップ化しておき、そのマップと前記偏差からバイオ燃料濃度が算出されるようにしてもよい。   When determining the biofuel concentration based on the deviation (ΣA / Fs−ΣA / F) between the upstream air-fuel ratio integrated deviation amount ΣΔA / F and the upstream reference value ΣA / Fs, the ECU 10 determines that the deviation is large. It is determined that the biofuel concentration is high. Note that the relationship between the biofuel concentration and the deviation may be mapped in advance, and the biofuel concentration may be calculated from the map and the deviation.

尚、上流側A/Fセンサ7又は下流側A/Fセンサ8の出力が目標空燃比となるように燃料添加弁5の添加燃料量がフィードバック制御される場合には、前記S107において判定されたバイオ燃料濃度に応じて上流側A/Fセンサ7又は下流側A/Fセンサ8の出力を補正するようにしてもよい。この場合、バイオ燃料濃度の変化に因り上流側A/Fセンサ7又は下流側A/Fセンサ8の出力が基準燃料添加時とは異なる値を示しても、添加燃料が適正量に制御される。   When the amount of fuel added to the fuel addition valve 5 is feedback controlled so that the output of the upstream A / F sensor 7 or the downstream A / F sensor 8 becomes the target air-fuel ratio, the determination is made in S107. The output of the upstream A / F sensor 7 or the downstream A / F sensor 8 may be corrected according to the biofuel concentration. In this case, even if the output of the upstream A / F sensor 7 or the downstream A / F sensor 8 shows a value different from that at the time of adding the reference fuel due to the change in the biofuel concentration, the added fuel is controlled to an appropriate amount. .

また、前記したS106において否定判定された場合(|Σ△A/Fd−Σ△A/Fds|>A)は、ECU10は、S108へ進み、燃料添加弁5が劣化していると判定する。   If the negative determination is made in S106 (| ΣΔA / Fd−ΣΔA / Fds |> A), the ECU 10 proceeds to S108 and determines that the fuel addition valve 5 has deteriorated.

尚、燃料添加弁5が劣化していると判定された場合には、ECU10は、実際の添加燃料量が目標量と等しくなるように次回以降の目標量を補正するようにしてもよい。すなわち、ECU10は、下流側空燃比積算偏差量Σ△A/Fdと下流側基準値Σ△A/Fdsの偏差を燃料量に換算し、その換算値により次回の燃料添加時における目標量を補正するようにしてもよい。この場合、次回の燃料添加時において下流側空燃比積算偏差量Σ△A/Fdと下流側基準値Σ△A/Fdsとの偏差が所定量以下に減少していれば、バイオ燃料濃度を正確に判定することが可能となる。   If it is determined that the fuel addition valve 5 has deteriorated, the ECU 10 may correct the target amount for the next and subsequent times so that the actual added fuel amount becomes equal to the target amount. That is, the ECU 10 converts the deviation between the downstream air-fuel ratio integrated deviation amount ΣΔA / Fd and the downstream reference value ΣΔA / Fds into the fuel amount, and corrects the target amount at the next fuel addition by the converted value. You may make it do. In this case, if the deviation between the downstream air-fuel ratio integrated deviation amount ΣΔA / Fd and the downstream reference value ΣΔA / Fds is reduced to a predetermined amount or less at the next fuel addition, the biofuel concentration is accurately determined. Can be determined.

以上述べた実施例によれば、上流側A/Fセンサ7の出力をパラメータとしてバイオ燃料濃度が判定されるため、添加燃料のパティキュレートフィルタ上流側端面に付着した場合であっても正確な判定を行うことができる。さらに、本実施例によれば、実際の添加燃料量が目標量と略同量になっている条件下でバイオ燃料濃度の判定が行われるため、燃料添加弁5の劣化による判定精度の低下を防止することも可能となる。   According to the embodiment described above, since the biofuel concentration is determined using the output of the upstream A / F sensor 7 as a parameter, accurate determination is possible even when the added fuel adheres to the upstream end face of the particulate filter. It can be performed. Furthermore, according to this embodiment, since the determination of the biofuel concentration is performed under the condition that the actual amount of added fuel is substantially the same as the target amount, the determination accuracy decreases due to the deterioration of the fuel addition valve 5. It can also be prevented.

尚、本実施例では、基準燃料に対して異種混合燃料の蒸発性が低くなる例について説明したが、基準燃料に対して異種混合燃料の蒸発性が高く場合にも本発明を適用することが可能である。その場合は、燃料添加弁5から添加された燃料のうち上流側A/Fセンサ7へ到達するまでに蒸発する燃料量が基準燃料添加時より増加するため、上流側A/Fセン
サ7の出力が基準燃料添加時より低くい値(リッチ寄りの値)となる。
In the present embodiment, the example in which the evaporability of the heterogeneous mixed fuel is low with respect to the reference fuel has been described. However, the present invention can also be applied to the case where the evaporability of the heterogeneous mixed fuel is high with respect to the reference fuel. Is possible. In this case, the amount of fuel that evaporates before reaching the upstream A / F sensor 7 among the fuel added from the fuel addition valve 5 increases from the time when the reference fuel is added, so the output of the upstream A / F sensor 7 Becomes a lower value (a value closer to rich) than when the reference fuel is added.

従って、(1)上流側空燃比積算偏差量Σ△A/Fが基準燃料添加時の上流側空燃比積算偏差量Σ△A/Fsより大きい、(2)上流側空燃比変化期間における上流側A/Fセンサ7の最小値A/Fminが基準燃料添加時の最小値A/Fsminより低い、或いは(3)上流側空燃比変化期間における上流側A/Fセンサ7の出力A/Fとベース空燃比A/Fbとの偏差の最大値(A/Fb−A/Fmin)が基準燃料添加時の最大値(A/Fb−A/Fsmin)よりり大きくなると、燃料中に異種燃料が混入されていると判定することができるとともに、上記(1)〜(3)の各々の差が大きくなるほど異種燃料濃度が高いと判定することができる。   Therefore, (1) the upstream air-fuel ratio integrated deviation amount ΣΔA / F is larger than the upstream air-fuel ratio integrated deviation amount ΣΔA / Fs when the reference fuel is added, and (2) the upstream side in the upstream air-fuel ratio change period. The minimum value A / Fmin of the A / F sensor 7 is lower than the minimum value A / Fsmin when the reference fuel is added, or (3) the output A / F and the base of the upstream A / F sensor 7 during the upstream air-fuel ratio change period When the maximum deviation (A / Fb-A / Fmin) from the air-fuel ratio A / Fb becomes larger than the maximum value (A / Fb-A / Fsmin) at the time of adding the reference fuel, different fuels are mixed in the fuel. It can be determined that the different fuel concentration is higher as the difference in each of the above (1) to (3) becomes larger.

本発明を適用する内燃機関の概略構成を示す図The figure which shows schematic structure of the internal combustion engine to which this invention is applied. 燃料添加弁から燃料添加が行われたときの上流側A/Fセンサ出力を示す図The figure which shows the upstream A / F sensor output when fuel addition is performed from the fuel addition valve 燃料添加弁から燃料添加が行われたときの下流側A/Fセンサ出力を示す図The figure which shows the downstream A / F sensor output when fuel addition is performed from the fuel addition valve 燃料性状判定制御ルーチンを示すフローチャートFlow chart showing fuel property determination control routine

符号の説明Explanation of symbols

1・・・・・内燃機関
2・・・・・エキゾーストマニフォルド(排気通路)
4・・・・・排気管(排気通路)
5・・・・・燃料添加弁
6・・・・・パティキュレートフィルタ(排気浄化触媒)
7・・・・・上流側A/Fセンサ(上流側空燃比センサ)
8・・・・・下流側A/Fセンサ(下流側空燃比センサ)
13・・・・ECU
1 ... Internal combustion engine 2 ... Exhaust manifold (exhaust passage)
4. Exhaust pipe (exhaust passage)
5 ... Fuel addition valve 6 ... Particulate filter (exhaust gas purification catalyst)
7: Upstream A / F sensor (upstream air-fuel ratio sensor)
8: Downstream A / F sensor (downstream air-fuel ratio sensor)
13 .... ECU

Claims (4)

内燃機関の排気通路に設けられた排気浄化触媒と、
排気浄化触媒より上流の排気通路に設けられた上流側空燃比センサと、
排気浄化触媒より下流の排気通路に設けられた下流側空燃比センサと、
上流側空燃比センサより上流から排気浄化触媒へ内燃機関の燃料を供給する燃料供給手段と、
燃料供給手段が正常に燃料供給を行ったときの下流側空燃比センサ出力とベース空燃比との偏差の積算値を下流側基準値として記憶する第1記憶手段と、
予め想定された性状の基準燃料を燃料供給手段が正常に供給したときの上流側空燃比センサの出力を上流側基準値として記憶する第2記憶手段と、
燃料供給手段が燃料供給を行った時に下流側空燃比センサ出力とベース空燃比との偏差を積算する演算手段と、
演算手段の演算値と下流側基準値の差が所定量以下であることを条件に上流側空燃比センサの出力と上流側基準値を比較し、両者の差が許容範囲を超えていれば現在の燃料性状が基準燃料とは異なる性状であると判定する判定手段と、
を備えることを特徴とする内燃機関の燃料性状判定装置。
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine;
An upstream air-fuel ratio sensor provided in an exhaust passage upstream of the exhaust purification catalyst;
A downstream air-fuel ratio sensor provided in an exhaust passage downstream of the exhaust purification catalyst;
Fuel supply means for supplying the fuel of the internal combustion engine from upstream to the exhaust purification catalyst from the upstream air-fuel ratio sensor;
First storage means for storing, as a downstream reference value, an integrated value of a deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supply means normally supplies fuel;
Second storage means for storing, as an upstream reference value, an output of the upstream air-fuel ratio sensor when the fuel supply means normally supplies a reference fuel having properties assumed in advance;
Calculating means for integrating the deviation between the downstream air-fuel ratio sensor output and the base air-fuel ratio when the fuel supply means supplies fuel;
Comparing the output of the upstream air-fuel ratio sensor with the upstream reference value on condition that the difference between the calculated value of the calculation means and the downstream reference value is not more than a predetermined amount, if the difference between both exceeds the allowable range Determining means for determining that the fuel property of the fuel is different from the reference fuel;
A fuel property determination apparatus for an internal combustion engine, comprising:
請求項1において、判定手段は、上流側空燃比センサの出力と上流側基準値の差が許容範囲を超えていれば、燃料中に異種燃料が混合されていると判定することを特徴とする内燃機関の燃料性状判定装置。   The determination means according to claim 1, wherein if the difference between the output of the upstream air-fuel ratio sensor and the upstream reference value exceeds an allowable range, it is determined that different types of fuel are mixed in the fuel. A fuel property determination device for an internal combustion engine. 請求項2において、判定手段は、上流側空燃比センサの出力と上流側基準値の差が大きくなるほど、燃料中に含まれる異種燃料の濃度が高いと判定することを特徴とする内燃機関の燃料性状判定装置。   3. The fuel for an internal combustion engine according to claim 2, wherein the determination means determines that the concentration of the different fuel contained in the fuel is higher as the difference between the output of the upstream air-fuel ratio sensor and the upstream reference value is larger. Property determination device. 請求項1において、判定手段は、演算手段の演算値と下流側基準値の差が所定量を超えている場合には、燃料供給手段が劣化又は故障していると判定することを特徴とする内燃機関の燃料性状判定装置。   The determination unit according to claim 1, wherein the determination unit determines that the fuel supply unit has deteriorated or failed when the difference between the calculation value of the calculation unit and the downstream reference value exceeds a predetermined amount. A fuel property determination device for an internal combustion engine.
JP2004373716A 2004-12-24 2004-12-24 Fuel property determination device for internal combustion engine Expired - Fee Related JP4333577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373716A JP4333577B2 (en) 2004-12-24 2004-12-24 Fuel property determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373716A JP4333577B2 (en) 2004-12-24 2004-12-24 Fuel property determination device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006177312A JP2006177312A (en) 2006-07-06
JP4333577B2 true JP4333577B2 (en) 2009-09-16

Family

ID=36731633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373716A Expired - Fee Related JP4333577B2 (en) 2004-12-24 2004-12-24 Fuel property determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4333577B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196409A (en) * 2007-02-14 2008-08-28 Toyota Motor Corp Combustion control device for internal combustion engine
JP2008223709A (en) * 2007-03-15 2008-09-25 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2009013884A (en) * 2007-07-05 2009-01-22 Toyota Motor Corp Fuel degradation detection device of internal combustion engine
US7997063B2 (en) 2007-10-29 2011-08-16 Ford Global Technologies, Llc Controlled air-fuel ratio modulation air fuel sensor input
US20130024094A1 (en) * 2009-12-31 2013-01-24 Gregory Matthew Shaver Methods for controlling combustion of blended biofuels
JP5477031B2 (en) * 2010-02-12 2014-04-23 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006177312A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP2119897B1 (en) ABNORMALITY DIAGNOSIS APPARATUS FOR NOx SENSOR
US9638122B2 (en) Method to diagnose SCR catalyst
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP5110205B2 (en) Control device for internal combustion engine
US9970371B2 (en) Control apparatus and control method for internal combustion engine
JP2009281328A (en) Device for detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
US20090320454A1 (en) Catalyst monitoring system and method
JP2009185628A (en) Fuel injection control system for internal combustion engine
US11492952B2 (en) Catalyst degradation detection apparatus
US8205435B2 (en) Deterioration determination device for catalyst, catalyst deterioration determining method, and engine control unit
US8113187B2 (en) Delay compensation systems and methods
US6684869B2 (en) System and method for detecting an air leak in an engine
JP4333577B2 (en) Fuel property determination device for internal combustion engine
US6568246B1 (en) System and method for detecting an air leak in an exhaust system coupled to an engine
US8112988B2 (en) System and method for desulfating a NOx trap
CN112576394A (en) Modeling to compensate for HEGO sensor drift
JP2010159701A (en) Catalyst deterioration diagnostic device
US8265858B2 (en) Delay calibration systems and methods
JP2009085079A (en) Catalyst deterioration detecting device of internal combustion engine
US7568476B2 (en) Air-fuel ratio control system for internal combustion engine
JP4432769B2 (en) Exhaust gas purification device for internal combustion engine
JP5593794B2 (en) Control device for internal combustion engine
JP2010261345A (en) Exhaust emission control device of internal combustion engine
JP2009203924A (en) Control device of internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees