JP4330091B2 - Method for producing low viscosity sodium carboxymethylcellulose - Google Patents

Method for producing low viscosity sodium carboxymethylcellulose Download PDF

Info

Publication number
JP4330091B2
JP4330091B2 JP09958599A JP9958599A JP4330091B2 JP 4330091 B2 JP4330091 B2 JP 4330091B2 JP 09958599 A JP09958599 A JP 09958599A JP 9958599 A JP9958599 A JP 9958599A JP 4330091 B2 JP4330091 B2 JP 4330091B2
Authority
JP
Japan
Prior art keywords
viscosity
cmcna
reaction
hydrogen peroxide
sodium carboxymethylcellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09958599A
Other languages
Japanese (ja)
Other versions
JP2000290301A (en
Inventor
恵一 佐藤
雅子 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Original Assignee
DKS CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD. filed Critical DKS CO. LTD.
Priority to JP09958599A priority Critical patent/JP4330091B2/en
Publication of JP2000290301A publication Critical patent/JP2000290301A/en
Application granted granted Critical
Publication of JP4330091B2 publication Critical patent/JP4330091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は低粘度カルボキシメチルセルロースナトリウム(以下CMCNaという)の製造方法に関する。詳しくはCMCNaと過酸化水素の反応においてpHをコントロールすることにより、低粘度のCMCNaでは得られない非ニュートン性の強い流体特性をもったCMCNaを工業的に効率よく製造する方法に関する。
【0002】
【従来の方法】
従来、過酸化水素を用いて低粘度CMC−Naを製造する方法は、種々提案されている。例えば、粉体状又は湿潤状のCMC−Naに過酸化水素を反応させて低粘度化させる方法(特公昭45-678号公報、特公昭48-19232号公報)や、過酸化水素を3.0〜6.5のpH域でCMC−Naと反応させる事を特徴とする方法(特開平4−25501号公報)が開示されている。
【0003】
【発明が解決しようとする課題】
上記の方法は、不溶性ゲルや副生物の生成がなく、簡単な混合装置のみで製造可能な優れた方法であるが、いずれの方法とも低粘度品はえられるが、非ニュートン性流体を得ることはできなかった。
【0004】
本発明の目的は、低粘度のCMCNaでありながら、非ニュートン性を有するCMCNaを得る製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は上記目的を達成するため、過酸化水素と固体状態のCMCNaとの反応における系のpHに着目し、これを二段階のpHで反応させることで上記課題を克服できることをつきとめ本発明に到達した。すなわち、固相状態のカルボキシメチルセルロースナトリウムに過酸化水素を反応させて低粘度のカルボキシメチルセルロースナトリウムを製造する方法において、反応系のpHを7.0未満として反応を開始し、次に反応途中でアルカリを添加し、pHを7.0以上として反応を継続することを特徴とする低粘度カルボキシメチルセルロースナトリウムの製造方法である。
【0006】
【発明の実施の形態】
本発明に原料として用いられるCMCNaの物性は特に限定はないが、好ましいエーテル化度は0.5〜3.0であり、さらに好ましくは0.6〜1.0である。エーテル化度が低すぎると低粘度化されても非ニュートン性のものが得にくく、また高すぎると過酸化水素による低粘度化効率が悪くなる。
【0007】
また1%水溶液粘度は10〜10000mPa・sが好ましいが、1000〜5000mPa・sが更に好ましい。粘度が低すぎると低粘度化効率が悪い傾向にあり、高すぎると過酸化水素を多量に必要とするため経済的に好ましくない。
【0008】
原料CMCNaはより低粘度品である方が好ましいが、非ニュートン性も備えたCMCNaを得ようとする場合、一定の粘度が必要である。
【0009】
この原料CMCNaは揮発分が15〜50重量%、好ましくは20〜30重
量%であって、水分が15〜25重量%、好ましくは14〜20重量%の固相状態のものを用いるのがよい。この時形状は湿潤状品でも乾燥粉末品でもよく、またCMCNaは製造工程中のものでも、製品となったものでもよい。
【0010】
揮発分、水分がそれぞれ50重量%、25重量%をこえる場合は、低粘度化が進むにつれて反応装置内のCMCNaが団粒化してくるため好ましくない。また15重量%未満では低粘度化効率が悪くなるので好ましくない。
【0011】
次に反応に供する過酸化水素は、10〜35重量%水溶液を用いて、反応器中の原料CMCNa中へ添加する。添加量は原料CMCNa(固形分換算)の粘度にもよるが、原料CMCNaに対して1〜10重量%(固形分換算)添加する。添加方法は均一反応とするため噴霧するのが好ましい。
【0012】
次に過酸化水素添加時における反応開始時の反応系のpHは7.0未満好ましくは5.0から7.0未満とする。この時pHが7.0以上になると低粘度化効率が低下し、5.0未満となると酸型のCMCが生成し、ゲル状の水不溶性物質が生成し易くなる。このpHの調製は酸を反応系内に添加しても、また過酸化水素と予め混合しておいてもよい。この時に使用する酸はいずれの酸も使用できるが、酢酸、グリコール酸が挙げられる。
【0013】
次にpH7.0未満で過酸化水素を反応させた後、一定時間後(約10〜20分後)の反応途中でアルカリを添加してpHを7.0以上(好ましくは7.0〜8.5) とする。このアルカリはカセイソーダ、炭酸ソーダ、重炭酸ソーダ等が用いられるが、CMCNaより早く反応できるようにするため、濃度を5〜20重量%とした溶液で使用することが好ましい。この時の溶解液は水でもメタノール、エタノール、イソプロパノール等の有機溶媒のどちらでもよい。
【0014】
過酸化水素による反応途中であるという確認は、過酸化水素が系中に残存していることを確認することによって行われる。たとえば、反応中のCMCNaを採取し水に完全溶解し、その後硫酸、ヨウ化カリ及びデンプン溶液を加えて青色の呈色により過酸化水素の確認を行なう。
【0015】
過酸化水素の添加、加熱条件については従来公知の方法を用いる。たとえば過酸化水素の添加後、30分間で105℃に加温後、105℃で90分間加熱混合して本発明の目的とする低粘度CMCNaを得る。
【0016】
アルカリ条件下では、過酸化水素の分解による活性酸素の発生がよくなることより、反応系内に残っている過酸化水素はCMCNaと反応する前に分解し大気中に飛散する。すなわち短時間のCMCNaと過酸化水素の反応は充分均一な反応が行われないうちに完結されてしまう事よりCMCNaは不均一な粘度の低粘度品となる。
【0017】
【実施例】
次に本発明のCMCNaの製造方法を実施例及び比較例によって説明するが、これらによって本発明は何ら限定されるものではない。
(CMCNaの分析方法)
1.エーテル化度
絶乾CMCNa0.7gを磁性ルツボで700〜800℃灰化する。この灰化物の入ったルツボごとビーカーに入れ水に浸し、灰化物を完全に溶出する。これを0.1NH2SO4でフェノールフタレイン指示薬で中和滴定し、0.1NH2SO4所要量(ml)を求める。
【0018】
【数1】

Figure 0004330091
【0019】
2.1%水溶液粘度(mPa・s)
300ml共栓三角フラスコ中に水分値既知のCMCNa約2.4gを精秤し、蒸留水200gを加え、直ちに栓をして激しく振とうし、CMCを小さい固まりに分散して放置する。一夜(約18〜20時間)放置した後、既知の水分値より補正水にて1%水溶液濃度に合わせる。
【0020】
【数2】
Figure 0004330091
【0021】
補正終了後、三角フラスコ中に小回転子を入れ、マグネチックスターラーで25分間攪拌し、膨潤状態の内容物を完全に分散溶解する。次いでこの溶液を250ml容栓付き容器(口径50mm×高さ140mm)に移し、栓をして25℃の恒温槽中に30分間放置する。温度25℃を確認した後、この栓付き容器にBM型粘度計、ローター、ガードを取り付け、3分後の目盛りを読み取る。この時ローターNO.は予測させる粘度に合わせて選び、回転数は30rpmとする。
【0022】
3.非ニュートン性の測定法
東京計器製BH型粘度計を用いて下記の糊液粘度を測定し、下記の計算式によって求める。
【0023】
10000±500mPa・sの糊液粘度水溶液を調整してよくかき混ぜた後、ラップでカバーして25℃恒温器中で一夜放置する。次に恒温器中より取り出しガラス棒にて充分に攪拌する。次にBH型粘度計、ローターNO.5を用いて変速ツマミで2rpm、20rpmと回転数を変化させ、それぞれの粘度を測定して下記式にて非ニュートン性を算出する。この数値が1.0に近づくほどニュートン性が強く、0に近づくほど非ニュートン性が強い事を示す。
【0024】
【数3】
Figure 0004330091
【0025】
実施例1
CMC−Na500gを5L容ブレンダーに仕込み、50%メタノール(水::メタノール=1:1)125gで湿潤状態にする。
【0026】
これに酢酸を添加して、CMC−NaのpHを6.0に調製した(pHの測定は、CMCNaを約1g取り、100mlの水に簡易的に溶解し、pHメーターでpHを測定した)pH調整後、35%過酸化水素を水で2倍に希釈した17.5%溶液を50g添加する。次にブレンダーで攪拌しながら、15分かけて105℃まで昇温し、過酸化水素の残存を下記の方法によって確認した。
【0027】
CMCNaサンプル1gを採取し、100mlの水に溶解する。完全溶解したCMCNa水溶液に10%硫酸10ml、10%ヨウ化カリ10mlを加えて10分間日光に当てないようにして放置する。その後1%デンプン溶液を3滴加えて青色を呈することを確認する。青色を呈したので過酸化水素の残存が確認された。
【0028】
昇温後に、10%カセイソーダ水溶液を添加し、pHを7.5に調製する(pH調整法は前述の通り)。pH調整後、105℃で90分間攪拌を続けて、低粘度CMC−Naを得た。
実施例2〜4及び比較例1〜6
下記表1の条件とするほかは実施例1と同様にしてCMCNaを得た。また表1に得られたCMCNaの2%粘度とPVI値を記載した。
【0029】
【表1】
Figure 0004330091
【0030】
表1より原料CMCNaに比べて本発明の製造方法により得られたCMCNaは著しく低粘度化され、また2%粘度が20〜35mPa・sという低粘度にもかかわらず、流動特性を表すPVI値をみると、実施例品は比較例品に比べ小さく、非ニュートン性が大きいことを示している。
【0031】
【発明の効果】
本願は、非ニュートン性の強い低粘度CMC−Naを工業的に製造する方法であり、低粘度CMC−Naであるが故に、従来は出来なかった非ニュートン性が付与できた事により、食品用タレ糊剤、食品ゲル助剤などの用途に天然糊剤であるペクチン、キサンタンガム等と合わせ、又は併用使用する事が出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing low viscosity sodium carboxymethyl cellulose (hereinafter referred to as CMCNa). More specifically, the present invention relates to a method for industrially and efficiently producing CMCNa having strong non-Newtonian fluid properties that cannot be obtained with low-viscosity CMCNa by controlling the pH in the reaction between CMCNa and hydrogen peroxide.
[0002]
Conventional method
Conventionally, various methods for producing low-viscosity CMC-Na using hydrogen peroxide have been proposed. For example, a method of reducing the viscosity by reacting hydrogen peroxide with powdered or wet CMC-Na (Japanese Patent Publication Nos. 45-678 and 48-19232), A method (JP-A-4-25501) characterized by reacting with CMC-Na in a pH range of 0 to 6.5 is disclosed.
[0003]
[Problems to be solved by the invention]
The above method does not produce insoluble gels or by-products, and is an excellent method that can be produced only with a simple mixing device. In both methods, a low-viscosity product can be obtained, but a non-Newtonian fluid can be obtained. I couldn't.
[0004]
An object of the present invention is to provide a production method for obtaining CMCNa having non-Newtonian properties while being CMCNa having a low viscosity.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have focused on the pH of the system in the reaction between hydrogen peroxide and solid CMCNa, and found out that the above problem can be overcome by reacting at a two-stage pH. The invention has been reached. That is, in the method for producing low-viscosity sodium carboxymethylcellulose by reacting hydrogen peroxide with sodium carboxymethylcellulose in a solid state, the reaction is started with the pH of the reaction system being less than 7.0, and then the reaction is carried out with an alkali during the reaction. Is added, and the reaction is continued at a pH of 7.0 or higher. This is a method for producing low-viscosity carboxymethylcellulose sodium.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The physical properties of CMCNa used as a raw material in the present invention are not particularly limited, but a preferable degree of etherification is 0.5 to 3.0, and more preferably 0.6 to 1.0. If the degree of etherification is too low, it is difficult to obtain a non-Newtonian one even if the viscosity is lowered, and if it is too high, the efficiency of reducing the viscosity by hydrogen peroxide is deteriorated.
[0007]
The 1% aqueous solution viscosity is preferably 10 to 10,000 mPa · s, more preferably 1000 to 5000 mPa · s. If the viscosity is too low, the viscosity reduction efficiency tends to be poor, and if it is too high, a large amount of hydrogen peroxide is required, which is economically undesirable.
[0008]
The raw material CMCNa is preferably a lower viscosity product, but when obtaining CMCNa having non-Newtonian properties, a certain viscosity is required.
[0009]
The raw material CMCNa should be used in a solid phase with a volatile content of 15 to 50% by weight, preferably 20 to 30% by weight and a water content of 15 to 25% by weight, preferably 14 to 20% by weight. . At this time, the shape may be a wet product or a dry powder product, and CMCNa may be in the production process or in the form of a product.
[0010]
When the volatile content and moisture exceed 50% by weight and 25% by weight, respectively, the CMCNa in the reaction apparatus aggregates as the viscosity decreases, which is not preferable. On the other hand, if it is less than 15% by weight, the viscosity reduction efficiency is deteriorated.
[0011]
Next, hydrogen peroxide to be subjected to the reaction is added to the raw material CMCNa in the reactor using a 10 to 35% by weight aqueous solution. Although the amount of addition depends on the viscosity of the raw material CMCNa (in terms of solid content), 1 to 10% by weight (in terms of solid content) is added to the raw material CMCNa. The addition method is preferably sprayed to achieve a uniform reaction.
[0012]
Next, the pH of the reaction system at the start of the reaction when hydrogen peroxide is added is less than 7.0, preferably 5.0 to less than 7.0. At this time, when the pH is 7.0 or more, the viscosity reduction efficiency decreases, and when it is less than 5.0, acid-type CMC is generated, and a gel-like water-insoluble substance is easily generated. This pH may be adjusted by adding an acid into the reaction system or by premixing with hydrogen peroxide. Any acid can be used at this time, and examples include acetic acid and glycolic acid.
[0013]
Next, after the hydrogen peroxide is reacted at a pH of less than 7.0, an alkali is added during the reaction after a certain period of time (about 10 to 20 minutes later) to adjust the pH to 7.0 or more (preferably 7.0 to 8). .5) As the alkali, caustic soda, sodium carbonate, sodium bicarbonate, or the like is used, but it is preferably used in a solution having a concentration of 5 to 20% by weight so that it can react faster than CMCNa. The solution at this time may be either water or an organic solvent such as methanol, ethanol or isopropanol.
[0014]
Confirmation that the reaction with hydrogen peroxide is in progress is performed by confirming that hydrogen peroxide remains in the system. For example, CMCNa during the reaction is collected and completely dissolved in water, and then sulfuric acid, potassium iodide and starch solution are added, and hydrogen peroxide is confirmed by blue coloration.
[0015]
Conventionally known methods are used for addition of hydrogen peroxide and heating conditions. For example, after the addition of hydrogen peroxide, the mixture is heated to 105 ° C. for 30 minutes and then heated and mixed at 105 ° C. for 90 minutes to obtain the low viscosity CMCNa of the present invention.
[0016]
Under alkaline conditions, the generation of active oxygen due to the decomposition of hydrogen peroxide improves, so that the hydrogen peroxide remaining in the reaction system is decomposed and scattered in the atmosphere before reacting with CMCNa. That is, since the reaction between CMCNa and hydrogen peroxide for a short time is completed before a sufficiently uniform reaction is performed, CMCNa becomes a low-viscosity product with non-uniform viscosity.
[0017]
【Example】
Next, although the manufacturing method of CMCNa of this invention is demonstrated by an Example and a comparative example, this invention is not limited at all by these.
(Method for analyzing CMCNa)
1. The degree of etherification 0.7 g of absolute dry CMCNa is incinerated with a magnetic crucible at 700 to 800 ° C. The crucible containing the ash is placed in a beaker and immersed in water to completely elute the ash. This was neutralization titration with phenolphthalein indicator with 0.1NH 2 SO 4, obtaining 0.1 nH 2 SO 4 requirement of (ml).
[0018]
[Expression 1]
Figure 0004330091
[0019]
2.1% aqueous solution viscosity (mPa · s)
About 2.4 g of CMCNa having a known moisture value is precisely weighed in a 300 ml stoppered Erlenmeyer flask, 200 g of distilled water is added, immediately stoppered and shaken vigorously, and CMC is dispersed in a small lump and left. After leaving overnight (about 18 to 20 hours), adjust to a 1% aqueous solution concentration with corrected water from a known moisture value.
[0020]
[Expression 2]
Figure 0004330091
[0021]
After completion of the correction, a small rotator is placed in the Erlenmeyer flask and stirred for 25 minutes with a magnetic stirrer to completely disperse and dissolve the swollen contents. The solution is then transferred to a 250 ml stoppered container (50 mm diameter x 140 mm height), stoppered and left in a thermostatic bath at 25 ° C. for 30 minutes. After confirming the temperature of 25 ° C., a BM type viscometer, a rotor and a guard are attached to the container with a stopper, and the scale after 3 minutes is read. At this time, rotor NO. Is selected according to the predicted viscosity, and the rotation speed is 30 rpm.
[0022]
3. Non-Newtonian Measuring Method The following paste liquid viscosity is measured using a BH viscometer manufactured by Tokyo Keiki Co., Ltd., and is determined by the following calculation formula.
[0023]
An aqueous paste viscosity aqueous solution of 10,000 ± 500 mPa · s is prepared and mixed well, and then covered with a wrap and left overnight in a 25 ° C. incubator. Next, it is taken out from the thermostat and sufficiently stirred with a glass rod. Next, using a BH type viscometer and rotor No. 5, the rotation speed is changed to 2 rpm and 20 rpm with a transmission knob, the respective viscosities are measured, and the non-Newtonian property is calculated by the following formula. It shows that the Newton property is stronger as the numerical value approaches 1.0, and the non-Newton property is stronger as it approaches 0.
[0024]
[Equation 3]
Figure 0004330091
[0025]
Example 1
500 g of CMC-Na is charged into a 5 L blender and wetted with 125 g of 50% methanol (water :: methanol = 1: 1).
[0026]
Acetic acid was added thereto to adjust the pH of CMC-Na to 6.0 (pH was measured by taking about 1 g of CMCNa, simply dissolving in 100 ml of water, and measuring the pH with a pH meter). After pH adjustment, 50 g of a 17.5% solution obtained by diluting 35% hydrogen peroxide with water twice is added. Next, while stirring with a blender, the temperature was raised to 105 ° C. over 15 minutes, and the remaining hydrogen peroxide was confirmed by the following method.
[0027]
Take 1 g of CMCNa sample and dissolve in 100 ml of water. Add 10 ml of 10% sulfuric acid and 10 ml of 10% potassium iodide to the completely dissolved CMCNa aqueous solution, and leave it not exposed to sunlight for 10 minutes. Then add 3 drops of 1% starch solution and make sure it turns blue. Since it was blue, the remaining hydrogen peroxide was confirmed.
[0028]
After the temperature rise, a 10% sodium hydroxide aqueous solution is added to adjust the pH to 7.5 (the pH adjustment method is as described above). After pH adjustment, stirring was continued at 105 ° C. for 90 minutes to obtain low viscosity CMC-Na.
Examples 2-4 and Comparative Examples 1-6
CMCNa was obtained in the same manner as in Example 1 except that the conditions shown in Table 1 were used. Table 1 shows the 2% viscosity and PVI value of CMCNa obtained.
[0029]
[Table 1]
Figure 0004330091
[0030]
From Table 1, CMCNa obtained by the production method of the present invention is remarkably reduced in viscosity compared with the raw material CMCNa, and the PVI value representing the flow characteristics is shown in spite of the low viscosity of 2 to 20 mPa · s. When it sees, the Example goods are small compared with the comparative example goods, and it has shown that non-Newtonian property is large.
[0031]
【The invention's effect】
The present application is a method for industrially producing a low viscosity CMC-Na having a strong non-Newtonian property, and because it is a low-viscosity CMC-Na, non-Newtonian properties that could not be achieved in the past can be imparted. It can be used in combination with pectin, xanthan gum, etc., which are natural pastes, for use in sauces, food gel aids, etc., or in combination.

Claims (3)

固相状態のカルボキシメチルセルロースナトリウムに過酸化水素を反応させて低粘度のカルボキシメチルセルロースナトリウムを製造する方法において、反応系のpHを7.0未満としてカルボキシメチルセルロースナトリウムと過酸化水素との反応を開始し、次に反応途中でアルカリを添加し、pHを7.0以上として反応を継続することを特徴とする低粘度カルボキシメチルセルロースナトリウムの製造方法。In the method of producing low-viscosity sodium carboxymethylcellulose by reacting hydrogen peroxide with sodium carboxymethylcellulose in the solid phase, the reaction between sodium carboxymethylcellulose and hydrogen peroxide was started with the reaction system having a pH of less than 7.0. Then, a method for producing low-viscosity sodium carboxymethylcellulose, wherein alkali is added during the reaction, and the reaction is continued at a pH of 7.0 or higher. アルカリを添加した後の反応系のpHが7.0〜8.5である請求項1記載の製造方法。The production method according to claim 1, wherein the pH of the reaction system after addition of the alkali is 7.0 to 8.5. 反応前のカルボキシメチルセルロースナトリウムの1%水溶液粘度が1000〜5000mPa・sである請求項1又は2記載の製造方法。The production method according to claim 1 or 2, wherein the viscosity of a 1% aqueous solution of sodium carboxymethylcellulose before the reaction is 1000 to 5000 mPa · s.
JP09958599A 1999-04-07 1999-04-07 Method for producing low viscosity sodium carboxymethylcellulose Expired - Fee Related JP4330091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09958599A JP4330091B2 (en) 1999-04-07 1999-04-07 Method for producing low viscosity sodium carboxymethylcellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09958599A JP4330091B2 (en) 1999-04-07 1999-04-07 Method for producing low viscosity sodium carboxymethylcellulose

Publications (2)

Publication Number Publication Date
JP2000290301A JP2000290301A (en) 2000-10-17
JP4330091B2 true JP4330091B2 (en) 2009-09-09

Family

ID=14251184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09958599A Expired - Fee Related JP4330091B2 (en) 1999-04-07 1999-04-07 Method for producing low viscosity sodium carboxymethylcellulose

Country Status (1)

Country Link
JP (1) JP4330091B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241374A (en) * 2005-03-04 2006-09-14 Dai Ichi Kogyo Seiyaku Co Ltd Process for producing carboxymethyl cellulose salt
WO2018194049A1 (en) * 2017-04-17 2018-10-25 日本製紙株式会社 Carboxymethylated cellulose nanofibers and production method therefor
JP7066489B2 (en) * 2018-04-06 2022-05-13 第一工業製薬株式会社 Manufacturing method of microcapsules

Also Published As

Publication number Publication date
JP2000290301A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JPH0547562B2 (en)
EP3640264A1 (en) Production method for cellulose nanofibers
CN101215389B (en) Chitosan hydrogel and preparation method thereof
CN111423518A (en) Synthetic method of lithium battery binder carboxymethyl cellulose salt
JP4330091B2 (en) Method for producing low viscosity sodium carboxymethylcellulose
US8445671B2 (en) Method for preparing polyanhydroglucuronic acid and/or salts thereof
US7456265B2 (en) Carboxylated polysaccharides and method of preparation and use
JP2009191233A (en) Method for producing carboxymethylcellulose sodium
TW201819420A (en) Method for manufacturing water-soluble hydroxyethyl cellulose
EP2928925B1 (en) Process for producing hydroxyalkyl celluloses
CN106366213B (en) The industrialized process for preparing of O-CMC
JP2009017848A (en) Modifier for baking bread, and dough composition of bread by using the same
JP2007254588A (en) Method for manufacturing partial acid carboxymethylcellulose
JPS6363388A (en) Production of low molecular weight chitosan
JP3999962B2 (en) Method for producing carboxymethylcellulose alkali metal salt
JP3037367B2 (en) A method for producing cationized starch with controlled viscosity.
JP2000119303A (en) Production of carboxymethyl cellulose alkali salt
JPS62149701A (en) Production of alkali metal salt of carboxymethylcellulose ether of low degree substitution
JP4153692B2 (en) Method for producing hydroxyethyl cellulose
MXPA02010035A (en) Method for the production of easily wetted, water soluble, powdered at least alkylated non ionic cellulose ethers.
JP2008231186A (en) Shear-resistant carboxymethyl cellulose and oral cavity composition comprising the same
JPH0360479B2 (en)
JPS6218561B2 (en)
JPH0425501A (en) Production of low-viscosity carboxymethylcellulose sodium salt
JP3563602B2 (en) Toothpaste composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees