JP4330930B2 - Dirt measuring device and water treatment method using the same - Google Patents

Dirt measuring device and water treatment method using the same Download PDF

Info

Publication number
JP4330930B2
JP4330930B2 JP2003152890A JP2003152890A JP4330930B2 JP 4330930 B2 JP4330930 B2 JP 4330930B2 JP 2003152890 A JP2003152890 A JP 2003152890A JP 2003152890 A JP2003152890 A JP 2003152890A JP 4330930 B2 JP4330930 B2 JP 4330930B2
Authority
JP
Japan
Prior art keywords
dirt
light
water
measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152890A
Other languages
Japanese (ja)
Other versions
JP2004354232A (en
Inventor
則彦 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2003152890A priority Critical patent/JP4330930B2/en
Publication of JP2004354232A publication Critical patent/JP2004354232A/en
Application granted granted Critical
Publication of JP4330930B2 publication Critical patent/JP4330930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、汚れ測定装置及びそれを用いた水処理方法に関する。この汚れ測定装置及び水処理方法は、製紙工程や冷却水等の工業工程水系における汚れの測定及び水処理に使用して好適である。
【0002】
【従来の技術】
工程水、冷却水等、産業活動に伴って用いられる水には、カルシウム分やケイ素分等が含まれており、これらに起因して配管内や熱交換器内にはスケールが沈着することとなる。また、水の中に存在する微生物によって産出されたスライムと称される粘度の高い塊が配管等に付着する場合もある。こうした配管等に付着した汚れは、様々なトラブルを引き起こすこととなる。例えば、製紙工程における配管の汚れが剥がれて製品に付着すると、製品の品質が著しく低下してしまう。また、冷水塔において、熱交換器に冷却水中の汚れが付着すると、熱交換効率が低下してしまう。このため、配管等に付着した汚れを測定し、その測定結果に応じて適切な量の殺菌剤や分散剤等の薬剤を添加することが必要となる。
【0003】
従来、こうした配管等に付着した汚れの付着量を測定するための汚れ測定装置として、透明な通水管と、通水管に光を照射する発光体と、発光体から通水管に照射されて透過した光を受光し、光の強さに応じた電気信号を発生する受光体とを備えた汚れ測定装置が知られている(例えば、特許文献1〜3)、
【特許文献1】
特開平5−209725号公報
【特許文献2】
特開平9−236546号公報
【特許文献3】
特開平10−267843号公報
【0004】
上記公報記載の汚れ測定装置では、通水管が汚れているほど光の透過率が低下し、測定される光の強さは低下するため、その強さの低下の程度を把握することにより、汚れの程度を測定することができる。
【0005】
すなわち、これらの汚れ測定装置によれば、汚れを電気信号の強度変化によっ直接的に測定することができる。このため、汚れの度合いをある程度正確に測定することができる。
【0006】
さらに、これらの汚れ測定装置は、汚れの度合いを迅速かつ連続的に測定することができるため、汚れの急激な変化に対する対処が可能となる。
【0007】
また、これらの汚れ測定装置の受光部から発生する電気信号に基づき、水処理に適切な量の水処理剤を添加する水処理剤制御手段を駆動させれば、汚れの発生を効果的に防止することができる。
【0008】
【発明が解決しようとする課題】
しかし、上記従来の汚れ測定装置では、電球、LED、半導体レーザー、あるいはそれらを光ファイバーで導いたもの等の、小さな光源を使用しているため、光は通水管の極めて狭い範囲にしか照射されない。このため、その狭い範囲における測定結果のみから全体の汚れを推定することとなり、測定値にバラツキが生じやすいとともに、汚れの測定が不正確となりやすい。
【0009】
本発明は、上記従来の実情に鑑みてなされたものであり、水系において汚れの度合いを迅速かつ連続的に測定することができ、測定値のバラツキが小さく、正確な測定が可能な汚れ測定装置及びそれを用いた水処理方法を提供することを解決すべき課題としている。
【0010】
【課題を解決するための手段】
本発明の汚れ測定装置は、光の透過が可能な汚れ測定用セルと、該汚れ測定用セルに対して光を照射するための発光体と、該発光体から該測定用セルに照射されて透過した光を受光し、該透過した光の強さに応じた電気信号を発生する受光体と、該電気信号の強度を測定する測定部とを備えた汚れ測定装置において、前記発光体は面で発光する面発光体であり、前記受光体は面で受光することによって前記電気信号が発生する面受光体であることを特徴とする。
【0011】
本発明の汚れ測定装置では、受光体から発生する電気信号の強度変化を測定部によって連続的に測定しているため、汚れの度合いを迅速かつ連続的に測定することができる。また、発光体は面という広い範囲での発光が可能な面発光体とされているため、汚れ測定用セルに対し、従来の点光源から光を照射する汚れ測定装置の場合よりも広い範囲に光が照射される。さらに、受光体は面という広い範囲で受光する面受光体とされているため、汚れ測定用セルの広い範囲を透過した光を広い範囲で受光して、電気信号が発生する。このため、この測定装置による汚れの測定値は、汚れ測定用セルの広い範囲に照射され、透過した光に基づく平均化された値となる。
【0012】
したがって、本発明の汚れ測定装置によって水系における汚れの測定をした場合、汚れの度合いを迅速かつ連続的に測定することができ、測定値のバラツキが小さく、正確な測定が可能となる。
【0013】
汚れ測定用セルは、通水可能な透明部材からなり、面発光体及び面受光体は該汚れ測定用セルの外側に密接又は近接して設けられることができる。こうであれば、面発光体及び面受光体を水の中に入れる必要はないため、容易に面発光体及び面受光体を配置することができる。このような例としては、例えば、測定しようとする水系の配管の一部を透明管としたり、配管にバイパス管を設けてそのバイパス管を透明管としたりして、それらの透明管の外側に対面する位置で面発光体及び面受光体を貼り付けたり、透明管を断面ドーナツ形状とし、その内側及び外側に面発光体及び面受光体が対面する位置で貼り付ける等の手法を用いることができる。
【0014】
通水可能な透明部材の材質については特に限定はなく、無機ガラス、アクリル樹脂、透明塩化ビニル樹脂、ポリスチレン、ポリエチレンテレフタレート、フッ素樹脂等を用いることができる。フッ素樹脂は耐薬品性に優れているため強酸や強アルカリ等の環境下で使用する場合に好適である。
【0015】
また、透明部材を透明管とする場合、透明管の断面形状については特に限定はなく、例えば矩形や円形等のものを採用することができる。断面形状が矩形であれば、平面形状の発光体や受光体を配管の一面側及び他面側に極めて近接して配設することができるため、汚れ測定装置の感度がより高くなり好適である。
【0016】
面全体が発光する面発光体としては、例えば有機電界(エレクトロルミネッセンス:EL)発光体、無機電界(エレクトロルミネッセンス:EL)発光体、発光ダイオードを同一平面状に集合させて面での発光を可能とさせた集合体等が挙げられる。また、ガラス板や透明樹脂板の表面にレーザ光等で互いに平行する断面がV字状の溝を形成し、蛍光灯の光をこれらの板と平行方向から照射し、入射した光をその溝で反射させて面発光を可能にしたもの等を用いることもできる。これらの内でも有機電界(エレクトロルミネッセンス:EL)発光体は薄いシート形状で柔軟性があり、自由な大きさに切断して使用することもできるため、使用箇所の形状に合わせ易く好適である。
【0017】
なお、面発光体における発光面の面積は100mm2〜100000mm2の範囲が好ましい。発光面の面積が100mm2未満では、測定値のバラツキが大きくなり、正確な測定が困難となる。また、発光面の面積が100000mm2を超えた場合、測定値のバラツキは小さくなり、正確な測定はできるものの、測定用セルが大きくなり製造コストが高騰化するとともに、設置場所の確保も困難となる。より好ましくは150mm2〜20000mm2の範囲である。
【0018】
また、面発光体の輝度は50mCd〜10000mCdの範囲であることが好ましい。50mCd未満では、受光体から発せられる信号の強度が弱くなり測定誤差が大きくなる。また、10000mCdを超える面発光体は価格が高く、汚れ測定装置が高騰化することとなる。
【0019】
面受光体としては、ある程度の面積を有する面で受光することによって電気信号が発生する面受光体受であればどのようなものを採用しても良い。例えば、光電池、CdSを利用した受光体等が挙げられる。光電池は受光面の面積の大きなものが安価で市販されており、好適である。面受光体の受光面の面積は適宜決定されるが、150mm2〜100000mm2の範囲が好ましい。受光面の面積が150mm2未満では測定値のバラツキが大きくなりく、正確な測定が困難となる。また、発光面の面積が100000mm2を超えた場合、測定値のバラツキは小さくなり、正確な測定はできるものの、測定用セルが大きくなり製造コストが高騰化するとともに、設置場所の確保も困難となる。より好ましくは200mm2〜20000mm2の範囲である。
【0020】
また、面発光体の発光面の面積と面受光体の受光面の面積との比率については特に限定はなく、測定セルの形状等に合わせて適宜決めればよい。さらに、面発光体と面受光体との距離についても、測定セル内を流れる水の濁度や要求される感度等に合わせ、適宜決めることができる。
【0021】
本発明の水処理方法は、請求項1記載の汚れ測定装置によって水系の汚れを測定し、該汚れ測定装置の測定結果に基づき水処理に適した量の水処理剤を水系に添加することを特徴とする。
【0022】
本発明の水処理方法では、請求項1記載の汚れ測定装置によって水系の汚れを測定した結果に基づき、水処理に適した量の水処理剤を水系に添加される。具体的には、例えば薬注ポンプとその制御装置の組み合わせによって、水処理剤が添加される。このため、汚れの発生を効果的に防止することができる。水処理剤としては、例えばスライムの発生を防止するための殺微生物剤、腐食防止剤、スケールコントロール剤、消泡剤、汚れ付着防止剤等が挙げられる。
【0023】
【発明の実施の形態】
以下、本発明の汚れ測定装置及び汚れ測定方法を具体化した実施例1及び比較例1について図面1〜8を参照しつつ説明する。
【0024】
(実施例1)
実施例1の汚れ測定装置は、図1に示すように、無色透明のアクリル板からなり、高さ20cm、幅20cm、奥行き10cmの容器形状とされた測定用セル1を備えている。測定用セル1の内部には、仕切板1dが垂設されており、これにより容量が1:2に分割されている。この仕切板1dには、SUS304製で3cm×5cmの矩形形状とされた付着試験用テストピース4が側壁1b、1cと平行に4枚づつ2列に合計8枚取り付けられている。底板1aには、仕切板1dを挟んで両側に一ヶ所づつ内径3cmの給水管1eと内径3cmの排水管1fとが接続されている。給水管1eは図2に示すように、循環ポンプ5を介して貯留タンク6に接続されており、排水管1fは貯留タンク6に接続されている。測定用セル1の側壁1bの外側面には5mCd/cm2の白色EL発光体2(8cm×8cm)が貼り付けられている。また、測定用セル1の側壁1cの外側面には光電池3(5cm×7cm、SANYO(株)製)が白色EL発光体2と対面する位置に貼り付けられている。光電池3はリード線を介して電圧計20に接続されている。
【0025】
(汚れ測定試験)
以上のように構成された実施例1の汚れ測定装置を用い、汚れ測定試験を行った。すなわち、図2に示す貯留タンク6に製紙白水(pH=6.7、ポイップ積分球式濁度50ppm)を1000L入れ、図示しない温度制御装置によって35°Cに保つ。そして、貯留タンク6の底に近い位置から循環ポンプ5によって製紙白水を汲み上げ、毎分2Lの流量で循環させた。貯留タンク6から汲み上げられた製紙白水は循環ポンプ5から給水管1eを通り、測定用セル1に入り、付着試験用テストピース4に接触することによって付着試験用テストピース4の表面に汚れが徐々に付着する。そして、仕切り板1dをオーバーフローし、排水管1fを通って貯留タンク6に貯留される。さらに、貯留タンク6内に貯留された製紙白水は循環ポンプ5によって再び循環される。なお、試験中において微生物の死滅を防ぐために、イーストエキストラクト1000ppmとブドウ糖200ppmとを含む混合溶液を12時間ごとに100ml添加した。結果を図3及び図4に示す。
【0026】
図3から分かるように、汚れ布着試験用テストピース4の付着物の増加量は時間の経過とともに増大した。一方、光電池パネル3の起電力は時間の経過とともに低下した。汚れ付着試験用テストピース4の付着物の増加量と光電池3の起電力の低下電圧とを比較した場合、図4に示すように良い相関を示すことが分かった。
【0027】
(比較例1)
比較例1の汚れ測定装置は、図5に示すように、発光体としてのLED7が側壁1bの外側に近接して設けられており、受光体としてのフォトトランジスタ8がLED7に対向し、側壁1cの外側の位置に設けられている。LED7の発光面の直径は3mm(面積=7.1mm2)であり、フォトトランジスタ8の受光面の直径は4mm(面積=12.6mm2)である。その他の構成は図1に示す実施例1の汚れ測定装置と同様であり、同一の構成については同一の符号を付して詳細な説明を省略する。
【0028】
以上のように構成された比較例1の汚れ測定装置を用い、実施例1と同様の条件で汚れ測定を行った。結果を図6に示す。
【0029】
図6から分かるように、汚れ付着試験テストピース4の付着物の増加量は時間の経過とともに増大しているのに対し、フォトトランジスタ8の出力電圧は大きく変動し、汚れ付着試験テストピース4の付着物の増加量との相関は認められなかった。この原因は、次のように考えられる。すなわち、この汚れ測定装置では、発光体として直径3mm(面積=7.1mm2)という小さな光源であるLED7を用いているため、LED7から照射される光は測定セル1の極めて狭い範囲にしか当たらない。また、受光体として直径4mm(面積=12.6mm2)という小さなフォトトランジスタ8を使用しているため、測定用セル1の極めて狭い範囲において汚れを測定していることとなる。そして、この狭い範囲にたまたま汚れ粒子が付着したり、付着している汚れ粒子が剥離したりすることにより、フォトトランジスタ8の出力電圧が大きく変動してしまう。このため、測定値がばらつき、汚れの測定が困難となったものと考えられる。
【0030】
(実施例2)
実施例2では、実施例1で使用した汚れ測定装置を実際の水処理システムに適用した。すなわちこの水処理システムは、図7に示すように、貯留タンク6の近傍に次亜塩素酸ナトリウム溶液(有効塩素濃度1.2%)を貯留する薬剤タンク10が設置されており、薬注ポンプ11を介して貯留タンク6に次亜塩素酸ナトリウム溶液を添加可能とされている。薬注ポンプ11は制御装置12に接続されており、制御装置12は光電池パネル3の起電力が一定の閾値以下で薬注ポンプ11が駆動し、貯留タンク6内に次亜塩素酸ナトリウム溶液を添加するようにされており、残留塩素濃度が0.3mgCl/L(JIS K0101 DPD比色法による測定)以上となった場合、薬注ポンプ11が停止するようにされている。
【0031】
以上のように構成された水処理システムを用い、貯留タンク6に製紙白水を入れ、実施例1と同様の条件で汚れ測定試験を行った。結果を図8に示す。
【0032】
図8から分かるように、汚れ付着試験テストピース4の付着物の増加量は時間が経過しても、ほとんど増加せず、汚れを防止できることが分かった。また、光電池3の起電力もほとんど変化せず、汚れ付着試験テストピース4の付着物の増加量との相関性も有していた。これらのことから、この水処理装置によれば、汚れの度合いをフィードバックして薬注ポンプ5を制御することにより、汚れの発生を防止できることが分かる。
【0033】
(実施例3)
実施例3では、汚れ測定装置を小型冷水塔の開放循環式冷却水(保有水量約200L)の水処理システムに適用した。この小型冷水塔の開放循環式冷却水の回路は、図9にに示すように、小型冷水塔20に設けられた循環水貯留ピット20aから循環ポンプ21を介して熱交換器22を通り、小型冷水塔20の散水板20bの間を流下して再び循環水貯留ピット20aに戻る回路で形成されている。また、熱交換器22から小型冷水塔20に至る配管の途中には、バイパス管23が分岐して接続されており、バイパス管23の他端は循環水貯留ピット20aに接続されている。バイパス管23の途中には汚れ測定装置13が設けられている。
【0034】
汚れ測定装置13は、白色EL発光体の発光面の面積は150mm2であり、光電池3の受光面の面積は150mm2とされている。その他の構成は図1に示す実施例1の汚れ測定装置と同様であり、同一の構成については同一の符号を付して詳細な説明を省略する。
【0035】
循環水貯留ピット20aの近傍には、洗浄剤(ヒドラジン20%、ポリアクリル酸ナトリウム(分子量10000)5%、水75%)を貯留する薬剤タンク19が設置されており、薬注ポンプ30を介して循環水貯留ピット20aに洗浄剤を添加可能とされている。薬注ポンプ30は制御装置24に接続されており、この制御装置24は、光電池3の起電力が110mV以下になった時に薬注ポンプ30が10分間の駆動と50分間の停止を繰り返すようにされており、薬注ポンプ30が駆動している間は、洗浄剤が1分間に循環水に対して3ppmの分量だけ添加される。そして、光電池3の起電力が再び110mVを超えたとき、制御装置24によって薬注ポンプ30の駆動が停止されるように設定されている。
【0036】
以上のように構成された水処理システムを用い、循環水として四日市工水を使用し、水温26℃で7日間(168時間)連続運転を行った。その結果、図10に示すように、運転開始から約40時間で起電力が110mV以下になり、洗浄剤の添加が行なわれた。その後、微生物の死滅、減少により、汚れは消失し、起電力は上昇した。さらに循環を継続すると、再び汚れが徐々に付着し、起電力が再び低下し、循環開始から約140時間後に、2回目の洗浄剤の添加が行なわれた。その結果、再び起電力が上昇し、汚れが除去されたことが分かった。以上のことから、実施例3の汚れ測定装置13を用い、制御装置24によって洗浄剤を制御しながら添加することにより、連続的な水系の管理が可能となることが分かった。
【図面の簡単な説明】
【図1】実施例1の汚れ測定装置の一部の模式斜視図である。
【図2】実施例1の汚れ測定装置の模式斜視図である。
【図3】実施例1における汚れ付着試験テストピースの付着物の増加量の経時変化及び光電池の起電力の経時変化を示すグラフである。
【図4】実施例1における汚れ付着試験テストピースの付着物の増加量と光電池パネルの起電力との関係を示すグラフである。
【図5】比較例1の汚れ測定装置の一部の模式斜視図である。
【図6】比較例1における汚れ付着試験テストピースの付着物の増加量の経時変化及びフォトトランジスタの起電力の経時変化を示すグラフである。
【図7】実施例2の水処理装置の模式図である。
【図8】実施例2における汚れ付着試験テストピースの付着物の増加量の経時変化及び光電池の起電力の経時変化を示すグラフである。
【図9】実施例3の水処理システムの模式図である。
【図10】実施例3における光電池の起電力の経時変化を示すグラフである。
【符号の説明】
1…汚れ測定用セル
2、7…発光体(2…白色EL発光体、7…LED)
3、8…受光体(3…光電池、8…フォトトランジスタ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dirt measuring device and a water treatment method using the same. This dirt measuring apparatus and water treatment method are suitable for use in dirt measurement and water treatment in industrial process water systems such as papermaking and cooling water.
[0002]
[Prior art]
Water used in industrial activities, such as process water and cooling water, contains calcium and silicon, and as a result, scale deposits in pipes and heat exchangers. Become. In addition, a high-viscosity mass called slime produced by microorganisms present in water may adhere to the piping or the like. Dirt adhering to such piping will cause various troubles. For example, when the dirt on the piping in the papermaking process is peeled off and attached to the product, the quality of the product is significantly lowered. Further, in the cold water tower, if dirt in the cooling water adheres to the heat exchanger, the heat exchange efficiency is lowered. For this reason, it is necessary to measure the dirt adhering to the piping or the like, and to add an appropriate amount of a chemical such as a bactericide or a dispersant according to the measurement result.
[0003]
Conventionally, as a dirt measuring device for measuring the amount of dirt attached to such pipes and the like, a transparent water pipe, a light emitter that irradiates light to the water pipe, and a light pipe that irradiates and passes through the water pipe. A dirt measuring device including a light receiving body that receives light and generates an electrical signal corresponding to the intensity of the light is known (for example, Patent Documents 1 to 3).
[Patent Document 1]
JP-A-5-209725 [Patent Document 2]
Japanese Patent Laid-Open No. 9-236546 [Patent Document 3]
Japanese Patent Laid-Open No. 10-267843
In the dirt measuring device described in the above publication, since the light transmittance decreases as the water pipe becomes dirty and the intensity of the light to be measured decreases, the dirt can be detected by grasping the degree of the decrease in the intensity. Can be measured.
[0005]
That is, according to these dirt measuring devices, dirt can be directly measured by the change in the intensity of the electric signal. For this reason, the degree of contamination can be accurately measured to some extent.
[0006]
Furthermore, since these dirt measuring devices can measure the degree of dirt quickly and continuously, it is possible to cope with sudden changes in dirt.
[0007]
Moreover, if the water treatment agent control means for adding an appropriate amount of water treatment agent to the water treatment is driven based on the electrical signal generated from the light receiving part of these dirt measuring devices, the occurrence of dirt is effectively prevented. can do.
[0008]
[Problems to be solved by the invention]
However, since the conventional dirt measuring device uses a small light source such as a light bulb, an LED, a semiconductor laser, or a light guide of them, the light is irradiated only to a very narrow range of the water pipe. For this reason, the entire dirt is estimated only from the measurement result in the narrow range, and the measurement value is likely to vary, and the dirt measurement is likely to be inaccurate.
[0009]
The present invention has been made in view of the above-described conventional situation, and is a dirt measuring device capable of measuring the degree of dirt in an aqueous system quickly and continuously, with small variations in measurement values, and capable of accurate measurement. And providing a water treatment method using the same is a problem to be solved.
[0010]
[Means for Solving the Problems]
The dirt measuring device of the present invention includes a dirt measuring cell capable of transmitting light, a light emitter for irradiating the dirt measuring cell with light, and the light emitting body being irradiated to the measuring cell. In the dirt measuring apparatus, comprising: a light receiving body that receives transmitted light and generates an electrical signal corresponding to the intensity of the transmitted light; and a measurement unit that measures the intensity of the electrical signal. The light receiving body is a surface light receiving body that generates the electrical signal by receiving light on a surface.
[0011]
In the dirt measuring apparatus of the present invention, since the intensity change of the electric signal generated from the photoreceptor is continuously measured by the measuring unit, the degree of dirt can be measured quickly and continuously. In addition, since the light emitter is a surface light emitter capable of emitting light in a wide range of a surface, the dirt measuring cell is wider than a conventional dirt measuring device that emits light from a point light source. Light is irradiated. Further, since the light receiving body is a surface light receiving body that receives light in a wide range called a surface, the light transmitted through the wide range of the dirt measurement cell is received in a wide range and an electric signal is generated. For this reason, the measured value of dirt by this measuring device is an averaged value based on the light that is irradiated and transmitted over a wide range of the dirt measuring cell.
[0012]
Therefore, when the dirt is measured in the water system by the dirt measuring device of the present invention, the degree of dirt can be measured quickly and continuously, and the measurement value variation is small and accurate measurement is possible.
[0013]
The dirt measurement cell is made of a transparent member that can pass water, and the surface light emitter and the surface light receiver can be provided in close proximity or close to the outside of the dirt measurement cell. In this case, it is not necessary to put the surface light emitter and the surface light receiver in water, and therefore the surface light emitter and the surface light receiver can be easily arranged. As an example of this, for example, a part of the water system pipe to be measured is a transparent pipe, or a bypass pipe is provided in the pipe and the bypass pipe is made a transparent pipe. It is possible to use a method such as attaching a surface light emitter and a surface light receiver at a facing position, or forming a transparent tube with a cross-sectional donut shape, and affixing the surface light emitter and the surface light receiver at the positions where the surface light emitter and the surface light receiver face each other. it can.
[0014]
The material of the transparent member that can pass water is not particularly limited, and inorganic glass, acrylic resin, transparent vinyl chloride resin, polystyrene, polyethylene terephthalate, fluorine resin, or the like can be used. Since the fluororesin has excellent chemical resistance, it is suitable for use in an environment such as a strong acid or strong alkali.
[0015]
When the transparent member is a transparent tube, there is no particular limitation on the cross-sectional shape of the transparent tube, and for example, a rectangular or circular shape can be adopted. If the cross-sectional shape is rectangular, a planar light-emitting body or light-receiving body can be disposed very close to one side and the other side of the piping, which is preferable because the sensitivity of the dirt measuring device becomes higher. .
[0016]
As a surface light emitter that emits light from the entire surface, for example, an organic electric field (electroluminescence: EL) light emitter, an inorganic electric field (electroluminescence: EL) light emitter, and light emitting diodes can be assembled on the same plane to emit light on the surface. And the like. Further, grooves having a V-shaped cross section parallel to each other by a laser beam or the like are formed on the surface of the glass plate or the transparent resin plate, the light from the fluorescent lamp is irradiated from the direction parallel to these plates, and the incident light is irradiated to the groove It is also possible to use a material that is capable of surface emission by reflecting the light. Among these, an organic electric field (electroluminescence: EL) illuminant is thin and flexible, and can be used after being cut into a free size.
[0017]
The area of the light emitting surface of the surface light emitters is preferably in the range of 100mm 2 ~100000mm 2. If the area of the light emitting surface is less than 100 mm 2 , the variation in measured values increases, making accurate measurement difficult. In addition, when the area of the light emitting surface exceeds 100,000 mm 2 , the variation in the measurement value becomes small and accurate measurement can be performed, but the measurement cell becomes large and the manufacturing cost increases, and it is difficult to secure the installation location. Become. More preferably in the range of 150mm 2 ~20000mm 2.
[0018]
The luminance of the surface light emitter is preferably in the range of 50 mCd to 10000 mCd. If it is less than 50 mCd, the intensity of the signal emitted from the photoreceptor becomes weak and the measurement error increases. In addition, the surface light emitters exceeding 10,000 mCd are expensive, and the dirt measuring device is expensive.
[0019]
As the surface light receiver, any surface light receiver may be employed as long as it receives an electric signal by receiving light on a surface having a certain area. For example, a photocell, a photoreceptor using CdS, and the like can be given. A photovoltaic cell having a large light-receiving surface is commercially available at a low price. Although the area of the light receiving surface of the surface light-receiving body is appropriately determined, it is preferably in the range of 150mm 2 ~100000mm 2. If the area of the light receiving surface is less than 150 mm 2, the variation in the measured value becomes large, and accurate measurement becomes difficult. In addition, when the area of the light emitting surface exceeds 100,000 mm 2 , the variation in the measurement value becomes small and accurate measurement can be performed, but the measurement cell becomes large and the manufacturing cost increases, and it is difficult to secure the installation location. Become. And more preferably in the range of 200mm 2 ~20000mm 2.
[0020]
Further, the ratio of the area of the light emitting surface of the surface light emitter to the area of the light receiving surface of the surface light receiver is not particularly limited, and may be appropriately determined according to the shape of the measurement cell. Furthermore, the distance between the surface light emitter and the surface light receiver can be determined as appropriate according to the turbidity of water flowing through the measurement cell, the required sensitivity, and the like.
[0021]
The water treatment method of the present invention is to measure water-based soil using the soil measuring device according to claim 1, and add a water treatment agent in an amount suitable for water treatment to the water based on the measurement result of the soil measuring device. Features.
[0022]
In the water treatment method of the present invention, an amount of water treatment agent suitable for water treatment is added to the water system based on the result of measuring the water system dirt by the dirt measuring apparatus according to claim 1. Specifically, for example, a water treatment agent is added by a combination of a chemical injection pump and its control device. For this reason, generation | occurrence | production of dirt can be prevented effectively. Examples of the water treatment agent include a microbicide for preventing slime generation, a corrosion inhibitor, a scale control agent, an antifoaming agent, and an antifouling agent.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, Example 1 and Comparative Example 1 that embody a dirt measuring device and a dirt measuring method of the present invention will be described with reference to FIGS.
[0024]
Example 1
As shown in FIG. 1, the dirt measuring apparatus of Example 1 includes a measurement cell 1 made of a colorless and transparent acrylic plate and having a container shape with a height of 20 cm, a width of 20 cm, and a depth of 10 cm. A partition plate 1d is suspended inside the measurement cell 1, and the capacity is divided into 1: 2. A total of eight adhesion test test pieces 4 made of SUS304 and having a rectangular shape of 3 cm × 5 cm are attached to the partition plate 1 d in two rows of four in parallel with the side walls 1 b and 1 c. A water supply pipe 1e having an inner diameter of 3 cm and a drain pipe 1f having an inner diameter of 3 cm are connected to the bottom plate 1a, one on each side of the partition plate 1d. As shown in FIG. 2, the water supply pipe 1 e is connected to the storage tank 6 via the circulation pump 5, and the drain pipe 1 f is connected to the storage tank 6. A white EL light emitter 2 (8 cm × 8 cm) of 5 mCd / cm 2 is attached to the outer surface of the side wall 1b of the measuring cell 1. A photovoltaic cell 3 (5 cm × 7 cm, manufactured by SANYO Co., Ltd.) is attached to the outer surface of the side wall 1 c of the measuring cell 1 at a position facing the white EL light emitter 2. The photovoltaic cell 3 is connected to the voltmeter 20 through a lead wire.
[0025]
(Stain measurement test)
A dirt measurement test was performed using the dirt measuring apparatus of Example 1 configured as described above. That is, 1000 L of papermaking white water (pH = 6.7, Poip integrating sphere turbidity 50 ppm) is placed in the storage tank 6 shown in FIG. 2 and maintained at 35 ° C. by a temperature controller (not shown). Then, white paper water was pumped from the position near the bottom of the storage tank 6 by the circulation pump 5 and circulated at a flow rate of 2 L / min. Papermaking white water pumped up from the storage tank 6 passes from the circulation pump 5 through the water supply pipe 1e, enters the measurement cell 1, and comes into contact with the adhesion test test piece 4 so that the surface of the adhesion test test piece 4 is gradually contaminated. Adhere to. Then, it overflows the partition plate 1d and is stored in the storage tank 6 through the drain pipe 1f. Further, the white paper water stored in the storage tank 6 is circulated again by the circulation pump 5. In addition, in order to prevent the death of microorganisms during the test, 100 ml of a mixed solution containing 1000 ppm of yeast extract and 200 ppm of glucose was added every 12 hours. The results are shown in FIGS.
[0026]
As can be seen from FIG. 3, the increase in the amount of deposits on the test piece 4 for the soiled cloth adhesion test increased with the passage of time. On the other hand, the electromotive force of the photovoltaic panel 3 decreased with time. When the increase in the amount of deposits on the test piece 4 for dirt adhesion test was compared with the voltage drop of the electromotive force of the photovoltaic cell 3, it was found that a good correlation was shown as shown in FIG.
[0027]
(Comparative Example 1)
As shown in FIG. 5, in the dirt measuring apparatus of Comparative Example 1, the LED 7 as a light emitter is provided close to the outside of the side wall 1b, the phototransistor 8 as a light receiver faces the LED 7, and the side wall 1c. It is provided in the position outside. The diameter of the light emitting surface of the LED 7 is 3 mm (area = 7.1 mm 2 ), and the diameter of the light receiving surface of the phototransistor 8 is 4 mm (area = 12.6 mm 2 ). Other configurations are the same as those of the dirt measuring apparatus according to the first embodiment shown in FIG. 1, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.
[0028]
Using the stain measuring apparatus of Comparative Example 1 configured as described above, stain measurement was performed under the same conditions as in Example 1. The results are shown in FIG.
[0029]
As can be seen from FIG. 6, the increase in the amount of deposits on the dirt adhesion test test piece 4 increases with time, whereas the output voltage of the phototransistor 8 fluctuates greatly. There was no correlation with the increased amount of deposits. The cause is considered as follows. That is, in this dirt measuring device, since the LED 7 which is a small light source having a diameter of 3 mm (area = 7.1 mm 2 ) is used as the light emitter, the light emitted from the LED 7 only hits a very narrow range of the measuring cell 1. Absent. Further, since the small phototransistor 8 having a diameter of 4 mm (area = 12.6 mm 2 ) is used as the photoreceptor, the dirt is measured in a very narrow range of the measuring cell 1. Then, when the dirt particles happen to adhere to this narrow range or the attached dirt particles peel off, the output voltage of the phototransistor 8 greatly fluctuates. For this reason, it is considered that the measurement values vary and it is difficult to measure dirt.
[0030]
(Example 2)
In Example 2, the dirt measuring apparatus used in Example 1 was applied to an actual water treatment system. That is, in this water treatment system, as shown in FIG. 7, a chemical tank 10 for storing a sodium hypochlorite solution (effective chlorine concentration 1.2%) is installed in the vicinity of the storage tank 6, and a chemical injection pump 11, the sodium hypochlorite solution can be added to the storage tank 6. The medicinal pump 11 is connected to the control device 12, and the control device 12 drives the medicinal pump 11 when the electromotive force of the photovoltaic panel 3 is below a certain threshold value, and puts the sodium hypochlorite solution into the storage tank 6. When the residual chlorine concentration becomes 0.3 mgCl / L (measured by JIS K0101 DPD colorimetric method) or more, the chemical injection pump 11 is stopped.
[0031]
Using the water treatment system configured as described above, papermaking white water was placed in the storage tank 6 and a soil measurement test was performed under the same conditions as in Example 1. The results are shown in FIG.
[0032]
As can be seen from FIG. 8, the increase in the amount of deposits on the soil adhesion test test piece 4 hardly increased over time, and it was found that contamination could be prevented. Moreover, the electromotive force of the photovoltaic cell 3 hardly changed, and had a correlation with the increase in the amount of deposits on the dirt adhesion test test piece 4. From these things, it turns out that according to this water treatment device, the occurrence of dirt can be prevented by feeding back the degree of dirt and controlling the medicine pump 5.
[0033]
(Example 3)
In Example 3, the dirt measuring device was applied to a water treatment system for open circulating cooling water (retained water amount: about 200 L) of a small chilled water tower. As shown in FIG. 9, the circuit for the open circulation type cooling water of this small chilled water tower passes through the heat exchanger 22 from the circulating water storage pit 20 a provided in the small chilled water tower 20 through the circulation pump 21 and is small. It is formed by a circuit that flows down between the water spray plates 20b of the cold water tower 20 and returns to the circulating water storage pit 20a again. A bypass pipe 23 is branched and connected in the middle of the pipe from the heat exchanger 22 to the small chilled water tower 20, and the other end of the bypass pipe 23 is connected to the circulating water storage pit 20a. A dirt measuring device 13 is provided in the middle of the bypass pipe 23.
[0034]
In the dirt measuring device 13, the area of the light emitting surface of the white EL light emitter is 150 mm 2 , and the area of the light receiving surface of the photovoltaic cell 3 is 150 mm 2 . Other configurations are the same as those of the dirt measuring apparatus according to the first embodiment shown in FIG. 1, and the same components are denoted by the same reference numerals and detailed description thereof is omitted.
[0035]
A chemical tank 19 for storing a cleaning agent (hydrazine 20%, sodium polyacrylate (molecular weight 10000) 5%, water 75%) is installed in the vicinity of the circulating water storage pit 20a. Thus, a cleaning agent can be added to the circulating water storage pit 20a. The medicinal pump 30 is connected to the control device 24. The control device 24 repeats the driving of the medicinal pump 30 for 10 minutes and the stop for 50 minutes when the electromotive force of the photovoltaic cell 3 becomes 110 mV or less. While the chemical injection pump 30 is operating, the cleaning agent is added in an amount of 3 ppm with respect to the circulating water per minute. And when the electromotive force of the photovoltaic cell 3 exceeds 110 mV again, it sets so that the drive of the chemical injection pump 30 may be stopped by the control apparatus 24. FIG.
[0036]
Using the water treatment system configured as described above, Yokkaichi Industrial Water was used as circulating water, and continuous operation was performed at a water temperature of 26 ° C. for 7 days (168 hours). As a result, as shown in FIG. 10, the electromotive force became 110 mV or less after about 40 hours from the start of operation, and the cleaning agent was added. Thereafter, due to the death and reduction of microorganisms, the soil disappeared and the electromotive force increased. When the circulation was further continued, dirt gradually adhered again, the electromotive force decreased again, and about 140 hours after the start of the circulation, a second cleaning agent was added. As a result, it was found that the electromotive force increased again and the dirt was removed. From the above, it was found that by using the dirt measuring device 13 of Example 3 and adding the cleaning agent while controlling it by the control device 24, it is possible to manage the water system continuously.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a part of a dirt measuring apparatus according to a first embodiment.
FIG. 2 is a schematic perspective view of the dirt measuring apparatus according to the first embodiment.
3 is a graph showing a change with time of an increase in the amount of deposits on the dirt adhesion test test piece and a change with time of the electromotive force of the photovoltaic cell in Example 1. FIG.
4 is a graph showing the relationship between the increase in the amount of deposits on the dirt adhesion test test piece and the electromotive force of the photovoltaic panel in Example 1. FIG.
5 is a schematic perspective view of a part of the dirt measurement device of Comparative Example 1. FIG.
6 is a graph showing a change with time of an increase in the amount of deposits on a dirt adhesion test test piece and a change with time of an electromotive force of a phototransistor in Comparative Example 1;
FIG. 7 is a schematic diagram of a water treatment apparatus of Example 2.
8 is a graph showing a change with time of an increase in the amount of deposits on a dirt adhesion test test piece and a change with time of an electromotive force of a photovoltaic cell in Example 2. FIG.
FIG. 9 is a schematic diagram of a water treatment system according to a third embodiment.
10 is a graph showing a change with time of electromotive force of the photovoltaic cell in Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cell 2 for dirt measurement, 7 ... Light emitter (2 ... White EL light emitter, 7 ... LED)
3, 8 ... Photoreceptor (3 ... Photocell, 8 ... Phototransistor)

Claims (5)

光の透過が可能な汚れ測定用セルと、該汚れ測定用セルに対して光を照射するための発光体と、該発光体から該測定用セルに照射されて透過した光を受光し、該透過した光の強さに応じた電気信号を発生する受光体と、該電気信号の強度を測定する測定部とを備えた汚れ測定装置において、
前記発光体は面で発光する面発光体であって、発光面の面積が150mm 2 〜20000mm 2 であり、前記受光体は面で受光することによって前記電気信号が発生する面受光体であって、受光面の面積は150mm 2 〜100000mm 2 あることを特徴とする汚れ測定装置。
A dirt measuring cell capable of transmitting light; a light emitter for irradiating the dirt measuring cell with light; and receiving light transmitted through the measuring cell from the light emitter, In a dirt measuring apparatus comprising a photoreceptor that generates an electrical signal corresponding to the intensity of transmitted light, and a measuring unit that measures the intensity of the electrical signal,
The emitters What surface emitter der emitting at the surface, the area of the light-emitting surface is 150mm 2 ~20000mm 2, faces the photoreceptor der which the electrical signal is generated by said light receiving body for receiving a plane What, dirt measuring apparatus, wherein the area of the light receiving surface is 150mm 2 ~100000mm 2.
汚れ測定用セルは通水可能な透明部材からなり、面発光体及び面受光体は該汚れ測定用セルの外側に密接又は近接して設けられていることを特徴とする請求項1記載の汚れ測定装置。  2. The dirt according to claim 1, wherein the dirt measuring cell is made of a transparent member capable of passing water, and the surface light emitter and the surface light receiving body are provided in close proximity or close to the outside of the dirt measuring cell. measuring device. 面発光体は電界発光体であることを特徴とする請求項1又は2記載の汚れ測定装置。  3. The dirt measuring apparatus according to claim 1, wherein the surface light emitter is an electroluminescent body. 面受光体は光電池であることを特徴とする請求項1乃至3のいずれか1項記載の汚れ測定装置。  4. The dirt measuring device according to claim 1, wherein the surface light receiver is a photocell. 請求項1記載の汚れ測定装置によって水系の汚れを測定し、該汚れ測定装置の測定結果に基づき水処理に適した量の水処理剤を水系に添加することを特徴とする水処理方法。  A water treatment method comprising: measuring water-based soil using the soil measuring device according to claim 1; and adding an amount of a water treatment agent suitable for water treatment to the water based on a measurement result of the soil measuring device.
JP2003152890A 2003-05-29 2003-05-29 Dirt measuring device and water treatment method using the same Expired - Fee Related JP4330930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152890A JP4330930B2 (en) 2003-05-29 2003-05-29 Dirt measuring device and water treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152890A JP4330930B2 (en) 2003-05-29 2003-05-29 Dirt measuring device and water treatment method using the same

Publications (2)

Publication Number Publication Date
JP2004354232A JP2004354232A (en) 2004-12-16
JP4330930B2 true JP4330930B2 (en) 2009-09-16

Family

ID=34047993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152890A Expired - Fee Related JP4330930B2 (en) 2003-05-29 2003-05-29 Dirt measuring device and water treatment method using the same

Country Status (1)

Country Link
JP (1) JP4330930B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140027751A1 (en) 2011-04-07 2014-01-30 Konica Minolta, Inc. Organic electroluminescent element anf lighting device
WO2012153603A1 (en) 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 Phosphorescent organic electroluminescent element and lighting device
CN106442415A (en) * 2016-12-16 2017-02-22 哈尔滨工业大学 Household drinking water quality online detection device

Also Published As

Publication number Publication date
JP2004354232A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US20200148318A1 (en) System for anti-biofouling
JP6297723B2 (en) Antifouling system using energy collected from salt water
ES2404519T3 (en) Procedure and device for the detection of live phytoplankton cells in water
CN104583755B (en) Flow chamber for online fluorescence photometer
TW201906639A (en) Improved safety for UV applications by monitoring changes in UV light output coupling
JP2009284813A (en) Microorganism detection method, microorganism detection apparatus and slurry supplying device obtained by using the same
JP6951359B2 (en) Integrated system for real-time antifouling and biofouling monitoring
JP4330930B2 (en) Dirt measuring device and water treatment method using the same
KR20170095934A (en) Cooling apparatus for cooling a fluid by means of surface water
JP2009024895A (en) Water treatment system and treatment method of cooling system circulation water
KR101744955B1 (en) Sensor module in apparatus for producing sterilized water using chlorine dioxide
JPH10267843A (en) Method and apparatus for monitoring contamination state
US11771782B2 (en) UV-C LED disinfection device
JP2005030766A (en) Stuck stain measuring instrument and stuck stain measuring method
AR016779A1 (en) MONITORING OF LIVING DEPOSITS FORMERS OF FILM.
TWM561206U (en) Dissolved oxygen sensing device with self-cleaning and self-detecting function
TWM552597U (en) Dissolved oxygen sensing device with self-cleaning function
JP6672876B2 (en) Apparatus and method for detecting matter adhering to liquid contact member
US20220135440A1 (en) Fluid Sterilization Device
CN215626921U (en) Underwater ultraviolet disinfection device
US20230071898A1 (en) Apparatus and method for irradiation
CN217498744U (en) Disinfection unit and disinfection device
JP7209491B2 (en) Incubation device
JP2008249483A (en) Method and apparatus for detecting dirt of water system
EP4396136A1 (en) Apparatus and method for irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees