JP4327498B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP4327498B2
JP4327498B2 JP2003128992A JP2003128992A JP4327498B2 JP 4327498 B2 JP4327498 B2 JP 4327498B2 JP 2003128992 A JP2003128992 A JP 2003128992A JP 2003128992 A JP2003128992 A JP 2003128992A JP 4327498 B2 JP4327498 B2 JP 4327498B2
Authority
JP
Japan
Prior art keywords
infrared
temperature
information
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128992A
Other languages
Japanese (ja)
Other versions
JP2004330865A (en
Inventor
慎一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2003128992A priority Critical patent/JP4327498B2/en
Publication of JP2004330865A publication Critical patent/JP2004330865A/en
Application granted granted Critical
Publication of JP4327498B2 publication Critical patent/JP4327498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線センサにて検出した車室内の赤外線情報及び室内温度センサにて検出した車室内温度情報に基づいて車室内の空調制御を行なう車両用空調装置に関する。
【0002】
【従来の技術】
自動車用エアコンは、外気温度センサ(外気センサ)、室内温度センサ(インカセンサ)、日射センサなどの情報を基に、目標吹出温度を決定して制御を行なっている。
【0003】
しかし、これらの情報では、外気温度、内気温度及び日射量で判断しているため、実際の乗員の感覚と異なることがみられた。
【0004】
そこで、その対策として赤外線センサで車室内を計測し、乗員の温度情報によりエアコンを制御するものが提案されている(例えば特許文献1を参照。)。
【0005】
また、赤外線センサを複数車室内に設置し、それぞれの赤外線センサは車室内の別々の箇所を測定し、その温度勾配にしたがって車室内の温度制御を行なう装置も開示されている(例えば特許文献2を参照。)。
【特許文献1】
特開閉11−201822号公報、請求項1及び3
【特許文献2】
特開2000−94923号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1の技術ではエアバックシステムの制御も考慮して複数の赤外線検出素子を2次元的に配列したセンサを用いるため、そのセンサのコストが高い。また、複数の赤外線検出素子から得られる情報を熱画像データとして処理するため、データの解析が複雑で車両用空調装置のみを考えた場合に合理的な装置とはいいがたい。また、特許文献2についても複数の赤外線センサの必須が必要であり、コストが高くなってしまう。赤外線センサを用いた技術では、乗員の身長や着衣量の違いによって、快適な空調制御を行なうことが出来なくなる場合が多かった。
【0007】
本発明は、室内温度センサ(インカセンサ)に加え、1個の赤外線センサを用いて、その設置位置並びに受光部の視野角の設定を創意工夫することで、コストアップをせずに実際の乗員の感覚と近い車両用空調装置を提供することを目的とする。すなわち、室内温度センサによる車室内温度情報と車室内の中央部から車室内全体の環境温度を反映している赤外線情報との差を評価することで、室内温度のみならず日射量の影響と風速による内装材の温度低下を確認して快適性を向上させることを目的とする。
【0008】
本発明では、赤外線センサの受光部の視野角を、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように設定する、より具体的には20〜45°に設定することで日射量を赤外線センサで直接測定するのではなく、日射量による乗員の温度変化を測定することで、乗員の感覚に近い空調制御を行なうことを目的とする。赤外線センサの受光部の視野角を上記のように設定することで、視野内に窓ガラスを入れないものである。
【0009】
このように室内温度センサに加えて赤外線センサを用いることで、従来の空調装置で用いられた日射センサ及び日射センサ設置に伴うハーネスを省略して低コスト化を図るものである。
【0010】
また本発明は、赤外線センサと室内温度センサを一体型赤外線−温度センサとすることで、センサ及びこれに必要な配線類の簡素化を図ると共に、室内温度センサによる車室内温度情報と車室内の中央部から車室内全体の環境温度を反映している赤外線情報との差を評価しやすくすることを目的とする。
【0011】
ところで、従来、赤外線センサの受光部には、図1に示すように、赤外線検出素子1と、赤外線検出素子1に向けて赤外線を透過させる赤外線バンドパスフィルタ2とを赤外線を透過しない材質で形成されたケース3内に配置し、さらに赤外線バンドパスフィルタに向けて広範囲から入射してくる赤外線を集光するレンズ4がケース3の蓋と兼用で基板5上に配置されていた。しかし構成部品が多く、赤外線センサは高価であった。本発明では、所望領域から入射してくる赤外線のみを受光させるために、受光部の視野角を所望の角度に設定しなければならない。そこで本発明では、レンズ4に相当する部品を配置せずにレンズフード状のケースを用い、フードの長さ及び開口径を調整することで受光部の視野角を所望角度に容易に設定することが出来る赤外線センサを本車両用空調装置のために提供することを目的とする。
【0012】
本発明では、日射があるときに赤外線センサ温度と室内温度センサ温度との間に温度差が発生することに着目して、この温度差に応じて目標吹出温度を低温側にシフトさせることで、乗員の感覚に近い空調制御を行なうことが可能な本車両用空調装置を提供することを目的とする。
【0013】
本発明では、乗員がやや暑いと感ずるとき、すなわち冷房運転を行なう状況下において、乗員の温冷感と赤外線センサ温度とが相関関係を有することに着目して、冷房運転を行なうときには赤外線センサ温度に基づいて目標吹出温度を設定することで乗員の感覚に近い空調制御を行なう車両用空調装置を提供することを目的とする。
【0014】
本発明では、乗員が寒いと感ずるとき、すなわち暖房運転を行なう状況下において、乗員の温冷感と室内温度センサ温度とが相関関係を有することに着目して、暖房運転を行なうときには室内温度センサ温度に基づいて目標吹出温度を設定することで乗員の感覚に近い空調制御を行なう車両用空調装置を提供することを目的とする。
【0015】
本発明は、外気温度情報を検出する外気温度センサを設けることで、冬に窓が曇りやすくなるときに、フレッシュモード(外気取り込み)とリサーキュレーションモード(室内循環)の切り替えを制御する機能を備えた車両用空調装置を提供することを目的とする。
【0016】
さらに本発明では、後部座席の赤外線情報を検出するために第2赤外線センサを設置することで、乗員の感覚に近い空調制御を行なうデュアルエアコンを提供することを目的とする。
【0017】
【課題を解決するための手段】
上記の目的を達成させるために本発明者は、受光部の視野角を所定角度に設定した赤外線センサを用いて車室内の中央部を含む領域の赤外線情報を検出し、室内温度との温度差を評価し得るように赤外線センサと室内温度センサとを組み合わせることで、日射センサを省略した条件下で実際の乗員の感覚にあった空調制御を行なうことが出来る車両用空調装置を提供できることを見出した。すなわち本発明に係る車両用空調装置は、受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記赤外線センサの受光部の視野内に窓ガラスを入れないことを特徴とする。
【0018】
また本発明に係る車両用空調装置では、前記赤外線センサを空調パネル面等の車室フロント中央部に設置し、前記受光部の視野角を20〜45°に設定することが好ましい。
【0019】
本発明に係る車両用空調装置では、前記赤外線センサは、赤外線量に応じた信号を出力する赤外線検出素子と、該赤外線検出素子への赤外線の入射角度を規制して受光部の視野角を設定するレンズフード状のケースと、前記赤外線検出素子に向けて赤外線を透過させる赤外線バンドパスフィルタとを具備することが好ましい。
【0020】
また本発明に係る車両用空調装置では、外気温度情報を検出する外気温度センサを設け、外気温度情報に基づいて空調モードをフレッシュモード又はリサーキュレーションモードのいずれかに選択することが好ましい。
【0021】
本発明に係る車両用空調装置は、受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記赤外線センサと前記室内温度センサを、受光部の視野内の赤外線情報を検出する赤外線検出素子と車室内温度情報を検出する室内温度検出素子とを同一基板上に配置した一体型赤外線−温度センサとしたことを特徴とする。
【0022】
本発明に係る車両用空調装置は、受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記空調吹出温度制御手段は、赤外線センサ温度と室内温度センサ温度との温度差を算出し、前記温度差に応じて前記目標吹出温度を低温側にシフトさせることを特徴とする。
【0023】
本発明に係る車両用空調装置は、受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記空調吹出温度制御手段は、冷房運転を行なうときには赤外線センサ温度に基づいて目標吹出温度を設定することを特徴とする。
【0024】
本発明に係る車両用空調装置は、受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記空調吹出温度制御手段は、暖房運転を行なうときには室内温度センサ温度に基づいて目標吹出温度を設定することを特徴とする。
【0026】
さらにデュアルエアコンとするためには、本発明に係る車両用空調装置は、受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、受光部の視野中央が後部座席のほぼ中央に向く部位に第2赤外線センサを設置すると共に、後部中央座席の赤外線情報、後部左座席の一部分乃至全体の赤外線情報及び後部右座席の一部分乃至全体の赤外線情報を検出するように前記第2赤外線センサの受光部の視野角を設定し、前記空調吹出温度制御手段は、前記第2赤外線センサの赤外線情報に基づいて後部座席に向けて吹き出す空調風の後部座席目標吹出温度を決定することを特徴とする。
【0027】
【発明の実施の形態】
以下本発明について実施形態を示しながら詳細に説明するが、本発明はこれらの記載に限定して解釈されない。
【0028】
図2〜図11を参照しながら本実施形態に係る車両用空調装置について説明する。図2は、本実施形態に係る車両用空調装置100の構成の一形態を示す概略図である。車両用空気清浄装置100は、空気通路を形成するケース17に、空気吸入口、ブロア12、集塵脱臭フィルタ14、エバポレータ15、ヒータコア21とを備える。
【0029】
また、本実施形態に係る車両用空調装置100は、受光部の視野内の赤外線情報を検出する赤外線センサ22と、車室内温度情報を検出する室内温度センサ23と、外気温度センサ24とを備える。
【0030】
本発明は図1に示した従来の赤外線センサではなく、赤外線入射の視野角を設定できるものが好ましい。赤外線センサ22の詳細な形態の断面概略図を図3に示す。図3の赤外線センサは、赤外線量に応じた信号を出力する赤外線検出素子40と、赤外線検出素子40への赤外線の入射角度を規制して受光部の視野角を設定するレンズフード状のケース41と、赤外線検出素子40に向けて赤外線を透過させる赤外線バンドパスフィルタ42とを具備する。赤外線センサは、基板43上に形成されている。
【0031】
赤外線検出素子40は、サーモパイル型の赤外線検出素子が好ましく、赤外線を吸収して熱に変換する赤外線吸収膜と変換された熱量に応じて熱起電力を発生する熱電対とから構成される。熱気電力からなる電気信号は、マイコン25に送られる。
【0032】
ケース41は、赤外線の入射角度を規制して受光部の視野角を設定するようにレンズフード状とすることが好ましい。図3の赤外線センサは、円筒形状のケースを使用している。円筒体の開口部側を受光部として、視野角を45°に設定したときの場合を示している。図4に赤外線センサの第2形態の断面概略図を示す。図4の赤外線センサのように、円筒体の長さLと開口部の開口径Φを適宜調整することで、受光部の視野角を20°に設定することも出来る。図4の赤外線フィルタは図3の赤外線フィルタと比較して円筒体の長さLを長くすることで視野角を45°から20°へ変更したものである。さらに、図5に赤外線センサの第3形態の断面概略図を示す。図5の赤外線フィルタは図3の赤外線フィルタと比較して開口部の開口径Φを小さくすることで視野角を45°から20°へ変更したものである。本発明では、円筒体の長さLと開口部の開口径Φの少なくともいずれかを調整することで受光部の視野角を自在に設定できる。なお、開口部の形状は、円形、楕円形、矩形のいずれでも良い。ケースは赤外線を透過しない材料で形成する。
【0033】
赤外線バンドパスフィルタ42は、赤外線検出素子40に向けて赤外線透過させるフィルタである。例えば赤外線透過率が高いシリコン製のフィルタが好ましい。図3では赤外線検出素子40の直上に赤外線バンドパスフィルタ42を設置した場合を示した。図6に赤外線センサの第4形態の断面概略図を示す。図6に示すように赤外線バンドパスフィルタ44は、ケースの円筒体の開口部をふさぐように設置しても良い。本発明では、赤外線バンドパスフィルタは、赤外線検出素子に向けて赤外線透過させるのであればその設置位置に限定されない。
【0034】
基板43は、回路基板と兼用することが好ましい。
【0035】
図2の室内温度センサ23は、温度に応じて抵抗値が変化するNTCサーミスタからなり、温度に応じた電気信号を発生する。この電気信号はマイコン25に送られる。室内温度センサ23は車室内に設置する。日射の影響を受けない箇所に設置することが好ましい。
【0036】
本実施形態にかかる車両用空調装置では赤外線センサ22と室内温度センサ23を、図7に示すような受光部の視野内の赤外線情報を検出する赤外線検出素子51と車室内温度情報を検出する室内温度検出素子52とを同一基板53上に配置した一体型赤外線−温度センサとすることが特に好ましい。赤外線検出素子51はサーモパイルであり、室内温度検出素子52はNTCサーミスタであることが好ましい。
【0037】
図2の外気温度センサ24も温度に応じて抵抗値が変化するNTCサーミスタからなり、温度に応じた電気信号を発生する。この電気信号はマイコン25に送られる。外気温度センサ24は車室外に設置される。本実施形態にかかる車両用空調装置では外気温度センサは必須ではないが設置することが好ましい。外気温度センサにより、外気温が低いと判断された場合、インテークドア10をリサーキュレーションモードからフレッシュモードに切り替えて窓の曇りを防止することが出来る。
【0038】
図2に示すように、赤外線センサ22、室内温度センサ23、外気温度センサ24から出力される電気信号はマイコン25に送られる。マイコン25は、乗員がパネルスイッチ類26を操作したときに、設定吹出温度、吹出モード、オート−マニュアル、フレッシュモード−リサーキュレーションモード等の各種信号も入力する。マイコン25から得た信号を信号出力部27は、インテークドア制御手段28、ブロア制御手段29、エバポレータ制御手段30及びエアミックスドア制御手段31に出力する。すなわちマイコン25は、赤外線情報及び車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段としての役割を担う。
【0039】
信号に基づいてインテークドア制御手段28は、インテークドア10を駆動させて、車室外空気の吸入(フレッシュモード)又は車室内空気の循環(リサーキュレーションモード)の切り替えを行なう。
【0040】
信号に基づいてブロア制御手段29は、ブロア12の回転速度を制御して、所望の吹出風量を空気通路に流す。
【0041】
信号に基づいてエバポレータ制御手段30は、冷凍サイクル(不図示)の制御を行なう。コンプレッサ(不図示)のオン−オフ又は容量変化をすることで、エバポレータの冷却レベルを調整する。
【0042】
ブロア12を作動させることで空気通路に空気流れが形成される。すなわち、インテークドア10の切り替えにより車室外空気又は車室内空気が空気通路内に取り込まれ、その空気流れ11がブロア12に吸気される。続いて集塵脱臭フィルタ14及びエバポレータ15に向けて空気流れ13がブロア12によって吐出され、浄化され熱交換された空気流れ16がエアミックスドア18の切り替えによって、空気流れ19又は空気流れ20となる。空気流れ19は冷房運転時の空気流れである。一方、空気流れ20は、ヒータコア21によって加熱される。空気流れ19と空気流れ20はダクト内で混合された後、デフォグ、サイドベント、ベント又はフットの空気吹出口に送られる。
【0043】
次に赤外線センサ22の設置箇所について説明する。図7の一体型赤外線−温度センサを用いる場合には、赤外線センサと室内温度センサはほぼ同一箇所に設置されることとなる。一体型赤外線−温度センサを用いることで、センサ及びこれに必要な配線類の簡素化できる。赤外線センサは、赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向きうる部位、例えば空調操作パネル内をはじめとするフロントパネル内、バックミラー、車室前方の天井中央など、車室フロント中央部に設置することが好ましい。一体型赤外線−温度センサを用いた場合では、室内温度は赤外線センサを設置した箇所の室内温度を検出することとなる。そして、赤外線センサの受光部の視野角を、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように設定することが好ましい。
【0044】
このときの赤外線情報の取り込み形態を図8及び図9に示した。図8は、赤外線センサ60をフロントパネル中央部に設置し、受光部を運転席と助手席とのほぼ中央に向けて、さらに赤外線センサの受光部の視野角を20°若しくは45°に設定したときの赤外線情報の取り込み形態を示す図である。図9は、赤外線センサのフードの円筒体開口部形状を矩形とした場合の受光部における視野像の模式図である。視野角を45°と設定した場合には、図8の45°と図9(a)で示すように、赤外線センサは車室内中央部の赤外線情報、運転席の一部分の赤外線情報及び助手席の一部分の赤外線情報を検出することが出来る。一方、視野角を20°と設定した場合には、図8の20°と図9(b)で示すように、赤外線センサは車室内中央部の赤外線情報、運転席全体の赤外線情報及び助手席全体の赤外線情報を検出することが出来る。本実施形態に係る赤外線センサ60は、受光部の視野角を20〜45°に設定することで、車室中央部の環境情報、乗員の皮膚や衣料等の表面温度情報及び座席表面温度情報を車室内総合環境情報として入手できる。
【0045】
受光部の視野角を20〜45°に設定することで赤外線センサの受光部の視野内に窓ガラスは入らない。これにより赤外線センサ60は日射情報を入手することはない。日射量の多少により乗員の皮膚温度が変化するので、それを測定することで間接的に日射量を把握しうると共に、日射に影響されずに乗員の実際の感覚を重視した空調制御が可能となる。特に一体型赤外線−温度センサを用いることで、温度センサによる車室内温度情報と車室内の中央部から車室内全体の環境温度を反映している赤外線情報との差を評価しやすくなる。なお、赤外線センサ温度は、間接的な日射量の情報、風速情報が加わっていることとなる。
【0046】
本実施形態に係る車両用空調装置では、後部座席用の第2赤外線センサを設置することで、後部座席を独立に空調制御するデュアルエアコンに対応させても良い。すなわち、受光部の視野中央が後部座席のほぼ中央に向く部位に第2赤外線センサを設置する。例えば、運転席と助手席との間に設置し、受光部を後部座席側に向ける。一体型赤外線−温度センサを設置することがより好ましい。同時に後部中央座席の赤外線情報、後部左座席の一部分乃至全体の赤外線情報及び後部右座席の一部分乃至全体の赤外線情報を検出するように第2赤外線センサの受光部の視野角を設定する。第2赤外線センサの視野角を20°に設定すれば、後部中央座席の赤外線情報、後部左座席の一部分の赤外線情報及び後部右座席の一部分の赤外線情報を検出する。また第2赤外線センサの視野角を45°に設定すれば、後部中央座席の赤外線情報、後部左座席全体の赤外線情報及び後部右座席全体の赤外線情報を検出する。フロントパネル中央部に赤外線センサを設置したとときと同様の理由により視野角はこの20°と45°の間で設定することが好ましい。後部座席部の環境情報、乗員の表面温度情報及び座席表面温度情報を入手するためである。第2赤外線センサの赤外線情報により、前座席とは独立に制御できる。ここで空調吹出温度制御手段(図2のマイコン25に相当する)が、第2赤外線センサの赤外線情報に基づいて後部座席に向けて吹き出す空調風の後部座席目標吹出温度を決定する。
【0047】
【実施例】
次に図2に示した車両用空調装置を用いて、空調テストを行なった。赤外線センサ、室内温度センサとして、一体型赤外線−温度センサを用い、設置箇所は図8の赤外線センサ60と同じ位置、すなわちプロントパネル中央とした。受光部の視野角は45°若しくは20°とし、このときの視野像が図9(a)(b)に示した模式図となるように赤外線センサのフードの開口部を調整した。テスト条件は、風洞内で日射あり(日射量650W/m)と日射なしの条件でテストした。ここで温度は、時間経過によって変化が生ずる。
【0048】
図10に日射ありの場合と日射なしの場合について、室内温度センサ温度と赤外線センサ温度(視野角45°)との相関関係をグラフで示した。赤外線センサ温度は、受光部の視野角を45°としたため、車室内中央部の赤外線情報、運転席全体の赤外線情報及び助手席全体の赤外線情報からなる車室内総合環境情報に基づく室内温度を示す。図中、FREはフレッシュモードで日射なし、RECはリサーキュレーションモードで日射なし、FRE−Solarはフレッシュモードで日射あり、REC−Solarはリサーキュレーションモードで日射あり、のデータを示す。
【0049】
日射なしの場合、赤外線センサ温度と室内温度センサ温度はほぼ等しい。これに対して日射ありの場合は、赤外線センサ温度が高く検出された。なお、フレッシュモードとリサーキュレーションモードとの間では差異は見出せなかった。図10の結果から、赤外線センサ温度と室内温度センサ温度の温度差を評価することで、日射量の推定が可能となる。このことは日射センサを空調装置から省くことが出来ることを示している。上記温度差が大きいときは日射あり(晴れ)であることが分かるため、温度差がある場合にはその温度差に応じて空調吹出温度制御手段が目標吹出温度を低めにシフトさせることにより、乗員の実際の感覚にあった空調制御を行なうことが可能となる。
【0050】
次に図11に乗員の温冷感とセンサ出力温度との相関関係をグラフで示した。ここで縦軸のセンサ出力温度とは、室内温度センサ温度(INC)、赤外線センサ(20°)温度(IR temp20)及び赤外線センサ(45°)温度(IR temp45)のことである。また、横軸の温冷感の−1とは乗員が多少寒いと感じる場合であり、温冷感の0とは乗員が暑くもなく寒くもない感覚を受ける場合であり、温冷感の1とは乗員が多少暑いと感じる場合であり、温冷感の2とは乗員が暑いと感じる場合であり、温冷感の3とは乗員が非常に暑いと感じる場合であり、温冷感の4とは乗員が3の場合よりもさらに暑いと感じる場合である。
【0051】
図11を参照すると、温冷感が−1、0、1、2、3、4と増加しても室内温度センサ温度は、温冷感1以上でほぼ同一の温度を示している。このことは、室内温度センサでは実際に室内が高温になっても、温冷感と相関関係のあるセンサ出力温度を出すことが出来ないことを示している。これに対して、赤外線センサ(20°)温度又は赤外線センサ(45°)温度は、温冷感が−1〜4のいずれにあるときでも温冷感と相関関係のあるセンサ出力温度を示している。すなわち赤外温度センサを指標とすることで、常に乗員の実際の感覚にあった空調制御を行なうことが可能である。
【0052】
なお、赤外線センサの視野から窓ガラスをはずすことで、日射の影響を除去して、赤外線センサ温度から乗員の温冷感を推定することが可能となる。
【0053】
図11を詳細に検討すると室内温度センサ温度は、温冷感が−1、0、1の間では、データのバラツキが少ない。赤外線センサ温度は温冷感が−1〜4にわたってデータのバラツキがみられるものの、上述のように温冷感が−1〜4のいずれにあるときでも温冷感と相関関係のあるセンサ出力温度を示している。そこで、室内温度センサ温度が35℃以下を示しているとき(温冷感が−1〜1)は、室内温度センサ温度に基づいて空調制御を行い、赤外線センサ温度が30℃以上を示しているとき(温冷感が1〜4)は、赤外線センサ温度に基づいて空調制御を行なうことで、さらに乗員の実際の感覚にあった空調制御を行なうことが可能である。
【0054】
図10及び図11を総合的に判断する空調制御は次にように行なうことが望ましい。空調吹出温度制御手段(図2のマイコン25)は、赤外線センサ温度と室内温度センサ温度との温度差を計算する。温度差が大きいときは晴れで日射量が多いときであり、温度差が小さいときは曇りで日射量が少ないときである。したがって、空調吹出温度制御手段は上記温度差が大きくなるにつれて、目標吹出温度を低めにシフトするように空調制御する。さらに、空調吹出温度制御手段は、暖房運転を行なうときは室内温度センサ温度に基づいて目標吹出温度を設定し、冷房運転を行なうときは赤外線センサ温度に基づいて目標吹出温度を設定して、空調制御を行なう。なお、冷房運転を行なうか暖房運転を行なうかの判断は、外気温度センサ温度によって判断しても良い。
【0055】
【発明の効果】
本発明の空調装置は、室内温度センサによる車室内温度情報と車室内の中央部から車室内全体の環境温度を反映している赤外線情報との差を評価することで、室内温度のみならず日射量の影響と風速による内装材の温度低下を確認して快適性を向上、すなわち乗員の感覚に近い空調制御を行なうことができる。
【0056】
本発明の空調装置は、日射センサ及び日射センサ設置に伴うハーネスを省略して低コスト化が可能である。
【0057】
ここで本発明の空調装置は、赤外線センサと室内温度センサを一体型赤外線−温度センサとすることで、室内温度センサ温度と赤外線センサ温度との温度差を評価しやすくする。
【0058】
本発明の空調装置では、受光部の視野角を所望角度に容易に設定することが出来る本発明独自の赤外線センサを用いることで、所望の赤外線情報を容易に入手できる。
【0059】
本発明の空調装置では、日射があるときに赤外線センサ温度と室内温度センサ温度との間に温度差が発生することに着目して、この温度差に応じて目標吹出温度を低温側にシフトさせることで、乗員の感覚に近い空調制御を行なうことができる。
【0060】
本発明の空調装置では、乗員がやや暑いと感ずるとき、すなわち冷房運転を行なう状況下において乗員の温冷感と赤外線センサ温度とが相関関係を有することに着目して、冷房運転を行なうときには赤外線センサ温度に基づいて目標吹出温度を設定することで、乗員の感覚に近い空調制御を行なうことができる。
【0061】
本発明の空調装置では、乗員が寒いと感ずるとき、すなわち暖房運転を行なう状況下において乗員の温冷感と室内温度センサ温度とが相関関係を有することに着目して、暖房運転を行なうときには室内温度センサ温度に基づいて目標吹出温度を設定することで、乗員の感覚に近い空調制御を行なうことができる。
【0062】
本発明の空調装置は、デュアルエアコンにおいて、乗員の感覚に近い空調制御を行なうことが出来る。
【図面の簡単な説明】
【図1】従来の赤外線センサの一形態の断面概略図である。
【図2】本実施形態に係る車両用空調装置の構成の一形態を示す概略図である。
【図3】本実施形態に係る赤外線センサの一形態の断面概略図である。
【図4】本実施形態に係る赤外線センサの第2形態の断面概略図である。
【図5】本実施形態に係る赤外線センサの第3形態の断面概略図である。
【図6】本実施形態に係る赤外線センサの第4形態の断面概略図である。
【図7】本実施形態に係る一体型赤外線−温度センサの回路図の一形態を示す図である。
【図8】赤外線センサをフロントパネル中央部に設置し、受光部を運転席と助手席とのほぼ中央に向けて、さらに赤外線センサの受光部の視野角を20°若しくは45°に設定したときの赤外線情報の取り込み形態を示す図である。
【図9】赤外線センサのフードの円筒体開口部形状を矩形とした場合の受光部における視野像の模式図であり、(a)が視野角が45°の場合、(b)は視野角が20°の場合を示す。
【図10】日射ありの場合と日射なしの場合について、室内温度センサ温度と赤外線センサ温度(視野角45°)との相関関係を示すグラフである。
【図11】乗員の温冷感とセンサ出力温度との相関関係を示す図である。
【符号の説明】
1,40,51,赤外線検出素子
2,42,44,赤外線バンドパスフィルタ
3,ケース
4,レンズ
10,インテークドア
11,13,16,19,20,空気流れ
12,ブロア
14,集塵脱臭フィルタ
15,エバポレータ
17,空気通路を形成するケース
18,エアミックスドア
21,ヒータコア
22,60,赤外線センサ
23,室内温度センサ
24,外気温度センサ
25,マイコン
26,パネルスイッチ類
27,信号出力部
28,インテークドア制御手段
29,ブロア制御手段
30,エバポレータ制御手段
31,エアミックスドア制御手段
41,レンズフード状のケース
43,53,基板
52,室内温度検出素子
100,車両用空調装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle air conditioner that controls air conditioning in a vehicle interior based on infrared information in the vehicle interior detected by an infrared sensor and vehicle interior temperature information detected by an interior temperature sensor.
[0002]
[Prior art]
The air conditioner for automobiles performs control by determining a target blowing temperature based on information such as an outside air temperature sensor (outside air sensor), an indoor temperature sensor (inca sensor), and a solar radiation sensor.
[0003]
However, these information were judged by the outside air temperature, the inside air temperature, and the amount of solar radiation.
[0004]
In view of this, a countermeasure is proposed in which the interior of a vehicle is measured with an infrared sensor and the air conditioner is controlled based on passenger temperature information (see, for example, Patent Document 1).
[0005]
In addition, an apparatus is also disclosed in which infrared sensors are installed in a plurality of vehicle interiors, each infrared sensor measures a different location in the vehicle interior, and temperature control in the vehicle interior is performed according to the temperature gradient (for example, Patent Document 2). See).
[Patent Document 1]
Japanese Patent Publication No. 11-201822, claims 1 and 3
[Patent Document 2]
JP 2000-94923 A
[0006]
[Problems to be solved by the invention]
However, since the technology of Patent Document 1 uses a sensor in which a plurality of infrared detection elements are two-dimensionally arranged in consideration of the control of the airbag system, the cost of the sensor is high. In addition, since information obtained from a plurality of infrared detection elements is processed as thermal image data, the analysis of the data is complicated, and it is difficult to say that it is a reasonable device when considering only the vehicle air conditioner. In addition, Patent Document 2 also requires a plurality of infrared sensors, which increases the cost. In the technology using the infrared sensor, it is often impossible to perform comfortable air-conditioning control depending on the height of the occupant and the amount of clothes.
[0007]
The present invention uses a single infrared sensor in addition to the indoor temperature sensor (inker sensor) to devise the setting of the installation position and the viewing angle of the light receiving unit, so that an actual occupant can be achieved without increasing costs. It is an object to provide a vehicle air conditioner that is close to the above feeling. That is, by evaluating the difference between the vehicle interior temperature information from the vehicle interior temperature sensor and the infrared information reflecting the environmental temperature of the entire vehicle interior from the center of the vehicle interior, not only the indoor temperature but also the influence of solar radiation and the wind speed The purpose is to improve the comfort by confirming the temperature drop of the interior material.
[0008]
In the present invention, the viewing angle of the light receiving part of the infrared sensor is set so as to detect infrared information in the central part of the passenger compartment, part of the driver's seat or the whole infrared information, and part of the passenger's seat or the whole infrared information. Specifically, by setting the temperature to 20 to 45 degrees, the solar radiation amount is not directly measured by the infrared sensor, but by measuring the temperature change of the passenger due to the solar radiation amount, the air conditioning control close to the passenger's sense is performed. Objective. By setting the viewing angle of the light receiving part of the infrared sensor as described above, the window glass is not put in the field of view.
[0009]
In this way, by using an infrared sensor in addition to the indoor temperature sensor, the solar radiation sensor used in the conventional air conditioner and the harness associated with the solar radiation sensor installation are omitted, thereby reducing the cost.
[0010]
In addition, the present invention makes the infrared sensor and the indoor temperature sensor an integrated infrared-temperature sensor, thereby simplifying the sensor and the wiring necessary for the sensor, as well as the vehicle interior temperature information by the indoor temperature sensor and the interior of the vehicle interior. It is intended to make it easy to evaluate the difference from the infrared information reflecting the environmental temperature of the entire vehicle interior from the center.
[0011]
By the way, conventionally, as shown in FIG. 1, an infrared detection element 1 and an infrared bandpass filter 2 that transmits infrared rays toward the infrared detection element 1 are formed of a material that does not transmit infrared rays in the light receiving portion of the infrared sensor. The lens 4 that is disposed in the case 3 and further collects infrared rays incident from a wide range toward the infrared band-pass filter is disposed on the substrate 5 also as a cover of the case 3. However, there are many components and the infrared sensor is expensive. In the present invention, in order to receive only infrared rays incident from a desired region, the viewing angle of the light receiving unit must be set to a desired angle. Therefore, in the present invention, a lens hood-like case is used without arranging parts corresponding to the lens 4, and the viewing angle of the light receiving unit is easily set to a desired angle by adjusting the length and opening diameter of the hood. It is an object of the present invention to provide an infrared sensor capable of performing the above-described purpose for the vehicle air conditioner.
[0012]
In the present invention, focusing on the fact that a temperature difference occurs between the infrared sensor temperature and the indoor temperature sensor temperature when there is solar radiation, by shifting the target blowing temperature to the low temperature side according to this temperature difference, It is an object of the present invention to provide an air conditioning apparatus for a vehicle that can perform air conditioning control close to a passenger's feeling.
[0013]
In the present invention, when the occupant feels slightly hot, that is, under the condition of performing the cooling operation, focusing on the fact that the occupant's thermal sensation has a correlation with the infrared sensor temperature, when performing the cooling operation, the infrared sensor temperature It is an object of the present invention to provide a vehicle air-conditioning apparatus that performs air-conditioning control close to a passenger's sense by setting a target blowing temperature based on the above.
[0014]
In the present invention, when the passenger feels cold, that is, under the condition of performing the heating operation, paying attention to the fact that the passenger's thermal sensation has a correlation with the indoor temperature sensor temperature, the indoor temperature sensor is used when performing the heating operation. An object of the present invention is to provide a vehicle air conditioner that performs air conditioning control close to the sense of the occupant by setting a target blowing temperature based on the temperature.
[0015]
The present invention has a function to control switching between a fresh mode (outside air intake) and a recirculation mode (indoor circulation) when a window is likely to be cloudy in winter by providing an outside temperature sensor for detecting outside temperature information. An object of the present invention is to provide a vehicular air conditioner provided.
[0016]
Furthermore, it is an object of the present invention to provide a dual air conditioner that performs air conditioning control close to the sense of a passenger by installing a second infrared sensor to detect infrared information of the rear seat.
[0017]
[Means for Solving the Problems]
  In order to achieve the above object, the present inventor detects infrared information of a region including a central portion of a vehicle interior using an infrared sensor in which a viewing angle of a light receiving unit is set to a predetermined angle, and detects a temperature difference from a room temperature. It has been found that by combining an infrared sensor and an indoor temperature sensor so that the air conditioner can be evaluated, it is possible to provide a vehicle air conditioner that can perform air conditioning control that matches the sense of an actual occupant under conditions where the solar radiation sensor is omitted. It was. That is, the vehicle air conditioner according to the present invention is based on an infrared sensor that detects infrared information in the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, the infrared information, and the vehicle interior temperature information. Air-conditioning blowing temperature control means for determining the target blowing temperature of the conditioned air blown into the passenger compartment is provided, and the center of the visual field of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat when viewed from the front of the passenger compartment. In addition to installing the infrared sensor, the viewing angle of the light receiving unit is set so as to detect infrared information in the center of the vehicle interior, infrared information of a part or the whole of the driver's seat, and infrared information of a part or the whole of the passenger seat.And do not put the window glass in the field of view of the light receiving part of the infrared sensorIt is characterized by that.
[0018]
Moreover, in the vehicle air conditioner according to the present invention, it is preferable that the infrared sensor is installed at a front center portion of a passenger compartment such as an air conditioning panel surface, and a viewing angle of the light receiving unit is set to 20 to 45 °.
[0019]
  In the vehicle air conditioner according to the present invention, the infrared sensor sets an infrared detection element that outputs a signal corresponding to the amount of infrared rays, and a viewing angle of the light receiving unit by regulating an incident angle of the infrared rays to the infrared detection element. It is preferable to include a lens hood-like case to be used and an infrared bandpass filter that transmits infrared rays toward the infrared detection element.
[0020]
  In the vehicle air conditioner according to the present invention, it is preferable to provide an outside air temperature sensor for detecting outside air temperature information, and to select either the fresh mode or the recirculation mode based on the outside air temperature information.
[0021]
  Vehicle air conditioner according to the present inventionIs an infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target blowout of conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information An air-conditioning blowout temperature control means for determining the temperature, and the infrared sensor is installed in a portion where the center of the field of view of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat when viewed from the front of the passenger compartment. Setting the viewing angle of the light receiving unit so as to detect infrared information of the center of the room, infrared information of a part or the whole of the driver's seat and infrared information of a part or the whole of the passenger seat; andAn integrated infrared-temperature sensor in which the infrared sensor and the indoor temperature sensor are arranged on the same substrate with an infrared detecting element for detecting infrared information in the visual field of the light receiving unit and an indoor temperature detecting element for detecting vehicle interior temperature information. To doIt is characterized by.
[0022]
  Vehicle air conditioner according to the present inventionIs an infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target blowout of conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information An air-conditioning blowout temperature control means for determining the temperature, and the infrared sensor is installed in a portion where the center of the field of view of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat when viewed from the front of the passenger compartment. Setting the viewing angle of the light receiving unit so as to detect infrared information of the center of the room, infrared information of a part or the whole of the driver's seat and infrared information of a part or the whole of the passenger seat; andThe air conditioning blowout temperature control means calculates a temperature difference between the infrared sensor temperature and the indoor temperature sensor temperature, and shifts the target blowout temperature to a low temperature side according to the temperature difference.It is characterized by.
[0023]
  Vehicle air conditioner according to the present inventionIs an infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target blowout of conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information An air-conditioning blowout temperature control means for determining the temperature, and the infrared sensor is installed in a portion where the center of the field of view of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat when viewed from the front of the passenger compartment. Setting the viewing angle of the light receiving unit so as to detect infrared information of the center of the room, infrared information of a part or the whole of the driver's seat and infrared information of a part or the whole of the passenger seat; andThe air-conditioning outlet temperature control means sets a target outlet temperature based on the infrared sensor temperature when performing a cooling operation.It is characterized by.
[0024]
  Vehicle air conditioner according to the present inventionIs an infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target blowout of conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information An air-conditioning blowout temperature control means for determining the temperature, and the infrared sensor is installed in a portion where the center of the field of view of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat when viewed from the front of the passenger compartment. Setting the viewing angle of the light receiving unit so as to detect infrared information of the center of the room, infrared information of a part or the whole of the driver's seat and infrared information of a part or the whole of the passenger seat; andThe air-conditioning outlet temperature control means sets a target outlet temperature based on the indoor temperature sensor temperature when performing a heating operation.It is characterized by.
[0026]
  In order to make it a dual air conditioner,The vehicle air conditioner according to the present invention includes an infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a vehicle based on the infrared information and the vehicle interior temperature information. An air-conditioning blow temperature control means for determining a target blow temperature of the conditioned air blown into the room; An infrared sensor is installed, the viewing angle of the light receiving unit is set so as to detect infrared information in the central part of the vehicle interior, infrared information of a part or the whole of the driver's seat, and infrared information of a part or the whole of the passenger seat; and ,The second infrared sensor is installed at a portion where the center of the visual field of the light receiving portion is directed to the center of the rear seat, and the infrared information of the rear central seat, the infrared information of the rear left seat part to the whole infrared information, and the part of the rear right seat part to the whole A viewing angle of the light receiving portion of the second infrared sensor is set so as to detect infrared information, and the air conditioning blowout temperature control means is configured to control the conditioned air blown toward the rear seat based on the infrared information of the second infrared sensor. Determining the target rear air outlet temperatureIt is characterized by.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions.
[0028]
The vehicle air conditioner according to the present embodiment will be described with reference to FIGS. FIG. 2 is a schematic diagram showing one form of the configuration of the vehicle air conditioner 100 according to the present embodiment. The vehicle air cleaning device 100 includes an air suction port, a blower 12, a dust collection deodorizing filter 14, an evaporator 15, and a heater core 21 in a case 17 that forms an air passage.
[0029]
The vehicle air conditioner 100 according to the present embodiment includes an infrared sensor 22 that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor 23 that detects vehicle interior temperature information, and an outside air temperature sensor 24. .
[0030]
The present invention is preferably not the conventional infrared sensor shown in FIG. 1, but one that can set the viewing angle of infrared incidence. A schematic cross-sectional view of the detailed form of the infrared sensor 22 is shown in FIG. The infrared sensor of FIG. 3 includes an infrared detection element 40 that outputs a signal corresponding to the amount of infrared rays, and a lens hood-like case 41 that regulates the incident angle of infrared rays to the infrared detection element 40 and sets the viewing angle of the light receiving unit. And an infrared band-pass filter 42 that transmits infrared rays toward the infrared detection element 40. The infrared sensor is formed on the substrate 43.
[0031]
The infrared detection element 40 is preferably a thermopile type infrared detection element, and includes an infrared absorption film that absorbs infrared rays and converts the infrared rays into heat, and a thermocouple that generates a thermoelectromotive force according to the amount of heat converted. An electrical signal composed of hot air power is sent to the microcomputer 25.
[0032]
The case 41 preferably has a lens hood shape so as to set the viewing angle of the light receiving unit by regulating the incident angle of infrared rays. The infrared sensor of FIG. 3 uses a cylindrical case. The case where the viewing angle is set to 45 ° with the opening side of the cylindrical body as the light receiving portion is shown. FIG. 4 shows a schematic cross-sectional view of the second form of the infrared sensor. As in the infrared sensor of FIG. 4, the viewing angle of the light receiving unit can be set to 20 ° by appropriately adjusting the length L of the cylindrical body and the opening diameter Φ of the opening. The infrared filter of FIG. 4 is obtained by changing the viewing angle from 45 ° to 20 ° by increasing the length L of the cylindrical body as compared with the infrared filter of FIG. Further, FIG. 5 shows a schematic sectional view of a third embodiment of the infrared sensor. The infrared filter of FIG. 5 is obtained by changing the viewing angle from 45 ° to 20 ° by reducing the opening diameter Φ of the opening compared to the infrared filter of FIG. In the present invention, the viewing angle of the light receiving portion can be freely set by adjusting at least one of the length L of the cylindrical body and the opening diameter Φ of the opening. Note that the shape of the opening may be circular, elliptical, or rectangular. The case is formed of a material that does not transmit infrared rays.
[0033]
The infrared bandpass filter 42 is a filter that transmits infrared rays toward the infrared detection element 40. For example, a silicon filter having a high infrared transmittance is preferable. FIG. 3 shows a case where an infrared bandpass filter 42 is installed immediately above the infrared detection element 40. FIG. 6 shows a schematic cross-sectional view of the fourth embodiment of the infrared sensor. As shown in FIG. 6, the infrared bandpass filter 44 may be installed so as to close the opening of the cylindrical body of the case. In the present invention, the infrared band-pass filter is not limited to the installation position as long as it transmits infrared rays toward the infrared detection element.
[0034]
The substrate 43 is preferably used also as a circuit board.
[0035]
The room temperature sensor 23 in FIG. 2 is composed of an NTC thermistor whose resistance value changes according to the temperature, and generates an electric signal according to the temperature. This electrical signal is sent to the microcomputer 25. The indoor temperature sensor 23 is installed in the vehicle interior. It is preferable to install it in a place not affected by solar radiation.
[0036]
In the vehicle air conditioner according to the present embodiment, the infrared sensor 22 and the room temperature sensor 23, the infrared detection element 51 for detecting infrared information in the field of view of the light receiving unit as shown in FIG. It is particularly preferable to use an integrated infrared-temperature sensor in which the temperature detection element 52 is disposed on the same substrate 53. The infrared detection element 51 is preferably a thermopile, and the indoor temperature detection element 52 is preferably an NTC thermistor.
[0037]
The outside air temperature sensor 24 of FIG. 2 is also composed of an NTC thermistor whose resistance value changes according to the temperature, and generates an electric signal according to the temperature. This electrical signal is sent to the microcomputer 25. The outside air temperature sensor 24 is installed outside the vehicle compartment. In the vehicle air conditioner according to the present embodiment, an outside temperature sensor is not essential, but is preferably installed. When the outside air temperature sensor determines that the outside air temperature is low, the intake door 10 can be switched from the recirculation mode to the fresh mode to prevent fogging of the window.
[0038]
As shown in FIG. 2, electrical signals output from the infrared sensor 22, the indoor temperature sensor 23, and the outside air temperature sensor 24 are sent to the microcomputer 25. When the occupant operates the panel switches 26, the microcomputer 25 also inputs various signals such as a set blowing temperature, a blowing mode, an auto-manual, a fresh mode-recirculation mode, and the like. The signal output unit 27 outputs a signal obtained from the microcomputer 25 to the intake door control unit 28, the blower control unit 29, the evaporator control unit 30, and the air mix door control unit 31. That is, the microcomputer 25 plays a role as air-conditioning outlet temperature control means for determining a target outlet temperature of the conditioned air to be blown into the passenger compartment based on the infrared information and the passenger compartment temperature information.
[0039]
Based on the signal, the intake door control means 28 drives the intake door 10 to switch between intake of outside air (fresh mode) or circulation (recirculation mode) of vehicle interior air.
[0040]
Based on the signal, the blower control means 29 controls the rotational speed of the blower 12 and causes a desired amount of blown air to flow through the air passage.
[0041]
Based on the signal, the evaporator control means 30 controls the refrigeration cycle (not shown). The cooling level of the evaporator is adjusted by turning on / off a compressor (not shown) or changing its capacity.
[0042]
By operating the blower 12, an air flow is formed in the air passage. That is, by switching the intake door 10, air outside the vehicle compartment or air inside the vehicle compartment is taken into the air passage, and the air flow 11 is sucked into the blower 12. Subsequently, the air flow 13 is discharged by the blower 12 toward the dust collection deodorizing filter 14 and the evaporator 15, and the purified and heat-exchanged air flow 16 becomes the air flow 19 or the air flow 20 by switching the air mix door 18. . The air flow 19 is an air flow during the cooling operation. On the other hand, the air flow 20 is heated by the heater core 21. The air stream 19 and the air stream 20 are mixed in the duct and then sent to the defog, side vent, vent or foot air outlet.
[0043]
Next, the installation location of the infrared sensor 22 will be described. When the integrated infrared-temperature sensor of FIG. 7 is used, the infrared sensor and the indoor temperature sensor are installed at substantially the same location. By using the integrated infrared-temperature sensor, it is possible to simplify the sensor and the wiring necessary for the sensor. The infrared sensor is a part in which the center of the field of view of the light receiving part of the infrared sensor can face almost the center between the driver's seat and the passenger's seat when viewed from the front of the passenger compartment, for example, in the front panel including the air conditioning operation panel, rearview mirror, It is preferable to install in the center of the front of the passenger compartment, such as the center of the ceiling in front of the room. In the case of using an integrated infrared-temperature sensor, the room temperature detects the room temperature at the location where the infrared sensor is installed. And it is preferable to set the viewing angle of the light receiving part of the infrared sensor so as to detect infrared information in the central part of the passenger compartment, part of the driver's seat or the whole infrared information, and part of the passenger's seat or the whole infrared information.
[0044]
The infrared information capturing mode at this time is shown in FIGS. In FIG. 8, the infrared sensor 60 is installed at the center of the front panel, the light receiving part is directed to the center of the driver seat and the passenger seat, and the viewing angle of the light receiving part of the infrared sensor is set to 20 ° or 45 °. It is a figure which shows the taking-in form of the infrared information at the time. FIG. 9 is a schematic diagram of a visual field image in the light receiving unit when the shape of the cylindrical opening of the hood of the infrared sensor is rectangular. When the viewing angle is set to 45 °, as shown in 45 ° of FIG. 8 and FIG. 9A, the infrared sensor detects infrared information in the center of the passenger compartment, infrared information of a part of the driver's seat, and the passenger seat. A part of infrared information can be detected. On the other hand, when the viewing angle is set to 20 °, as shown in 20 ° in FIG. 8 and FIG. 9B, the infrared sensor is used for infrared information in the center of the passenger compartment, infrared information in the entire driver's seat, and passenger seat. The whole infrared information can be detected. The infrared sensor 60 according to the present embodiment sets the viewing angle of the light receiving unit to 20 to 45 °, thereby obtaining environmental information on the center of the passenger compartment, surface temperature information such as occupant's skin and clothing, and seat surface temperature information. It can be obtained as vehicle interior comprehensive environmental information.
[0045]
By setting the viewing angle of the light receiving unit to 20 to 45 °, the window glass does not enter the field of view of the light receiving unit of the infrared sensor. Thereby, the infrared sensor 60 does not obtain solar radiation information. Since the occupant's skin temperature changes depending on the amount of solar radiation, it is possible to indirectly grasp the solar radiation amount by measuring it, and it is possible to control the air conditioning with emphasis on the actual feeling of the passenger without being affected by solar radiation Become. In particular, by using the integrated infrared-temperature sensor, it becomes easy to evaluate the difference between the vehicle interior temperature information obtained by the temperature sensor and the infrared information reflecting the environmental temperature of the entire vehicle interior from the center of the vehicle interior. The infrared sensor temperature is added with indirect solar radiation information and wind speed information.
[0046]
In the vehicle air conditioner according to this embodiment, a second infrared sensor for the rear seat may be installed to correspond to a dual air conditioner that independently controls the air conditioning of the rear seat. That is, the second infrared sensor is installed at a portion where the center of the visual field of the light receiving unit is directed to the substantially center of the rear seat. For example, it is installed between the driver's seat and the passenger seat, and the light receiving part faces the rear seat side. More preferably, an integrated infrared-temperature sensor is installed. At the same time, the viewing angle of the light receiving unit of the second infrared sensor is set so as to detect the infrared information of the rear center seat, the infrared information of a part or the whole of the rear left seat, and the infrared information of a part or the whole of the rear right seat. If the viewing angle of the second infrared sensor is set to 20 °, the infrared information of the rear center seat, the infrared information of a part of the rear left seat, and the infrared information of a part of the rear right seat are detected. If the viewing angle of the second infrared sensor is set to 45 °, the infrared information of the rear center seat, the infrared information of the entire rear left seat, and the infrared information of the entire rear right seat are detected. The viewing angle is preferably set between 20 ° and 45 ° for the same reason as when an infrared sensor is installed in the center of the front panel. This is to obtain environmental information on the rear seat, passenger surface temperature information, and seat surface temperature information. It can be controlled independently from the front seat by the infrared information of the second infrared sensor. Here, the air conditioning blowout temperature control means (corresponding to the microcomputer 25 in FIG. 2) determines the rear seat target blowout temperature of the conditioned air blown toward the rear seat based on the infrared information of the second infrared sensor.
[0047]
【Example】
Next, an air conditioning test was performed using the vehicle air conditioner shown in FIG. An integrated infrared-temperature sensor was used as the infrared sensor and the room temperature sensor, and the installation location was the same position as the infrared sensor 60 in FIG. 8, that is, the center of the front panel. The viewing angle of the light receiving portion was 45 ° or 20 °, and the opening portion of the hood of the infrared sensor was adjusted so that the visual field image at this time would be the schematic diagram shown in FIGS. Test conditions include solar radiation in the wind tunnel (amount of solar radiation 650 W / m2) And no solar radiation. Here, the temperature changes with time.
[0048]
FIG. 10 is a graph showing the correlation between the indoor temperature sensor temperature and the infrared sensor temperature (viewing angle 45 °) with and without solar radiation. The infrared sensor temperature indicates the room temperature based on the vehicle interior general environment information including the infrared information of the central part of the vehicle interior, the infrared information of the entire driver's seat, and the infrared information of the entire passenger seat because the viewing angle of the light receiving unit is 45 °. . In the figure, FRE indicates fresh mode and no solar radiation, REC indicates recirculation mode and no solar radiation, FRE-Solar indicates fresh mode and solar radiation, and REC-Solar indicates recirculation mode and solar radiation.
[0049]
When there is no solar radiation, the infrared sensor temperature and the room temperature sensor temperature are substantially equal. On the other hand, when there was solar radiation, the infrared sensor temperature was detected high. In addition, a difference was not found between fresh mode and recirculation mode. From the result of FIG. 10, it is possible to estimate the amount of solar radiation by evaluating the temperature difference between the infrared sensor temperature and the indoor temperature sensor temperature. This indicates that the solar radiation sensor can be omitted from the air conditioner. When the temperature difference is large, it can be seen that there is sunlight (sunny). Therefore, if there is a temperature difference, the air-conditioning outlet temperature control means shifts the target outlet temperature to a lower level according to the temperature difference. It becomes possible to perform air-conditioning control that matches the actual feeling.
[0050]
Next, FIG. 11 is a graph showing the correlation between the passenger's thermal sensation and the sensor output temperature. Here, the sensor output temperature on the vertical axis means the indoor temperature sensor temperature (INC), the infrared sensor (20 °) temperature (IR temp20), and the infrared sensor (45 °) temperature (IR temp45). On the horizontal axis, -1 of the thermal sensation is when the occupant feels somewhat cold, and 0 of the thermal sensation is when the occupant feels neither hot nor cold. Is when the occupant feels a little hot. Thermal sensation 2 is when the occupant feels hot. Thermal sensation 3 is when the occupant feels very hot. 4 is a case where the occupant feels hotter than 3.
[0051]
Referring to FIG. 11, even if the thermal sensation increases to −1, 0, 1, 2, 3, 4, the indoor temperature sensor temperature is almost equal to the thermal sensation 1 or higher. This indicates that the indoor temperature sensor cannot output a sensor output temperature having a correlation with thermal sensation even if the room actually becomes hot. On the other hand, the infrared sensor (20 °) temperature or the infrared sensor (45 °) temperature indicates a sensor output temperature correlated with the thermal sensation even when the thermal sensation is between -1 and 4. Yes. In other words, by using the infrared temperature sensor as an index, it is possible to perform air conditioning control that always matches the actual sense of the occupant.
[0052]
In addition, by removing the window glass from the field of view of the infrared sensor, it is possible to remove the influence of solar radiation and estimate the thermal sensation of the occupant from the infrared sensor temperature.
[0053]
When FIG. 11 is examined in detail, the indoor temperature sensor temperature has little variation in data when the thermal sensation is between −1, 0, and 1. Infrared sensor temperature has sensory temperature that is correlated with thermal sensation even when thermal sensation is between -1 and 4, as described above, although the thermal sensation varies from -1 to 4 Is shown. Therefore, when the indoor temperature sensor temperature indicates 35 ° C. or lower (temperature sensation is −1 to 1), air conditioning control is performed based on the indoor temperature sensor temperature, and the infrared sensor temperature indicates 30 ° C. or higher. When (temperature sensation is 1 to 4), it is possible to perform air-conditioning control that matches the actual sense of the passenger by performing air-conditioning control based on the infrared sensor temperature.
[0054]
The air conditioning control for comprehensively judging FIGS. 10 and 11 is preferably performed as follows. The air-conditioning outlet temperature control means (the microcomputer 25 in FIG. 2) calculates the temperature difference between the infrared sensor temperature and the room temperature sensor temperature. When the temperature difference is large, it is sunny and the amount of solar radiation is large, and when the temperature difference is small, it is cloudy and the amount of solar radiation is small. Therefore, the air-conditioning outlet temperature control means controls the air-conditioning so that the target outlet temperature is shifted lower as the temperature difference becomes larger. Further, the air conditioning blow temperature control means sets the target blow temperature based on the indoor temperature sensor temperature when performing the heating operation, and sets the target blow temperature based on the infrared sensor temperature when performing the cooling operation. Take control. Note that the determination of whether to perform the cooling operation or the heating operation may be made based on the outside air temperature sensor temperature.
[0055]
【The invention's effect】
The air conditioner of the present invention evaluates the difference between the vehicle interior temperature information by the indoor temperature sensor and the infrared information reflecting the environmental temperature of the entire vehicle interior from the center of the vehicle interior, so that not only the indoor temperature but also the solar radiation. It is possible to confirm the temperature effect of the interior material due to the amount and the wind speed to improve the comfort, that is, to perform air conditioning control close to the occupant's feeling.
[0056]
The air conditioner of the present invention can reduce costs by omitting the solar radiation sensor and the harness associated with the solar radiation sensor installation.
[0057]
Here, the air conditioner of the present invention makes it easy to evaluate the temperature difference between the indoor temperature sensor temperature and the infrared sensor temperature by using the infrared sensor and the indoor temperature sensor as an integrated infrared-temperature sensor.
[0058]
In the air conditioner of the present invention, desired infrared information can be easily obtained by using the unique infrared sensor of the present invention that can easily set the viewing angle of the light receiving unit to a desired angle.
[0059]
In the air conditioner of the present invention, focusing on the fact that a temperature difference occurs between the infrared sensor temperature and the indoor temperature sensor temperature when there is solar radiation, the target blowing temperature is shifted to the low temperature side according to this temperature difference. Thus, it is possible to perform air conditioning control close to the occupant's feeling.
[0060]
In the air conditioner of the present invention, when the occupant feels that it is slightly hot, that is, in the situation where the cooling operation is performed, paying attention to the fact that the occupant's thermal sensation has a correlation with the infrared sensor temperature, the infrared ray is used when performing the cooling operation. By setting the target blowing temperature based on the sensor temperature, air conditioning control close to the occupant's sense can be performed.
[0061]
In the air conditioner of the present invention, when the occupant feels cold, that is, in the situation where the heating operation is performed, paying attention to the fact that the occupant's thermal sensation has a correlation with the indoor temperature sensor temperature, By setting the target blowing temperature based on the temperature sensor temperature, air conditioning control close to the occupant's feeling can be performed.
[0062]
The air conditioner of the present invention can perform air conditioning control close to the sense of the occupant in a dual air conditioner.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of one form of a conventional infrared sensor.
FIG. 2 is a schematic diagram showing one form of a configuration of a vehicle air conditioner according to the present embodiment.
FIG. 3 is a schematic sectional view of an embodiment of an infrared sensor according to the present embodiment.
FIG. 4 is a schematic cross-sectional view of a second form of the infrared sensor according to the present embodiment.
FIG. 5 is a schematic cross-sectional view of a third embodiment of the infrared sensor according to the present embodiment.
FIG. 6 is a schematic cross-sectional view of a fourth embodiment of the infrared sensor according to the present embodiment.
FIG. 7 is a diagram showing one form of a circuit diagram of the integrated infrared-temperature sensor according to the present embodiment.
[Fig. 8] When the infrared sensor is installed in the center of the front panel, the light receiving part is directed almost to the center between the driver seat and the passenger seat, and the viewing angle of the light receiving part of the infrared sensor is set to 20 ° or 45 °. It is a figure which shows the capture | acquisition form of infrared information.
FIG. 9 is a schematic diagram of a visual field image in a light receiving unit when the shape of a cylindrical body opening of a hood of an infrared sensor is rectangular. When (a) is a viewing angle of 45 °, (b) is a viewing angle. The case of 20 ° is shown.
FIG. 10 is a graph showing the correlation between the indoor temperature sensor temperature and the infrared sensor temperature (viewing angle 45 °) with and without solar radiation.
FIG. 11 is a diagram showing a correlation between a passenger's thermal sensation and sensor output temperature.
[Explanation of symbols]
1,40,51, Infrared detector
2,42,44 Infrared bandpass filter
3, case
4, lens
10. Intake door
11, 13, 16, 19, 20, air flow
12, Blower
14. Dust collection deodorizing filter
15. Evaporator
17. Case that forms air passage
18, Air mix door
21, heater core
22, 60, infrared sensor
23. Indoor temperature sensor
24, outside temperature sensor
25, microcomputer
26. Panel switches
27, signal output unit
28, intake door control means
29. Blower control means
30, Evaporator control means
31, Air mix door control means
41. Lens hood-like case
43, 53, substrate
52. Indoor temperature detection element
100, vehicle air conditioner

Claims (9)

受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記赤外線センサの受光部の視野内に窓ガラスを入れないことを特徴とする車両用空調装置。An infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target air temperature of the conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information. An air-conditioning blowout temperature control means for determining, wherein the infrared sensor is installed at a portion where the center of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat as viewed from the front of the passenger compartment, And setting the viewing angle of the light receiving unit so as to detect infrared information of a part of the driver's seat or part of the driver's seat and infrared information of a part of the passenger's seat , and within the field of view of the light receiving unit of the infrared sensor. The vehicle air conditioner is characterized in that a window glass is not put in . 前記赤外線センサを空調パネル面等の車室フロント中央部に設置し、前記受光部の視野角を20〜45°に設定したことを特徴とする請求項1記載の車両用空調装置。  The vehicle air conditioner according to claim 1, wherein the infrared sensor is installed at a front center portion of a passenger compartment such as an air conditioning panel surface, and a viewing angle of the light receiving unit is set to 20 to 45 °. 前記赤外線センサは、赤外線量に応じた信号を出力する赤外線検出素子と、該赤外線検出素子への赤外線の入射角度を規制して受光部の視野角を設定するレンズフード状のケースと、前記赤外線検出素子に向けて赤外線を透過させる赤外線バンドパスフィルタとを具備することを特徴とする請求項1又は2記載の車両用空調装置。The infrared sensor includes an infrared detection element that outputs a signal corresponding to the amount of infrared rays, a lens hood-like case that regulates an incident angle of infrared rays to the infrared detection element and sets a viewing angle of a light receiving unit, and the infrared ray vehicular air conditioning apparatus according to claim 1 or 2, wherein it comprises an infrared band-pass filter that transmits infrared rays toward the detection element. 外気温度情報を検出する外気温度センサを設け、外気温度情報に基づいて空調モードをフレッシュモード又はリサーキュレーションモードのいずれかに選択することを特徴とする請求項1、2又は3記載の車両用空調装置。 4. The vehicle according to claim 1, wherein an outside air temperature sensor for detecting outside air temperature information is provided, and the air conditioning mode is selected from a fresh mode and a recirculation mode based on the outside air temperature information. Air conditioner. 受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記赤外線センサと前記室内温度センサを、受光部の視野内の赤外線情報を検出する赤外線検出素子と車室内温度情報を検出する室内温度検出素子とを同一基板上に配置した一体型赤外線−温度センサとしたことを特徴とする車両用空調装置。 An infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target air temperature of the conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information. An air-conditioning blowout temperature control means for determining, wherein the infrared sensor is installed at a portion where the center of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat as viewed from the front of the passenger compartment, A viewing angle of the light receiving unit is set so as to detect infrared information of a part, infrared information of a part or the whole of a driver's seat and infrared information of a part or the whole of a passenger seat, and the infrared sensor and the indoor temperature sensor An integrated infrared-temperature sensor in which an infrared detection element for detecting infrared information in the field of view of the light receiving unit and an indoor temperature detection element for detecting vehicle cabin temperature information are arranged on the same substrate Air conditioning system, characterized in that the. 受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記空調吹出温度制御手段は、赤外線センサ温度と室内温度センサ温度との温度差を算出し、前記温度差に応じて前記目標吹出温度を低温側にシフトさせることを特徴とする車両用空調装置。 An infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target air temperature of the conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information. An air-conditioning blowout temperature control means for determining, wherein the infrared sensor is installed at a portion where the center of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat as viewed from the front of the passenger compartment, A viewing angle of the light receiving unit is set so as to detect infrared information of a part, infrared information of a part or the whole of a driver's seat, and infrared information of a part or the whole of a passenger seat, and the air-conditioning blowout temperature control means includes an infrared ray A vehicle air conditioner that calculates a temperature difference between a sensor temperature and a room temperature sensor temperature and shifts the target blowing temperature to a low temperature side according to the temperature difference. 受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記空調吹出温度制御手段は、冷房運転を行なうときには赤外線センサ温度に基づいて目標吹出温度を設定することを特徴とする車両用空調装置。 An infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target air temperature of the conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information. An air-conditioning blowout temperature control means for determining, wherein the infrared sensor is installed at a portion where the center of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat as viewed from the front of the passenger compartment, A viewing angle of the light receiving unit is set so as to detect infrared information of a part, infrared information of a part or the whole of a driver's seat, and infrared information of a part or the whole of a passenger seat, and the air-conditioning outlet temperature control means A vehicle air conditioner characterized in that a target blowout temperature is set based on an infrared sensor temperature when driving. 受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、前記空調吹出温度制御手段は、暖房運転を行なうときには室内温度センサ温度に基づいて目標吹出温度を設定することを特徴とする車両用空調装置。 An infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target air temperature of the conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information. An air-conditioning blowout temperature control means for determining, wherein the infrared sensor is installed at a portion where the center of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat as viewed from the front of the passenger compartment, A viewing angle of the light receiving unit is set so as to detect infrared information of a part, infrared information of a part or the whole of a driver's seat, and infrared information of a part or the whole of a passenger seat, and the air-conditioning blowout temperature control means includes heating A vehicle air conditioner that sets a target outlet temperature based on an indoor temperature sensor temperature when the vehicle is operated. 受光部の視野内の赤外線情報を検出する赤外線センサと、車室内温度情報を検出する室内温度センサと、前記赤外線情報及び前記車室内温度情報に基づいて車室内に吹き出す空調風の目標吹出温度を決定する空調吹出温度制御手段を備え、前記赤外線センサの受光部の視野中央が車室前方から見て運転席と助手席とのほぼ中央に向く部位に前記赤外線センサを設置すると共に、車室内中央部の赤外線情報、運転席の一部分乃至全体の赤外線情報及び助手席の一部分乃至全体の赤外線情報を検出するように前記受光部の視野角を設定し、かつ、受光部の視野中央が後部座席のほぼ中央に向く部位に第2赤外線センサを設置すると共に、後部中央座席の赤外線情報、後部左座席の一部分乃至全体の赤外線情報及び後部右座席の一部分乃至全体の赤外線情報を検出するように前記第2赤外線センサの受光部の視野角を設定し、前記空調吹出温度制御手段は、前記第2赤外線センサの赤外線情報に基づいて後部座席に向けて吹き出す空調風の後部座席目標吹出温度を決定することを特徴とする車両用空調装置。 An infrared sensor that detects infrared information within the field of view of the light receiving unit, an indoor temperature sensor that detects vehicle interior temperature information, and a target air temperature of the conditioned air that is blown into the vehicle interior based on the infrared information and the vehicle interior temperature information. An air-conditioning blowout temperature control means for determining, wherein the infrared sensor is installed at a portion where the center of the light receiving portion of the infrared sensor faces the center of the driver seat and the passenger seat as viewed from the front of the passenger compartment, A viewing angle of the light receiving unit is set so as to detect infrared information of a part, infrared information of a part or the whole of a driver's seat, and infrared information of a part or the whole of a passenger seat, and the center of the visual field of the light receiving part is a rear seat A second infrared sensor is installed at a position facing the center, and infrared information of the rear center seat, a part of the rear left seat through the whole infrared information, and a part of the rear right seat through the whole red A viewing angle of the light receiving portion of the second infrared sensor is set so as to detect line information, and the air-conditioning blowout temperature control means is configured to control the conditioned air blown toward the rear seat based on the infrared information of the second infrared sensor. A vehicle air conditioner characterized in that a rear seat target blowing temperature is determined.
JP2003128992A 2003-05-07 2003-05-07 Air conditioner for vehicles Expired - Fee Related JP4327498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128992A JP4327498B2 (en) 2003-05-07 2003-05-07 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128992A JP4327498B2 (en) 2003-05-07 2003-05-07 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2004330865A JP2004330865A (en) 2004-11-25
JP4327498B2 true JP4327498B2 (en) 2009-09-09

Family

ID=33504966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128992A Expired - Fee Related JP4327498B2 (en) 2003-05-07 2003-05-07 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4327498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486490B2 (en) 2015-04-16 2019-11-26 Panasonic intellectual property Management co., Ltd Air-conditioning control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525375B2 (en) * 2005-02-07 2010-08-18 株式会社デンソー Air conditioner for vehicles
JP2007069714A (en) * 2005-09-06 2007-03-22 Denso Corp Air-conditioner for vehicle
DE102010026563A1 (en) * 2010-07-08 2012-01-12 Hella Kgaa Hueck & Co. Sensor arrangement for detecting state variables
US9643471B2 (en) 2012-03-27 2017-05-09 Ford Global Technologies, Llc Driver personalized climate conditioning
US11059349B2 (en) 2015-10-16 2021-07-13 Ford Global Technologies, Llc Enhanced climate control
CN108819654A (en) * 2018-05-08 2018-11-16 安徽江淮汽车集团股份有限公司 Intelligent temperature control system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486490B2 (en) 2015-04-16 2019-11-26 Panasonic intellectual property Management co., Ltd Air-conditioning control device

Also Published As

Publication number Publication date
JP2004330865A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4114651B2 (en) Air conditioner for vehicles
US7647786B2 (en) Automotive air-conditioning system
JP5345406B2 (en) Air conditioner for vehicles
JP2003326936A (en) Defogger for vehicle
US7222666B2 (en) Vehicle air-conditioning apparatus that can surely defog window
JP2004149047A (en) Air conditioner for vehicle
JP4327498B2 (en) Air conditioner for vehicles
US20050098640A1 (en) Temperature detection device and vehicle air conditioner using the same
JP3928606B2 (en) Air conditioner for vehicles
JP2004009875A (en) Mode changeover control device for vehicular air conditioner
JP4082124B2 (en) Anti-fogging device for vehicle and method for estimating condensation
JP2001150920A (en) Air conditioner for vehicle
JP4501643B2 (en) Vehicle air conditioner and vehicle air conditioning control method
JP4281212B2 (en) Air conditioner for vehicles
JP4325077B2 (en) Air conditioner for vehicles
JP4259258B2 (en) Air conditioner for vehicles
KR20080083766A (en) Temperature control device of automobile
JP4010282B2 (en) Air conditioner for vehicles
JP2003080920A (en) Vehicular air conditioner
JP4311125B2 (en) Air conditioner for vehicles
JP2005145133A (en) Air conditioner for vehicle
JP4120613B2 (en) VEHICLE TEMPERATURE DETECTING DEVICE AND VEHICLE AIR CONDITIONER
JP4123687B2 (en) Air conditioner for vehicles
JP2005138767A (en) Air-conditioner for vehicle
JP3312378B2 (en) Solar radiation sensor for car air conditioners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees