JP4331829B2 - Cement-based fired plate-shaped building material - Google Patents

Cement-based fired plate-shaped building material Download PDF

Info

Publication number
JP4331829B2
JP4331829B2 JP18976299A JP18976299A JP4331829B2 JP 4331829 B2 JP4331829 B2 JP 4331829B2 JP 18976299 A JP18976299 A JP 18976299A JP 18976299 A JP18976299 A JP 18976299A JP 4331829 B2 JP4331829 B2 JP 4331829B2
Authority
JP
Japan
Prior art keywords
building material
shaped building
fired plate
cement
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18976299A
Other languages
Japanese (ja)
Other versions
JP2001019508A (en
Inventor
雅人 古川
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP18976299A priority Critical patent/JP4331829B2/en
Publication of JP2001019508A publication Critical patent/JP2001019508A/en
Application granted granted Critical
Publication of JP4331829B2 publication Critical patent/JP4331829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、耐候性および耐久性に優れたセメント系焼成板状建材に関する。
【0002】
【従来の技術】
建築物の内外装材、エクステリア、トンネル内装材などに使用される板状建材は、外観、耐候性、耐衝撃性、防火性、施工簡略化等が要求される。
【0003】
この種の板状建材の材質は、セメント系あるいは金属板である。しかし、セメント系は一般に未焼成品のために耐久性に劣る。金属板はその可撓性によって耐衝撃性に優れるものの、酸化劣化の問題がある。また、セメント系、金属板共に表面着色は樹脂塗装であり、耐候性に劣る。
【0004】
そこで本出願人は、先にセメント系焼成板状建材を提案した(特開平8−133825号公報)。この材質は焼成品であり、耐久性に優れる。表面色は素材自身の色調あるいは施釉による着色により、耐候性においても問題がない。
【0005】
【発明が解決しようとしている課題】
セメント系焼成板状建材は、飛来物等の衝撃で破損すると飛散あるいは脱落し、重大事故の原因となる。本出願人が提案した前記の焼成板は、耐衝撃性に関し、従来材質の焼成板に比べると優れているが、決して十分なのもではない。本発明は、耐衝撃性を向上させたセメント系焼成板状建材を得ることを目的とする。
【0006】
【課題を解決するための手段】
本願発明のセメント系焼成板状建材は、ポルトランドセメント5〜40質量%と、ガラス粉が5〜30質量%と、残部がシリカ−アルミナ質耐火原料を主体とした耐火骨材からなる配合物100質量%に対し、セラミック質および/または鉱物質の無機質繊維を0.5〜5質量%添加し、混練後、押し出し成形によって長尺板形状に成形し、次いで、焼成した板状材の裏面に、ガラス繊維シートを熱硬化性フェノール樹脂によって貼り付けて製造されたものである。
【0007】
無機質成形体の強度付与のために、無機質繊維を添加することは既知の技術である。本発明は、この無機質繊維の添加による強度付与、特にセメント系焼成板状建材に要求される耐衝撃性の向上の効果を、より顕著にしたものでる。
【0008】
焼成板状建材の場合、それに添加された無機質繊維は、建材焼成時の高温を受けて溶融化あるいは一部消失によって体積が縮減し、繊維による建材組織の牽引支持力が十分に発揮されていないことが考えられる。
【0009】
本発明による焼成板状建材は、ガラス粉を5〜30質量%とする。ガラス成分は1000℃前後あるいはそれ以下の比較的低温域で軟化あるいは溶融し、建材組織に内在する繊維周囲にガラス膜を形成する。そして、このガラス膜が繊維成分の逸散防止と繊維の融着支持に作用する。
【0010】
本発明により得られる焼成板状建材は耐衝撃性が格段に向上するが、その理由はガラス粉による前記作用に起因すると推測される。
【0011】
例えば粘土、珪石等は、化学的にはガラスの主成分であるSiO2を含有している。しかし、ここでのSiO2は他成分と結びついた鉱物組成として安定化しているためか、ガラス粉による本発明の効果は得られない。
【0012】
焼成板状建材は、裏面にガラス繊維シートを合成樹脂接着剤で貼り付けると、耐衝撃性等の強度付与の効果がさらに向上する。
【0013】
建材の裏面にガラス繊維シートを貼り付けた場合、断熱性に劣る建材では火災時の高温を受けると、ガラス繊維シートを貼り付けた接着剤がガス発生や引火を生じる。しかも、接着剤が高温によってその機能が低下すると、ガラス繊維シートによる強度付与の効果も損なわれる。
【0014】
本発明において、焼成板状建材の製造時に添加する無機質繊維の添加は、焼成板状建材の組織内に微細空隙を形成し、建材自体の断熱性を向上させる。また、ガラス繊維シート貼り付ける接着剤に、特に熱硬化性フェノール樹脂を使用すると、ガスの発生が少なく、しかも耐熱性に優れ、前記した無機質繊維添加による建材本体の断熱効果とも相まって、耐熱性はより優れたものとなる。
【0015】
【発明の実施の形態】
焼成板状建材の本体の製造に使用するポルトランドセメントは、早強セメント、超早強セメント、普通セメント等の種類があるが、硬化速度による焼成板状建材製造時の作業性と経済性の面から、普通セメントが好ましい。
【0016】
焼成板状建材の本体の配合に占めるポルトランドセメントの割合は、5質量%未満では焼成時の収縮が大きく、寸法精度に劣る。また40質量%を超えると強度に劣り、耐久性に問題がある。
【0017】
ガラス粉の具体例は、ほう酸ガラス、ほう珪酸ガラス、珪酸ガラス、りん酸ガラス、ソーダガラス、等である。その粒径は、無機質繊維との融着より顕著なものにするために、その粒径は0.5mm以下が好ましい。さらに好ましくは0.3mm以下である。いずれの粒度についても市販品から入手できる。
【0018】
ガラス粉の割合は、5質量%未満では本発明の耐衝撃性が得られず、30質量%を超えると燒結過多となって、この場合も耐衝撃性に劣る。
【0019】
シリカ−アルミナ質耐火原料の具体例は、シャモット、ろう石あるいはこれらを主材としたれんが屑、陶磁瓦屑等である。このシリカ−アルミナ質耐火原料の割合は、ガラス粉とポルトランドセメントの増減に応じて自ずと定まるが、好ましくは30〜90質量%である。
【0020】
耐火骨材は前記シリカ−アルミナ質耐火原料以外にも、本発明の効果を損なわない範囲において、粘土、珪石、珪砂、長石等を組合わせ使用することができる。
【0021】
無機質繊維は、シリカ質、アルミナ質、アルミナ−シリカ質、ガラス質等のセラミック質繊維あるいはロックウール、石綿、セピオライト等の鉱物繊維とする。無機質繊維の割合は、前記配合物100質量%に対する外掛けで、0.5質量%未満では耐衝撃性および耐熱性において本発明の効果が得られない。5質量%を超えると焼成板状建材配合物の混練時、混練物の硬度が高くなり、成形時の作業性が低下する。
【0022】
焼成板状建材の製造は、以上の配合物および添加物に、さらにCMC(カルボキシメチルセルロース),MC(メチルセルロース)、PVA(ポリビニルアルコール)、デキストリン、デンプン等の合成または天然の結合剤を添加し、混練して、後は常法どおり押し出し成形、養生、乾燥後、ローラーハースキルン等で焼成する。
【0023】
押し出し成形では、焼成板状建材の軽量化および断熱化を目的として、焼成板状建材の長さ方向に連続中空孔を設けるのが好ましい。また、焼成温度は1000〜1200℃が好ましい。
【0024】
焼成板状建材は、美観、耐候性等のために、施釉することが一般的である。本発明で得られる焼成板状建材についても、施釉することが好ましい。施釉には、焼成前の建材に対し、釉薬をスプレー法、フローコーター法等で焼成板状建材の表面に塗布しておく。建材焼成時に前記の釉薬がガラス化し、施釉される。
【0025】
焼成板状建材の裏面にガラス繊維シートを貼り付ける場合、ガラス繊維シートはガラス不織布、ガラス織布、ガラス組布等のガラスクロス、あるいはガラスロービング等である。
【0026】
図1は、本発明による焼成板状建材の長さ方向に対する直角断面を模式的に示したものである。図において、焼成板状建材(1)はその裏面に接着剤をもってガラス繊維シート(2)が貼り付けられる。焼成板状建材(1)は、長さ方向に連続中空孔(3)が設けられている。
【0027】
ガラス繊維シートの貼り付けに使用する接着剤は、硬化収縮が少なく且つ耐熱性に優れた熱硬化性フェノール樹脂が好ましい。
【0028】
接着剤として、例えばポリエステル樹脂やエポキシ樹脂を使用した場合は、接着硬化時の収縮が大きく、焼成板状建材が反りによって寸法精度を損なう。ABS樹脂,シリコン樹脂、ウレタン樹脂等の接着剤は、接着時の収縮は比較的少ないが、それ自身の弾性(伸び)が高いため、基材側に剛性による強度を付与できず、衝撃時の飛散、脱落防止にはなるが、製品自身の安全性向上に不十分である。
【0029】
しかも、熱硬化性フェノール樹脂と違ってこの種の樹脂は加熱時にガスを発生し、火災時の二次災害を発生する恐れがあるため、防火性の面からも不適である。
【0030】
ガラス繊維シートの貼り付け方法は、クロス、マットであればハンドレイアップ法、ロービングではスプレーアップ法が好ましい。貼り付け後の乾燥は、赤外線、熱風発生器等を熱源とした乾燥炉に必要時間通し、接着剤を熱硬化させる。
【0031】
接着剤の塗布量は、建材が準不燃材認定としての構成では200〜650g/m2、不燃材認定としての構成の場合は200〜450g/m2好ましい。
【0032】
【実施例】
以下に、本発明実施例および比較例を説明する。表1は、各例における焼成板状建材の配合組成とその試験結果である。各例は、同表の配合物に結合剤としてMCを2質量%(耐火骨材100質量%に対する外掛け)および水分15質量%(結合剤を含む配合物全体に対する外掛け)添加し、ニーダールーダーにて混練後、真空押出し成形機にて、長さ2000×幅300×厚さ20mmの中空長尺板に成形した。
【0033】
次いで養生後、120℃×12時間の加熱乾燥を行い、さらにローラーハースキルンにて1100℃×3時間の迅速焼成を行った。試験方法は、以下の通り。
【0034】
曲げ強さ:JIS-A1408「建築用ボード類の曲げ試験方法」に準じて測定した。
耐衝撃性:JIS-A1421「建築用ボード類の衝撃試験方法」に準じて測定した。
寸法精度:焼成収縮率を測定した。
【0035】
【表1】

Figure 0004331829
【0036】
表の試験結果が示すとおり、本発明実施例により得られた板状建材は、曲げ強さ、耐衝撃性ともに優れている。
【0037】
これに対し、ガラス粉を添加していない比較例1は曲げ強さ、耐衝撃性に劣る。ガラス粉を添加しているがその添加量が本発明の範囲を超える比較例2は寸法精度、耐衝撃性に劣る。比較例3は、ガラス粉に換えて粘土を添加したものであり、特に耐衝撃性に劣る。また、比較例4は、ポルトランドセメントの割合が多く、曲げ強さ、耐衝撃性に劣る。
【0038】
実施例において焼成板状建材に添加する無機質繊維はガラス繊維およびロックウールを使用したが、これ以外の無機質繊維を使用しても同様の効果が得られた。
【0039】
表2は、裏面にガラス繊維シートを貼り付けた場合の試験である。表1に示す実施例2で得られた焼成板状建材の裏面にガラス繊維不織布よりなる厚さ1mmのガラス繊維シートをハンドレイアップ法にて焼成板状建材の裏面に接着し、100℃×1時間の加熱硬化処理を行った。
【0040】
試験例1は、接着剤に熱硬化性フェノール樹脂をもってガラス繊維シートを貼り付けた。一方、試験例2では接着剤にポリエステル樹脂を用いてガラス繊維シートを貼り付けた。試験例3では接着剤にシリコン樹脂を用いてガラス繊維シートを貼り付けた。
【0041】
曲げ強さおよび耐衝撃性:前記実施例で示した試験方法と同様の条件で行なった。
反り:反り測定器にて測定した。
不燃性試験:建設省告示第1828号規定の試験方法に準じた。
〇…合格、×…不合格
【0042】
【表2】
Figure 0004331829
【0043】
試験例1は、ガラス繊維シートを貼り付けで、焼成板状建材は曲げ強度、衝撃強度についてさらなる向上が認められ、また、反りも小さい。不燃性に関わる評価試験においても、ガラス繊維シートは色が多少変化する程度であり、発煙、引火、剥離も認められなかった。
【0044】
これに対し試験例2は、焼成板状建材が接着剤の硬化に伴う収縮で反りが大きく、寸法精度が損なわれた。また、不燃性に関わる評価試験において、接着剤に引火および発煙が認められ、ガラス繊維シートが剥離した。
【0045】
接着剤にシリコン樹脂を用いた試験例3は、耐衝撃性が不十分であり、耐衝撃性の試験では脱落には至らなかったが、耐衝撃性において顕著な効果が得られず、表面にはクラックが発生した。また不燃性に関わる評価試験では発熱が大きく、発煙およびガラス繊維シートの剥離が認められた。
【0046】
【発明の効果】
本発明の方法により製造される焼成板状建材は、以上に述べたとおり、大型焼成板状建材に要求される寸法精度および耐衝撃性が各段に優れる。また、ガラス繊維シートを裏面に貼り付けた場合、その貼り付けに熱硬化性フェノール樹脂を選択使用することで、ガラス繊維シートによる補強効果を一層向上させることができる。
【図面の簡単な説明】
【図1】本発明による焼成板状建材の長さ方向に対する直角断面を模式的に示したものである。
【符号の説明】
1 焼成板状建材
2 ガラス繊維シート
3 連続中空孔[0001]
[Industrial application fields]
The present invention relates to a cement-based fired plate-shaped building material excellent in weather resistance and durability.
[0002]
[Prior art]
Plate-like building materials used for interior and exterior materials of buildings, exteriors, tunnel interior materials, etc. are required to have appearance, weather resistance, impact resistance, fire resistance, simplified construction, and the like.
[0003]
The material of this type of plate-shaped building material is cement-based or metal plate. However, cement systems are generally inferior in durability due to unfired products. Although the metal plate is excellent in impact resistance due to its flexibility, there is a problem of oxidative degradation. In addition, the surface coloring of both cementitious and metal plates is resin coating, which is inferior in weather resistance.
[0004]
Therefore, the present applicant has previously proposed a cement-based fired plate-shaped building material (Japanese Patent Laid-Open No. 8-133825). This material is a fired product and has excellent durability. The surface color has no problem in weather resistance due to the color tone of the material itself or coloring by glazing.
[0005]
[Problems to be solved by the invention]
When cement-based fired plate-like building materials are damaged by the impact of flying objects, they are scattered or dropped, causing a serious accident. The fired plate proposed by the present applicant is superior to the fired plate made of a conventional material in terms of impact resistance, but it is not sufficient. An object of the present invention is to obtain a cement-based fired plate-shaped building material with improved impact resistance.
[0006]
[Means for Solving the Problems]
The cement-based fired plate-shaped building material of the present invention is a composition comprising 5 to 40 % by mass of Portland cement , 5 to 30 % by mass of glass powder , and the balance comprising a refractory aggregate mainly composed of a silica-alumina refractory raw material. to 100 wt%, the inorganic fibers of the ceramic electrolyte and / or minerals are added 0.5 to 5 wt%, kneaded by extrusion molding into a long plate shape, then the back surface of the fired plate-like member Further, the glass fiber sheet is manufactured by pasting with a thermosetting phenol resin.
[0007]
It is a known technique to add inorganic fibers in order to impart strength to the inorganic molded body. In the present invention, the effect of imparting strength by adding this inorganic fiber, particularly the impact resistance required for cement-based fired plate-shaped building materials, is made more remarkable.
[0008]
In the case of fired plate-like building materials, the inorganic fibers added to them are reduced in volume due to melting or partially disappearing due to the high temperature during building material firing, and the pulling support force of the building material structure by the fibers is not sufficiently exhibited It is possible.
[0009]
The fired plate-shaped building material according to the present invention contains 5 to 30% by mass of glass powder. The glass component softens or melts in a relatively low temperature range of about 1000 ° C. or lower, and forms a glass film around the fibers inherent in the building material structure. This glass film acts to prevent the fiber components from escaping and to support the fusion of the fibers.
[0010]
The fired plate-shaped building material obtained according to the present invention has a markedly improved impact resistance, which is presumed to be due to the above-described action of glass powder.
[0011]
For example, clay, silica and the like chemically contain SiO 2 which is the main component of glass. However, because the SiO 2 here is stabilized as a mineral composition combined with other components, the effect of the present invention by the glass powder cannot be obtained.
[0012]
When a glass fiber sheet is attached to the back surface of the fired plate-shaped building material with a synthetic resin adhesive, the effect of imparting strength such as impact resistance is further improved.
[0013]
When a glass fiber sheet is affixed to the back surface of a building material, when the building material is inferior in heat insulation, the adhesive with the glass fiber sheet affixes gas and ignites when subjected to a high temperature during a fire. In addition, when the function of the adhesive is lowered due to high temperature, the effect of imparting strength by the glass fiber sheet is also impaired.
[0014]
In the present invention, the addition of inorganic fibers added during the production of the fired plate-like building material forms fine voids in the structure of the fired plate-like building material, and improves the heat insulating property of the building material itself. Further, the adhesive paste the glass fiber sheet, especially using a thermosetting phenol resin, less generation of gas, yet excellent in heat resistance, coupled with the insulating effect of the building material body by the above-mentioned inorganic fibers added, heat resistance Will be better.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Portland cement used for manufacturing the main body of fired plate-shaped building materials includes early-strength cement, ultra-high-strength cement, and ordinary cement. Therefore, ordinary cement is preferable.
[0016]
If the proportion of Portland cement in the composition of the main body of the fired plate-shaped building material is less than 5% by mass , the shrinkage during firing is large and the dimensional accuracy is inferior. Moreover, when it exceeds 40 mass %, it is inferior to intensity | strength and there exists a problem in durability.
[0017]
Specific examples of the glass powder include borate glass, borosilicate glass, silicate glass, phosphate glass, and soda glass. The particle size is preferably 0.5 mm or less in order to make the fusion with the inorganic fiber more remarkable. More preferably, it is 0.3 mm or less. Any particle size can be obtained from commercial products.
[0018]
If the ratio of the glass powder is less than 5% by mass , the impact resistance of the present invention cannot be obtained, and if it exceeds 30% by mass, excessive sintering occurs, and in this case, the impact resistance is also inferior.
[0019]
Specific examples of the silica-alumina refractory raw material include chamotte, wax, or brick scraps, ceramic tile scraps and the like mainly composed of these. The ratio of the silica-alumina refractory raw material is naturally determined according to the increase or decrease of the glass powder and Portland cement, but is preferably 30 to 90% by mass .
[0020]
In addition to the silica-alumina refractory raw material, the fireproof aggregate can be used in combination with clay, quartzite, quartz sand, feldspar and the like as long as the effects of the present invention are not impaired.
[0021]
The inorganic fibers are ceramic fibers such as siliceous, alumina, alumina-silica, and glass or mineral fibers such as rock wool, asbestos, and sepiolite. The ratio of the inorganic fiber is an outer coating with respect to 100% by mass of the blend, and if it is less than 0.5% by mass , the effects of the present invention cannot be obtained in impact resistance and heat resistance. When it exceeds 5% by mass , the hardness of the kneaded product increases when the fired plate-shaped building material composition is kneaded, and the workability at the time of molding decreases.
[0022]
In the production of fired plate-shaped building materials, synthetic or natural binders such as CMC (carboxymethyl cellulose), MC (methyl cellulose), PVA (polyvinyl alcohol), dextrin, starch, etc. are added to the above-mentioned blends and additives, After kneading, after extrusion molding, curing and drying as usual, it is fired with a roller hearth kiln.
[0023]
In extrusion molding, it is preferable to provide continuous hollow holes in the length direction of the fired plate-shaped building material for the purpose of reducing the weight and heat insulation of the fired plate-shaped building material. The firing temperature is preferably 1000 to 1200 ° C.
[0024]
The fired plate-shaped building material is generally glazed for aesthetics, weather resistance, and the like. The fired plate-shaped building material obtained in the present invention is also preferably glazed. For glazing, glaze is applied to the surface of the fired plate-shaped building material by spraying, flow coater method, or the like with respect to the building material before firing. The above glaze is vitrified and glazed when the building material is fired.
[0025]
When a glass fiber sheet is affixed to the back surface of the fired plate-shaped building material, the glass fiber sheet is a glass cloth such as a glass nonwoven fabric, a glass woven fabric, or a glass braid, or a glass roving.
[0026]
FIG. 1 schematically shows a cross section perpendicular to the length direction of a fired plate-shaped building material according to the present invention. In the figure, the glass fiber sheet (2) is attached to the back surface of the fired plate-shaped building material (1) with an adhesive. The fired plate-shaped building material (1) is provided with continuous hollow holes (3) in the length direction.
[0027]
The adhesive used for attaching the glass fiber sheet is preferably a thermosetting phenolic resin having little curing shrinkage and excellent heat resistance.
[0028]
When, for example, a polyester resin or an epoxy resin is used as the adhesive, the shrinkage at the time of adhesive curing is large, and the baked plate-shaped building material is warped and the dimensional accuracy is impaired. Adhesives such as ABS resin, silicone resin, and urethane resin have relatively little shrinkage during bonding, but their own elasticity (elongation) is high, so the strength due to rigidity cannot be imparted to the base material side, and at the time of impact Although it will prevent scattering and falling off, it is insufficient for improving the safety of the product itself.
[0029]
In addition, unlike thermosetting phenolic resins, this type of resin generates gas during heating and may cause a secondary disaster in the event of a fire.
[0030]
As a method for attaching the glass fiber sheet, a hand lay-up method is preferable for cloth and mat, and a spray-up method is preferable for roving. Drying after pasting is performed for a required time in a drying furnace using infrared rays, a hot air generator or the like as a heat source, and the adhesive is thermally cured.
[0031]
The application amount of the adhesive is preferably 200 to 650 g / m 2 when the construction material is a semi-incombustible material certification, and 200 to 450 g / m 2 when the construction material is a non-flammable material certification.
[0032]
【Example】
Examples of the present invention and comparative examples will be described below. Table 1 shows the composition of the fired plate-shaped building material in each example and the test results. In each example, 2% by mass of MC as a binder (outer for 100% by mass of refractory aggregate) and 15% by mass of moisture (outer for the entire formulation including the binder) were added to the formulations shown in the table. After kneading with a ruder, it was molded into a hollow long plate of length 2000 × width 300 × thickness 20 mm with a vacuum extrusion molding machine.
[0033]
Next, after curing, heat drying was performed at 120 ° C. for 12 hours, and further rapid firing was performed at 1100 ° C. for 3 hours in a roller hearth kiln. The test method is as follows.
[0034]
Bending strength: Measured according to JIS-A1408 “Bending test method for building boards”.
Impact resistance: Measured according to JIS-A1421, “Impact test method for building boards”.
Dimensional accuracy: firing shrinkage rate was measured.
[0035]
[Table 1]
Figure 0004331829
[0036]
As the test results in the table show, the plate- like building materials obtained by the examples of the present invention are excellent in both bending strength and impact resistance.
[0037]
In contrast, Comparative Example 1 in which no glass powder was added is inferior in bending strength and impact resistance. Although glass powder is added, Comparative Example 2 in which the added amount exceeds the range of the present invention is inferior in dimensional accuracy and impact resistance. Comparative Example 3 is obtained by adding clay instead of glass powder, and is particularly inferior in impact resistance. Further, Comparative Example 4 has a large proportion of Portland cement, and is inferior in bending strength and impact resistance.
[0038]
In the examples, glass fibers and rock wool were used as the inorganic fibers added to the fired plate-shaped building material, but similar effects were obtained even when other inorganic fibers were used.
[0039]
Table 2 shows the test when a glass fiber sheet is attached to the back surface. Adhering a 1 mm thick glass fiber sheet made of glass fiber non-woven fabric to the back of the fired plate-like building material obtained in Example 2 shown in Table 1 by the hand lay-up method, A heat curing treatment for 1 hour was performed.
[0040]
In Test Example 1, a glass fiber sheet was attached to the adhesive with a thermosetting phenol resin. On the other hand, in Test Example 2, a glass fiber sheet was attached using a polyester resin as an adhesive. In Test Example 3, a glass fiber sheet was attached using silicon resin as an adhesive.
[0041]
Bending strength and impact resistance: The test was performed under the same conditions as in the test methods shown in the above examples.
Warpage: measured with a warpage measuring instrument.
Nonflammability test: Conforms to the test method specified by Ministry of Construction Notification No. 1828.
○… Pass, ×… Fail [0042]
[Table 2]
Figure 0004331829
[0043]
In Test Example 1, a glass fiber sheet was attached, and the fired plate-shaped building material was further improved in bending strength and impact strength, and warpage was small. Also in the evaluation test relating to incombustibility, the glass fiber sheet was slightly changed in color, and no smoke, ignition, or peeling was observed.
[0044]
On the other hand, in Test Example 2, the fired plate-shaped building material warped due to shrinkage accompanying the curing of the adhesive, and the dimensional accuracy was impaired. Moreover, in the evaluation test regarding nonflammability, the adhesive showed flammability and smoke generation, and the glass fiber sheet peeled off.
[0045]
Test example 3 using silicone resin as the adhesive had insufficient impact resistance and did not drop out in the impact resistance test, but no significant effect was obtained in impact resistance, and the surface Cracked. In the evaluation test relating to nonflammability, heat generation was large, and smoke generation and peeling of the glass fiber sheet were observed.
[0046]
【The invention's effect】
As described above, the fired plate-shaped building material produced by the method of the present invention has excellent dimensional accuracy and impact resistance required for a large fired plate-shaped building material. Moreover, when a glass fiber sheet is affixed on the back surface, the reinforcement effect by a glass fiber sheet can be further improved by selectively using a thermosetting phenol resin for the affixing.
[Brief description of the drawings]
FIG. 1 schematically shows a cross section perpendicular to the length direction of a fired plate-shaped building material according to the present invention.
[Explanation of symbols]
1 Fired plate-shaped building materials
2 Glass fiber sheet
3 continuous hollow holes

Claims (3)

ポルトランドセメント5〜40質量%と、ガラス粉が5〜30質量%と、残部がシリカ−アルミナ質耐火原料を主体とした耐火骨材からなる配合物100質量%に対し、セラミック質および/または鉱物質の無機質繊維を0.5〜5質量%添加し、混練後、押し出し成形によって長尺板形状に成形し、次いで、焼成した板状材の裏面に、ガラス繊維シートを熱硬化性フェノール樹脂によって貼り付けて製造されたセメント系焼成板状建材。5 % to 40 % by weight of Portland cement , 5 % to 30 % by weight of glass powder , and 100% by weight of the composition consisting of a refractory aggregate mainly composed of silica-alumina refractory raw material, and / or ceramic and / or Add 0.5 to 5% by mass of mineral mineral fiber, knead, shape into a long plate by extrusion, and then heat-set phenolic resin to glass fiber sheet on the back of the fired plate Cement-based fired plate-shaped building material manufactured by pasting with ガラス粉の粒径が0.5mm以下である請求項1記載のセメント系焼成板状建材。 2. The cement-based fired plate-shaped building material according to claim 1, wherein the particle size of the glass powder is 0.5 mm or less. 焼成温度が1000〜1200℃である請求項1に記載のセメント系焼成板状建材。  The cement-based fired plate-shaped building material according to claim 1, wherein the firing temperature is 1000 to 1200 ° C.
JP18976299A 1999-07-02 1999-07-02 Cement-based fired plate-shaped building material Expired - Fee Related JP4331829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18976299A JP4331829B2 (en) 1999-07-02 1999-07-02 Cement-based fired plate-shaped building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18976299A JP4331829B2 (en) 1999-07-02 1999-07-02 Cement-based fired plate-shaped building material

Publications (2)

Publication Number Publication Date
JP2001019508A JP2001019508A (en) 2001-01-23
JP4331829B2 true JP4331829B2 (en) 2009-09-16

Family

ID=16246766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18976299A Expired - Fee Related JP4331829B2 (en) 1999-07-02 1999-07-02 Cement-based fired plate-shaped building material

Country Status (1)

Country Link
JP (1) JP4331829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478446B1 (en) * 2002-09-05 2005-03-23 곽상운 Resin mortar composition for construction and operating method using the same
KR100887662B1 (en) 2007-08-23 2009-03-11 디에스케이엔지니어링(주) The pro-environment production technique of construction material for which silica natural mineral matter was used
GB2599970A (en) * 2020-06-23 2022-04-20 Sekisui House Kk Cement-based calcined board-shaped construction material

Also Published As

Publication number Publication date
JP2001019508A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
US6174608B1 (en) Ceramic tile and glaze for use thereon
JP4331829B2 (en) Cement-based fired plate-shaped building material
WO2010128834A2 (en) Silica-based nonflammable material for replacing asbestos and method for preparing same
WO2021260798A1 (en) Cement-based sintered sheet-shaped building material
JP2000063172A (en) Production of highly strong lightweight ceramic plate
FI96022C (en) Foam glass disc with dense surface and process for making the same
CN213322042U (en) Stain-resistant easy-to-clean artificial quartz plate
KR101815649B1 (en) Manufacture method of building interior decoration materials
JPS6328847B2 (en)
CN113802790A (en) Assembled integrated rock plate and preparation method and application thereof
JP3411242B2 (en) Lightweight porcelain product and method of manufacturing the same
JP3930752B2 (en) Large ceramic plate for building material and method for producing the same
JP4938234B2 (en) Light weight inorganic board and method for producing the light weight inorganic board
KR101067144B1 (en) Glaze composition containing vermiculite and a functional tile on which the surface is treated with the glaze composition
JPS60231475A (en) Inorganic lightweight porous body
JPH0688824B2 (en) Inflatable inorganic material
JPH0643272B2 (en) Porous concrete compact and method for producing the same
JPH0920578A (en) Ceramic panel and its production
JPS6149275B2 (en)
JP2016193811A (en) Large ceramic plate
JP2607214B2 (en) Foamed ceramic product for bathroom and method of manufacturing the same
WO2021260802A1 (en) Large ceramic sheet for building material use
JPH0472786B2 (en)
JP5374334B2 (en) Cured body
JP2000226250A (en) Inorganic molded article and its production and binding of inorganic material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

R150 Certificate of patent or registration of utility model

Ref document number: 4331829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150626

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees