JP4327521B2 - Seismic structure transformer - Google Patents

Seismic structure transformer Download PDF

Info

Publication number
JP4327521B2
JP4327521B2 JP2003193601A JP2003193601A JP4327521B2 JP 4327521 B2 JP4327521 B2 JP 4327521B2 JP 2003193601 A JP2003193601 A JP 2003193601A JP 2003193601 A JP2003193601 A JP 2003193601A JP 4327521 B2 JP4327521 B2 JP 4327521B2
Authority
JP
Japan
Prior art keywords
transformer
iron core
seismic
earthquake
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003193601A
Other languages
Japanese (ja)
Other versions
JP2005032814A (en
Inventor
清之 土屋
秀三 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Original Assignee
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp filed Critical Japan AE Power Systems Corp
Priority to JP2003193601A priority Critical patent/JP4327521B2/en
Publication of JP2005032814A publication Critical patent/JP2005032814A/en
Application granted granted Critical
Publication of JP4327521B2 publication Critical patent/JP4327521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、変圧器収納盤の中に格納して使用される縦形の乾式変圧器における耐震構造に係り、特に、固有振動数を20Hz以上に保つ必要がある変圧器に好適な耐震構造に関する。
【0002】
【従来の技術】
内鉄型の変圧器は、一般に巻線を縦にして設置するように作られるので、重心を低く抑えるのが困難であり、このため、容量が大きくなるにつれ、耐震構造が必要になる。
【0003】
特に、原子力発電所に設置される変圧器の場合、地震に対する安全性が厳しくなり、大地震に際しても破壊されることがないような充分な耐震性が要求されている。
【0004】
ところで、地震により変圧器が破壊されるのは、変圧器の固有振動数が地震波に共振した場合が多く、このため、変圧器本体の固有振動を20Hz以上にするのが有効で、このことが設計仕様として従来から要求されている。
【0005】
ここで、3脚鉄心を用いた従来の一般的な内鉄形の乾式3相変圧器の一例について、図4(a)の側面図と同図(b)の正面図により説明すると、この場合、乾式変圧器の本体の主要部は鉄心1と巻線2である。
【0006】
図示のように、鉄心1は3本の脚部を備え、これら脚部が縦になるようにして配置されたもので、周知のように、積層した電磁鋼板で作られている。そして、この鉄心1の各脚部には、筒状にモールド形成された巻線2が当該脚部により貫通された状態で備えられていて、これにより乾式変圧器の本体主要部が作られている。
【0007】
更に、鉄心1の各脚部の間をつなぐ継鉄(ヨーク)部には、溝形材からなる上部鉄心締付部材3と下部鉄心締付部材4が両側から当てられていて、これらを、補強用の鉄心当板5を介して、鉄心締付ボルト6により締付け、鉄心1の継鉄部を間に挟んだ状態で全体が一体化されるようにする。
【0008】
そして、鉄心1の下部を、溝形材により作られている鉄心台7の上に載置し、図示しないボルトなどにより固定することにより、自立させて縦形の乾式変圧器本体としているものである。
【0009】
ここで、このような乾式変圧器の耐震構造については、従来から種々の提案がなされているが、このとき、補強部材を用いて耐震性を高めるようにした変圧器についても種々提案がされている(例えば、特許文献1、特許文献2参照)。
【0010】
ここで、図5は、従来技術による耐震構造を備え、変圧器収納盤(屋内外設置用の大型箱体)に格納して使用される乾式の変圧器の一例で、図示のように、2種の耐震用補強部材9、10を用い、これらを上部鉄心締付部材3と鉄心台8に連結させ、ボルトで固定することにより、鉄心1の上部が揺れるのを抑え、20Hz以上の固有振動数が得られるようにしたものである。
【0011】
図5の従来技術について、更に詳しく説明すると、ここでも、図の(a)は側面図で、同図(b)は正面図であり、ここで、一方の補強部材9は、鉄心1の継鉄部の両側で、上部鉄心締付部材3の側面から巻線2の外側に張り出し、下方に延びて鉄心台8に取付けられている部材で構成され、次に、他方の補強部材10は、上部鉄心締付部材3の端部から下方に斜めに延びて下端が鉄心台8に固定された逆V字形の部材で構成されている。
【0012】
このとき、上部鉄心締付部材3の端部には、取付用の座板3Aが、そして、補強部材10の上端には、同じく取付用の座板10Aが、それぞれ溶接などにより取付けてある。そして、これらの座板3Aと座板11Aを重ね合わせ、図示してないボルトにより締付け相互に結合させることにより、上部鉄心締付部材3の端部に対する補強部材10の上端の取付けが強固に得られるようになっている。
【0013】
更に、この補強部材10の下端にも、座板10Bが溶接などにより取付けてあり、この座板10Bが、図示してないボルトにより、鉄心台8に固定され、これにより、補強部材10の下端が鉄心台8に取付けられることになる。
【0014】
このとき、一方の補強部材9は、図示のように、鉄心1の両側に合計6個取付けられ、他方の補強部材10は、上部鉄心締付部材3の両方の端部に合計2個取付けられている。
【0015】
そして、この乾式変圧器本体が、原子力発電所の構内などに設置されている変圧器収容盤11の中に搬入され、鉄心台8を基礎ボルト13により発電所の基礎に固定することにより、据付けが完了されるようになっている。
【0016】
【特許文献1】
特開昭56−23722号公報
【0017】
【特許文献2】
特開昭58−225616号公報
【0018】
【発明が解決しようとする課題】
上記従来技術は、耐震構造に伴う乾式変圧器の設置面積の増加に配慮がされておらず、建屋スペースの抑制に問題があった。
【0019】
乾式変圧器を変圧器収納盤に格納して使用する場合、変圧器本体の回りに保守用の点検スペースが必要になり、その分、容器となる変圧器収納盤を広くする必要があるが、このとき、従来の耐震構造変圧器では、巻線の外側に耐震部材(図5の耐震部材9)が存在しているので、その分、建屋が広くなってしまう。
【0020】
このとき、建屋面積の増加を抑えるため、耐震部材を巻線に近づけようとしても、巻線に対しては絶縁距離を確保する必要があるため、限度があり、従って、従来技術では、建屋スペースの抑制に問題が生じてしまうのである。
【0021】
本発明は、上述の点に鑑みなされたもので、その目的とするところは、耐震性と保守性を満足させつつ変圧器収納盤の小型化が得られるようにした耐震構造変圧器を提供することにある。
【0022】
【課題を解決するための手段】
上記目的は、変圧器収容盤内に縦形乾式の変圧器本体を収納し、逆V字形の部材からなる耐震部材を備えた耐震構造変圧器において、矩形厚板状本体部の4角に、前記本体部より厚みが薄くされている平板部を備え、下面全体が平面にされている鉄心台と、中空矩形部材からなる上部鉄心締付部材とを用い、前記変圧器本体の鉄心下部を前記矩形厚板状本体部の上に直接載置し、前記逆V字形の部材からなる耐震部材の下端を前記平板部の上に載置し、基礎ボルトにより、当該耐震部材の下端が前記平板部を介しただけで基礎に固定されるようにし、前記中空矩形部材からなる上部鉄心締付部材を、前記変圧器本体の鉄心の上部継鉄部の両側に設けて、当該継鉄部をボルトで締付けた後、これら継鉄部の両側にある上部鉄心締付部材が相互に連結部材で結合され、当該上部鉄心締付部材の一方と他方の端部に前記逆V字形の部材からなる耐震部材の各々の上端が取付けられていることにより達成される。
【0023】
このとき、前記耐震部材の下端に、更にステー部材が設けられていることによっても、上記目的を達成することができる。
【0024】
【発明の実施の形態】
以下、本発明による耐震構造変圧器について、図示の実施の形態により詳細に説明する。
【0025】
図1は、本発明の一実施形態で、ここでも、図の(a)は側面図で、同図(b)は正面図であり、ここで、12は鉄心台、14は連結部材、15はステー部材、それに30は上部鉄心締付部材であり、その他の部材と構成は、図4と図5で説明した従来技術と同じである。
【0026】
ここで、まず、鉄心台12は、図2に斜視図で示すように、変圧器本体の鉄心1が直接載置される厚板状本体部12Aと、その4角の平板部12Bで構成されている。
【0027】
そして、この鉄心台12の下面は、矩形厚板状本体部12Aと平板部12Bも含めて全体が平面にしてあり、平らな基礎の上に置かれたとき、基礎の上に安定して保持されるように作られていて、後述するように、変圧器本体と逆V字形の部材からなる補強部材10を基礎に対して強固に固定する働きをする。
【0028】
次に、連結部材14は、鉄心1の脚部の両側にある上部鉄心締付部材30のそれぞれにボルト(図示してない)で接合された板状の部材で、2本の上部鉄心締付部材30を結合させることにより、これら上部鉄心締付部材30の曲げ方向応力に対する剛性を高める働きをする。
【0029】
また、ステー部材15は、略直角三角形をした板材で作られ、補強部材10の下端と座板10Bの双方に溶接などにより接合されていて、これにより、補強部材10の下端に、座板10Bに対して現われる曲げ方向の応力に対する剛性を高める働きをする。
【0030】
そして、上部鉄心締付部材30は、図3にイ−ロ断面として示すように、中空矩形材で作られ、これにより、溝形材からなる上部鉄心締付部材3(図5の従来技術)よりも曲げ方向の応力に対する高い剛性が得られるようにする働きをする。
【0031】
次に、この実施形態について、更に詳細に説明すると、ここで、上記したように、この実施形態でも、鉄心台12と連結部材14、ステー部材15、それに上部鉄心締付部材30以外は、従来技術と同じである。
【0032】
従って、この実施形態でも、鉄心1が積層した電磁鋼板で作られ、3本の脚部を備え、これらの脚部には、筒状に形成された巻線2が、当該脚部により貫通された状態で備えられ、これにより変圧器の本体主要部が作られている点には変りはなく、且つ、逆V字形の補強部材10を備えている点も、従来技術と変りはない。
【0033】
しかし、この実施形態では、溝形材からなる上部鉄心締付部材3に代えて、中空矩形材からなる上部鉄心締付部材30が用いられ、曲げ方向に高い剛性が与えられている点で、まず、従来技術とは異なっている。
【0034】
従って、この実施形態では、補強部材10の上端は、従来技術のように、上部鉄心締付部材3の端部に取付けられるのではなく、中空矩形材からなる上部鉄心締付部材30の端部に取付けられていることになる。
【0035】
次に、この実施形態では、鉄心台7の代りに鉄心台12が用いられていて、その矩形厚板状本体部12Aの上に変圧器本体が直接載置され、基礎に強固に固定されている点が従来技術とは異なる。
【0036】
また、この実施形態では、この鉄心台12が複数枚の平板部12Bを備え、これら平板部12Bの上に逆V字形の補強部材10の下端が載置され、基礎ボルト13により、平板部12Bを介しただけで、基礎にほぼ直接、強固に固定されている点も従来技術とは異なっている。
【0037】
更に、この実施形態では、逆V字形の補強部材10の下端に略直角三角形をしたステー部材15が設けられていて、座板10Bが、基礎ボルト13により、鉄心台12の平板部12Bを介して基礎に固定されるたとき、補強部材10の下端に働く曲げ応力に対して強い剛性が与えられるようになっている点も、従来技術とは異なっている。
【0038】
加えて、この実施形態では、鉄心1の継鉄(ヨーク)部の両側にある上部鉄心締付部材30の上に、当該継鉄部を跨いだ状態で連結部材14が水平に載置され、上部鉄心締付部材30の各々に接合されている。
【0039】
この結果、継鉄部の両側にある上部鉄心締付部材30は相互に連結されて一体化され、この結果、これらに水平方向に極めて高い剛性が与えられている。
【0040】
そこで、次に、上記の構成を備えたことにより、この実施形態に与えられている耐震性について説明する。
【0041】
まず、逆V字形の補強部材10の下端を鉄心台12に載置させる部分が平板部12Bにしてあるので、この補強部材10の下端は据付け基礎の間に構造物を介さずに、基礎ボルト13で直接、基礎に固定された形になっている。
【0042】
このため、型鋼や鋼板の構造物からなる鉄心台のたわみなどによる影響を受ける虞れがなくなり、逆V字形補強部材10が本来備えている剛性を充分に発揮させることができる。
【0043】
そして、この結果、変圧器本体の上部に、図1(a)のX方向に働く力、つまり鉄心1の継鉄部が延びている方向とは直角な方向に対して高い剛性を持たせることができ、地震により変圧器本体がX方向の前後に傾くのを規制することができる。
【0044】
ここで、変圧器本体の上部にX方向の力が作用した場合、両端に逆V字形補強部材10が設けられているので、変圧器本体の上部の継鉄部に曲がりが発生する虞れがあるが、鉄心1の上部には、中空矩形材からなる上部鉄心締付部材30が設けてあるので、このような曲がりの発生が規制できる。
【0045】
それでも定格容量が大きく、重畳が重い変圧器の場合は、X方向の力が加わったことにより変圧器本体の上部の継鉄部に発生する曲げ応力が大きくなって、ここに反りが発生してしまう虞れがある。
【0046】
しかし、この実施形態では、上部鉄心締付部材30が更に連結部材14で相互に結合されていて、継鉄部に発生する曲げ応力に対して更に高い剛性が与えられており、従って、このような反りの発生も確実に規制することができる。
【0047】
そして、これらの結果、この実施形態によれば、図5で説明した従来技術のように、巻線2の外側に、補強部材10とは別の補強部材9を設けなくても、変圧器本体の上部に働くX方向の力に対して、必要とする剛性を確実にもたせることができる。
【0048】
次に、この実施形態では、逆V字形補強部材10の下端にはステー部材15が設けてあり、これにより、上記したように、補強部材10の下端に働く曲げ応力に対して強い剛性が与えられている。
【0049】
ここで、このとき補強部材10の下端に働く曲げ応力とは、図1(b)においてY方向、つまり変圧器本体の上部に、その鉄心1の継鉄部が延びている方向と同じ方向の力が作用し、変圧器本体の上部がY方向に変位したとき、補強部材10の下端に現われる応力のことである。
【0050】
従って、この実施形態によれば、ステー部材15を設けたことにより、変圧器本体の上部に働くX方向の力に対しても、必要とする剛性を確実にもたせることができる。
【0051】
そして、以上の結果、この実施形態によれば、X方向とY方向の何れにも高い剛性が与えられているので、容易に変圧器本体の固有振動を20Hz以上にすることができ、従って、この実施形態によれば、変圧器に容易に耐震性を与えることができ、地震により破壊される虞れのない乾式の変圧器を得ることができる。また、この結果、本発明の実施形態によれば、従来技術のように、補強部材10とは別の補強部材9を設ける必要がないので、変圧器収納盤11の小型化を図ることができる。
【0052】
【発明の効果】
本発明によれば、簡単な構成で変圧器の固有振動数が20Hz以上にできるので、容易に耐震性を備えた乾式の変圧器が提供でき、この結果、変圧器収納盤の小型が図れる。
【図面の簡単な説明】
【図1】本発明による耐震構造変圧器の一実施形態を示す側面図と正面図である。
【図2】本発明の一実施形態における鉄心台の斜視図である。
【図3】本発明の一実施形態における上部鉄心締付部材の断面図である。
【図4】変圧器本体の一例を説明するための側面図と正面図である。
【図5】従来技術による耐震構造変圧器の一例を示す側面図と正面図である。
【符号の説明】
1 鉄心
2 巻線
3 上部鉄心締付部材(従来技術)
3A 座板
4 下部鉄心締付部材
5 鉄心当板
6、7 鉄心締付ボルト
8 鉄心台(従来技術)
9 耐震部材(従来技術)
10 逆V字形の部材からなる耐震部材
10A、10B 座板
11 変圧器収納盤(屋外設置用の大型箱体)
12 鉄心台
12A 厚板状本体部
12B 平板部
13 基礎ボルト
14 連結部材
15 ステー部材
30 中空矩形材の上部鉄心締付部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic structure in a vertical dry transformer used by being stored in a transformer storage board, and more particularly to a seismic structure suitable for a transformer that needs to maintain a natural frequency of 20 Hz or more.
[0002]
[Prior art]
Inner iron type transformers are generally made so that their windings are installed vertically, so it is difficult to keep the center of gravity low, and as the capacity increases, seismic structures are required.
[0003]
In particular, transformers installed in nuclear power plants are required to have sufficient seismic resistance so that the safety against earthquakes becomes severe and they are not destroyed even in the event of a large earthquake.
[0004]
By the way, the transformer is often destroyed by the earthquake when the natural frequency of the transformer resonates with the seismic wave. For this reason, it is effective to set the natural vibration of the transformer body to 20 Hz or more. It has been conventionally required as a design specification.
[0005]
Here, an example of a conventional general inner iron type dry three-phase transformer using a three-legged iron core will be described with reference to a side view of FIG. 4 (a) and a front view of FIG. 4 (b). The main parts of the main body of the dry transformer are an iron core 1 and a winding 2.
[0006]
As shown in the figure, the iron core 1 is provided with three leg portions, and these leg portions are arranged vertically, and is made of laminated electromagnetic steel plates as is well known. Each leg part of the iron core 1 is provided with a winding 2 molded in a cylindrical shape so as to be penetrated by the leg part, thereby forming the main part of the main body of the dry transformer. Yes.
[0007]
Furthermore, the upper iron core fastening member 3 and the lower iron core fastening member 4 made of a groove-shaped member are applied from both sides to the yoke portion connecting between the leg portions of the iron core 1. The steel core is tightened by a core tightening bolt 6 via a reinforcing iron core abutment plate 5 so that the whole is integrated in a state where the yoke portion of the iron core 1 is sandwiched therebetween.
[0008]
Then, the lower part of the iron core 1 is placed on the iron core base 7 made of a groove-shaped material and fixed by a bolt (not shown) or the like, thereby making it a vertical dry transformer main body. .
[0009]
Here, various proposals have been made for the seismic structure of such a dry transformer. However, various proposals have been made for transformers that use a reinforcing member to enhance seismic resistance. (For example, see Patent Document 1 and Patent Document 2).
[0010]
Here, FIG. 5 is an example of a dry-type transformer having a seismic structure according to the prior art and stored in a transformer storage panel (large box for indoor / outdoor installation). Using various types of seismic reinforcement members 9 and 10, these are connected to the upper core fastening member 3 and the iron core base 8 and fixed with bolts to suppress the upper part of the iron core 1 from shaking, and the natural vibration of 20 Hz or more A number can be obtained.
[0011]
The prior art of FIG. 5 will be described in more detail. Again, FIG. 5 (a) is a side view and FIG. 5 (b) is a front view, where one reinforcing member 9 is a joint of the iron core 1. On both sides of the iron part, it is composed of a member that projects from the side surface of the upper core fastening member 3 to the outside of the winding 2 and extends downward and is attached to the iron core base 8, and the other reinforcing member 10 is The upper core fastening member 3 is formed of an inverted V-shaped member that extends obliquely downward from the end of the upper core fastening member 3 and has a lower end fixed to the core stand 8.
[0012]
At this time, the seat plate 3A for attachment is attached to the end of the upper core fastening member 3, and the seat plate 10A for attachment is attached to the upper end of the reinforcing member 10 by welding or the like. Then, the seat plate 3A and the seat plate 11A are overlapped and fastened to each other with bolts (not shown), so that the upper end of the reinforcing member 10 can be firmly attached to the end of the upper core fastening member 3. It is supposed to be.
[0013]
Further, a seat plate 10B is also attached to the lower end of the reinforcing member 10 by welding or the like, and the seat plate 10B is fixed to the iron core 8 with a bolt (not shown). Is attached to the iron core 8.
[0014]
At this time, a total of six reinforcing members 9 are attached to both sides of the iron core 1 as shown in the figure, and a total of two reinforcing members 10 are attached to both ends of the upper core fastening member 3. ing.
[0015]
And this dry type transformer main body is carried in the transformer accommodating board 11 installed in the premises of a nuclear power plant, etc., and is fixed by fixing the iron core 8 to the foundation of the power plant by the foundation bolt 13. Is to be completed.
[0016]
[Patent Document 1]
Japanese Patent Laid-Open No. 56-23722
[Patent Document 2]
Japanese Patent Laid-Open No. 58-225616
[Problems to be solved by the invention]
The above prior art has not been considered for an increase in the installation area of the dry transformer associated with the earthquake-resistant structure, and there has been a problem in suppressing the building space.
[0019]
When storing and using a dry transformer in a transformer storage panel, a maintenance inspection space is required around the transformer body, and it is necessary to widen the transformer storage panel as a container. At this time, in the conventional earthquake-resistant structural transformer, since the earthquake-resistant member (the earthquake-resistant member 9 in FIG. 5) exists outside the winding, the building is widened accordingly.
[0020]
At this time, in order to suppress the increase in the building area, there is a limit because it is necessary to secure an insulation distance for the winding even if the seismic member is brought close to the winding. There will be a problem in suppressing this.
[0021]
The present invention has been made in view of the above points, and an object of the present invention is to provide a seismic structure transformer capable of reducing the size of a transformer housing panel while satisfying seismic resistance and maintainability. There is.
[0022]
[Means for Solving the Problems]
The object is to store a vertical dry transformer main body in a transformer housing panel, and in an earthquake-resistant structural transformer having an earthquake-resistant member made of an inverted V-shaped member, the rectangular thick plate-shaped main body portion has four corners . A steel plate having a flat plate portion whose thickness is thinner than that of the main body , the entire lower surface being flat, and an upper core fastening member made of a hollow rectangular member, and the lower portion of the iron core of the transformer main body is rectangular. Place directly on the thick plate-like main body, place the lower end of the earthquake-resistant member made of the inverted V-shaped member on the flat plate portion, and with the foundation bolt, the lower end of the earthquake-resistant member is placed on the flat plate portion. The upper iron core fastening member made of the hollow rectangular member is provided on both sides of the upper yoke portion of the iron core of the transformer body, and the yoke portion is tightened with bolts. After that, the upper core fastening members on both sides of these yoke parts Coupled with binding member is achieved by the upper end of each of the one and the other of will end the members of the inverted V-shaped seismic member of the upper core fastening member is attached.
[0023]
At this time, the above object can also be achieved by providing a stay member at the lower end of the earthquake-resistant member.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an earthquake-resistant structural transformer according to the present invention will be described in detail with reference to embodiments shown in the drawings.
[0025]
FIG. 1 is an embodiment of the present invention, where (a) is a side view and (b) is a front view, where 12 is an iron core, 14 is a connecting member, Is a stay member, and 30 is an upper iron core fastening member, and the other members and configurations are the same as those of the prior art described in FIGS.
[0026]
Here, first, as shown in a perspective view of FIG. 2, the iron core 12 is composed of a thick plate-like main body portion 12A on which the iron core 1 of the transformer main body is directly placed, and a rectangular flat plate portion 12B. ing.
[0027]
The bottom surface of the iron core 12 is flat as a whole including the rectangular thick plate-like main body 12A and the flat plate 12B, and is stably held on the foundation when placed on a flat foundation. As will be described later, the reinforcing member 10 made of an inverted V-shaped member and the transformer body is firmly fixed to the foundation.
[0028]
Next, the connecting member 14 is a plate-like member joined to each of the upper core fastening members 30 on both sides of the legs of the iron core 1 by bolts (not shown), and the two upper iron cores are fastened. By joining the members 30, these upper iron core fastening members 30 serve to increase the rigidity against stress in the bending direction.
[0029]
The stay member 15 is made of a plate material having a substantially right triangle, and is joined to both the lower end of the reinforcing member 10 and the seat plate 10B by welding or the like, whereby the seat plate 10B is attached to the lower end of the reinforcing member 10. It works to increase the rigidity against stress in the bending direction that appears.
[0030]
Then, the upper core fastening member 30 is made of a hollow rectangular material as shown in FIG. 3 as a cross section of the air, and thereby, the upper core fastening member 3 made of a groove-shaped material (prior art of FIG. 5). It works to make it possible to obtain higher rigidity against stress in the bending direction.
[0031]
Next, this embodiment will be described in more detail. Here, as described above, in this embodiment as well, the components other than the iron core 12, the connecting member 14, the stay member 15, and the upper iron core fastening member 30 are conventional. Same as technology.
[0032]
Therefore, also in this embodiment, it is made of a magnetic steel sheet in which the iron core 1 is laminated, and has three legs, and the winding 2 formed in a cylindrical shape is penetrated by these legs. The main part of the transformer is made in this way, and there is no change in the point that the inverted V-shaped reinforcing member 10 is provided.
[0033]
However, in this embodiment, instead of the upper core fastening member 3 made of a groove-shaped material, an upper core fastening member 30 made of a hollow rectangular material is used, and a high rigidity is given in the bending direction. First, it differs from the prior art.
[0034]
Therefore, in this embodiment, the upper end of the reinforcing member 10 is not attached to the end of the upper core fastening member 3 as in the prior art, but is the end of the upper core fastening member 30 made of a hollow rectangular material. Will be installed.
[0035]
Next, in this embodiment, an iron core 12 is used instead of the iron core 7, and the transformer main body is directly placed on the rectangular thick plate-like main body 12A and firmly fixed to the foundation. This is different from the prior art.
[0036]
In this embodiment, the iron core 12 includes a plurality of flat plate portions 12B, and the lower end of the inverted V-shaped reinforcing member 10 is placed on the flat plate portions 12B. It is also different from the prior art in that it is firmly fixed almost directly to the foundation just through the.
[0037]
Further, in this embodiment, a stay member 15 having a substantially right triangle is provided at the lower end of the inverted V-shaped reinforcing member 10, and the seat plate 10 </ b> B is interposed by the foundation bolt 13 via the flat plate portion 12 </ b> B of the iron core 12. When it is fixed to the foundation, it is different from the prior art in that strong rigidity is given to bending stress acting on the lower end of the reinforcing member 10.
[0038]
In addition, in this embodiment, on the upper core fastening member 30 on both sides of the yoke (yoke) portion of the iron core 1, the connecting member 14 is horizontally placed in a state straddling the yoke portion, It is joined to each of the upper core fastening members 30.
[0039]
As a result, the upper core fastening members 30 on both sides of the yoke portion are connected and integrated with each other, and as a result, they are given extremely high rigidity in the horizontal direction.
[0040]
Then, next, the earthquake resistance given to this embodiment by having said structure is demonstrated.
[0041]
First, since the portion on which the lower end of the inverted V-shaped reinforcing member 10 is placed on the iron core 12 is a flat plate portion 12B, the lower end of the reinforcing member 10 is a foundation bolt without any structure between the installation foundations. 13 is directly fixed to the foundation.
[0042]
For this reason, there is no possibility of being affected by the deflection of an iron core made of a structure of a steel plate or a steel plate, and the rigidity inherent to the inverted V-shaped reinforcing member 10 can be sufficiently exhibited.
[0043]
As a result, the upper part of the transformer body should have high rigidity with respect to the force acting in the X direction in FIG. 1 (a), that is, the direction perpendicular to the direction in which the yoke portion of the iron core 1 extends. It is possible to prevent the transformer body from tilting back and forth in the X direction due to an earthquake.
[0044]
Here, when a force in the X direction is applied to the upper part of the transformer body, since the inverted V-shaped reinforcing members 10 are provided at both ends, there is a risk that the upper yoke part of the transformer body is bent. However, since the upper core fastening member 30 made of a hollow rectangular material is provided on the upper portion of the iron core 1, the occurrence of such bending can be restricted.
[0045]
Still, in the case of a transformer with a large rated capacity and heavy superposition, the bending stress generated in the upper yoke part of the transformer body increases due to the application of the force in the X direction, causing warping here. There is a risk of it.
[0046]
However, in this embodiment, the upper core fastening member 30 is further coupled to each other by the connecting member 14 to give a higher rigidity against the bending stress generated in the yoke portion. The occurrence of warping can be reliably controlled.
[0047]
As a result, according to this embodiment, the transformer main body can be provided without providing the reinforcing member 9 different from the reinforcing member 10 outside the winding 2 as in the prior art described in FIG. The required rigidity can be reliably given to the force in the X direction acting on the upper portion of the.
[0048]
Next, in this embodiment, the stay member 15 is provided at the lower end of the inverted V-shaped reinforcing member 10, thereby giving a strong rigidity against bending stress acting on the lower end of the reinforcing member 10 as described above. It has been.
[0049]
Here, the bending stress acting on the lower end of the reinforcing member 10 at this time is in the same direction as the Y direction in FIG. 1B, that is, the direction in which the yoke portion of the iron core 1 extends above the transformer body. This is the stress that appears at the lower end of the reinforcing member 10 when a force is applied and the upper portion of the transformer body is displaced in the Y direction.
[0050]
Therefore, according to this embodiment, by providing the stay member 15, it is possible to reliably provide the required rigidity against the force in the X direction that acts on the upper portion of the transformer body.
[0051]
And as a result of the above, according to this embodiment, since both the X direction and the Y direction have high rigidity, the natural vibration of the transformer body can be easily set to 20 Hz or more. According to this embodiment, it is possible to easily provide earthquake resistance to the transformer, and it is possible to obtain a dry type transformer that is not likely to be destroyed by an earthquake. As a result, according to the embodiment of the present invention, it is not necessary to provide the reinforcing member 9 different from the reinforcing member 10 as in the prior art, so that the transformer housing 11 can be downsized. .
[0052]
【The invention's effect】
According to the present invention, since the natural frequency of the transformer can be set to 20 Hz or more with a simple configuration, it is possible to easily provide a dry-type transformer having earthquake resistance. As a result, the transformer housing panel can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a side view and a front view showing an embodiment of a seismic structure transformer according to the present invention.
FIG. 2 is a perspective view of an iron core in one embodiment of the present invention.
FIG. 3 is a cross-sectional view of an upper iron core fastening member in an embodiment of the present invention.
FIGS. 4A and 4B are a side view and a front view for explaining an example of a transformer body. FIGS.
FIGS. 5A and 5B are a side view and a front view showing an example of a conventional earthquake-resistant structural transformer. FIGS.
[Explanation of symbols]
1 Iron core 2 Winding 3 Upper iron core fastening member (prior art)
3A Seat plate 4 Lower iron core fastening member 5 Iron core abutment plate 6, 7 Iron core fastening bolt 8 Iron core stand (prior art)
9 Seismic members (prior art)
10 Seismic members 10A, 10B made of inverted V-shaped members Seat plate 11 Transformer storage panel (large box for outdoor installation)
12 Iron Core Base 12A Thick Plate Body 12B Flat Plate 13 Foundation Bolt 14 Connection Member 15 Stay Member 30 Upper Iron Core Tightening Member of Hollow Rectangular Material

Claims (2)

変圧器収容盤内に縦形乾式の変圧器本体を収納し、逆V字形の部材からなる耐震部材を備えた耐震構造変圧器において、
矩形厚板状本体部の4角に、前記本体部より厚みが薄くされている平板部を備え、下面全体が平面にされている鉄心台と、中空矩形部材からなる上部鉄心締付部材とを用い、
前記変圧器本体の鉄心下部を前記矩形厚板状本体部の上に直接載置し、
前記逆V字形の部材からなる耐震部材の下端を前記平板部の上に載置し、基礎ボルトにより、当該耐震部材の下端が前記平板部を介しただけで基礎に固定されるようにし
前記中空矩形部材からなる上部鉄心締付部材を、前記変圧器本体の鉄心の上部継鉄部の両側に設けて、当該継鉄部をボルトで締付けた後、これら継鉄部の両側にある上部鉄心締付部材が相互に連結部材で結合され、当該上部鉄心締付部材の一方と他方の端部に前記逆V字形の部材からなる耐震部材の各々の上端が取付けられていることを特徴とする耐震構造変圧器。
In a seismic structure transformer that houses a vertical dry type transformer body in a transformer housing panel and has an earthquake resistant member made of an inverted V-shaped member,
An iron core base having a flat plate portion whose thickness is thinner than that of the main body portion at the four corners of the rectangular thick plate-shaped main body portion, and an upper iron core fastening member made of a hollow rectangular member. Use
Place the iron core lower part of the transformer body directly on the rectangular thick plate body part,
The lower end of the earthquake-resistant member made of the inverted V-shaped member is placed on the flat plate portion, and the lower end of the earthquake-resistant member is fixed to the foundation only through the flat plate portion by a foundation bolt ,
The upper core fastening members made of the hollow rectangular member are provided on both sides of the upper yoke part of the iron core of the transformer body, and after tightening the yoke parts with bolts, the upper parts on both sides of the yoke parts The core tightening members are connected to each other by a connecting member, and the upper ends of the seismic members made of the inverted V-shaped members are attached to one end and the other end of the upper core tightening member. Seismic structure transformer.
請求項1に記載の耐震構造変圧器において、
前記耐震部材の下端にステー部材が設けられていることを特徴とする耐震構造変圧器。
The seismic structure transformer according to claim 1,
A seismic structure transformer characterized in that a stay member is provided at a lower end of the seismic material.
JP2003193601A 2003-07-08 2003-07-08 Seismic structure transformer Expired - Lifetime JP4327521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193601A JP4327521B2 (en) 2003-07-08 2003-07-08 Seismic structure transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193601A JP4327521B2 (en) 2003-07-08 2003-07-08 Seismic structure transformer

Publications (2)

Publication Number Publication Date
JP2005032814A JP2005032814A (en) 2005-02-03
JP4327521B2 true JP4327521B2 (en) 2009-09-09

Family

ID=34205026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193601A Expired - Lifetime JP4327521B2 (en) 2003-07-08 2003-07-08 Seismic structure transformer

Country Status (1)

Country Link
JP (1) JP4327521B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230342B2 (en) * 2008-10-09 2013-07-10 株式会社日立製作所 Three-phase transformer
CN101728078A (en) * 2008-10-30 2010-06-09 张家港市中亚特种变压器制造有限公司 Coil stay used on dry-type transformer
JP2017073473A (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Terminal structure of transformer
CN116798747B (en) * 2023-06-27 2023-12-15 山东特变电力设备有限公司 Intelligent dry-type transformer and production method thereof

Also Published As

Publication number Publication date
JP2005032814A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
KR101038672B1 (en) Earthquake resistnat type switchgear using elastic supporting element providing kinesis
KR101706514B1 (en) Cast resin transformer
KR101757664B1 (en) Switchboard equipped with earthquake-resistance frame and the method of earthquake-resistance switchboard
JP2015032592A (en) Transformer
KR101441255B1 (en) Explosion-proof panel, explosion-proof panel connection assembly and explosion-proof modular structure including the same
JP3872330B2 (en) System ceiling suspension structure and system ceiling
JP2009147196A (en) Earthquake-proof type molded transformer
JP4327521B2 (en) Seismic structure transformer
JP6427837B2 (en) Seismic device
JP6997538B2 (en) Seismic damping device for electric power equipment
JP2015094426A (en) Base isolation stand and base isolation device using the same
JP5268775B2 (en) Frame cabinet
JP3749818B2 (en) Seismic isolation devices, buildings with seismic isolation devices
JP2011035230A (en) Iron-core transport tank of disassembled/transported transformer and assembly method
JP3512602B2 (en) Panel storage type static induction equipment
JPH11354332A (en) Method for disassembly and transportation of assembled transformer
JPH11162752A (en) Winding supporting device for transformer
JPH0644968Y2 (en) Floor beam support bundle
WO2017199350A1 (en) Transformer
JPH085537Y2 (en) Winding core transformer
KR102297959B1 (en) Switch Board with Seismic Frame
US20220328231A1 (en) Transformer frame structure
JPH0471792B2 (en)
JPS59178712A (en) Laminated iron core assembling body
JPH10231640A (en) Damping construction for building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4327521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term