JP2005030766A - Stuck stain measuring instrument and stuck stain measuring method - Google Patents

Stuck stain measuring instrument and stuck stain measuring method Download PDF

Info

Publication number
JP2005030766A
JP2005030766A JP2003192601A JP2003192601A JP2005030766A JP 2005030766 A JP2005030766 A JP 2005030766A JP 2003192601 A JP2003192601 A JP 2003192601A JP 2003192601 A JP2003192601 A JP 2003192601A JP 2005030766 A JP2005030766 A JP 2005030766A
Authority
JP
Japan
Prior art keywords
water
light
dirt
measurement cell
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003192601A
Other languages
Japanese (ja)
Inventor
Norihiko Onishi
則彦 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2003192601A priority Critical patent/JP2005030766A/en
Publication of JP2005030766A publication Critical patent/JP2005030766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stuck stain measuring instrument capable of rapidly measuring the amount of the stain stuck to a piping to obtain an accurate measured value and properly performing the automatic control of water treatment, and a stuck stain measuring method using it. <P>SOLUTION: A light emitting element 2 and a light detecting element 3 are attached to the outer surface of a measuring cell 1 made from a transparent acrylic resin pipe in mutually opposed relationship. A supply pipe 4 is connected to the lower end of the measuring cell 1 and also connected to a white water storage tank through a flow channel changeover four-way valve 5 and a supply pump 6. The flow channel changeover four-way valve 5 is controlled by a control device 9 and made possible not only to supply water into the measuring cell 1 but also to drain the water in the measuring cell 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、付着汚れ測定装置及び付着汚れ測定方法に関し、製紙工程や冷却水等の工業工程水系における配管等の付着汚れ量の測定に用いて好適である。
【0002】
【従来の技術】
工程水、冷却水等、産業活動に伴って用いられる水中には、多数の微生物や有機物や無機物が浮遊しており、これらに起因して配管等に粘着性のスライムが形成される。また、配管に流れる水に含まれるカルシウム分やケイ素分が配管に付着し、スケールが生じる。こうした配管等の付着汚れは、様々なトラブルの原因となる。例えば、製紙工場において、配管等の付着汚れが剥がれて白水中に浮遊し、最終製品に付着した場合、製品の品質が著しく低下してしまう。また、冷水塔における熱交換器の付着汚れは、熱交換効率の低下原因となる。このため、配管等の付着汚れ量を測定し、その測定結果に応じて適切な量の殺微生物剤、スケールコントロール剤、洗浄剤等の水処理剤を添加することが必要となる。
【0003】
従来、こうした付着汚れ量を測定するための付着汚れ測定装置として、透明な通水管と、通水管に光を照射する発光体と、発光体から通水管に照射されて透過した光を受光し、光の強さに応じた電気信号を発生する受光体とを備えた付着汚れ測定装置が知られている(例えば、特許文献1〜3)、
【特許文献1】
特開平5−209725号公報
【特許文献2】
特開平9−236546号公報
【特許文献3】
特開平10−267843号公報
【0004】
上記公報記載の付着汚れ測定装置では、通水管の付着汚れ量が多いほど光の透過率が小さくなり、測定される光の強さは弱くなるため、その光の強さを把握することにより、付着汚れ量を測定することができる。
【0005】
すなわち、これらの付着汚れ測定装置によれば、付着汚れ量を電気信号の強度変化によって直接的に測定することができる。このため、付着汚れ量をある程度正確に測定することができる。
【0006】
さらに、これらの付着汚れ測定装置は、付着汚れ量を迅速に測定することができるため、付着汚れ量の急激な変化に対する対処が可能となる。
【0007】
また、これらの付着汚れ測定装置の受光体から発生する電気信号に基づき、水処理に適切な量の水処理剤を添加する水処理剤制御手段を駆動させれば、付着汚れの発生を効果的に防止することができる。
【0008】
【発明が解決しようとする課題】
しかし、上記従来の付着汚れ測定装置では、透明な通水管内を流れる水が白水のように濁度の大きい水である場合や、染色工場における排水などのように濃く着色された排水である場合等においては、発光体から照射された光は、通水管の付着汚れによって吸収されるだけでなく、通水管内を流れる水によっても吸収されることとなる。このため、付着汚れ量を正確に測ることができず、水処理剤の自動制御による添加が適切に行われなくなるという問題があった。
【0009】
本発明は、上記従来の実情に鑑みてなされたものであり、付着汚れ量を迅速に測定することができ、その測定値が正確で、水処理の自動制御を適切に行うことができる付着汚れ測定装置及び付着汚れ測定方法を提供することを解決すべき課題としている。
【0010】
【課題を解決するための手段】
本発明の付着汚れ測定装置は、光の透過が可能な測定用セルと、該測定用セルに対して光を照射する発光体と、該発光体から該測定用セルに照射されて透過した光を受光し、該透過した光の強さに応じた電気信号を発生する受光体と、該電気信号の強度を測定する測定部とを備えた付着汚れ測定装置において、前記測定用セル内に水を流したり、前記測定用セル内への水の流入を停止して前記測定用セル内の水を排水したりすることを可能とするための多方弁が設けられていることを特徴とする。
【0011】
本発明の付着汚れ測定装置では、汚れ測定セル内に測定の対象となる水が流され、時間の経過とともに汚れ測定セル内に付着した汚れによりスケールやスライム等の付着物となる。そして発光体から照射された光がこの測定用セルを透過する際、測定用セル内の付着した汚れによって光の一部が吸収され、光の強度が弱められる。こうして強度が弱くなった光が受光体に照射され、その光の強さに応じた電気信号が発生し、その電気信号の強度を測定部で測定することにより、付着汚れ量を迅速に測定することができる。さらに、本発明の付着汚れ測定装置では、測定用セル内に水を流したり、測定用セル内への水の流入を停止して測定用セル内の水を排水したりすることを可能とするための多方弁が設けられているため、測定用セル内に水がない状態で発光体から光を照射することができる。このため、例え測定対象となる水の濁度が大きかったり、着色していたとしても、それらの影響を受けることなく、測定セル内に付着した汚れの付着量を測定することができることとなり、付着汚れ量の測定をより正確に行うことができる。
【0012】
したがって、本発明の付着汚れ測定装置によれば、配管等の付着汚れ量を迅速に測定することができ、その測定値が正確で、水処理の自動制御を適切に行うことができる。
【0013】
本発明に用いられる測定用セルは、通水可能な透明部材からなり、発光体及び受光体は測定用セルの外側に密接又は近接して設けることができる。こうであれば、発光体及び受光体を水の中に入れる必要はないため、容易に発光体及び受光体を配置することができる。このような例としては、例えば、測定しようとする水系の配管の一部を透明管としたり、配管にバイパス管を設けてそのバイパス管を透明管としたりして、それらの透明管の外側に対面する位置で発光体及び受光体を貼り付けたり、透明管を断面ドーナツ形状とし、その内側及び外側に発光体及び面受光体が対面する位置で貼り付ける等の手法を用いることができる。
【0014】
光の透過が可能な測定用セルの材質については特に限定はなく、無機ガラス、アクリル樹脂、透明塩化ビニル樹脂、ポリスチレン、ポリエチレンテレフタレート、フッ素樹脂等を用いることができる。フッ素樹脂は耐薬品性に優れているため強酸や強アルカリ等の環境下で使用する場合に好適である。
【0015】
また、測定セルを透明管とする場合、透明管の断面形状については特に限定はなく、例えば矩形や円形等のものを採用することができる。断面形状が矩形であれば、平面形状の発光体や受光体を配管の一面側及び他面側に極めて近接して配設することができるため、付着汚れ測定装置の感度がより高くなり好適である。
【0016】
本発明の付着汚れ測定装置に用いられる発光体としては特に限定はないが、電球、LED、半導体レーザー、あるいはそれらを光ファイバーで導いたもの等の点光源や、有機電界(エレクトロルミネッセンス:EL)発光体、無機電界(エレクトロルミネッセンス:EL)発光体、発光ダイオードを同一平面状に集合させて面での発光を可能とさせた集合体、ガラス板や透明樹脂板の表面にレーザ光等で互いに平行する断面がV字状の溝を形成し、蛍光灯の光をこれらの板と平行方向から照射し、入射した光をその溝で反射させて面発光を可能にしたもの等の面光源を採用することもできる。
【0017】
また、本発明の付着汚れ測定装置に用いられる受光体としては特に限定はないが、フォトトランジスター等の狭い面積で受光して電気信号を発生する点受光体や、光電池、CdS等のようにある程度広い面積を有する面で受光することによって電気信号が発生する面受光体受を採用することができる。
【0018】
本発明の付着汚れ測定装置では、多方弁を自動的に切替えるための制御装置が設けられていることが好ましい。こうであれば、多方弁の制御を制御装置によって自動的に行うことができるため、付着汚れ量の測定の自動化が可能となる。なお、こうして自動化された付着汚れ量の測定結果をインターネットを通じて遠隔地で監視することも可能である。こうであれば、この付着汚れ測定装置を用いた水処理システムを遠隔地で監視したり、操作したりすることが可能となり、水処理システムのトラブルを防止することができるとともに、水処理システム稼動のための人件費を大幅に削減することができる。
【0019】
本発明の付着汚れ測定方法は、光の透過が可能な測定用セルの内部に水を流し、該測定用セルに対して光を照射し、該測定用セルを透過した光の強さを測定することにより付着汚れ量を求める付着汚れ測定方法において、前記測定用セルを透過した光の強さの測定は、該測定用セルの内部を一時的に水のない状態にして行うことを特徴とする。
【0020】
本発明の付着汚れ測定方法では、付着汚れ量の測定時に、測定用セルの内部を一時的に水のない状態にすることとされているため、測定用セル内に水がない状態で発光体から光を照射することができる。このため、水の濁度や着色の影響を受けることなく、測定セルの付着汚れ量の測定をすることができる。このため、例え測定対象となる水の濁度が大きかったり、着色していたとしても、それらの影響を受けることなく、測定セルの付着汚れ量を測定することができることとなり、付着汚れ量の測定をより正確に行うことができる。
【0021】
測定用セルの内部を一時的に水のない状態にするための手段としては、特に限定はないが、例えば測定用セル内に一定時間通水した後、通水を止めて測定用セル内の水を排水し、測定用セル内の水が排水されてから測定を行うという一連の工程を繰り返すことによって行うことができる。この場合において、通水及び排水の繰り返しは、例えば多方弁を用いることにより容易に行うことができる。
【0022】
通水及び排水の繰り返しを行う場合の通水時間は、測定用セルの内部に流す水の性質に応じて適宜決定すればよい。また、測定用セル内の水を排水して一時的に水のない状態とし、測定用セルを透過した光の強さが測定され、再び測定用セルへの通水が開始するまでの時間である非通水時間については、付着汚れ量の程度や光の強さを測定するための装置等を考慮して適宜決定すればよい。さらに、付着汚れの測定頻度は、付着汚れ量の増加速度等により適宜決定すればよいが、通常の目安としては1〜12回/1日である。また、測定用セル内への通水速度は、通水する水の水質、付着汚れ量の程度によって異なり、一律に決定することはできないが、通常は0.1〜1.0m/秒の範囲であることが好ましい。通水速度がこの範囲より速いと、ある程度まで成長した付着汚れが剥離して、付着汚れ量の測定が不正確となる。また、通水速度がこの範囲より遅いと測定用セル内で滞留部分が生ずることとなり、スケール及びスライムの発生を助長したり、場合によっては嫌気性雰囲気となり、実際と異なる水環境と異なって好ましくない場合がある。
【0023】
【発明の実施の形態】
以下、本発明の付着汚れ測定装置を具体化した実施例1、2及び比較例1、2について図面1〜9を参照しつつ説明する。
【0024】
(実施例1)
実施例1の付着汚れ測定装置は、図1及び図2に示すように、無色透明のアクリル管からなる測定用セル1が立設して備えられており、測定用セル1の外側には発光体2と受光体3とからなる透過光リニアセンサ「Z4LA」(オムロン株式会社製)が取り付けられている。測定用セル1の下端には供給管4が接続されており、供給管4は流路切替四方弁5及び供給ポンプ6を介して、図示しない白水貯留タンクに接続されている。流路切替四方弁5は、図1に示されるように、供給ポンプ6から供給される水を測定用セル1に供給したり、図2に示されるように、供給ポンプ6から供給される水をバイパス管10に供給して測定用セル1への白水の供給を停止するとともに、供給管4をドレン管11に接続して測定用セル1内の水を排水したりできるようにされている。また、測定用セル1の上端には排水管7が接続されており、排水管7の他端は排液タンク8に接続されている。排液タンク8の内部には、3cm×5cmの矩形形状のSUS304からなる付着試験用テストピース12が排液と接触するように固定されている。
【0025】
受光体3及び流路切替四方弁5は制御装置9に接続されている。制御装置9には、図3に示すフローチャートに従って流路切替四方弁5を制御するためのプログラムが組み込まれている。このプログラムによって、制御開始時においては図1に示すように、流路切替四方弁5が白水を測定用セル1へ通水する状態(以下「A状態」という)とされる。そして、制御開始から3540秒経過時には流路切替四方弁5が駆動し、図2に示すように、測定用セル1内の白水はドレン管11を介してを排液タンク8内に流されて空の状態となる(以下「B状態」という)。さらに開始から3598秒後には、受光体3からの電気信号の強度が制御装置9によって測定され、3600秒経過時には再び流路切替四方弁5が駆動されてA状態となり、経過時間が0に戻される。こうして制御装置9によってA状態とB状態とが繰り返されるように流路切替四方弁5が制御される。
【0026】
<付着汚れ測定試験>
以上のように構成された実施例1の付着汚れ測定装置を用い、図1及び図2に示す供給ポンプ6によって、白水(pH=6.7、ポイップ積分球式濁度50ppm、35°C)を毎分2Lの流量で供給し、付着汚れ測定試験を行った。
【0027】
(比較例1)
比較例1では、実施例1と同じ付着汚れ測定装置を使用した。ただし、付着汚れ測定試験においては流路切替四方弁5はB状態のまま(図2の状態)とし、測定用セル1内に白水が満たされた状態で受光体3からの電気信号の強度を制御装置9によって測定した。
【0028】
<評価>
実施例1では、図4に示すように、付着試験用テストピース12の付着汚れ量が時間の経過とともに増大するのに対し、受光体3からの電気信号強度は時間の経過とともに低下し、付着汚れ量と電気信号強度とが良好な相関を示すことが分かった。このことから、光が透過し難い白水であっても、付着汚れ量を迅速に測定することができ、その測定値が正確であることが分かった。
【0029】
これに対し、比較例1では図5に示すように、付着試験用テストピース12の付着汚れ量が時間の経過とともに増大するにもかかわらず、受光体3からの電気信号強度はあまり変化せず、付着汚れ量の測定は不可能であった。この原因は、比較例1では、測定用セル1内に白水を入れた状態で付着汚れ量を測定しているため、白水の濁りによる透過率の低下の影響を強く受けた結果であると考えられる。
【0030】
(実施例2)
実施例2では、実施例1で使用した付着汚れ測定装置を実際の中性抄紙工場における白水の水処理システムに適用した。この中性抄紙工場には、図6に示すように、抄紙を行うための抄紙機14が備えられており、抄紙機14の下方には流下した白水(抄紙工程の白水保有水量450トン、温度45°C、pH7.1、白水中に微細繊維が存在するためホイップ積分球式濁度は200ppm以上で測定不能)を回収するためのワイヤー下白水ピット15が備えられている。ワイヤー下白水ピット15には回収された白水を排出するための白水排出管16が接続されており、白水排出管16の他端は白水を貯留するための白水サイロ17に接続されている。白水サイロ17内の白水は白水供給管17aからミキシングチェスト22、マシンチェスト23及び種箱24に供給されるようになっている。
【0031】
白水排出管16の途中にはバイパス管18が分岐して接続されており、バイパス管18の他端は付着汚れ測定装置30の供給ポンプ6に接続されている。白水排出管16におけるバイパス管18の分岐箇所より白水サイロ17に近い位置には、薬液供給管19が分岐して接続されており、薬液供給管19の他端は薬注ポンプ20を介して薬液タンク21に接続されている。薬液タンク21にはブロモクロロジメチルヒダントインの20重量%水性スラリーが貯留されている。薬注ポンプ20は制御装置9に接続されており、測定n回目の光透過率(L)/運転当初の光透過率(L)の値(α)によって制御されている。すなわち、αが0.9以上であれば、8時間ごとに薬注ポンプ20が30分間駆動し、αが0.85以上0.9未満であれば、6時間ごとに薬注ポンプ20が30分間駆動し、αが0.85未満であれば、4時間ごとに薬注ポンプ20が30分間駆動するようなプログラムが制御装置9に組み込まれている。なお、薬注ポンプ20が30分間駆動することにより、24kgのブロモクロロジメチルヒダントインが供給されるようにされている。
【0032】
以上のように構成された水処理システムを用い、実施例1と同様の条件で付着汚れ測定試験を行った。
【0033】
(比較例2)
比較例2では、付着汚れ測定装置を用いずに、常に8時間ごとに薬注ポンプ20を30分間駆動した。他の条件は実施例2と同様である。
【0034】
<評価>
実施例2では、図7に示すように、水処理システムの運転開始から4日目頃及び19〜20日頃にα値が低下した。そして、そのα値の低下に基づいて薬注ポンプ20の駆動頻度が多くなり、その後α値は上昇した。その結果、水処理システムを25日間なんらの支障なしに運転させることができ、その間に抄紙工場で生産された中性紙には、品質上問題となるような斑点は生じなかった。
【0035】
これに対し、比較例2では、図8に示すように、水処理システムの運転開始から時間の経過とともにα値が低下し続けた。そして、運転開始から16日目には抄紙工場で生産された中性紙に品質上問題となる斑点が発生し、操業の停止を余儀なくされた。このため、抄紙機14(図6参照)のアルカリ洗浄を行った。
【0036】
以上のことから、この水処理装置によれば、水処理の自動制御を適切に行うことができ、操業の安定と経費の節減を図ることができた。
【図面の簡単な説明】
【図1】実施例1における測定用セルへの給水状態(A状態)を示す模式図である。
【図2】実施例1における測定用セルからの排水状態(B状態)を示す模式図である。
【図3】流路切替四方弁5の制御のフローチャートである。
【図4】実施例1における付着汚れ量の経時変化及び受光体からの電気信号強度の経時変化を示すグラフである。
【図5】比較例1における付着汚れ量の経時変化及び受光体からの電気信号強度の経時変化を示すグラフである。
【図6】実施例2で用いた水処理システムの模式図である。
【図7】実施例2における、ブロモクロロジメチルヒダントイン水性スラリーの添加回数の経時変化及びα値の経時変化を示すグラフである。
【図8】比較例2における、ブロモクロロジメチルヒダントイン水性スラリーの添加回数の経時変化及びα値の経時変化を示すグラフである。
【符号の説明】
1…測定用セル
2…発光体
3…受光体
10、11…バイパス部(10…バイパス管、11…ドレン管)
7…排水管
5…多方弁(流路切替四方弁)
9…測定部(制御装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an attached dirt measuring device and an attached dirt measuring method, and is suitable for use in measuring the amount of attached dirt on piping in an industrial process water system such as a papermaking process or cooling water.
[0002]
[Prior art]
Numerous microorganisms, organic substances, and inorganic substances are floating in the water used for industrial activities such as process water and cooling water, and sticky slime is formed on the pipes and the like due to these floating. In addition, calcium and silicon contained in the water flowing through the pipe adhere to the pipe, resulting in scale. Such adhering dirt on the piping and the like causes various troubles. For example, in a paper mill, when the adhering dirt such as piping is peeled off and floats in white water and adheres to the final product, the quality of the product is significantly deteriorated. Moreover, the adhering contamination of the heat exchanger in the cold water tower causes a decrease in heat exchange efficiency. For this reason, it is necessary to measure the amount of adhering dirt on pipes and the like and to add an appropriate amount of a water treatment agent such as a microbicide, a scale control agent or a cleaning agent according to the measurement result.
[0003]
Conventionally, as an attached dirt measuring device for measuring the amount of attached dirt, a transparent water pipe, a light emitter that irradiates light to the water pipe, and light transmitted from the light emitter to the water pipe are received, An adhesion dirt measuring device provided with a photoreceptor which generates an electric signal according to the intensity of light is known (for example, Patent Documents 1 to 3).
[Patent Document 1]
JP-A-5-209725 [Patent Document 2]
Japanese Patent Laid-Open No. 9-236546 [Patent Document 3]
Japanese Patent Laid-Open No. 10-267843
In the adhering dirt measuring device described in the above publication, the greater the amount of adhering dirt on the water pipe, the smaller the light transmittance, and the weaker the intensity of the light measured, so by grasping the intensity of the light, The amount of adhered dirt can be measured.
[0005]
That is, according to these attached dirt measuring devices, the amount of attached dirt can be directly measured by the change in the intensity of the electric signal. For this reason, it is possible to accurately measure the amount of adhered dirt.
[0006]
Furthermore, since these attached dirt measuring devices can measure the amount of attached dirt quickly, it is possible to cope with a sudden change in the amount of attached dirt.
[0007]
In addition, if the water treatment agent control means for adding an appropriate amount of water treatment agent to water treatment is driven based on the electrical signal generated from the photoreceptor of these adhesion stain measuring devices, the occurrence of adhesion stain is effective. Can be prevented.
[0008]
[Problems to be solved by the invention]
However, in the conventional adhesion dirt measuring device, when the water flowing through the transparent water pipe is water with high turbidity such as white water, or when the water is darkly colored such as waste water in a dyeing factory In such a case, the light emitted from the light emitter is absorbed not only by the dirt adhered to the water pipe, but also by the water flowing through the water pipe. For this reason, there was a problem that the amount of adhered dirt could not be measured accurately, and the addition of the water treatment agent was not properly performed.
[0009]
The present invention has been made in view of the above-mentioned conventional situation, and can measure the amount of attached dirt quickly, the measured value is accurate, and the automatic control of water treatment can be appropriately performed. Providing a measuring device and a method for measuring attached dirt is an issue to be solved.
[0010]
[Means for Solving the Problems]
The adhesion dirt measuring device of the present invention includes a measurement cell capable of transmitting light, a light emitter that irradiates light to the measurement cell, and light that is transmitted from the light emitter to the measurement cell. In the attached dirt measuring device comprising a light receiving body that receives an electric signal and generates an electric signal in accordance with the intensity of the transmitted light, and a measuring unit that measures the intensity of the electric signal, water is contained in the measuring cell. Or a multi-way valve for allowing the water in the measurement cell to drain by stopping the inflow of water into the measurement cell.
[0011]
In the adhered dirt measuring apparatus of the present invention, water to be measured is caused to flow in the dirt measurement cell, and the dirt adhered to the dirt measurement cell with time elapses and becomes an adherent such as scale or slime. When the light emitted from the light emitter passes through the measurement cell, a part of the light is absorbed by the adhered dirt in the measurement cell, and the light intensity is reduced. The light whose intensity is weakened in this way is irradiated onto the photoreceptor, and an electrical signal corresponding to the intensity of the light is generated. By measuring the intensity of the electrical signal at the measuring unit, the amount of attached dirt is quickly measured. be able to. Furthermore, in the adhesion dirt measuring device of the present invention, it is possible to flow water into the measurement cell, or to stop the inflow of water into the measurement cell and drain the water in the measurement cell. Since the multi-way valve for this is provided, light can be irradiated from the light emitter without water in the measurement cell. For this reason, even if the turbidity of the water to be measured is large or colored, the amount of dirt adhering in the measurement cell can be measured without being affected by the turbidity. The amount of dirt can be measured more accurately.
[0012]
Therefore, according to the adhesion dirt measuring device of the present invention, the amount of adhesion dirt on pipes and the like can be measured quickly, the measured value is accurate, and automatic control of water treatment can be appropriately performed.
[0013]
The measurement cell used in the present invention is made of a transparent member capable of passing water, and the light emitter and the light receiver can be provided in close proximity or close to the outside of the measurement cell. If it is like this, since it is not necessary to put a light-emitting body and a light-receiving body in water, a light-emitting body and a light-receiving body can be arrange | positioned easily. As an example of this, for example, a part of the water system pipe to be measured is a transparent pipe, or a bypass pipe is provided in the pipe and the bypass pipe is made a transparent pipe. It is possible to use a technique such as attaching the light emitter and the light receiver at the facing positions, or forming the transparent tube in a donut shape in cross section, and attaching the light emitter and the surface light receiver at the positions facing the inside and the outside.
[0014]
The material of the measurement cell capable of transmitting light is not particularly limited, and inorganic glass, acrylic resin, transparent vinyl chloride resin, polystyrene, polyethylene terephthalate, fluorine resin, or the like can be used. Since the fluororesin has excellent chemical resistance, it is suitable for use in an environment such as a strong acid or strong alkali.
[0015]
Moreover, when making a measurement cell into a transparent tube, there is no limitation in particular about the cross-sectional shape of a transparent tube, For example, things, such as a rectangle and a circle, are employable. If the cross-sectional shape is rectangular, a planar light-emitting body or light-receiving body can be arranged very close to one side and the other side of the pipe, which is preferable because the sensitivity of the attached dirt measuring device is higher. is there.
[0016]
There is no particular limitation on the light emitter used in the adhesion dirt measuring apparatus of the present invention, but a point light source such as a light bulb, LED, semiconductor laser, or those obtained by guiding them with an optical fiber, or an organic electric field (electroluminescence: EL) light emission. Body, inorganic electric field (electroluminescence: EL) illuminant, assembly in which light emitting diodes are assembled on the same plane to enable light emission on the surface, glass plate or transparent resin plate surface parallel to each other with laser light etc. A surface light source such as one that forms a V-shaped groove to illuminate the fluorescent light from a direction parallel to these plates and reflects the incident light through the groove to enable surface emission. You can also
[0017]
In addition, there is no particular limitation on the photoreceptor used in the adhesion contamination measuring apparatus of the present invention, but to some extent, such as a point photoreceptor that receives light in a small area such as a phototransistor and generates an electrical signal, a photovoltaic cell, CdS, or the like. A surface light receiver that generates an electrical signal by receiving light on a surface having a large area can be employed.
[0018]
In the adhesion dirt measuring device of the present invention, it is preferable that a control device for automatically switching the multi-way valve is provided. In this case, since the multi-way valve can be automatically controlled by the control device, the measurement of the amount of adhered dirt can be automated. In addition, it is also possible to monitor the measurement result of the amount of adhered dirt thus automated at a remote place through the Internet. If this is the case, it becomes possible to remotely monitor and operate the water treatment system using this attached dirt measuring device, and it is possible to prevent troubles in the water treatment system and to operate the water treatment system. The labor cost for can be greatly reduced.
[0019]
In the method for measuring attached dirt according to the present invention, water is allowed to flow inside a measurement cell capable of transmitting light, the light is irradiated to the measurement cell, and the intensity of the light transmitted through the measurement cell is measured. In the attached dirt measurement method for obtaining the attached dirt amount, the measurement of the intensity of the light transmitted through the measurement cell is performed in a state where the inside of the measurement cell is temporarily free of water. To do.
[0020]
In the method for measuring adhered dirt according to the present invention, when measuring the amount of adhered dirt, the inside of the measurement cell is temporarily made free of water, so that the illuminant has no water in the measurement cell. Can be irradiated with light. For this reason, it is possible to measure the amount of dirt adhered to the measurement cell without being affected by the turbidity or coloring of water. For this reason, even if the turbidity of the water to be measured is large or colored, it is possible to measure the amount of adhering dirt on the measurement cell without being affected by it. Can be performed more accurately.
[0021]
There is no particular limitation on the means for temporarily leaving the inside of the measurement cell free of water. For example, after passing water through the measurement cell for a certain period of time, the water supply is stopped and It can be performed by repeating a series of steps of draining water and performing measurement after the water in the measurement cell is drained. In this case, the repetition of water flow and drainage can be easily performed by using, for example, a multi-way valve.
[0022]
What is necessary is just to determine suitably the water flow time in the case of repeating water flow and drainage according to the property of the water which flows into the inside of the cell for a measurement. In addition, drain the water in the measurement cell to make it temporarily free of water, measure the intensity of the light that has passed through the measurement cell, and restart the water flow to the measurement cell. A certain non-water-passing time may be appropriately determined in consideration of the degree of attached dirt amount and the device for measuring the intensity of light. Furthermore, the measurement frequency of the attached dirt may be determined as appropriate depending on the increasing rate of the attached dirt amount, etc., but is usually 1 to 12 times / day. Further, the water flow rate into the measurement cell differs depending on the quality of the water to be passed and the amount of adhered dirt, and cannot be determined uniformly, but is usually in the range of 0.1 to 1.0 m / sec. It is preferable that If the water flow rate is faster than this range, the adhered dirt that has grown to a certain extent is peeled off, and the measurement of the amount of adhered dirt becomes inaccurate. Also, if the water flow rate is lower than this range, a stagnant portion will be generated in the measurement cell, which may promote the generation of scale and slime, or in some cases an anaerobic atmosphere, which is preferable unlike an actual water environment. There may not be.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, Examples 1 and 2 and Comparative Examples 1 and 2 embodying the adhesion dirt measuring device of the present invention will be described with reference to FIGS.
[0024]
(Example 1)
As shown in FIGS. 1 and 2, the attached dirt measuring device of Example 1 is provided with a measuring cell 1 made up of a colorless and transparent acrylic tube, and light is emitted outside the measuring cell 1. A transmitted light linear sensor “Z4LA” (made by OMRON Corporation) composed of the body 2 and the light receiving body 3 is attached. A supply pipe 4 is connected to the lower end of the measurement cell 1, and the supply pipe 4 is connected to a white water storage tank (not shown) via a flow path switching four-way valve 5 and a supply pump 6. The flow path switching four-way valve 5 supplies the water supplied from the supply pump 6 to the measurement cell 1 as shown in FIG. 1, or the water supplied from the supply pump 6 as shown in FIG. Is supplied to the bypass pipe 10 to stop the supply of white water to the measurement cell 1, and the supply pipe 4 is connected to the drain pipe 11 to drain the water in the measurement cell 1. . A drain pipe 7 is connected to the upper end of the measuring cell 1, and the other end of the drain pipe 7 is connected to a drain tank 8. Inside the drainage tank 8, an adhesion test test piece 12 made of SUS304 having a rectangular shape of 3 cm × 5 cm is fixed so as to come into contact with the drainage.
[0025]
The photoreceptor 3 and the flow path switching four-way valve 5 are connected to the control device 9. The control device 9 incorporates a program for controlling the flow path switching four-way valve 5 according to the flowchart shown in FIG. With this program, at the start of control, as shown in FIG. 1, the flow path switching four-way valve 5 is brought into a state of passing white water to the measurement cell 1 (hereinafter referred to as “A state”). When 3540 seconds have elapsed since the start of control, the flow path switching four-way valve 5 is driven, and the white water in the measurement cell 1 is caused to flow into the drainage tank 8 through the drain pipe 11 as shown in FIG. It becomes an empty state (hereinafter referred to as “B state”). Further, after 3598 seconds from the start, the intensity of the electric signal from the photoreceptor 3 is measured by the control device 9, and when 3600 seconds have elapsed, the flow path switching four-way valve 5 is driven again to the A state, and the elapsed time returns to zero. It is. Thus, the flow path switching four-way valve 5 is controlled by the control device 9 so that the A state and the B state are repeated.
[0026]
<Adhesion dirt measurement test>
Using the adhered dirt measuring apparatus of Example 1 configured as described above, white water (pH = 6.7, Poip integral sphere turbidity 50 ppm, 35 ° C.) by the supply pump 6 shown in FIGS. Was supplied at a flow rate of 2 L / min, and an adhesion dirt measurement test was conducted.
[0027]
(Comparative Example 1)
In Comparative Example 1, the same adhesion dirt measuring device as that in Example 1 was used. However, in the adhesion dirt measurement test, the flow path switching four-way valve 5 remains in the B state (the state shown in FIG. 2), and the intensity of the electrical signal from the photoreceptor 3 is measured while the measurement cell 1 is filled with white water. Measurement was performed by the control device 9.
[0028]
<Evaluation>
In Example 1, as shown in FIG. 4, the amount of dirt on the test piece 12 for adhesion test increases with time, whereas the electric signal intensity from the photoreceptor 3 decreases with time. It was found that the amount of dirt and the electric signal intensity showed a good correlation. From this, it was found that the amount of adhered dirt can be measured quickly even with white water that is difficult to transmit light, and the measured value is accurate.
[0029]
On the other hand, in Comparative Example 1, as shown in FIG. 5, the intensity of the electric signal from the photoreceptor 3 does not change much even though the amount of adhered dirt of the adhesion test test piece 12 increases with time. It was impossible to measure the amount of adhered dirt. The reason is that in Comparative Example 1, the amount of adhering dirt was measured in a state in which white water was put in the measurement cell 1, so that it was considered that the result was strongly influenced by the decrease in transmittance due to the turbidity of white water. It is done.
[0030]
(Example 2)
In Example 2, the attached dirt measuring device used in Example 1 was applied to a white water treatment system in an actual neutral papermaking factory. As shown in FIG. 6, the neutral paper mill is equipped with a paper machine 14 for paper making. White paper flowing down below the paper machine 14 (the amount of white water retained in the paper making process is 450 tons, temperature). There is a white water pit 15 under the wire for collecting the whip integral sphere turbidity of 200 ppm or more, which cannot be measured because fine fibers are present in white water at 45 ° C, pH 7.1. A white water discharge pipe 16 for discharging the collected white water is connected to the wire white water pit 15, and the other end of the white water discharge pipe 16 is connected to a white water silo 17 for storing white water. White water in the white water silo 17 is supplied to the mixing chest 22, the machine chest 23, and the seed box 24 from the white water supply pipe 17a.
[0031]
A bypass pipe 18 is branched and connected in the middle of the white water discharge pipe 16, and the other end of the bypass pipe 18 is connected to the supply pump 6 of the attached dirt measuring device 30. A chemical liquid supply pipe 19 is branched and connected to the white water discharge pipe 16 at a position closer to the white water silo 17 than a branch point of the bypass pipe 18. The other end of the chemical liquid supply pipe 19 is connected to the chemical liquid via the chemical injection pump 20. It is connected to the tank 21. The chemical tank 21 stores a 20 wt% aqueous slurry of bromochlorodimethylhydantoin. The chemical injection pump 20 is connected to the control device 9 and is controlled by the value (α) of the light transmittance (L n ) / light transmittance (L 0 ) at the beginning of operation of the nth measurement. That is, if α is 0.9 or more, the drug injection pump 20 is driven every 30 minutes for 30 minutes, and if α is 0.85 or more and less than 0.9, the drug injection pump 20 is 30 every 6 hours. If the α is less than 0.85, a program is incorporated in the control device 9 such that the medicine pump 20 is driven for 30 minutes every 4 hours. In addition, 24 kg of bromochlorodimethylhydantoin is supplied by driving the chemical injection pump 20 for 30 minutes.
[0032]
Using the water treatment system configured as described above, an adhesion dirt measurement test was performed under the same conditions as in Example 1.
[0033]
(Comparative Example 2)
In Comparative Example 2, the dosing pump 20 was always driven for 30 minutes every 8 hours without using the attached dirt measuring device. Other conditions are the same as in the second embodiment.
[0034]
<Evaluation>
In Example 2, as shown in FIG. 7, the α value decreased around the 4th day and around the 19th to 20th days from the start of operation of the water treatment system. And based on the fall of the (alpha) value, the drive frequency of the chemical injection pump 20 increased, and (alpha) value rose after that. As a result, the water treatment system could be operated for 25 days without any trouble, and during that time, the neutral paper produced in the papermaking factory did not have any spots causing quality problems.
[0035]
On the other hand, in Comparative Example 2, as shown in FIG. 8, the α value continued to decrease with the passage of time from the start of operation of the water treatment system. On the 16th day from the start of operation, the neutral paper produced at the papermaking factory had spots causing quality problems, which forced the operation to stop. For this reason, the paper machine 14 (see FIG. 6) was subjected to alkali cleaning.
[0036]
From the above, according to this water treatment apparatus, automatic control of water treatment could be appropriately performed, and stable operation and cost saving could be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a water supply state (A state) to a measurement cell in Example 1. FIG.
FIG. 2 is a schematic diagram showing a drainage state (B state) from a measurement cell in Example 1. FIG.
FIG. 3 is a flowchart of control of the flow path switching four-way valve 5;
FIG. 4 is a graph showing a temporal change in the amount of adhered dirt and a temporal change in electric signal intensity from the photoreceptor in Example 1.
FIG. 5 is a graph showing a temporal change in the amount of adhered dirt and a temporal change in electric signal intensity from the photoreceptor in Comparative Example 1;
6 is a schematic diagram of a water treatment system used in Example 2. FIG.
7 is a graph showing the change over time in the number of additions of the aqueous bromochlorodimethylhydantoin slurry and the change over time in the α value in Example 2. FIG.
8 is a graph showing the change over time in the number of additions of the aqueous bromochlorodimethylhydantoin slurry and the change over time in the α value in Comparative Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Measurement cell 2 ... Luminescent body 3 ... Photoreceptor 10, 11 ... Bypass part (10 ... Bypass pipe, 11 ... Drain pipe)
7 ... Drain pipe 5 ... Multi-way valve (Flow path switching four-way valve)
9 ... Measurement unit (control device)

Claims (3)

光の透過が可能な測定用セルと、該測定用セルに対して光を照射する発光体と、該発光体から該測定用セルに照射されて透過した光を受光し、該透過した光の強さに応じた電気信号を発生する受光体と、該電気信号の強度を測定する測定部とを備えた付着汚れ測定装置において、
前記測定用セル内に水を流したり、前記測定用セル内への水の流入を停止して前記測定用セル内の水を排水したりすることを可能とするための多方弁が設けられていることを特徴とする付着汚れ測定装置。
A measurement cell capable of transmitting light; a light emitter that irradiates light to the measurement cell; and a light that is transmitted from the light emitter to the measurement cell. In an attached dirt measuring device comprising a photoreceptor that generates an electrical signal corresponding to the strength, and a measuring unit that measures the strength of the electrical signal,
A multi-way valve is provided to allow water to flow into the measurement cell or to stop the inflow of water into the measurement cell and drain the water in the measurement cell. An adhesion dirt measuring device characterized by comprising:
多方弁を自動的に切替えるための制御装置が設けられていることを特徴とする請求項1記載の付着汚れ測定装置。2. The adhesion dirt measuring device according to claim 1, further comprising a control device for automatically switching the multi-way valve. 光の透過が可能な測定用セルの内部に水を流し、該測定用セルに対して光を照射し、該測定用セルを透過した光の強さを測定することにより付着汚れ量を求める付着汚れ測定方法において、
前記測定用セルを透過した光の強さの測定は、該測定用セルの内部を一時的に水のない状態にして行うことを特徴とする付着汚れ測定方法。
Adhesion to determine the amount of adhered dirt by flowing water into a measurement cell capable of transmitting light, irradiating the measurement cell with light, and measuring the intensity of the light transmitted through the measurement cell In the dirt measurement method,
The method for measuring adhered dirt, wherein the measurement of the intensity of light transmitted through the measurement cell is performed with the inside of the measurement cell temporarily in the absence of water.
JP2003192601A 2003-07-07 2003-07-07 Stuck stain measuring instrument and stuck stain measuring method Pending JP2005030766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192601A JP2005030766A (en) 2003-07-07 2003-07-07 Stuck stain measuring instrument and stuck stain measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192601A JP2005030766A (en) 2003-07-07 2003-07-07 Stuck stain measuring instrument and stuck stain measuring method

Publications (1)

Publication Number Publication Date
JP2005030766A true JP2005030766A (en) 2005-02-03

Family

ID=34204336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192601A Pending JP2005030766A (en) 2003-07-07 2003-07-07 Stuck stain measuring instrument and stuck stain measuring method

Country Status (1)

Country Link
JP (1) JP2005030766A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209125A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Dissolved ozone densitometer and vegetables washing method
WO2016009669A1 (en) * 2014-07-18 2016-01-21 栗田工業株式会社 Deposit quantification device and deposit quantification method using same
KR101829218B1 (en) * 2016-02-12 2018-02-14 주식회사 우리아이텍 Washing Apparatus for Weter Tank
JP2019174173A (en) * 2018-03-27 2019-10-10 栗田工業株式会社 Water quality analysis method
JP2019174174A (en) * 2018-03-27 2019-10-10 栗田工業株式会社 Water quality analysis method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209125A (en) * 2007-02-23 2008-09-11 Tamura Teco:Kk Dissolved ozone densitometer and vegetables washing method
JP4722868B2 (en) * 2007-02-23 2011-07-13 株式会社タムラテコ How to wash vegetables
WO2016009669A1 (en) * 2014-07-18 2016-01-21 栗田工業株式会社 Deposit quantification device and deposit quantification method using same
JP2016024016A (en) * 2014-07-18 2016-02-08 栗田工業株式会社 Adhering substance quantification device and adhering substance quantification method using the same
CN106461551A (en) * 2014-07-18 2017-02-22 栗田工业株式会社 Deposit quantification device and deposit quantification method using same
KR20170031652A (en) * 2014-07-18 2017-03-21 쿠리타 고교 가부시키가이샤 Deposit quantification device and deposit quantification method using same
KR102105968B1 (en) 2014-07-18 2020-04-29 쿠리타 고교 가부시키가이샤 Deposit quantification device and deposit quantification method using same
KR101829218B1 (en) * 2016-02-12 2018-02-14 주식회사 우리아이텍 Washing Apparatus for Weter Tank
JP2019174173A (en) * 2018-03-27 2019-10-10 栗田工業株式会社 Water quality analysis method
JP2019174174A (en) * 2018-03-27 2019-10-10 栗田工業株式会社 Water quality analysis method

Similar Documents

Publication Publication Date Title
TWI409335B (en) Apparatus and method for detecting live phytoplankton cells in water
JP5292923B2 (en) Microorganism detection method, microorganism detection apparatus, and slurry supply apparatus using the same
JP6655551B2 (en) Systems and methods for detecting biofilm growth in water systems
AU2013322367B2 (en) Device for monitoring wastewater treatment
JP5197621B2 (en) Equipment for measuring sludge concentration in wastewater treatment tanks
JP2005030766A (en) Stuck stain measuring instrument and stuck stain measuring method
KR20020022876A (en) An automatic quality measurement system based on a high performance optical fiber probe
JP2000185276A (en) Water monitoring member and water monitor apparatus using the same and filter device of water monitoring member
KR102279585B1 (en) System for detecting underwater bacteria in real time using bubble
JP2003080236A (en) Water quality measuring instrument for stored water
KR101349172B1 (en) Toxicity detecting apparatus
JP4330930B2 (en) Dirt measuring device and water treatment method using the same
KR101005084B1 (en) Suspended soilds densitometer
JP2863061B2 (en) Water quality monitoring device and water quality monitoring method
JP6672876B2 (en) Apparatus and method for detecting matter adhering to liquid contact member
JP2004337789A (en) Slime monitoring device and slime preventing method
JPH09236546A (en) Slime-detecting apparatus and slime-preventing apparatus
JP5874785B2 (en) Deposit quantification apparatus and deposit quantification method using the same
EP3881057B1 (en) Method and system for spectrophotometric analysis of a sample
SU1151930A1 (en) Device for adjusting sediment level in sewage settling basins
JP2023042419A (en) water treatment system
JPH03110451A (en) Detecting device for pollution in water storage tank
JPH08286036A (en) Contamination prevention type underliquid optical sensor
KR20000056665A (en) Application of circulation method in measuring mixed liquor suspended solid
JP2003251334A (en) Water supplying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106