JP4332980B2 - Manufacturing method of mold for forming honeycomb structure - Google Patents

Manufacturing method of mold for forming honeycomb structure Download PDF

Info

Publication number
JP4332980B2
JP4332980B2 JP2000075908A JP2000075908A JP4332980B2 JP 4332980 B2 JP4332980 B2 JP 4332980B2 JP 2000075908 A JP2000075908 A JP 2000075908A JP 2000075908 A JP2000075908 A JP 2000075908A JP 4332980 B2 JP4332980 B2 JP 4332980B2
Authority
JP
Japan
Prior art keywords
mold material
mold
honeycomb structure
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000075908A
Other languages
Japanese (ja)
Other versions
JP2000326318A (en
Inventor
正昭 石黒
光俊 宮崎
昌克 藤田
徹 竹野
暢彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000075908A priority Critical patent/JP4332980B2/en
Publication of JP2000326318A publication Critical patent/JP2000326318A/en
Application granted granted Critical
Publication of JP4332980B2 publication Critical patent/JP4332980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【0001】
【技術分野】
本発明は,ハニカム構造成形体を成形するための金型をワイヤ放電加工を用いて製造するハニカム構造体成形用金型及びその製造方法に関する。
【0002】
【従来技術】
例えばコージェライト等を主成分としたセラミック製のハニカム構造体は,成形用金型を用いて材料を押出成形することにより製造される。このハニカム構造体は,隔壁を格子状に設けて多数のセルを構成してなり,そのセル形状としては,四角形,六角形等種々の形状がある。
【0003】
例えば六角形状のセルを有するハニカム構造体を製造するには,六角形格子状のスリット溝を有する金型を用いる。
具体的には,図2に示すような,材料供給用の供給穴131と,該供給穴131に連通して六角格子状に設けたスリット溝15とを有するハニカム構造体成形用金型を用いる。
【0004】
上記のごときハニカム構造体成形用金型を製造する方法としては,従来,特開平2−52703号公報に開示されるワイヤ放電加工を用いた製造方法がある。上記従来のハニカム構造体成形用金型9の製造方法を,図16,図17を用いて説明する。
なお,図16において,(A−1)〜(D−1)は,1次加工体〜3次加工体及びハニカム構造体成形用金型9の上面を上にした斜視図で,(A−2)〜(D−2)は,下面を上にした斜視図である。
【0005】
まず,第1金型素材91に互いに独立した多数条の貫通した1次溝915を,ワイヤ放電加工により形成して,1次加工体901を得る(図16(A−1),(A−2))。
次いで,第2金型素材92を上記1次加工体901の上面に接合して2次加工体902を得る(図16(B−1),(B−2))。
【0006】
次いで,上記2次加工体902に,互いに独立した多数条の貫通した2次溝925を,ワイヤ放電加工により形成することにより,3次加工体903を得る(図16(C−1))。この際,上記第1金型素材91には上記2次溝925が1次溝915と連通することにより上記ハニカム状のスリット溝95を形成する(図16(C−2))。
【0007】
次いで,上記供給穴931を有する有穴金型素材93を上記第2金型素材92の下面に接合することにより,上記ハニカム構造体成形用金型9を得る(図16(D−1),(D−2))。
このとき,上記供給穴931は,図17(B)に示すごとく,上記スリット溝95の交点の位置に配置されるように接合する。
【0008】
このようにして,ワイヤ放電加工を用いてハニカム構造体成形用金型9を製造する。上記製造方法においてはワイヤ放電加工を用いるため,任意のハニカム形状のスリット溝を容易かつ生産効率良くハニカム構造体成形用金型を製造することができる。
【0009】
【解決しようとする課題】
しかしながら,上記従来のハニカム構造体成形用金型9の製造方法には以下の問題点がある。
即ち,上記ハニカム構造体成形用金型9は,第1金型素材91と有穴金型素材93との間に第2金型素材92を介在させて三層構造としているため,上記第1金型素材91に形成されたスリット溝95は,直接上記供給穴931に連結されていない(図17(A))。
【0010】
つまり,図17(D)に示すごとく,上記第1金型素材91には,六角形のハニカム状のスリット溝95が設けられている。即ち,上記六角形の一単位は図18(A)における符号M,N,O,P,Q,Rに示す6辺のスリット溝により形成されている。
【0011】
一方,上記第2金型素材92には,図17(C),図16(C−1)に示すごとく,上記2次溝925がジグザグ形状に形成されているのみである。即ち,図18(B)に示すごとく,上記第2金型素材92には,上記スリット溝M,N,O,P,Q,Rによる六角形に対応する部分に関しては,4辺の2次溝S,T,U,Vが形成されているのみである。
【0012】
そのため,上記供給穴931に供給した材料は上記2次溝S,T,U,Vに供給され,これが直接上記スリット溝M,N,O,Qに供給されるが,上記スリット溝P,Rには直接供給されない。その結果,材料は上記スリット溝P,Rに充分に供給されず,上記ハニカム構造体成形用金型9から押出されるハニカム構造体に歪み等の不具合が生ずるおそれがある。
【0013】
また,上記2次溝925に供給された材料は,ここである程度成形され流動性を損なうために,上記スリット溝95の全域に均一に供給することが困難となる。
そのため,得られるハニカム構造体に歪み等の不具合が生じるおそれがある。
【0014】
本発明は,かかる従来の問題点に鑑みてなされたもので,歪み等の不具合が発生しないハニカム構造体を成形することができるハニカム構造体成形用金型を,ワイヤ放電加工を用いて製造することができるハニカム構造体成形用金型及びその製造方法を提供しようとするものである。
【0015】
【課題の解決手段】
請求項1に記載の発明は,材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
該製造方法は,第1金型素材に互いに独立した多数条の貫通した1次溝を,ワイヤ放電加工により形成して,1次加工体を得る第1工程と,
第2金型素材を上記1次加工体の上面に接合して2次加工体を得る第2工程と,
上記2次加工体に,互いに独立した多数条の貫通した2次溝を,ワイヤ放電加工により形成し,この際上記第1金型素材には上記2次溝が上記1次溝と連通することにより形成される上記ハニカム状のスリット溝を形成することにより,3次加工体を得る第3工程と,
上記供給穴を有する有穴金型素材を上記第1金型素材の下面に接合して4次加工体を得る第4工程と,
上記4次加工体から上記第2金型素材を除去する第5工程とからなることを特徴とするハニカム構造体成形用金型の製造方法にある。
【0016】
本発明において最も注目すべきことは,上記第4工程において有穴金型素材を上記第1金型素材の下面に接合し,上記第5工程において,上記4次加工体から第2金型素材を除去することである。
即ち,上記ハニカム状のスリット溝が形成された上記第1金型素材の下面に,直接上記有穴金型素材を接合する(図1(D−1),(D−2)参照)。その後,上記第1金型素材の上面に接合された第2金型素材を除去する(図1(E−1),(E−2)参照)。
【0017】
次に,本発明の作用効果につき説明する。
上記ハニカム構造体成形用金型の製造方法においては,上記のごとく,上記ハニカム状のスリット溝が形成された上記第1金型素材の下面に,直接上記有穴金型素材を接合した後,上記第1金型素材の上面に接合された第2金型素材を除去する。
【0018】
そのため,上記製造方法により得られるハニカム構造体成形用金型の上記スリット溝は直接上記供給穴に連結される。それ故,ハニカム構造体の成形に当り,上記供給穴に供給した材料が上記スリット溝に直接供給される。
即ち,上記供給穴に供給した材料が,流動性のあるままの状態で直接上記スリット溝に供給される。
それ故,材料は,上記スリット溝の全域に均一に供給され,成形されるハニカム構造体が歪む等の不具合が生ずるおそれがない。
【0019】
以上のごとく,本発明によれば,歪み等の不具合が発生しないハニカム構造体を成形することができるハニカム構造体成形用金型を,ワイヤ放電加工を用いて製造することができるハニカム構造体成形用金型の製造方法を提供することができる。
【0020】
次に,請求項2に記載の発明のように,材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
該製造方法は,第1金型素材に一筆書き的に連結した多数条の貫通した1次溝を,ワイヤ放電加工により形成して,1次加工体を得る第1工程と,
第2金型素材を上記1次加工体の上面に接合して2次加工体を得る第2工程と,
上記2次加工体に,一筆書き的に連結した多数条の貫通した2次溝を,ワイヤ放電加工により形成し,この際上記第1金型素材には上記2次溝が上記1次溝と連通することにより形成される上記ハニカム状のスリット溝を形成することにより,3次加工体を得る第3工程と,
上記供給穴を有する有穴金型素材を上記第1金型素材の下面に接合して4次加工体を得る第4工程と,
上記4次加工体から上記第2金型素材を除去する第5工程とからなることを特徴とするハニカム構造体成形用金型の製造方法がある。
【0021】
即ち,上記第1工程及び第3工程において,請求項1の発明とは異なり,上記多数条の1次溝及び2次溝を互いに独立させることなく,一筆書き的に連結させて形成する(図5(A−1),(C−1)参照)。
そのため,ワイヤ放電加工する際のスタートポイントとして使用する小径の貫通穴を多数設ける必要がない。また,1次溝或いは2次溝を1条加工する毎に段取り作業をする必要もない。
従って,一層生産効率良くハニカム構造体成形用金型を製造することができる。
【0022】
次に,請求項3に記載の発明のように,上記第5工程は,第2金型素材を平面研削によって除去することもできる。
これにより,上記第2金型素材を容易に除去することができる。また,この場合には,特に加工時間が短く,仕上り面が平滑となるという利点がある。
【0023】
次に,請求項4に記載の発明のように,上記第5工程は,第2金型素材をワイヤーカットによって除去することもできる。
この場合にも,上記第2金型素材を容易に除去することができる。また,この場合には,特にバリが発生しないという利点がある。
【0024】
次に,請求項5に記載の発明のように,上記スリット溝は,四角形,六角形,又は円形のいずれかとすることもできる。
即ち,上記スリット溝により形成されるハニカムの一つの格子が四角形,六角形,円形とすることができる。
【0025】
これにより,四角形等の任意のスリット溝を有し,それぞれの形状のハニカム構造体を成形するための,ハニカム構造体成形用金型を得ることができる。なお,上記ハニカム構造体成形用金型の製造方法は,ワイヤ放電加工により,上記スリット溝を形成するため,上記いずれの形状のスリット溝であっても,容易に加工することができる。
【0026】
次に,請求項6に記載の発明のように,上記第1金型素材と上記第2金型素材との接合,及び上記第1金型素材と上記有穴金型素材との接合は,接合面に接合媒体を介在させることにより行うことが好ましい。
これにより,上記第1金型素材と上記第2金型素材との接合,及び上記第1金型素材と上記有穴金型素材との接合を容易かつ確実に行うことができる。
【0027】
次に,請求項7に記載の発明のように,上記接合媒体は,上記第1金型素材の両面に予め接合しておき,上記1次溝は,上記第1金型素材と上記接合媒体とに同時に形成し,また,上記2次溝は,上記第1金型素材と上記第2金型素材と上記接合媒体とに同時に形成することが好ましい。
この場合には,上記第1金型素材に形成されたスリット溝と,上記有穴金型素材の供給穴との間に,上記接合媒体が残留することがない。そのため,この接合媒体を,上記第1金型素材と有穴金型素材との接合後に,選択的に除去する必要もない。それ故,一層容易にハニカム構造体成型用金型を製造することができる。
【0028】
なお,上記接合媒体は,上記第1金型素材の下面にのみ予め接合しておき,上記2次溝を,上記第1金型素材と上記第2金型素材と上記接合媒体とに同時に形成することもできる。この場合にも,上記と同様,容易にハニカム構造体成型用金型を製造することができる。
【0029】
次に,請求項8に記載の発明のように,上記第1金型素材と上記有穴金型素材とを接合する上記接合媒体は,上記有穴金型素材における供給穴形成前の状態である無穴金型素材の上面に予め接合しておき,上記供給穴は,上記無穴金型素材と上記接合媒体とに同時に形成することが好ましい。
この場合にも,上記第1金型素材に形成されたスリット溝と,上記有穴金型素材の供給穴との間に,上記接合媒体が残留することがない。そのため,この接合媒体を,上記第1金型素材と有穴金型素材との接合後に,選択的に除去する必要もない。それ故,一層容易にハニカム構造体成型用金型を製造することができる。
【0030】
次に,請求項9に記載の発明のように,上記第1金型素材と上記有穴金型素材とを接合する上記接合媒体は,上記有穴金型素材に形成された供給穴と連通する位置に,予めドリル加工,放電加工,プレス加工の少なくとも1手段によって連通穴を形成しておくことが好ましい。
これにより,上記接合媒体の連通穴の形成時に,その切削屑が有穴金型素材に残留するおそれがない。
【0031】
次に,請求項10に記載の発明のように,上記接合媒体は,金属箔を熱拡散又はろう付けにより金型素材に接合して形成し,或いは,メッキ又は蒸着により上記金型素材に形成してなり,かつ,上記接合媒体の厚みは0.005〜1mmであることが好ましい。
ここで,上記金型素材とは,上記第1金型素材,第2金型素材,有穴金型素材,又は無穴金型素材を意味する。
即ち,上記接合媒体は,金属箔を上記第1金型素材,有穴金型素材等の上面或いは下面に配置し,熱拡散又はろう付けにより接合することにより形成する。或いは,メッキ,又はPVD,CVD等の蒸着により上記第1金型素材,有穴金型素材等の上面或いは下面に金属を成膜することにより上記接合媒体を形成する。
【0032】
これにより,上記第1金型素材と上記第2金型素材との接合,或いは上記第1金型素材と上記有穴金型素材との接合を,一層容易かつ確実に行うことができる。
上記金属箔は,本発明に使用する超硬合金中に含まれる金属粉末との拡散性に影響し,それに支配される接合性,接合強度の観点から,金,銀,銅,ニッケル等を主成分とする金属若しくは合金であることが好ましい。
【0033】
また,上記接合媒体の厚みを,0.005〜1mmとすることにより,一層高い接合強度を得ることができる。即ち,接合媒体の部分からの破断や,接合媒体の部分の選択的磨耗を防止し,耐久性に優れたハニカム構造体成形用金型を得ることができる。
【0034】
上記接合媒体の厚みが0.005mm未満の場合には,接合しようとする相対する金型素材同志の接合界面の平面度を0.005mm未満とする必要がある。これにより,後に詳述する本発明で製作する大きさのハニカム構造体成形用金型を製作した場合,その面積ゆえに著しく時間と手間がかかり経済性に劣る。また,上記平面度を0.005mm未満に仕上げられなかった場合,接合界面同志の密着が妨げられ,金型素材の接合が困難となり,充分な接合強度を得ることができないおそれがある。
一方,上記厚みが1mmを超える場合には,接合媒体の部分への応力集中による破断や,ハニカム構造体を成す材料を押出し成形した場合,接合媒体の部分が選択的に磨耗し,最悪の場合には接合媒体の部分から破断を生ずるおそれがある。
【0035】
次に,請求項11に記載の発明のように,上記第1金型素材,第2金型素材,及び有穴金型素材は,超硬合金からなることが好ましい。
これにより,各金型素材の接合において,寸法精度の維持を容易かつ確実に行うことができる。
上記超硬合金とは,金属炭化物粉末と金属粉末を配合して焼結した硬い焼結合金をいう。上記超硬合金としては,例えば,炭化タングステン(WC)を主成分としコバルト(Co)で固めてなる焼結金属がある。
【0036】
次に,請求項12に記載の発明のように,上記超硬合金は,周期律表第4a,5a,6a族に属する金属の少なくとも一種以上の金属の炭化物からなる炭化物粉末に対して,鉄,コバルト,ニッケルの少なくとも一種以上の金属を3〜30%添加し,焼結合金としたものであることが好ましい。
即ち,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wのうち少なくとも一種以上の金属の炭化物からなる炭化物粉末に対し,含有量が3〜30%となるよう鉄,コバルト,ニッケルの少なくとも一種以上を添加して,燒結することにより上記超硬合金を得る。
【0037】
これにより,上記スリット溝の加工や各金型素材の接合を一層容易かつ確実に行うことができる。
また,上記鉄,コバルト,ニッケルの各金属を単独で添加する場合にはその含有量が3〜30%であり,複数種類の金属を添加する場合には,その合計の含有量が3〜30%である。
【0038】
金型素材を接合処理する際の高温度域での素材耐力に直接影響し,接合前に既に形成されている上記1次溝等の寸法精度の維持に大きく影響する。また,接合媒体との拡散性にも影響し,接合性,接合強度にも影響する。
即ち,上記含有量が30%を超える場合には,後に詳述するような接合に用いる高温域での素材耐力が低く,接合時の素材自重や後に詳述する密着性を高めるための加圧により上記1次溝等の寸法が変化し,型として成立しないおそれがある。一方,上記含有量が3%未満の場合には,接合媒体と各金型素材との拡散性が低下し,接合性,接合強度が低下するおそれがある。また,この場合には靱性が低くなり,金型として使用する際に破損し易く,亀裂伝播性も上がるため,極めて取り扱いに注意を要する。
【0045】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかるハニカム構造体成形用金型の製造方法につき,図1〜図3を用いて説明する。
本例において製造するハニカム構造体成形用金型1は,図2に示すごとく,材料を供給するための供給穴131と,該供給穴131に連通し材料をハニカム形状に成形するためのスリット溝15とを有する。
【0046】
上記製造方法は,図1に示すごとく,第1工程〜第5工程よりなる。
図1において,(A−1)〜(E−1)は,第1加工体〜第4加工体及びハニカム構造体成形用金型の上面を上にした斜視図で,(A−2)〜(E−2)は,下面を上にした斜視図である。
【0047】
即ち,第1工程においては,第1金型素材11に互いに独立した多数条の貫通した1次溝115を,ワイヤ放電加工により形成して,1次加工体101を得る(図1(A−1),(A−2))。
次いで,第2工程において,第2金型素材12を上記1次加工体101の上面に接合して2次加工体102を得る(図1(B−1),(B−2))。
【0048】
次いで,第3工程において,上記2次加工体102に,互いに独立した多数条の貫通した2次溝125を,ワイヤ放電加工により形成して,3次加工体103を得る(図1(C−1))。この際上記第1金型素材11には,上記2次溝125が上記1次溝115と連通することにより形成される上記ハニカム状のスリット溝15を形成する(図1(C−2),図3(C))。
【0049】
次いで,第4工程において,上記供給穴131を有する有穴金型素材13を上記第1金型素材11の下面に接合して4次加工体104を得る(図1(D−1),(D−2))。
次いで,第5工程において,上記4次加工体104から第2金型素材12を除去することによりハニカム構造体成形用金型1を得る(図1(E−1),(E−2))。
【0050】
なお,上記第1工程と第3工程において,1次溝115及び2次溝125を形成するに当っては,第1金型素材11或いは2次加工体102に小径の貫通穴を設け,該貫通穴にワイヤー電極を通す。そして,該ワイヤー電極を相対的に移動させながら放電加工する。第1金型素材11等が,上記1次溝115等の形成により分離しないよう,端部だけは加工せずに残しておくためである。
【0051】
また,上記第2工程と第4工程において,第1金型素材11と第2金型素材12,或いは,第1金型素材11と有穴金型素材13は,拡散溶接法により接合する。
また,上記第5工程において,第2金型素材12の除去は,平面研削盤を用いて平面研削することにより行う。
【0052】
次に,本例の作用効果につき説明する。
上記ハニカム構造体成形用金型1の製造方法においては,上記のごとく,上記ハニカム状のスリット溝15が形成された上記第1金型素材11の下面に,直接上記有穴金型素材13を接合した後,上記第1金型素材11の上面に接合された第2金型素材12を除去する(図1(D−1),(D−2),(E−1),(E−2))。
【0053】
そのため,上記製造方法により得られるハニカム構造体成形用金型1の上記スリット溝15は,図3(A))に示すごとく,直接上記供給穴131に連結される。
それ故,ハニカム構造体の成形に当り,図3(B)に実線で示す上記供給穴131に供給した材料が,図3(C)に実線で示す上記スリット溝15に直接供給される。即ち,上記供給穴に供給した材料が,流動性のあるままの状態で直接上記スリット溝に供給される。
これにより,材料は,上記スリット溝15の全域に均一に供給される。そのため,成形されるハニカム構造体が歪む等の不具合が生ずるおそれがない。
【0054】
なお,図3(D)は,図1(D−2)のD−D線矢視断面図であり,ハニカム構造体成形用金型1の製造途中のものであるため,完成したハニカム構造体成形用金型1には,同図に示す断面は存在しない。
また,上記第5工程は,第2金型素材102を平面研削によって除去するため,上記第2金型素材102を容易に除去することができる。
【0055】
以上のごとく,本例によれば,歪み等の不具合が発生しないハニカム構造体を成形することができるハニカム構造体成形用金型を,ワイヤ放電加工を用いて製造することができる。
【0056】
実施形態例2
本例は,図4に示すごとく,実施形態例1のハニカム構造体成形用金型及びその製造方法のより具体的な例を示す。
本例のハニカム構造体成形用金型1は,図4(A)に示すごとく,方形板状体の有穴金型素材13と,円形板状体の第1金型素材11とよりなる。上記有穴金型素材13と第1金型素材11,及び後述の第2金型素材は,金型用鉄鋼材料からなる。
【0057】
また,上記有穴金型素材13の外形は成形機への取付寸法を基に決定され,本例の有穴金型素材13は200mm四方である。一方,上記第1金型素材11は,直径130mm程度である。
また,上記ハニカム構造体成形用金型1の厚みは,20mm程度である。
【0058】
上記第1金型素材11には,図4(C)に示すごとく,多数の六角形のハニカム形状のスリット溝15が形成されている。該スリット溝15の溝幅は,0.1mmである。
一方,上記有穴金型13には,上記スリット溝15の交点に対応して,直径1.0mmの材料供給用の供給穴131が多数設けられている(図4(C)の破線)。該供給穴131は,上記スリット溝15に連通しており,上記供給穴131から供給した材料は,上記スリット溝15に供給される。
なお,図4(A)において,符号139は,上記ハニカム構造体成形用金型1を成形機に取付けるための取付穴である。
【0059】
上記ハニカム構造体成形用金型1の製造方法は,上記実施形態例1で示した製造方法と,基本的には同様である。
本例の場合は,実施形態例1に示した第1工程においては,直径0.07mmのタングステンワイヤ電極を用いたワイヤ放電加工により,上記六角形のハニカムの略半分の形状の一次溝を,円形板状体の上記第1金型素材11に形成する。また,第2工程においては,拡散溶接法を用いて,上記1次加工体に第2金型素材を接合する。また,第3工程においては,上記と同様のワイヤ放電加工により2次溝を形成する。
【0060】
第4工程においては,上記第1金型素材11の下面に,予め供給穴131を設けた方形板状体の有穴金型素材13を拡散溶接法により接合して4次加工体を得る。
次いで,第5工程において,上記4次加工体の第2金型素材を平面研削盤により平面研削して除去する。これにより,図4(A),(B)に示すハニカム構造体成形用金型1を得る。
その他は,実施形態例1と同様である。
本例の場合にも,実施形態例1と同様の作用効果を有する。
【0061】
なお,本例においては,直径0.07mmのワイヤ電極を用いて,溝幅0.1mmのスリット溝を形成するものであったが,上記ワイヤ電極の直径を更に小さくして,例えば0.075mm,0.05mmという更に細いスリット溝を形成することもできる。
また,上記有穴金型素材,第1金型素材,及び第2金型素材として,金型用鉄鋼材料を使用したが,焼結金属等の他の材料を使用してもよい。
【0062】
また,上記実施形態例1,実施形態例2の第2工程及び第4工程において,第1金型素材と第2金型素材,或いは第1金型素材と有穴金型素材の接合には,拡散溶接法を用いたが,例えばろう付け法,接着法等の他の接合方法を用いることもできる。
【0063】
実施形態例3
本例は,図5に示すごとく,第1工程及び第3工程において,多数条の1次溝115及び2次溝125を互いに独立させることなく,一筆書き的に連結させて形成する例である。
即ち,上記実施形態例1の1次溝及び2次溝が,互いに独立している(図1(A−1),(C−1))のに対し,本例の1次溝115及び2次溝125は,図5(A−1),(C−1)に示すごとく,連結溝116,126によって連結されている。
【0064】
本例のハニカム構造体成形用金型1の製造方法は,第1工程において,図5(A−1),(A−2)に示すごとく,第1金型素材11に一筆書き的に連結した多数条の貫通した1次溝115を,ワイヤ放電加工により形成する。
【0065】
また,第3工程においては,2次加工体102(図5(B−1),(B−2))に,一筆書き的に連結した多数条の貫通した2次溝125を,ワイヤ放電加工により形成する(図5(C−1))。この際上記第1金型素材11には,上記2次溝125が上記1次溝115と連通することにより形成される上記ハニカム状のスリット溝15を形成することにより,3次加工体103を得る(図5(C−2))。
【0066】
なお,上記第1工程と第3工程以外の,第2工程,第4工程,及び第5工程については,実施形態例1と同様である。
また,図5(D−1),(D−2)は,第4工程によって得られる4次加工体104を表し,図5(E−1),(E−2)は,最終的に得られるハニカム構造体成形用金型1を表す。
【0067】
本例のハニカム構造体成形用金型1の製造方法は,第1工程,第3工程において,第1金型素材11或いは第2金型素材102に一筆書き的に連結した多数条の貫通した1次溝115或いは,2次溝125を形成する(図5(A−1),(A−2),(C−1))。
【0068】
そのため,ワイヤ放電加工する際のスタートポイントとして使用する小径の貫通穴を多数設ける必要がない。即ち,第1金型素材11に1箇所,2次加工体102に1箇所それぞれ設ければ足りる。
また,1次溝115或いは2次溝125を1条加工する毎に段取り作業をする必要もない。
従って,一層生産効率良くハニカム構造体成形用金型を製造することができる。
その他,実施形態例1と同様の作用効果を有する。
【0069】
なお,上記実施形態例1〜3の第5工程において,第2金型素材の除去は,表面研削盤を用いた表面研削により行ったが,ワイヤ放電加工等の他の方法によっても除去することができる。
更には,上記スリット溝のハニカムの形状は六角形に限らず,四角形,円形等,他の形状とすることもできる。
【0070】
実施形態例4
本例は,図6〜図8に示すごとく,第1金型素材11と第2金型素材12との接合,及び第1金型素材11と有穴金型素材13との接合を,接合面に接合媒体21又は22を介在させることにより行う例である。
図6〜図8において,(A−1)〜(F−1)は上面図,(A−2)〜(F−2)は下面図,(A−3)〜(F−3)は,(A−1)〜(F−1)或いは(A−2)〜(F−2)のJ−J線矢視断面相当の説明図である。
【0071】
本例のハニカム構造体成型用金型の製造方法につき,図6〜図8を用いて説明する。
まず,第1工程において,図6(A−1),(A−2),(A−3)に示すごとく,第1金型素材11に1次溝115を形成して,1次加工体101を得る。上記第1金型素材11は,超硬合金からなる。該超硬合金は,炭化タングステン(WC)を主成分としコバルトで固めてなる焼結金属であり,コバルト含有量は約12%である。
また,第2金型素材12,及び有穴金型素材13も,同様の超硬合金からなる。
【0072】
次いで,第2工程において,図6(B−1),(B−2),(B−3)に示すごとく,上記第1金型素材11の上面にニッケル(Ni)箔からなる接合媒体21を介在させて,上記第2金型素材12を接合する。
接合に当っては,密着性を向上させるため,各金型素材及び接合媒体21の平面度を約0.2mm以下に仕上げておく。そして,上記第1金型素材11と第2金型素材12との接合面に上記接合媒体21を介在させ,該接合媒体21のクリープ温度,即ち固有である溶融温度の1/2程度以上かつ溶融温度未満で加熱する。また,接合界面に酸化物を生成させず,また付着した酸化物を固有の蒸気圧で蒸発させるため,真空雰囲気中で加熱する。また,接合界面の密着性を向上させるため,昇温時または降温時に加圧する。ただし,金型素材の高温耐力に影響される寸法精度の維持の観点から,最大でも100MPa以下の加圧とする。
【0073】
これにより,2次加工体102を得る。
また,接合強度の観点から,上記接合媒体21の厚みは約50μmとしている。また,上記接合媒体21は,上記のごとく高温条件下で焼きなまされるため,その硬さについては特に問題とはならない。例えば,上記接合媒体21の硬さとしては,1/4H〜H材のものであれば充分である。
【0074】
次いで,第3工程において,図7(C−1),(C−2),(C−3)に示すごとく,上記2次加工体102に2次溝125を形成して,3次加工体103を得る。
このとき,上記第1金型素材11には,ハニカム状のスリット溝15が形成されている(図7(C−2))。
【0075】
次いで,第4工程において,図7(D−1),(D−2),(D−3)に示すごとく,上記第1金型素材11の下面に接合媒体22を介在させて,上記有穴金型素材13を接合する。この接合媒体22及び接合方法は,第2工程において用いた接合媒体21及び接合方法と同様である。
これにより,4次加工体104を得る。このとき,上記スリット溝15は第1金型素材11の下面から上記接合媒体22によって閉塞され,上記供給穴131も上記有穴金型素材13の上面から上記接合媒体22によって閉塞されている(図7(D−3))。従って,上記供給穴131とスリット溝15とは,連通していない状態にある。
【0076】
次いで,第5工程において,図8(E−1),(E−2),(E−3)に示すごとく,上記4次加工体104から第2金型素材12及びその下面の接合媒体21を除去する。
次いで,上記供給穴131とスリット溝15との連通を阻害している接合媒体22を,例えば流体研磨によって選択的に除去する。これにより,図8(F−1),(F−2),(F−3)に示すごとく,上記供給穴131とスリット溝15とが連通し,ハニカム構造体成型用金型1が完成する。
その他は,実施形態例1と同様である。
【0077】
本例の場合には,上記接合媒体21,22を用いるため,第1金型素材11と第2金型素材12との接合,及び第1金型素材11と有穴金型素材13との接合を容易かつ確実に行うことができる。
また,上記接合媒体21,22はニッケル箔からなるため,第1金型素材11と第2金型素材12との接合,及び第1金型素材11と有穴金型素材13との接合を,一層容易かつ確実に行うことができる。
また,上記接合媒体21,22の厚みを約50μmとしているため,より高い接合強度を得ることができる。
【0078】
また,上記第1金型素材11,第2金型素材12,及び有穴金型素材13は,コバルト含有量が約12%の超硬合金からなるため,接合に用いる高温域での素材耐力も充分確保されており,各金型素材の接合において寸法精度の維持を容易かつ確実に行うことができる。また,靱性も適度に有するため,金型として使用する際に破損し難く,ハニカム構造体成形用金型の取り扱いに特別な注意を要しない。
その他,実施形態例1と同様の作用効果を有する。
【0079】
実施形態例5
本例は,図9〜図11に示すごとく,第1金型素材11の両面に,予め接合媒体21,22を接合しておく例である。そして,1次溝115を,上記第1金型素材11と上記接合媒体21,22とに同時に形成し(図9(B−3)),また,2次溝125を,2次加工体102と上記接合媒体21,22とに同時に形成する(図10(D−3))。
図9〜図11において,(A−1)〜(F−1)は上面図,(A−2)〜(F−2)は下面図,(A−3)〜(F−3)は,(A−1)〜(F−1)或いは(A−2)〜(F−2)のK−K線矢視断面相当の説明図である。
【0080】
本例のハニカム構造体成型用金型の製造方法につき,図9〜図11を用いて説明する。
まず,第1工程において,図9(A−1),(A−2),(A−3)に示すごとく,第1金型素材11の両面に接合媒体21,22を接合しておき,図9(B−1),(B−2),(B−3)に示すごとく,1次溝115を形成する。このとき,該1次溝115は,上記金型素材11と,その両面に接合された接合媒体21,22とに同時に形成される。これにより,1次加工体101を得る。
上記第1金型素材11,第2金型素材12,及び有穴金型素材13の材質,更には,接合媒体21,22の材質及び厚みは,上記実施形態例4の場合と同様である。
【0081】
次いで,第2工程において,図10(C−1),(C−2),(C−3)に示すごとく,上記第1金型素材11の上面に,上記接合媒体21を介して上記第2金型素材12を接合する。このときの接合方法は,実施形態例4の場合と同様である。
これにより,2次加工体102を得る。
【0082】
次いで,第3工程において,図10(D−1),(D−2),(D−3)に示すごとく,接合媒体21,22を含めた上記2次加工体102に2次溝125を形成して,3次加工体103を得る。
このとき,上記第1金型素材11とその下面の接合媒体22には,ハニカム状のスリット溝15が形成されている(図10(D−2))。
【0083】
次いで,第4工程において,図11(E−1),(E−2),(E−3)に示すごとく,上記第1金型素材11の下面に接合媒体22を介して,上記有穴金型素材13を接合する。この接合方法は,第2工程と同様である。
これにより,4次加工体104を得る。
【0084】
次いで,第5工程において,図11(F−1),(F−2),(F−3)に示すごとく,上記4次加工体104から第2金型素材12及びその下面の接合媒体21を除去する。
以上により,ハニカム構造体成型用金型1が完成する。
その他は,実施形態例4と同様である。
【0085】
この場合には,上記第1金型素材11に形成されたスリット溝15と,上記有穴金型素材13の供給穴131との間に,上記接合媒体22が残留することがない。そのため,この接合媒体2を,実施形態例4の場合のように選択的に除去する必要もない。それ故,一層容易にハニカム構造体成型用金型1を製造することができる。
その他,実施形態例4と同様の作用効果を有する。
【0086】
実施形態例6
本例は,図12〜図15に示すごとく,有穴金型素材13の上面に予め接合媒体22を接合しておく例である。
図12〜図15において,(a−1)〜(F−1)は上面図,(a−2)〜(F−2)は下面図,(a−3)〜(F−3)は,(a−1)〜(F−1)或いは(a−2)〜(F−2)のK−K線矢視断面相当の説明図である。
【0087】
本例のハニカム構造体成型用金型の製造方法につき,図12〜図15を用いて説明する。
まず,図12に示すごとく,予め接合媒体22を接合した上記有穴金型素材13を作製しておく。
【0088】
即ち,図12(a−1),(a−2),(a−3)に示すごとく,上記有穴金型素材13における供給穴131形成前の状態である無穴金型素材130の上面に,接合媒体22を接合する。次いで,図12(b−1),(b−2),(b−3)に示すごとく,上記無穴金型素材130と接合媒体22に同時に供給穴131を形成する。これにより,供給穴131を除く上面に接合媒体22を形成した,供給穴131を有する有穴金型素材13を得る。
【0089】
また,予め接合媒体22を接合した上記有穴金型素材13を作製する方法としては,以下の方法もある。即ち,上記接合媒体22は,上記有穴金型素材13に予め形成された供給穴131と連通する位置に,ドリル加工,放電加工,プレス加工の少なくとも1手段によって連通穴を形成しておき,上記有穴金型素材13の上面に接合する。もしくは,上記のごとく連通穴を形成した接合部材22を,上記第1金型素材11と上記有穴金型素材13の接合前に両者の間に介在させておく。これにより,供給穴131を除く上面に接合媒体22を形成した供給穴131を有する有穴金型素材13を得る。
【0090】
本製造方法の第1工程においては,図13(A−1),(A−2),(A−3)に示すごとく,第1金型素材11の上面に接合媒体21を接合しておき,図13(B−1),(B−2),(B−3)に示すごとく,1次溝115を形成する。このとき,該1次溝115は,上記金型素材11と,その上面に接合された接合媒体21とに同時に形成される。これにより,1次加工体101を得る。
上記第1金型素材11,第2金型素材12,及び有穴金型素材13の材質,更には,接合媒体21,22の材質及び厚みは,上記実施形態例4の場合と同様である。
【0091】
次いで,第2工程において,図14(C−1),(C−2),(C−3)に示すごとく,上記第1金型素材11の上面に,上記接合媒体21を介して上記第2金型素材12を接合する。このときの接合方法は,実施形態例4の場合と同様である。
これにより,2次加工体102を得る。
【0092】
次いで,第3工程において,図14(D−1),(D−2),(D−3)に示すごとく,接合媒体21を含めた上記2次加工体102に2次溝125を形成して,3次加工体103を得る。
このとき,上記第1金型素材11と接合媒体21には,ハニカム状のスリット溝15が形成されている(図14(D−2))。
【0093】
次いで,第4工程において,図15(E−1),(E−2),(E−3)に示すごとく,上記第1金型素材11の下面に,接合媒体22を介して上記有穴金型素材13を接合する。即ち,上述のごとく予め作製しておいた,接合媒体22を上面に形成した有穴金型素材13(図12(b−1),(b−2),(b−3))を,上記第1金型素材11の下面に接合する。この接合方法は,第2工程と同様である。
これにより,4次加工体104を得る。
【0094】
次いで,第5工程において,図15(F−1),(F−2),(F−3)に示すごとく,上記4次加工体104から第2金型素材12及びその下面の接合媒体21を除去する。
以上により,ハニカム構造体成型用金型1が完成する。
その他は,実施形態例4と同様である。
【0095】
この場合にも,上記第1金型素材11に形成されたスリット溝15と,上記有穴金型素材13の供給穴131との間に,上記接合媒体22が残留することがない。そのため,この接合媒体2を,実施形態例4の場合のように選択的に除去する必要もない。それ故,一層容易にハニカム構造体成型用金型1を製造することができる。その他,実施形態例4と同様の作用効果を有する。
【図面の簡単な説明】
【図1】実施形態例1における,ハニカム構造体成形用金型の製造方法の説明図。
【図2】実施形態例1における,ハニカム構造体成形用金型の斜視図。
【図3】(A)図1(E−2)のA−A線矢視断面図,(B)(A)のB−B線矢視断面図,(C)(A)のC−C線矢視断面図,(D)図1(D−2)のD−D線矢視断面図。
【図4】実施形態例2における,(A)ハニカム構造体成形用金型の平面図,(B)側面図,(C)スリット溝及び供給穴の説明図。
【図5】実施形態例3における,ハニカム構造体成形用金型の製造方法の説明図。
【図6】実施形態例4における,ハニカム構造体成形用金型の製造方法(1次工程〜2次工程)の説明図。
【図7】実施形態例4における,ハニカム構造体成形用金型の製造方法(3次工程〜4次工程)の説明図。
【図8】実施形態例4における,ハニカム構造体成形用金型の製造方法(5次工程)の説明図。
【図9】実施形態例5における,ハニカム構造体成形用金型の製造方法(1次工程)の説明図。
【図10】実施形態例5における,ハニカム構造体成形用金型の製造方法(2次工程〜3次工程)の説明図。
【図11】実施形態例5における,ハニカム構造体成形用金型の製造方法(4次工程〜5次工程)の説明図。
【図12】実施形態例6における,有穴金型素材の作製方法の説明図。
【図13】実施形態例6における,ハニカム構造体成形用金型の製造方法(1次工程)の説明図。
【図14】実施形態例6における,ハニカム構造体成形用金型の製造方法(2次工程〜3次工程)の説明図。
【図15】実施形態例6における,ハニカム構造体成形用金型の製造方法(4次工程〜5次工程)の説明図。
【図16】従来例における,ハニカム構造体成形用金型の製造方法の説明図。
【図17】(A)図16(D−1)のE−E線矢視断面図,(B)(A)のF−F線矢視断面図,(C)(A)のG−G線矢視断面図,(D)(A)のH−H線矢視断面図。
【図18】従来例のハニカム構造体成形用金型における,成形時の材料流れを説明するための(A)スリット溝,及び(B)これに対応する2次溝の説明図。
【符号の説明】
1...ハニカム構造体成形用金型,
101...1次加工体,
102...2次加工体,
103...3次加工体,
104...4次加工体,
11...第1金型素材,
115...1次溝,
12...第2金型素材,
125...2次溝,
13...有穴金型素材,
131...供給穴,
15...スリット溝,
21,22...接合媒体,
[0001]
【Technical field】
The present invention relates to a honeycomb structure forming mold for manufacturing a mold for forming a honeycomb structured body using wire electric discharge machining, and a method for manufacturing the same.
[0002]
[Prior art]
For example, a ceramic honeycomb structure mainly composed of cordierite or the like is manufactured by extruding a material using a molding die. This honeycomb structure is formed of a large number of cells by providing partition walls in a lattice shape, and the cell shape has various shapes such as a square and a hexagon.
[0003]
For example, in order to manufacture a honeycomb structure having hexagonal cells, a die having hexagonal lattice slit grooves is used.
Specifically, as shown in FIG. 2, a die for forming a honeycomb structure having a supply hole 131 for material supply and slit grooves 15 provided in a hexagonal lattice shape in communication with the supply hole 131 is used. .
[0004]
As a method for manufacturing the honeycomb structure forming die as described above, there is a manufacturing method using wire electric discharge machining disclosed in Japanese Patent Laid-Open No. 2-52703. A method for manufacturing the above-described conventional honeycomb structure forming mold 9 will be described with reference to FIGS.
In FIG. 16, (A-1) to (D-1) are perspective views with the upper surfaces of the primary processed body to the tertiary processed body and the honeycomb structure forming die 9 facing upward, (A- 2) to (D-2) are perspective views with the bottom surface up.
[0005]
First, a plurality of independent primary grooves 915 are formed in the first mold material 91 by wire electric discharge machining to obtain a primary processed body 901 (FIGS. 16A-1 and 16A). 2)).
Next, the second mold material 92 is joined to the upper surface of the primary processed body 901 to obtain a secondary processed body 902 (FIGS. 16B-1 and 16B-2).
[0006]
Next, a secondary processed body 902 is formed by forming a plurality of independent secondary grooves 925 through wire electric discharge machining in the secondary processed body 902, thereby obtaining a tertiary processed body 903 (FIG. 16C-1). At this time, in the first mold material 91, the secondary groove 925 communicates with the primary groove 915 to form the honeycomb-shaped slit groove 95 (FIG. 16 (C-2)).
[0007]
Subsequently, the perforated mold material 93 having the supply hole 931 is joined to the lower surface of the second mold material 92 to obtain the honeycomb structure forming mold 9 (FIG. 16D-1). (D-2)).
At this time, the supply hole 931 is joined so as to be disposed at the intersection of the slit grooves 95 as shown in FIG.
[0008]
In this way, the honeycomb structure forming die 9 is manufactured using wire electric discharge machining. Since wire electric discharge machining is used in the above manufacturing method, a honeycomb structure molding die can be manufactured easily and efficiently with slit grooves having an arbitrary honeycomb shape.
[0009]
[Problems to be solved]
However, the conventional method for manufacturing the honeycomb structure forming die 9 has the following problems.
That is, since the honeycomb structure molding die 9 has a three-layer structure in which the second mold material 92 is interposed between the first mold material 91 and the perforated mold material 93, the first mold material 91 has a three-layer structure. The slit groove 95 formed in the mold material 91 is not directly connected to the supply hole 931 (FIG. 17A).
[0010]
That is, as shown in FIG. 17D, the first mold material 91 is provided with a hexagonal honeycomb slit groove 95. That is, one unit of the hexagon is formed by a slit groove of six sides indicated by reference numerals M, N, O, P, Q, and R in FIG.
[0011]
On the other hand, as shown in FIGS. 17 (C) and 16 (C-1), the secondary mold material 92 has only the secondary grooves 925 formed in a zigzag shape. That is, as shown in FIG. 18 (B), the second mold material 92 has a quadratic secondary for the portion corresponding to the hexagonal shape by the slit grooves M, N, O, P, Q, R. Only the grooves S, T, U and V are formed.
[0012]
Therefore, the material supplied to the supply hole 931 is supplied to the secondary grooves S, T, U and V, which are directly supplied to the slit grooves M, N, O and Q. Is not supplied directly. As a result, the material is not sufficiently supplied to the slit grooves P and R, and the honeycomb structure extruded from the honeycomb structure forming die 9 may have problems such as distortion.
[0013]
Further, since the material supplied to the secondary groove 925 is molded to some extent here and the fluidity is impaired, it is difficult to uniformly supply the entire area of the slit groove 95.
Therefore, there is a possibility that defects such as distortion may occur in the obtained honeycomb structure.
[0014]
The present invention has been made in view of such conventional problems, and manufactures a honeycomb structure forming mold capable of forming a honeycomb structure that does not cause defects such as distortion using wire electric discharge machining. An object of the present invention is to provide a mold for forming a honeycomb structure and a method for manufacturing the same.
[0015]
[Means for solving problems]
The invention according to claim 1 is a method for manufacturing a mold for forming a honeycomb structure having a supply hole for supplying a material and a slit groove for forming the material into a honeycomb shape in communication with the supply hole. In
The manufacturing method includes a first step of obtaining a primary processed body by forming, by wire electric discharge machining, a plurality of primary grooves that pass through a plurality of independent strips in a first mold material,
A second step of obtaining a secondary workpiece by joining a second mold material to the upper surface of the primary workpiece;
A plurality of independent secondary grooves are formed in the secondary workpiece by wire electric discharge machining, and the secondary grooves communicate with the primary grooves in the first mold material. A third step of obtaining a third processed body by forming the honeycomb slit groove formed by
A fourth step of obtaining a quaternary workpiece by joining the perforated mold material having the supply holes to the lower surface of the first mold material;
The method for manufacturing a mold for forming a honeycomb structure includes a fifth step of removing the second mold material from the quaternary processed body.
[0016]
In the present invention, the most notable point is that the perforated mold material is joined to the lower surface of the first mold material in the fourth step, and the second mold material is removed from the fourth workpiece in the fifth step. Is to remove.
That is, the perforated mold material is directly joined to the lower surface of the first mold material in which the honeycomb slit grooves are formed (see FIGS. 1D-1 and 1D-2). Thereafter, the second mold material bonded to the upper surface of the first mold material is removed (see FIGS. 1E-1 and 1E-2).
[0017]
Next, the effects of the present invention will be described.
In the method for manufacturing the honeycomb structure forming mold, as described above, after the holed mold material is directly bonded to the lower surface of the first mold material in which the honeycomb slit grooves are formed, The second mold material bonded to the upper surface of the first mold material is removed.
[0018]
Therefore, the slit groove of the honeycomb structure forming mold obtained by the manufacturing method is directly connected to the supply hole. Therefore, in forming the honeycomb structure, the material supplied to the supply hole is directly supplied to the slit groove.
That is, the material supplied to the supply hole is directly supplied to the slit groove while remaining fluid.
Therefore, the material is uniformly supplied to the entire area of the slit groove, and there is no possibility that a problem such as distortion of the formed honeycomb structure occurs.
[0019]
As described above, according to the present invention, a honeycomb structure forming mold capable of forming a honeycomb structure forming mold that can form a honeycomb structure free from defects such as distortion can be manufactured using wire electric discharge machining. The manufacturing method of the metal mold | die can be provided.
[0020]
Next, as in the second aspect of the invention, a honeycomb structure forming metal having a supply hole for supplying a material and a slit groove for forming the material into a honeycomb shape in communication with the supply hole. In a method of manufacturing a mold,
The manufacturing method includes a first step of obtaining a primary processed body by forming a plurality of through-going primary grooves connected to the first mold material by one stroke by wire electric discharge machining;
A second step of obtaining a secondary workpiece by joining a second mold material to the upper surface of the primary workpiece;
A plurality of penetrating secondary grooves connected to the secondary workpiece in a single stroke are formed by wire electric discharge machining. At this time, the secondary groove and the primary groove are formed on the first mold material. A third step of obtaining a tertiary processed body by forming the honeycomb-shaped slit groove formed by communicating;
A fourth step of obtaining a quaternary workpiece by joining the perforated mold material having the supply holes to the lower surface of the first mold material;
There is a method for manufacturing a honeycomb structure forming mold, comprising a fifth step of removing the second mold material from the quaternary processed body.
[0021]
In other words, in the first step and the third step, unlike the invention of claim 1, the primary grooves and the secondary grooves of the multiple strips are formed to be connected in a single stroke without being independent from each other (see FIG. 5 (A-1), (C-1)).
For this reason, it is not necessary to provide a large number of small-diameter through holes used as a starting point for wire electric discharge machining. Moreover, it is not necessary to perform setup work every time the primary groove or the secondary groove is processed.
Therefore, the honeycomb structure molding die can be manufactured with higher production efficiency.
[0022]
Next, as in the invention described in claim 3, in the fifth step, the second mold material can be removed by surface grinding.
Thereby, the second mold material can be easily removed. In this case, the machining time is particularly short and the finished surface is smooth.
[0023]
Next, as in the invention described in claim 4, in the fifth step, the second mold material can be removed by wire cutting.
Also in this case, the second mold material can be easily removed. In this case, there is an advantage that no burr is generated.
[0024]
Next, as in the invention described in claim 5, the slit groove can be any one of a square, a hexagon and a circle.
That is, one lattice of the honeycomb formed by the slit grooves can be a square, a hexagon, or a circle.
[0025]
Thereby, it is possible to obtain a die for forming a honeycomb structure having an arbitrary slit groove such as a quadrangle and forming the honeycomb structure of each shape. In addition, since the said slit groove | channel is formed by the wire electric discharge machining in the manufacturing method of the said metal mold | die for honeycomb structure formation, even if it is the slit groove | channel of any said shape, it can be processed easily.
[0026]
Next, as in the invention described in claim 6, the joining of the first mold material and the second mold material and the joining of the first mold material and the perforated mold material are as follows: It is preferable to carry out by interposing a joining medium on the joining surface.
Thereby, joining of the first mold material and the second mold material, and joining of the first mold material and the perforated mold material can be performed easily and reliably.
[0027]
Next, as in the invention described in claim 7, the joining medium is joined in advance to both surfaces of the first mold material, and the primary groove is formed by the first mold material and the joining medium. Preferably, the secondary groove is formed simultaneously on the first mold material, the second mold material, and the joining medium.
In this case, the joining medium does not remain between the slit groove formed in the first mold material and the supply hole of the perforated mold material. Therefore, it is not necessary to selectively remove the joining medium after joining the first mold material and the perforated mold material. Therefore, the mold for forming the honeycomb structure can be manufactured more easily.
[0028]
The bonding medium is bonded in advance only to the lower surface of the first mold material, and the secondary groove is formed simultaneously in the first mold material, the second mold material, and the bonding medium. You can also In this case as well, a honeycomb structure molding die can be easily manufactured as described above.
[0029]
Next, as in the invention described in claim 8, the joining medium for joining the first mold material and the perforated mold material is in a state before the supply hole is formed in the perforated mold material. It is preferable that the supply hole is formed in the non-hole mold material and the bonding medium at the same time by previously bonding to the upper surface of a certain non-hole mold material.
Also in this case, the joining medium does not remain between the slit groove formed in the first mold material and the supply hole of the perforated mold material. Therefore, it is not necessary to selectively remove the joining medium after joining the first mold material and the perforated mold material. Therefore, the mold for forming the honeycomb structure can be manufactured more easily.
[0030]
Next, as in the ninth aspect of the invention, the joining medium for joining the first mold material and the perforated mold material communicates with a supply hole formed in the perforated mold material. It is preferable that a communication hole is formed in advance at at least one means of drilling, electric discharge machining, and pressing at the position to be performed.
Thereby, there is no possibility that the cutting waste remains in the perforated mold material when the communication hole of the joining medium is formed.
[0031]
Next, as in the invention described in claim 10, the joining medium is formed by joining a metal foil to a mold material by thermal diffusion or brazing, or formed on the mold material by plating or vapor deposition. The thickness of the joining medium is preferably 0.005 to 1 mm.
Here, the mold material means the first mold material, the second mold material, the perforated mold material, or the non-perforated mold material.
That is, the joining medium is formed by placing a metal foil on the upper surface or the lower surface of the first mold material, the perforated mold material or the like and bonding them by thermal diffusion or brazing. Alternatively, the bonding medium is formed by forming a metal film on the upper surface or the lower surface of the first mold material, the perforated mold material, or the like by plating or vapor deposition such as PVD or CVD.
[0032]
Thereby, the joining of the first mold material and the second mold material, or the joining of the first mold material and the perforated mold material can be performed more easily and reliably.
The above metal foil mainly affects gold, silver, copper, nickel, etc. from the viewpoint of the bondability and bonding strength governed by the metal powder contained in the cemented carbide used in the present invention. A metal or alloy as a component is preferable.
[0033]
Further, when the thickness of the bonding medium is 0.005 to 1 mm, higher bonding strength can be obtained. That is, it is possible to obtain a die for forming a honeycomb structure excellent in durability by preventing breakage from the bonding medium portion and selective wear of the bonding medium portion.
[0034]
When the thickness of the joining medium is less than 0.005 mm, the flatness of the joining interface between the opposite mold materials to be joined needs to be less than 0.005 mm. As a result, when a honeycomb structure molding die of a size to be manufactured according to the present invention, which will be described in detail later, is manufactured, it takes a lot of time and labor due to its area, resulting in poor economic efficiency. Further, when the flatness cannot be finished to less than 0.005 mm, the adhesion between the bonding interfaces is hindered, making it difficult to bond the mold materials, and there is a possibility that sufficient bonding strength cannot be obtained.
On the other hand, if the thickness exceeds 1 mm, the fracture due to stress concentration on the joining medium part, or when the material forming the honeycomb structure is extruded, the joining medium part is selectively worn out, which is the worst case. In some cases, there is a risk of fracture from the portion of the joining medium.
[0035]
Next, as in the invention described in claim 11, the first mold material, the second mold material, and the perforated mold material are preferably made of cemented carbide.
As a result, it is possible to easily and reliably maintain the dimensional accuracy in joining the mold materials.
The cemented carbide is a hard sintered alloy obtained by mixing and sintering metal carbide powder and metal powder. As the cemented carbide, for example, there is a sintered metal made of tungsten carbide (WC) as a main component and hardened with cobalt (Co).
[0036]
Next, as in the twelfth aspect of the present invention, the cemented carbide is made of iron with respect to carbide powder made of carbide of at least one metal of metals belonging to Groups 4a, 5a, and 6a of the periodic table. It is preferable that 3-30% of at least one metal selected from cobalt, nickel is added to form a sintered alloy.
That is, iron, cobalt, nickel so that the content is 3 to 30% with respect to carbide powder made of carbide of at least one metal among Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. The above cemented carbide is obtained by adding at least one of the above and sintering.
[0037]
Thereby, the process of the said slit groove | channel and joining of each metal mold | die raw material can be performed more easily and reliably.
Moreover, when adding each said metal of iron, cobalt, and nickel independently, the content is 3 to 30%, and when adding a plurality of types of metals, the total content is 3 to 30%. %.
[0038]
This directly affects the yield strength in the high temperature range when the mold material is joined, and greatly affects the maintenance of the dimensional accuracy of the primary grooves already formed before joining. It also affects the diffusibility with the bonding medium and affects the bondability and bonding strength.
That is, when the content exceeds 30%, the material yield strength in the high temperature region used for joining as described in detail later is low, and the pressure for increasing the weight of the material at the time of joining and the adhesion described in detail later. As a result, the dimensions of the primary groove and the like may change, and the mold may not be formed. On the other hand, when the content is less than 3%, the diffusibility between the joining medium and each mold material is lowered, and the joining property and joining strength may be lowered. Also, in this case, the toughness is low, it is easy to break when used as a mold, and the crack propagation property is increased, so handling is extremely careful.
[0045]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A method for manufacturing a honeycomb structure forming mold according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 2, a honeycomb structure forming mold 1 manufactured in this example includes a supply hole 131 for supplying a material and a slit groove for forming the material in communication with the supply hole 131 into a honeycomb shape. 15.
[0046]
The said manufacturing method consists of a 1st process-a 5th process, as shown in FIG.
In FIG. 1, (A-1) to (E-1) are perspective views with the upper surfaces of the first processed body to the fourth processed body and the honeycomb structure forming mold up, (A-2) to (E-2) is a perspective view with the bottom face up.
[0047]
That is, in the first step, a plurality of independent primary grooves 115 are formed in the first mold material 11 by wire electric discharge machining to obtain a primary workpiece 101 (FIG. 1 (A- 1), (A-2)).
Next, in the second step, the second mold material 12 is joined to the upper surface of the primary processed body 101 to obtain the secondary processed body 102 (FIGS. 1 (B-1) and (B-2)).
[0048]
Next, in the third step, a plurality of mutually independent secondary grooves 125 are formed in the secondary processed body 102 by wire electric discharge machining to obtain the tertiary processed body 103 (FIG. 1 (C- 1)). At this time, the first mold material 11 is formed with the honeycomb-shaped slit groove 15 formed by the secondary groove 125 communicating with the primary groove 115 (FIG. 1 (C-2), FIG. 3 (C)).
[0049]
Next, in the fourth step, the perforated mold material 13 having the supply holes 131 is joined to the lower surface of the first mold material 11 to obtain a quaternary workpiece 104 (FIG. 1 (D-1), ( D-2)).
Next, in a fifth step, the second mold material 12 is removed from the quaternary processed body 104 to obtain the honeycomb structure forming mold 1 (FIGS. 1E-1 and 1E-2). .
[0050]
In forming the primary groove 115 and the secondary groove 125 in the first step and the third step, a small-diameter through hole is provided in the first mold material 11 or the secondary processed body 102, Pass the wire electrode through the through hole. Then, electric discharge machining is performed while relatively moving the wire electrode. This is because only the end portion is left unprocessed so that the first mold material 11 and the like are not separated by the formation of the primary groove 115 and the like.
[0051]
Moreover, in the said 2nd process and 4th process, the 1st metal mold | die material 11 and the 2nd metal mold | die material 12, or the 1st metal mold | die material 11 and the perforated metal mold | die material 13 are joined by the diffusion welding method.
In the fifth step, the second mold material 12 is removed by surface grinding using a surface grinder.
[0052]
Next, the effect of this example will be described.
In the method for manufacturing the honeycomb structure forming mold 1, as described above, the perforated mold material 13 is directly applied to the lower surface of the first mold material 11 in which the honeycomb slit grooves 15 are formed. After the bonding, the second mold material 12 bonded to the upper surface of the first mold material 11 is removed (FIGS. 1 (D-1), (D-2), (E-1), (E- 2)).
[0053]
Therefore, the slit groove 15 of the honeycomb structure forming mold 1 obtained by the manufacturing method is directly connected to the supply hole 131 as shown in FIG.
Therefore, in forming the honeycomb structure, the material supplied to the supply hole 131 shown by the solid line in FIG. 3B is directly supplied to the slit groove 15 shown by the solid line in FIG. That is, the material supplied to the supply hole is directly supplied to the slit groove while remaining fluid.
As a result, the material is supplied uniformly over the entire slit groove 15. For this reason, there is no possibility that the formed honeycomb structure is distorted.
[0054]
3D is a cross-sectional view taken along the line DD in FIG. 1D-2, and is in the process of manufacturing the honeycomb structure forming mold 1, and thus the completed honeycomb structure. The molding die 1 does not have the cross section shown in FIG.
In the fifth step, since the second mold material 102 is removed by surface grinding, the second mold material 102 can be easily removed.
[0055]
As described above, according to this example, it is possible to manufacture a die for forming a honeycomb structure that can form a honeycomb structure in which defects such as distortion do not occur, using wire electric discharge machining.
[0056]
Embodiment 2
As shown in FIG. 4, this example shows a more specific example of the honeycomb structure molding die of Embodiment 1 and the manufacturing method thereof.
As shown in FIG. 4A, the honeycomb structure forming mold 1 of this example includes a perforated mold material 13 having a rectangular plate shape and a first mold material 11 having a circular plate shape. The perforated mold material 13, the first mold material 11, and the second mold material described later are made of a steel material for molds.
[0057]
Further, the outer shape of the perforated mold material 13 is determined based on the mounting dimensions to the molding machine, and the perforated mold material 13 of this example is 200 mm square. On the other hand, the first mold material 11 has a diameter of about 130 mm.
Further, the thickness of the honeycomb structure forming mold 1 is about 20 mm.
[0058]
As shown in FIG. 4C, a large number of hexagonal honeycomb-shaped slit grooves 15 are formed in the first mold material 11. The groove width of the slit groove 15 is 0.1 mm.
On the other hand, the perforated mold 13 is provided with a number of supply holes 131 for supplying a material having a diameter of 1.0 mm corresponding to the intersections of the slit grooves 15 (broken lines in FIG. 4C). The supply hole 131 communicates with the slit groove 15, and the material supplied from the supply hole 131 is supplied to the slit groove 15.
In FIG. 4A, reference numeral 139 denotes a mounting hole for mounting the honeycomb structure molding die 1 to a molding machine.
[0059]
The manufacturing method of the honeycomb structure forming mold 1 is basically the same as the manufacturing method shown in the first embodiment.
In the case of this example, in the first step shown in the first embodiment, the primary groove having a substantially half shape of the hexagonal honeycomb is formed by wire electric discharge machining using a tungsten wire electrode having a diameter of 0.07 mm. It forms in the said 1st metal mold | die material 11 of a circular plate-shaped body. In the second step, the second mold material is joined to the primary workpiece using diffusion welding. In the third step, secondary grooves are formed by wire electric discharge machining similar to the above.
[0060]
In the fourth step, a rectangular plate-shaped perforated mold material 13 provided with supply holes 131 in advance on the lower surface of the first mold material 11 is joined by diffusion welding to obtain a quaternary workpiece.
Next, in a fifth step, the second mold material of the quaternary workpiece is removed by surface grinding with a surface grinder. Thereby, the honeycomb structure forming die 1 shown in FIGS. 4A and 4B is obtained.
Others are the same as in the first embodiment.
Also in this example, it has the same effect as Embodiment 1.
[0061]
In this example, a slit electrode having a groove width of 0.1 mm is formed using a wire electrode having a diameter of 0.07 mm. However, the diameter of the wire electrode is further reduced to, for example, 0.075 mm. , 0.05 mm can be formed.
Moreover, although the steel material for metal mold | die was used as said perforated metal mold | die material, a 1st metal mold | die material, and a 2nd metal mold | die material, you may use other materials, such as a sintered metal.
[0062]
In the second step and the fourth step of the first embodiment and the second embodiment, the first mold material and the second mold material, or the first mold material and the perforated mold material are joined. The diffusion welding method is used, but other joining methods such as a brazing method and an adhesion method can also be used.
[0063]
Embodiment 3
In this example, as shown in FIG. 5, in the first step and the third step, a large number of primary grooves 115 and secondary grooves 125 are connected to each other in a single stroke without being independent of each other. .
That is, the primary groove and the secondary groove in the first embodiment are independent of each other (FIGS. 1A-1 and 1C-1), whereas the primary grooves 115 and 2 in the present embodiment are not included. The next grooves 125 are connected by connecting grooves 116 and 126 as shown in FIGS.
[0064]
In the first step, the manufacturing method of the honeycomb structure forming mold 1 of the present example is connected to the first mold material 11 in a single stroke as shown in FIGS. 5A-1 and 5A-2. The plurality of primary grooves 115 penetrated are formed by wire electric discharge machining.
[0065]
Further, in the third step, a plurality of secondary grooves 125 penetrating the secondary workpiece 102 (FIGS. 5 (B-1) and 5 (B-2)) connected in a single stroke are formed by wire electric discharge machining. (FIG. 5C-1). At this time, in the first mold material 11, the third processed body 103 is formed by forming the honeycomb-shaped slit groove 15 formed by the secondary groove 125 communicating with the primary groove 115. Obtain (FIG. 5 (C-2)).
[0066]
The second step, the fourth step, and the fifth step other than the first step and the third step are the same as those in the first embodiment.
5 (D-1) and (D-2) show the quaternary workpiece 104 obtained by the fourth step, and FIGS. 5 (E-1) and (E-2) are finally obtained. 1 shows a honeycomb structure forming mold 1 to be manufactured.
[0067]
In the manufacturing method of the honeycomb structure forming die 1 of this example, in the first step and the third step, a large number of strips connected to the first die material 11 or the second die material 102 in a single stroke are penetrated. The primary groove 115 or the secondary groove 125 is formed (FIGS. 5A-1, (A-2), and (C-1)).
[0068]
For this reason, it is not necessary to provide a large number of small-diameter through holes used as a starting point for wire electric discharge machining. That is, it is sufficient to provide one location on the first mold material 11 and one location on the secondary workpiece 102.
Further, it is not necessary to perform setup work every time the primary groove 115 or the secondary groove 125 is processed.
Therefore, the honeycomb structure molding die can be manufactured with higher production efficiency.
In addition, it has the same effects as the first embodiment.
[0069]
In the fifth step of the first to third embodiments, the second mold material is removed by surface grinding using a surface grinder, but may be removed by other methods such as wire electric discharge machining. Can do.
Furthermore, the shape of the honeycomb of the slit groove is not limited to a hexagon, but may be other shapes such as a quadrangle and a circle.
[0070]
Embodiment 4
In this example, as shown in FIGS. 6 to 8, the joining of the first mold material 11 and the second mold material 12 and the joining of the first mold material 11 and the perforated mold material 13 are joined. In this example, the joining medium 21 or 22 is interposed on the surface.
6 to 8, (A-1) to (F-1) are top views, (A-2) to (F-2) are bottom views, and (A-3) to (F-3) are It is explanatory drawing equivalent to the JJ arrow line cross section of (A-1)-(F-1) or (A-2)-(F-2).
[0071]
The manufacturing method of the honeycomb structure molding die of this example will be described with reference to FIGS.
First, in the first step, a primary groove 115 is formed in the first mold material 11 as shown in FIGS. Get 101. The first mold material 11 is made of cemented carbide. The cemented carbide is a sintered metal made of tungsten carbide (WC) as a main component and hardened with cobalt, and has a cobalt content of about 12%.
The second mold material 12 and the perforated mold material 13 are also made of the same cemented carbide.
[0072]
Next, in the second step, as shown in FIGS. 6B-1, B-2, and B-3, the joining medium 21 made of nickel (Ni) foil is formed on the upper surface of the first mold material 11. The second mold material 12 is joined with the intervening.
In joining, in order to improve adhesion, the flatness of each mold material and the joining medium 21 is finished to about 0.2 mm or less. Then, the joining medium 21 is interposed in the joining surface between the first mold material 11 and the second mold material 12, and the creep temperature of the joining medium 21, that is, about ½ or more of the inherent melting temperature and Heat below the melting temperature. Also, heating is performed in a vacuum atmosphere in order not to generate oxide at the bonding interface and to evaporate the attached oxide with a specific vapor pressure. In order to improve the adhesion at the bonding interface, the pressure is applied when the temperature is raised or lowered. However, from the viewpoint of maintaining the dimensional accuracy that is affected by the high temperature proof stress of the mold material, the pressure is 100 MPa or less at the maximum.
[0073]
Thereby, the secondary processed body 102 is obtained.
From the viewpoint of bonding strength, the thickness of the bonding medium 21 is about 50 μm. Further, since the joining medium 21 is annealed under high temperature conditions as described above, its hardness is not particularly problematic. For example, as the hardness of the joining medium 21, a material of 1 / 4H to H is sufficient.
[0074]
Next, in the third step, as shown in FIGS. 7 (C-1), (C-2), and (C-3), a secondary groove 125 is formed in the secondary processed body 102 to form a tertiary processed body. 103 is obtained.
At this time, honeycomb-shaped slit grooves 15 are formed in the first mold material 11 (FIG. 7 (C-2)).
[0075]
Next, in the fourth step, as shown in FIGS. 7D-1, D-2, and D-3, the bonding medium 22 is interposed on the lower surface of the first mold material 11 so that the above-mentioned presence is achieved. The hole mold material 13 is joined. The bonding medium 22 and the bonding method are the same as the bonding medium 21 and the bonding method used in the second step.
Thereby, the quaternary processed body 104 is obtained. At this time, the slit groove 15 is blocked from the lower surface of the first mold material 11 by the bonding medium 22, and the supply hole 131 is also blocked from the upper surface of the perforated mold material 13 by the bonding medium 22 ( FIG. 7 (D-3)). Therefore, the supply hole 131 and the slit groove 15 are not in communication.
[0076]
Next, in the fifth step, as shown in FIGS. 8 (E-1), (E-2), and (E-3), the quaternary processed body 104 to the second mold material 12 and the bonding medium 21 on the lower surface thereof. Remove.
Next, the joining medium 22 that hinders communication between the supply hole 131 and the slit groove 15 is selectively removed by, for example, fluid polishing. As a result, as shown in FIGS. 8 (F-1), (F-2), and (F-3), the supply hole 131 and the slit groove 15 communicate with each other, and the honeycomb structure molding die 1 is completed. .
Others are the same as in the first embodiment.
[0077]
In the case of this example, since the joining media 21 and 22 are used, the joining of the first mold material 11 and the second mold material 12 and the connection between the first mold material 11 and the perforated mold material 13 are performed. Joining can be performed easily and reliably.
Further, since the joining media 21 and 22 are made of nickel foil, the joining of the first mold material 11 and the second mold material 12 and the joining of the first mold material 11 and the perforated mold material 13 are performed. , More easily and reliably.
Further, since the thickness of the bonding media 21 and 22 is about 50 μm, higher bonding strength can be obtained.
[0078]
Further, the first mold material 11, the second mold material 12, and the perforated mold material 13 are made of cemented carbide having a cobalt content of about 12%. Is sufficiently secured, and dimensional accuracy can be easily and reliably maintained in the joining of each mold material. Moreover, since it has moderate toughness, it is not easily damaged when used as a mold, and no special care is required in handling the mold for forming a honeycomb structure.
In addition, it has the same effects as the first embodiment.
[0079]
Embodiment 5
In this example, as shown in FIGS. 9 to 11, the bonding media 21 and 22 are bonded in advance to both surfaces of the first mold material 11. Then, the primary groove 115 is simultaneously formed in the first mold material 11 and the joining media 21 and 22 (FIG. 9B-3), and the secondary groove 125 is formed in the secondary processed body 102. And the bonding media 21 and 22 are formed simultaneously (FIG. 10D-3).
9 to 11, (A-1) to (F-1) are top views, (A-2) to (F-2) are bottom views, and (A-3) to (F-3) are It is explanatory drawing equivalent to the KK line | wire arrow cross section of (A-1)-(F-1) or (A-2)-(F-2).
[0080]
The method for manufacturing the honeycomb structure molding die of this example will be described with reference to FIGS.
First, in the first step, as shown in FIGS. 9 (A-1), (A-2), and (A-3), bonding media 21 and 22 are bonded to both surfaces of the first mold material 11, As shown in FIGS. 9B-1, B-2, and B-3, the primary groove 115 is formed. At this time, the primary groove 115 is simultaneously formed in the mold material 11 and the bonding media 21 and 22 bonded to both surfaces thereof. Thereby, the primary processed body 101 is obtained.
The materials of the first mold material 11, the second mold material 12, and the perforated mold material 13, and the materials and thicknesses of the joining media 21 and 22 are the same as those in the fourth embodiment. .
[0081]
Next, in the second step, as shown in FIGS. 10 (C-1), (C-2), and (C-3), the first mold material 11 is placed on the upper surface of the first mold material 11 via the bonding medium 21. Two mold materials 12 are joined. The joining method at this time is the same as that in the fourth embodiment.
Thereby, the secondary processed body 102 is obtained.
[0082]
Next, in the third step, as shown in FIGS. 10D-1, D-2, and D-3, the secondary groove 125 is formed in the secondary processed body 102 including the joining media 21 and 22. The tertiary processed body 103 is obtained by forming.
At this time, honeycomb-shaped slit grooves 15 are formed in the first mold material 11 and the bonding medium 22 on the lower surface thereof (FIG. 10D-2).
[0083]
Next, in the fourth step, as shown in FIGS. 11 (E-1), (E-2), and (E-3), the perforated holes are formed on the lower surface of the first mold material 11 via the joining medium 22. The mold material 13 is joined. This joining method is the same as in the second step.
Thereby, the quaternary processed body 104 is obtained.
[0084]
Next, in the fifth step, as shown in FIGS. 11 (F-1), (F-2), and (F-3), the quaternary processed body 104 to the second mold material 12 and the bonding medium 21 on the lower surface thereof. Remove.
Thus, the honeycomb structure molding die 1 is completed.
Others are the same as the fourth embodiment.
[0085]
In this case, the bonding medium 22 does not remain between the slit groove 15 formed in the first mold material 11 and the supply hole 131 of the perforated mold material 13. Therefore, it is not necessary to selectively remove the joining medium 2 as in the fourth embodiment. Therefore, the honeycomb structure molding die 1 can be manufactured more easily.
In addition, it has the same operational effects as the fourth embodiment.
[0086]
Embodiment 6
In this example, as shown in FIGS. 12 to 15, the bonding medium 22 is bonded in advance to the upper surface of the perforated mold material 13.
12 to 15, (a-1) to (F-1) are top views, (a-2) to (F-2) are bottom views, and (a-3) to (F-3) are It is explanatory drawing equivalent to the KK line | wire arrow cross section of (a-1)-(F-1) or (a-2)-(F-2).
[0087]
The method for manufacturing the honeycomb structure molding die of this example will be described with reference to FIGS.
First, as shown in FIG. 12, the perforated mold material 13 to which the joining medium 22 is joined is prepared in advance.
[0088]
That is, as shown in FIGS. 12 (a-1), (a-2), and (a-3), the top surface of the non-hole mold material 130 in a state before the supply hole 131 is formed in the perforated mold material 13. Next, the joining medium 22 is joined. Next, as shown in FIGS. 12B-1, (B-2), and (B- 3), supply holes 131 are simultaneously formed in the non-hole mold material 130 and the joining medium 22. Thereby, the perforated mold material 13 having the supply holes 131 in which the bonding medium 22 is formed on the upper surface excluding the supply holes 131 is obtained.
[0089]
Moreover, as a method of producing the perforated mold material 13 in which the joining medium 22 is joined in advance, there is the following method. That is, the joining medium 22 has a communication hole formed at least at one means of drilling, electric discharge machining, and pressing at a position communicating with the supply hole 131 formed in the perforated mold material 13 in advance. Bonded to the upper surface of the perforated mold material 13. Alternatively, the joining member 22 having the communication hole as described above is interposed between the first mold material 11 and the perforated mold material 13 before joining. Thus, the perforated mold material 13 having the supply hole 131 in which the bonding medium 22 is formed on the upper surface excluding the supply hole 131 is obtained.
[0090]
In the first step of the manufacturing method, the bonding medium 21 is bonded to the upper surface of the first mold material 11 as shown in FIGS. 13A-1, A-2, and A-3. As shown in FIGS. 13B-1, B-2, and B-3, the primary groove 115 is formed. At this time, the primary groove 115 is simultaneously formed in the mold material 11 and the bonding medium 21 bonded to the upper surface thereof. Thereby, the primary processed body 101 is obtained.
The materials of the first mold material 11, the second mold material 12, and the perforated mold material 13, and the materials and thicknesses of the joining media 21 and 22 are the same as those in the fourth embodiment. .
[0091]
Next, in the second step, as shown in FIGS. 14 (C-1), (C-2), and (C-3), the first mold material 11 is placed on the upper surface of the first mold material 11 via the bonding medium 21. Two mold materials 12 are joined. The joining method at this time is the same as that in the fourth embodiment.
Thereby, the secondary processed body 102 is obtained.
[0092]
Next, in the third step, as shown in FIGS. 14D-1, D-2, and D-3, a secondary groove 125 is formed in the secondary processed body 102 including the bonding medium 21. Thus, the tertiary processed body 103 is obtained.
At this time, honeycomb-shaped slit grooves 15 are formed in the first mold material 11 and the joining medium 21 (FIG. 14D-2).
[0093]
Next, in the fourth step, as shown in FIGS. 15 (E-1), (E-2) and (E-3), the perforated holes are formed on the lower surface of the first mold material 11 via the joining medium 22. The mold material 13 is joined. That is, the perforated mold material 13 (FIGS. 12 (b-1), (b-2), and (b-3)) formed in advance as described above and having the joining medium 22 formed on the upper surface is used as described above. Bonded to the lower surface of the first mold material 11. This joining method is the same as in the second step.
Thereby, the quaternary processed body 104 is obtained.
[0094]
Next, in the fifth step, as shown in FIGS. 15 (F-1), (F-2), and (F-3), the quaternary processed body 104 to the second mold material 12 and the bonding medium 21 on the lower surface thereof. Remove.
Thus, the honeycomb structure molding die 1 is completed.
Others are the same as the fourth embodiment.
[0095]
Also in this case, the joining medium 22 does not remain between the slit groove 15 formed in the first mold material 11 and the supply hole 131 of the perforated mold material 13. Therefore, it is not necessary to selectively remove the joining medium 2 as in the fourth embodiment. Therefore, the honeycomb structure molding die 1 can be manufactured more easily. In addition, it has the same operational effects as the fourth embodiment.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a method for manufacturing a honeycomb structure forming mold in Embodiment 1;
Fig. 2 is a perspective view of a honeycomb structure forming mold in Embodiment 1;
3A is a cross-sectional view taken along the line AA in FIG. 1E-2, FIG. 3B is a cross-sectional view taken along the line B-B in FIG. 1A, and FIG. A sectional view taken along a line, (D) a sectional view taken along a line D-D in FIG. 1 (D-2).
4A is a plan view of a mold for forming a honeycomb structure, FIG. 4B is a side view, and FIG. 4C is an explanatory view of a slit groove and a supply hole.
FIG. 5 is an explanatory diagram of a method for manufacturing a honeycomb structure forming mold in Embodiment 3;
FIG. 6 is an explanatory diagram of a method for manufacturing a honeycomb structure molding die (primary process to secondary process) in Embodiment 4;
7 is an explanatory diagram of a method for manufacturing a honeycomb structure forming mold (third to fourth steps) in Embodiment Example 4. FIG.
FIG. 8 is an explanatory diagram of a method for manufacturing a honeycomb structure forming mold (fifth step) in the fourth embodiment.
FIG. 9 is an explanatory diagram of a method for manufacturing a honeycomb structure molding die (primary step) in the fifth embodiment.
FIG. 10 is an explanatory diagram of a method for manufacturing a honeycomb structure molding die (secondary process to tertiary process) in the fifth embodiment.
FIG. 11 is an explanatory diagram of a method for manufacturing a honeycomb structure forming mold (fourth process to fifth process) in the fifth embodiment.
12 is an explanatory diagram of a method for producing a perforated mold material in Embodiment 6. FIG.
FIG. 13 is an explanatory diagram of a method for manufacturing a honeycomb structure molding die (primary step) in Embodiment 6;
FIG. 14 is an explanatory diagram of a method for manufacturing a die for forming a honeycomb structure (secondary process to third process) in Example 6 of the embodiment.
15 is an explanatory diagram of a method for manufacturing a honeycomb structure forming mold (fourth process to fifth process) in Embodiment 6. FIG.
FIG. 16 is an explanatory view of a method for manufacturing a honeycomb structure forming mold in a conventional example.
17 (A) is a cross-sectional view taken along line EE in FIG. 16 (D-1), (B) is a cross-sectional view taken along line FF in FIG. 16 (A), and (C) is a cross-sectional view taken along line GG in FIG. A cross-sectional view taken along line arrow, and a cross-sectional view taken along line HH of (D) and (A).
18A and 18B are explanatory views of (A) slit grooves and (B) corresponding secondary grooves for explaining a material flow at the time of forming in a conventional honeycomb structure forming mold.
[Explanation of symbols]
1. . . Mold for forming honeycomb structure,
101. . . Primary processed body,
102. . . Secondary processed body,
103. . . Tertiary processed body,
104. . . Quaternary workpiece,
11. . . 1st mold material,
115. . . Primary groove,
12 . . Second mold material,
125. . . Secondary groove,
13. . . Perforated mold material,
131. . . Supply holes,
15. . . Slit groove,
21,22. . . Joining medium,

Claims (12)

材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
該製造方法は,第1金型素材に互いに独立した多数条の貫通した1次溝を,ワイヤ放電加工により形成して,1次加工体を得る第1工程と,
第2金型素材を上記1次加工体の上面に接合して2次加工体を得る第2工程と,
上記2次加工体に,互いに独立した多数条の貫通した2次溝を,ワイヤ放電加工により形成し,この際上記第1金型素材には上記2次溝が上記1次溝と連通することにより形成される上記ハニカム状のスリット溝を形成することにより,3次加工体を得る第3工程と,
上記供給穴を有する有穴金型素材を上記第1金型素材の下面に接合して4次加工体を得る第4工程と,
上記4次加工体から上記第2金型素材を除去する第5工程とからなることを特徴とするハニカム構造体成形用金型の製造方法。
In a method of manufacturing a mold for forming a honeycomb structure having a supply hole for supplying a material, and a slit groove for forming the material into a honeycomb shape in communication with the supply hole,
The manufacturing method includes a first step of obtaining a primary processed body by forming, by wire electric discharge machining, a plurality of primary grooves that pass through a plurality of independent strips in a first mold material,
A second step of obtaining a secondary workpiece by joining a second mold material to the upper surface of the primary workpiece;
A plurality of independent secondary grooves are formed in the secondary workpiece by wire electric discharge machining, and the secondary grooves communicate with the primary grooves in the first mold material. A third step of obtaining a third processed body by forming the honeycomb slit groove formed by
A fourth step of obtaining a quaternary workpiece by joining the perforated mold material having the supply holes to the lower surface of the first mold material;
A method for manufacturing a honeycomb structure forming mold, comprising: a fifth step of removing the second mold material from the quaternary processed body.
材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
該製造方法は,第1金型素材に一筆書き的に連結した多数条の貫通した1次溝を,ワイヤ放電加工により形成して,1次加工体を得る第1工程と,
第2金型素材を上記1次加工体の上面に接合して2次加工体を得る第2工程と,
上記2次加工体に,一筆書き的に連結した多数条の貫通した2次溝を,ワイヤ放電加工により形成し,この際上記第1金型素材には上記2次溝が上記1次溝と連通することにより形成される上記ハニカム状のスリット溝を形成することにより,3次加工体を得る第3工程と,
上記供給穴を有する有穴金型素材を上記第1金型素材の下面に接合して4次加工体を得る第4工程と,
上記4次加工体から上記第2金型素材を除去する第5工程とからなることを特徴とするハニカム構造体成形用金型の製造方法。
In a method of manufacturing a mold for forming a honeycomb structure having a supply hole for supplying a material, and a slit groove for forming the material into a honeycomb shape in communication with the supply hole,
The manufacturing method includes a first step of obtaining a primary processed body by forming a plurality of through-going primary grooves connected to the first mold material by one stroke by wire electric discharge machining;
A second step of obtaining a secondary workpiece by joining a second mold material to the upper surface of the primary workpiece;
A plurality of penetrating secondary grooves connected to the secondary workpiece in a single stroke are formed by wire electric discharge machining. At this time, the secondary groove and the primary groove are formed on the first mold material. A third step of obtaining a tertiary processed body by forming the honeycomb-shaped slit groove formed by communicating;
A fourth step of obtaining a quaternary workpiece by joining the perforated mold material having the supply holes to the lower surface of the first mold material;
A method for manufacturing a honeycomb structure forming mold, comprising: a fifth step of removing the second mold material from the quaternary processed body.
請求項1又は2において,上記第5工程は,第2金型素材を平面研削によって除去することを特徴とするハニカム構造体成形用金型の製造方法。  3. The method for manufacturing a honeycomb structure forming mold according to claim 1, wherein the fifth step includes removing the second mold material by surface grinding. 請求項1又は2において,上記第5工程は,第2金型素材をワイヤーカットによって除去することを特徴とするハニカム構造体成形用金型の製造方法。  3. The method for manufacturing a honeycomb structure forming mold according to claim 1, wherein the fifth step includes removing the second mold material by wire cutting. 請求項1〜4のいずれか一項において,上記スリット溝は,四角形,六角形,又は円形のいずれかであることを特徴とするハニカム構造体成形用金型の製造方法。  The method for manufacturing a honeycomb structure forming die according to any one of claims 1 to 4, wherein the slit groove is any one of a square, a hexagon, and a circle. 請求項1〜5のいずれか一項において,上記第1金型素材と上記第2金型素材との接合,及び上記第1金型素材と上記有穴金型素材との接合は,接合面に接合媒体を介在させることにより行うことを特徴とするハニカム構造体成形用金型の製造方法。  The bonding surface according to any one of claims 1 to 5, wherein the first mold material and the second mold material are bonded together, and the first mold material and the perforated mold material are bonded together. A method for manufacturing a die for forming a honeycomb structure, which is performed by interposing a bonding medium in 請求項6において,上記接合媒体は,上記第1金型素材の両面に予め接合しておき,上記1次溝は,上記第1金型素材と上記接合媒体とに同時に形成し,また,上記2次溝は,上記第1金型素材と上記第2金型素材と上記接合媒体とに同時に形成することを特徴とするハニカム構造体成形用金型の製造方法。  In Claim 6, the said joining medium is previously joined to both surfaces of the said 1st metal mold | die material, The said primary groove | channel is simultaneously formed in the said 1st metal mold | die material and the said joining medium, and the said A method for manufacturing a honeycomb structure forming mold, wherein the secondary groove is formed simultaneously in the first mold material, the second mold material, and the joining medium. 請求項6において,上記第1金型素材と上記有穴金型素材とを接合する上記接合媒体は,上記有穴金型素材における供給穴形成前の状態である無穴金型素材の上面に予め接合しておき,上記供給穴は,上記無穴金型素材と上記接合媒体とに同時に形成することを特徴とするハニカム構造体成形用金型の製造方法。  In Claim 6, the said joining medium which joins the said 1st metal mold | die material and the said perforated metal mold | die material on the upper surface of the non-perforated metal mold | die material in the state before the supply hole formation in the said perforated metal mold | die material. A method for manufacturing a mold for forming a honeycomb structure, characterized in that the supply holes are formed in advance in the non-hole mold material and the bonding medium at the same time. 請求項6において,上記第1金型素材と上記有穴金型素材とを接合する上記接合媒体は,上記有穴金型素材に形成された供給穴と連通する位置に,予めドリル加工,放電加工,プレス加工の少なくとも1手段によって連通穴を形成しておくことを特徴とするハニカム構造体成形用金型の製造方法。  7. The welding medium according to claim 6, wherein the joining medium for joining the first mold material and the perforated mold material is previously drilled and discharged at a position communicating with a supply hole formed in the perforated mold material. A method for manufacturing a die for forming a honeycomb structure, wherein communication holes are formed by at least one means of processing and pressing. 請求項6〜9のいずれか一項において,上記接合媒体は,金属箔を熱拡散又はろう付けにより金型素材に接合して形成し,或いは,メッキ又は蒸着により上記金型素材に形成してなり,かつ,上記接合媒体の厚みは0.005〜1mmであることを特徴とするハニカム構造体成形用金型の製造方法。  The bonding medium according to any one of claims 6 to 9, wherein the bonding medium is formed by bonding a metal foil to a mold material by thermal diffusion or brazing, or formed on the mold material by plating or vapor deposition. And the thickness of the joining medium is 0.005 to 1 mm. 請求項1〜10のいずれか一項において,上記第1金型素材,第2金型素材,及び有穴金型素材は,超硬合金からなることを特徴とするハニカム構造体成形用金型の製造方法。  11. The mold for forming a honeycomb structure according to claim 1, wherein the first mold material, the second mold material, and the perforated mold material are made of cemented carbide. Manufacturing method. 請求項11において,上記超硬合金は,周期律表第4a,5a,6a族に属する金属の少なくとも一種以上の金属の炭化物からなる炭化物粉末に対して,鉄,コバルト,ニッケルの少なくとも一種以上の金属を3〜30%添加し,焼結合金としたものであることを特徴とするハニカム構造体成形用金型の製造方法。  12. The cemented carbide according to claim 11, wherein the cemented carbide comprises at least one or more of iron, cobalt, and nickel with respect to carbide powder made of carbide of at least one metal of metals belonging to groups 4a, 5a, and 6a of the periodic table. A method for manufacturing a die for forming a honeycomb structure, wherein 3 to 30% of a metal is added to form a sintered alloy.
JP2000075908A 1999-03-18 2000-03-17 Manufacturing method of mold for forming honeycomb structure Expired - Fee Related JP4332980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075908A JP4332980B2 (en) 1999-03-18 2000-03-17 Manufacturing method of mold for forming honeycomb structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7350499 1999-03-18
JP11-73504 1999-03-18
JP2000075908A JP4332980B2 (en) 1999-03-18 2000-03-17 Manufacturing method of mold for forming honeycomb structure

Publications (2)

Publication Number Publication Date
JP2000326318A JP2000326318A (en) 2000-11-28
JP4332980B2 true JP4332980B2 (en) 2009-09-16

Family

ID=26414649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075908A Expired - Fee Related JP4332980B2 (en) 1999-03-18 2000-03-17 Manufacturing method of mold for forming honeycomb structure

Country Status (1)

Country Link
JP (1) JP4332980B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765174B2 (en) 2001-02-05 2004-07-20 Denso Corporation Method for machining grooves by a laser and honeycomb structure forming die and method for producing the same die
JP3925168B2 (en) * 2001-02-05 2007-06-06 株式会社デンソー Groove processing method using laser and method for manufacturing die for forming honeycomb structure
JP2003285309A (en) 2002-03-28 2003-10-07 Ngk Insulators Ltd Cap for molding honeycomb
JP2003285308A (en) * 2002-03-28 2003-10-07 Ngk Insulators Ltd Cap for molding honeycomb and cap fixture for molding honeycomb using the same
JP4426400B2 (en) 2004-08-11 2010-03-03 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
EP1864772B1 (en) 2005-03-17 2013-11-20 NGK Insulators, Ltd. Method of manufacturing ferrule for molding honeycomb structure and ferrule for molding honeycomb structure
WO2007023949A1 (en) * 2005-08-25 2007-03-01 Hiroshi Ishizuka Tool with sintered body polishing surface and method of manufacturing the same
EP2002949B1 (en) 2006-03-31 2012-08-01 NGK Insulators, Ltd. Die for forming a honeycomb structure and method for manufacturing the same
CN101484287A (en) 2006-12-26 2009-07-15 日本碍子株式会社 Die for forming honeycomb structure
JP5242201B2 (en) 2008-03-13 2013-07-24 日本碍子株式会社 Joining jig and method for manufacturing dissimilar material joined body using the same
JP5361224B2 (en) 2008-03-17 2013-12-04 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the same
JP5379460B2 (en) * 2008-12-05 2013-12-25 日本碍子株式会社 Die for forming honeycomb structure and method for manufacturing the die for forming honeycomb structure
JP5184400B2 (en) 2009-02-18 2013-04-17 日本碍子株式会社 Die for forming honeycomb structure
CN108488611A (en) * 2018-04-26 2018-09-04 辽宁博镁兴业科技有限公司 A kind of overall structure metal honeycomb plate and preparation method thereof
CN113878306B (en) * 2021-09-01 2022-09-06 西安远航真空钎焊技术有限公司 Preparation method of honeycomb core

Also Published As

Publication number Publication date
JP2000326318A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4332980B2 (en) Manufacturing method of mold for forming honeycomb structure
JP4756129B2 (en) CUTTING TIP, CUTTING TIP MANUFACTURING METHOD, AND CUTTING TOOL
KR100993679B1 (en) Tool insert
JP6046712B2 (en) Die for forming honeycomb structure and method for manufacturing the same
JP5897552B2 (en) Tungsten carbide-based cemented carbide joined body and manufacturing method thereof
JP4426400B2 (en) Die for forming honeycomb structure and method for manufacturing the same
US20050271483A1 (en) Indexable cutting inserts and methods for producing the same
JP5134364B2 (en) Method for manufacturing die for forming honeycomb structure and die for forming honeycomb structure
EP2105272B1 (en) Honeycomb structure-forming die and method for manufacturing the same
CN1014306B (en) Low pressure bonding of pcd bodies and method
JPH09117808A (en) Metal cutting insert and its manufacture
CN103813998A (en) Cutter structures, inserts comprising same and method for making same
KR20080003276A (en) Die plate
US20130255161A1 (en) Cutter assembly with at least one island and a method of manufacturing a cutter assembly
US20130263519A1 (en) Cutter assembly with at least one island and a method of manufacturing a cutter assembly
JPH0251364B2 (en)
US6989119B2 (en) Honeycomb extrusion dies
JP4996642B2 (en) Die for forming honeycomb structure and method for manufacturing the same
JP3660525B2 (en) Cutting tool manufacturing method
WO2017148059A1 (en) Diamond cutter tooth, and method for manufacturing diamond cutter tooth from rigid material
US20130276970A1 (en) Indexable cutter insert, construction for same and method for making same
KR101162543B1 (en) Method of manufacturing stacking type polishing and cutting tool
KR100603977B1 (en) A segment of diamond tool and the manufacturing method thereof
JPH08118124A (en) Electrodeposited tool
CN110962234B (en) Surface and impregnated diamond saw blade and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees