JP4326257B2 - Laser processing system - Google Patents

Laser processing system Download PDF

Info

Publication number
JP4326257B2
JP4326257B2 JP2003124790A JP2003124790A JP4326257B2 JP 4326257 B2 JP4326257 B2 JP 4326257B2 JP 2003124790 A JP2003124790 A JP 2003124790A JP 2003124790 A JP2003124790 A JP 2003124790A JP 4326257 B2 JP4326257 B2 JP 4326257B2
Authority
JP
Japan
Prior art keywords
processing
scanning
laser
stage
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003124790A
Other languages
Japanese (ja)
Other versions
JP2004330197A (en
Inventor
渉 廣畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Forms Co Ltd
Original Assignee
Toppan Forms Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Forms Co Ltd filed Critical Toppan Forms Co Ltd
Priority to JP2003124790A priority Critical patent/JP4326257B2/en
Publication of JP2004330197A publication Critical patent/JP2004330197A/en
Application granted granted Critical
Publication of JP4326257B2 publication Critical patent/JP4326257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、搬送される枚葉の加工媒体にレーザ光を照射して所定数の微小孔を形成する加工を行うレーザ加工システムに関する。
【0002】
【従来の技術】
近年、用紙等の加工媒体にレーザ光を照射してレーザ加工することが盛んになってきている。レーザ加工の適用例としては、例えば透かし形成や偽造防止加工等があり、当該加工媒体に厚さ方向の貫通孔を形成する場合の他に、当該厚さ方向に対して斜め方向に形成することも行われている。このような斜め方向の貫通孔を形成する場合におけるシステムの構成簡易化の実現が望まれている。
【0003】
従来、用紙等の加工媒体にレーザ光を照射して所定の加工を行うものとして、例えば、偽造防止加工を行うものとして、以下の特許文献に記載されているものが知られている。
【0004】
【特許文献1】
特開2003−11558号公報
【0005】
上記特許文献に記載されているレーザ加工は、真贋判定用の識別マークを3つの異なる角度でレーザ光を照射して透設した微小孔の集合体で形成するものであり、当該3つの異なる角度としては厚さ方向に対して、斜め(左下がり)、垂直、斜め(右下がり)とすることが開示されている。
【0006】
【発明が解決しようとする課題】
ところで、上記特許文献において、真贋判定用の識別マークを3つの異なる角度で形成する場合に、加工媒体(商品券)の厚さ方向に対してレーザ照射角度を当該レーザ発振器や所定のレンズ構成で調整し、または固定されたレーザ照射角度(加工媒体の厚さ方向に対して垂直方向)に対して加工媒体(商品券)を当該角度で傾斜させることが概念的に示されている。上記レーザ照射による加工媒体への所定角度での微小孔形成にあたって、重要なことは所定角度とさせるための機構構成を簡易とすることにある。
【0007】
すなわち、本発明は上記課題に鑑みなされたもので、枚葉加工媒体の加工表面に対して構成簡易に加工領域で所定角度とさせるレーザ加工システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明では、加工ステージ上に搬送される枚葉加工媒体に対し、レーザ光を照射して当該枚葉加工媒体の厚さ方向に対して所定角度の微小孔を所定数形成するための加工を行うレーザ加工システムであって、前記加工ステージ上に搬送される前記枚葉加工媒体に対して、レーザ光を当該枚葉加工媒体の搬送方向又は当該搬送方向とは異なる方向である搬送方向に対する垂直方向に走査して照射することにより前記所定数の微小孔を形成するレーザ照射手段と、前記加工ステージを上下動させる垂直ロッドを備える上下駆動手段、及び当該上下駆動手段と同一駆動構成で走査ロッドを備え、当該走査ロッドが上下駆動手段の垂直ロッドと回転自在に連結されて当該加工ステージを前記レーザ照射手段によるレーザ照射走査方向と異なる方向に可動させて当該加工ステージ上の前記枚葉加工媒体を走査させる走査駆動手段の組を2組として当該走査駆動手段同士を直線上に固定した構成とし、直線上に固定した走査駆動手段を、当該加工ステージの下部の対向する端部にそれぞれ設けることで当該加工ステージ上の枚葉加工媒体を所定角度に傾斜させる傾斜手段と、少なくとも、前記レーザ照射手段を所定の加工データに基づいて駆動すると共に、前記枚葉加工媒体にレーザ照射で形成する前記微小孔の角度を、前記傾斜手段を上下駆動させて前記加工ステージの傾斜角度を特定することで調整する制御処理手段と、を有する構成とする。
【0009】
請求項2の発明では、「前記加工ステージは、搬送される前記枚葉加工媒体を当該加工ステージ上で固定させる固定手段を備える」構成である。
【0010】
このように、枚葉加工媒体に対してレーザ加工する加工ステージに対して、該加工ステージをレーザ照射方向に対して上下動させる垂直ロッドを備える上下動駆動手段、及び当該上下駆動手段と同一駆動構成で走査ロッドを備えて垂直ロッドと回転自在に連結されてレーザ照射手段によるレーザ光を枚葉加工媒体の搬送方向又は当該搬送方向とは異なる方向である搬送方向に対する垂直方向に走査されるレーザ照射走査方向と異なる方向に可動させることで当該加工ステージ上の枚葉加工媒体を走査させる走査駆動手段を組として各隅部分に設けることで当該加工ステージ上の枚葉加工媒体を所定角度に傾斜させ、走査させる。すなわち、加工ステージの各隅部分を上下動させて枚葉加工媒体を所望の角度で傾斜させ、またレーザ照射方向と異なる方向に走査させることで、レーザ照射手段の構成を変更させずに構成簡易で当該枚葉加工媒体に所定角度の微小孔を容易に形成させることが可能となるものである。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図により説明する。
図1に、本発明に係るレーザ加工システムの概略構成図を示す。図1において、レーザ加工システム11は、加工ステージ(図2(A)で説明する)12が配置され、その両側に既存のベルト搬送手段13,14が配置される。このベルト搬送手段13,14により用紙、フィルム等の枚葉加工媒体(図4に示す61)が上記加工ステージ12を介在させて搬送させる。
【0012】
上記加工ステージ12の上方にはレーザ照射手段15および撮像手段としてのカメラ16が配置される。上記レーザ照射手段15は、枚葉加工媒体にレーザ光を照射することにより厚さ方向に対して所定角度の微小孔を所定数形成するもので、図示しないが、レーザ発生機構およびスキャン機構を備えた既存のシステムを使用することができる。
【0013】
上記レーザ発生機構は、例えば既存のレーザ発生の機構によりCO2レーザ、YAGレーザ等の適宜選択されたレーザ光を発生させる。また、スキャン機構は、レーザ加工の種類により、例えば一次元的にレーザ光をスキャンする場合にはポリゴンミラースキャン機構やミラーおよび集光レンズ構成部の一次元移動機構等が採用され、二次元的にレーザ光をスキャンさせる場合にはガルバノスキャン機構が採用される。
【0014】
なお、一次元的にレーザ光を走査させることで当該枚葉加工媒体に対して照射焦点位置を略一定とさせることができるもので、本実施形態では、例えば媒体搬送方向に走査させることとしている。
【0015】
上記カメラ16は、加工ステージ12上に位置された枚葉加工媒体の位置を撮像して後述の移送手段による移送位置決めを行わせるものである。すなわち、ベルト搬送手段13と加工ステージ12との間には第1移送手段17が配置され、加工ステージ12とベルト搬送手段14との間には第2移送手段18が配置される。第1および第2移送手段17,18は、図示しない吸引手段と接続されて先端に吸着盤が設けられたもので、当該吸着盤が共に上下駆動および略搬送方向に回動駆動される。
【0016】
すなわち、上記第1移送手段17はベルト搬送手段13より搬送されてきた枚葉加工媒体を吸着盤で吸着して加工ステージ12上に移送するもので、上述のようにカメラ16による撮像データに基づいて当該加工ステージ12の定められた位置に位置決めさせる。また、上記第2移送手段18は加工ステージ12上でのレーザ加工が行われた枚葉加工媒体をベルト搬送手段14上に移送させて、所定の排出位置に搬送させるものである。
【0017】
上記加工ステージ12の下部における例えばベルト搬送手段13側の端部に第1傾斜手段19が設けられ、例えばベルト搬送手段14側の端部に第2傾斜手段20が設けられる。すなわち、これら第1および第2傾斜手段19,20がレーザ照射手段15のレーザ照射方向に対して上下動されることで当該加工ステージ12上の枚葉加工媒体が所定角度に傾斜されるものである。
【0018】
ここで、図2に、図1の加工ステージおよび傾斜手段の説明図を示す。図2(A)は、加工ステージ12を示したもので、枚葉加工媒体が位置される面側に吸引孔12Aが所定数形成されたものである。また、その内部空間が例えば下部の所定部分で可撓性ダクト21を介して吸引手段22と連通される。すなわち、当該加工ステージ12上に枚葉加工媒体が位置されたときに吸引手段22により吸引孔12Aを介して吸引固定するもので、当該加工ステージ12が第1および第2傾斜手段19,20で傾斜される場合であっても可撓性ダクト21により吸引を確保している。上記吸引孔12Aを含めて可撓性ダクト21および吸引手段22により固定手段が構成される。
【0019】
また、図2(B)は第1および第2傾斜手段19,20を示したもので、第1傾斜手段19が第1および第2上下駆動手段31,32と、第1および第2走査駆動手段33,34とにより構成される。当該第1および第2走査駆動手段33,34は直線上に固定されもので、第1上下駆動手段31の第1垂直ロッド31Aと第1走査駆動手段33の第1走査ロッド33Aとが回転自在に連結されると共に、第2上下駆動手段32の第2垂直ロッド32Aと第2走査駆動手段34の第2走査ロッド34Aとが回転自在に連結される。
【0020】
一方、第傾斜手段20が第3および第4上下駆動手段35,36と、第3および第4走査駆動手段37,38とにより構成される。上記第3および第4走査駆動手段37,38は直線上に固定されもので、第3上下駆動手段35の第3垂直ロッド35Aと第3走査駆動手段37の第3走査ロッド37Aとが回転自在に連結されると共に、第4上下駆動手段36の第4垂直ロッド36Aと第4走査駆動手段38の第4走査ロッド38Aとが回転自在に連結される。
【0021】
なお、上記第1〜第4上下駆動手段31,32,35,36および第1〜第4走査駆動手段33,34,37,38としては、例えば電動シリンダにより実現することができるものである。すなわち、第1〜第4上下駆動手段31,32,35,36が加工ステージ12を上下動させることで当該加工ステージ12上の枚葉加工媒体を所定角度に傾斜させる。また、上記第1〜第4走査駆動手段33,34,37,38が加工ステージ12をレーザ照射手段15によるレーザ照射走査方向と異なる方向に可動させて当該加工ステージ12上の枚葉加工媒体を走査させるもので、レーザ照射範囲をカバーするものである。
【0022】
また、図3に、本システムを駆動制御するための制御処理手段のブロック構成図を示す。図3において、制御処理手段41は、適宜設定加工データを入力するための入力手段42が接続されるもので、少なくとも、レーザ照射手段15を所定の加工データに基づいて駆動すると共に、枚葉加工媒体にレーザ照射で形成する微小孔の角度を、第1および第2傾斜手段19,20を上下駆動させて加工ステージ12の傾斜角度を特定することで調整する。そのために、制御手段51、バス52、インタフェース(IF)53A,53B、加工データファイル作成手段54、レーザ照射制御手段55、上下駆動制御種案56、走査駆動制御手段57および搬送制御手段58を適宜備える。
【0023】
上記制御手段51は、このシステムの駆動制御を統括するもので、そのためのプログラムを格納する。上記IF53Aは、レーザ照射手段15、カメラ16、移送手段17,18および吸引手段22との信号授受の整合性をとるためのもので、上記IF53Bは、第1〜第4上下駆動手段31,32,35,36および第1〜第4走査駆動手段33,34,37,38への出力信号の整合性をとるためのものである。
【0024】
上記加工データファイル作成手段54は、上記入力手段42より入力される加工位置等の設定加工データに基づく加工データファイルを作成する。上記レーザ照射制御手段55は、上記作成された加工データファイルに基づいてレーザ照射位置、照射タイミング、レーザパワー等の加工データをレーザ照射手段15に送出する。また、上記上下動駆動制御手段56は、上記入力手段42より設定された微小孔の形成角度に応じて第1〜第4上下駆動手段31,32,35,36に対して駆動制御信号を生成して出力する。駆動量は、例えば予め形成角度に応じたものをテーブルとしてもよく、形成角度に応じてその都度演算により算出してもよい。
【0025】
上記走査駆動制御手段57は、上記入力手段42より設定された枚葉加工媒体の大きさ、加工ステージ12上での位置状態に応じて加工領域範囲(ここでは搬送方向に対して幅方向の範囲)で当該加工ステージ12を走査すべく、上記第1〜第4走査駆動手段33,34,37,38に対して駆動制御信号を生成して出力する。そして、上記移送制御手段58は、上記カメラ16による撮像データに基づいて枚葉加工媒体の加工ステージ12上への位置決めを行わせつつ上記第1移送手段17に対して駆動制御信号を生成して出力すると共に、第2移送手段18に対して駆動制御信号を生成して出力する。
【0026】
なお、ベルト搬送手段13,14、吸引手段22に対する駆動制御や、上記第1および第2移送手段17,18を駆動するタイミングを得るためのセンサ、カメラ16で撮像させるためのセンサ等の図示は省略する。
【0027】
続いて、図4に、本システムによるレーザ加工におけるステージ傾斜の説明図を示す。図4(A)〜(D)は、一例として枚葉加工媒体に所定角度の右下がり傾斜(左下がり傾斜も動作原理は同様)で微小孔を形成する場合を示したもので、図4(A)に示すように各ステージ12上に位置された枚葉加工媒体61を水平状態としたときを例えば基準としている。
【0028】
因みに、当該枚葉加工媒体61に厚さ方向に対して垂直方向に微小孔61Aを形成する場合には、この水平状態でレーザ照射手段15よりレーザ光が照射されて微小孔61Aが形成されるものである。この場合、上述のようにレーザ光の照射は、図面手前より奥側(当該枚葉加工媒体61の搬送方向)に一次元的に走査させるものとして、第1〜第4走査駆動手段33,34,37,38が当該搬送方向を垂直方向に加工ステージ12を可動させることで当該枚葉加工媒体61を当該方向に走査させるものである。
【0029】
そこで、図4(B)に示すように、図4(A)の基準水平状態より第2および第4上下駆動手段32,36が駆動されて第2および第4垂直ロッド32A,36Aが傾斜角度に応じた駆動量で上昇され、第1および第3上下駆動手段31,35が駆動されて第1および第3垂直ロッド31A,35Aが傾斜角度に応じた駆動量で下降される。この場合、レーザ照射の位置Pが変動しない駆動量で当該ステージ12(枚葉加工媒体61)を傾斜させることでレーザ照射手段15の照射焦点を略一定とさせる。
【0030】
そして、図4(C)に示すように、第1および第3走査駆動手段33,37が駆動されて第1および第3走査ロッド33A,37Aが短縮され、第2および第4走査手段34,38が駆動されて第2および第4走査ロッド34A,38Aが伸張された状態を例えばレーザ加工開始位置とし、図4(D)に示すように、第1および第3走査駆動手段33,37を駆動して第1および第3走査ロッド33A,37Aを順次伸張させ、第2および第4走査手段34,38を駆動して第2および第4走査ロッド34A,38Aを順次短縮させながら、レーザ照射することにより当該枚葉加工媒体61の形成領域に微小孔61Aを形成していくものである。
【0031】
次に、図5に、本システムによるレーザ加工処理のフローチャートを示す。ここでは枚葉加工媒体61の厚さ方向に対して、例えば垂直方向(90度)、右下がり斜めおよび左下がり斜めの3種類の微小孔61Aを順次形成する場合として説明する。
【0032】
図5において、まず、カメラ16により枚葉加工媒体61が加工ステージ12上の所定位置に位置されたことが確認された後に、入力される設定加工データより作成された加工データファイルに基づいて垂直方向の微小孔61Aを形成する加工データを抽出すると共に、当該枚葉加工媒体61を吸引手段22より吸引固定させながら上下駆動制御手段56が第1〜第4上下駆動手段31,32,35,36を駆動して第1〜第4垂直ロッド31A,32A,35A,36Aを図4(A)に示すような水平状態の基準位置とさせて枚葉加工媒体61を水平状態とさせる(ステップ(S)1)。なお、当初より水平状態の場合には駆動は行われない。
【0033】
また、走査駆動制御手段57が第1〜第4走査駆動手段33,34,37,38を駆動して第1〜第4走査ロッド33A,34A,37A,38Aを上述のように伸縮させてレーザ照射開始位置に可動させ、当該第1〜第4走査ロッド33A,34A,37A,38Aを上述のように伸縮させながらレーザ照射制御手段55が加工データファイルより抽出した加工データに基づいてレーザ加工制御信号をレーザ照射手段15に送出して駆動させることにより垂直方向の微小孔61Aを順次形成させる(S2)。
【0034】
枚葉加工媒体61上で総ての垂直方向の微小孔61Aが形成されると(S3)、上記作成された加工データファイルに基づいて右下がり斜めの微小孔61Aを形成する加工データを抽出すると共に、第2および第4上下駆動手段32,36を駆動して第2および第4垂直ロッド32A,36Aを適応量上昇させ、第1および第3上下駆動手段31,35を駆動して第1および第3垂直ロッド31A,35Aを適応量下降させて当該枚葉加工媒体61を所定角度の右下がり斜めに傾斜させる(S4)。
【0035】
続いて、走査駆動制御手段57が第1〜第4走査駆動手段33,34,37,38を駆動して第1〜第4走査ロッド33A,34A,37A,38Aを伸縮させてレーザ照射開始位置に可動させ、当該第1〜第4走査ロッド33A,34A,37A,38Aを伸縮させながらレーザ照射制御手段55が加工データファイルより抽出した加工データに基づいてレーザ加工制御信号をレーザ照射手段15に送出して駆動させることで所定角度の右下がり斜めの微小孔61Aを順次形成させる(S5)。
【0036】
また、枚葉加工媒体61上で総ての右下がり斜めの微小孔61Aが形成されると(S6)、上記作成された加工データファイルに基づいて左下がり斜めの微小孔61Aを形成する加工データを抽出すると共に、第1および第3上下駆動手段31,35を駆動して第1および第3垂直ロッド31A,35Aを適応量上昇させ、第2および第4上下駆動手段32,36を駆動して第2および第4垂直ロッド32A,36Aを適応量下降させて当該枚葉加工媒体61を所定角度の左下がり斜めに傾斜させる(S7)。
【0037】
そして、走査駆動制御手段57が第1〜第4走査駆動手段33,34,37,38を駆動して第1〜第4走査ロッド33A,34A,37A,38Aを伸縮させてレーザ照射開始位置に可動させ、当該第1〜第4走査ロッド33A,34A,37A,38Aを伸縮させながらレーザ照射制御手段55が加工データファイルより抽出した加工データに基づいてレーザ加工制御信号をレーザ照射手段15に送出して駆動させることで所定角度の左下がり斜めの微小孔61Aを順次形成させることで(S8)、総ての左下がり斜めの微小孔61Aを形成するものである(S9)。
【0038】
このように、加工ステージ12を第1〜第4上下駆動手段31,32,35,36により上下動させて枚葉加工媒体61を所望の角度で傾斜させることができるもので、レーザ照射手段の構成を変更させずに構成簡易で当該枚葉加工媒体61に所定角度の微小孔を容易に形成させることができるものである。
【0039】
ところで、上記実施形態では、加工ステージ12に2つの第1および第2傾斜手段19,20を設けた場合を示したが、一方端を回転ヒンジ等で支点として他方端に単一の傾斜手段(上下駆動手段)を設けることとしてもよい。この場合、レーザ照射手段によるレーザ照射がその焦点位置を随時変化させながら行われる。
【0040】
また、上記実施形態では、第1および第2傾斜手段19,20を加工ステージ12の下部両端で媒体搬送方向と垂直方向に設けた場合を示したが、当該媒体搬送方向と同方向で当該加工ステージ12の下部両端に設けてもよい。この場合には、レーザ照射走査方向が媒体搬送方向と垂直方向になる。
【0041】
さらに、上記実施形態では、第1および第2傾斜手段19,20により2系統で上下駆動させる場合を示したが、各上下駆動手段31,32,35,36をそれぞれ別個に駆動させることとしてもよい。これにより、微小孔61Aを、枚葉加工媒体61上であらゆる方向の角度でも形成することができるものである。
【0042】
【発明の効果】
以上のように、本発明によれば、枚葉加工媒体に対してレーザ加工する加工ステージに対して、当該加工ステージをレーザ照射方向に対して上下動させる垂直ロッドを備える上下動駆動手段、及び当該上下駆動手段と同一駆動構成で走査ロッドを備えて垂直ロッドと回転自在に連結されてレーザ照射手段によるレーザ光を枚葉加工媒体の搬送方向又は当該搬送方向とは異なる方向である搬送方向に対する垂直方向に走査されるレーザ照射走査方向と異なる方向に可動させることで当該加工ステージ上の枚葉加工媒体を走査させる走査駆動手段を組として各隅部分に設けることで当該加工ステージ上の枚葉加工媒体を所定角度に傾斜させることにより、枚葉加工媒体の加工表面に対して構成簡易に加工領域で所定角度とさせ、容易に所定角度の微小孔を形成させることができるものである。
【図面の簡単な説明】
【図1】本発明に係るレーザ加工システムの概略構成図である。
【図2】図1の加工ステージおよび傾斜手段の説明図である。
【図3】本システムを駆動制御するための制御処理手段のブロック構成図である。
【図4】本システムによるレーザ加工におけるステージ傾斜の説明図である。
【図5】本システムによるレーザ加工処理のフローチャートである。
【符号の説明】
11 レーザ加工システム
12 加工ステージ
13,14 ベルト搬送手段
15 レーザ照射手段
16 カメラ
17,18 移送手段
19 第1傾斜手段
20 第2傾斜手段
21 可撓性ダクト
22 吸引手段
31,32,35,36 上下駆動手段
33,34,37,38 走査駆動手段
41 制御処理手段
42 入力手段
61 枚葉加工媒体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser processing system that performs processing for forming a predetermined number of microholes by irradiating a processing medium of a sheet to be conveyed with laser light.
[0002]
[Prior art]
In recent years, it has become popular to perform laser processing by irradiating a processing medium such as paper with a laser beam. Application examples of laser processing include, for example, watermark formation and anti-counterfeiting processing. In addition to forming a through-hole in the thickness direction on the processing medium, it is formed obliquely with respect to the thickness direction. Has also been done. Realization of simplification of the system configuration in the case of forming such an oblique through hole is desired.
[0003]
2. Description of the Related Art Conventionally, for example, what is described in the following patent documents is known as performing a predetermined process by irradiating a processing medium such as paper with a laser beam, for example, performing a forgery prevention process.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2003-11558
In the laser processing described in the above-mentioned patent document, an identification mark for authenticity determination is formed by an assembly of microscopic holes formed by irradiating laser light at three different angles, and the three different angles. Are disclosed as being oblique (downward to the left), vertical, and oblique (downward to the right) with respect to the thickness direction.
[0006]
[Problems to be solved by the invention]
By the way, in the above-mentioned patent document, when the identification mark for authenticity determination is formed at three different angles, the laser irradiation angle with respect to the thickness direction of the processing medium (gift certificate) is determined by the laser oscillator or a predetermined lens configuration. It is conceptually shown that the processing medium (gift certificate) is tilted at the angle with respect to the laser irradiation angle adjusted or fixed (perpendicular to the thickness direction of the processing medium). In forming the microholes at a predetermined angle in the processing medium by the laser irradiation, it is important to simplify the mechanism configuration for setting the predetermined angle.
[0007]
That is, the present invention has been made in view of the above problems, and an object of the present invention is to provide a laser processing system that can easily configure a predetermined angle in a processing region with respect to the processing surface of a single wafer processing medium.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, in the invention of claim 1, a single-wafer processing medium conveyed on the processing stage is irradiated with a laser beam so as to have a predetermined angle with respect to the thickness direction of the single-wafer processing medium. A laser processing system for performing processing for forming a predetermined number of microholes, wherein a laser beam is transferred to the single-wafer processing medium transported on the processing stage, or the transport direction of the single-wafer processing medium or the transport Laser irradiation means for forming the predetermined number of micro holes by scanning and irradiating in a direction perpendicular to the conveying direction, which is different from the direction, and vertical driving means comprising a vertical rod for moving the processing stage up and down, and A scanning rod having the same driving configuration as the vertical driving means is provided, the scanning rod is rotatably connected to a vertical rod of the vertical driving means, and the processing stage is moved by the laser irradiation means. Chromatography The irradiated by moving in a direction different from the scanning direction and configured fixed to the scanning drive means between the straight line pairs of the scanning driving means for scanning the sheet processing medium on the working stages as two pairs, a straight line the fixed scanning drive means, and tilting means for tilting the lower portion of the opposed sheet processing medium on the working stages in their respective set kick the end of the processing stage at a predetermined angle, at least, the laser irradiation The means is driven based on predetermined processing data, and the angle of the minute hole formed by laser irradiation on the single-wafer processing medium is determined, and the tilting means is driven up and down to specify the tilt angle of the processing stage. And a control processing means for adjusting.
[0009]
In the invention of claim 2, "the processing stage comprises a fixing means for fixing the sheet processing medium conveyed on the machining stage" Ru configuration der.
[0010]
Thus, the laser machining processing stage relative sheet processing medium, vertical movement drive means comprising a vertical rod for vertically moving the person the working stages for the laser irradiation direction, and the same as the vertical driving unit A scanning rod is provided in a driving configuration and is rotatably connected to the vertical rod, and the laser beam from the laser irradiation means is scanned in a direction perpendicular to the conveying direction of the sheet processing medium or a direction different from the conveying direction. By moving in a direction different from the laser irradiation scanning direction, scanning drive means for scanning the sheet processing medium on the processing stage as a set is provided at each corner portion, so that the sheet processing medium on the processing stage is set at a predetermined angle. Tilt and scan. In other words, each corner of the processing stage is moved up and down to tilt the single-wafer processing medium at a desired angle and scan in a direction different from the laser irradiation direction, thereby simplifying the configuration without changing the configuration of the laser irradiation means. Thus, it is possible to easily form micro holes of a predetermined angle in the single-wafer processing medium.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration diagram of a laser processing system according to the present invention. In FIG. 1, a laser processing system 11 is provided with a processing stage (described with reference to FIG. 2A) 12, and existing belt conveying means 13 and 14 are arranged on both sides thereof. A sheet processing medium such as paper or film (61 shown in FIG. 4) is conveyed by the belt conveying means 13 and 14 with the processing stage 12 interposed.
[0012]
Above the processing stage 12, a laser irradiation means 15 and a camera 16 as an imaging means are arranged. The laser irradiating means 15 forms a predetermined number of minute holes with a predetermined angle with respect to the thickness direction by irradiating the single-wafer processing medium with laser light, and includes a laser generating mechanism and a scanning mechanism (not shown). Existing systems can be used.
[0013]
The laser generation mechanism generates laser light appropriately selected, such as a CO 2 laser and a YAG laser, using an existing laser generation mechanism, for example. Also, depending on the type of laser processing, for example, when scanning laser light one-dimensionally, a scanning mechanism such as a polygon mirror scanning mechanism or a one-dimensional moving mechanism of a mirror and a condensing lens component is adopted as a scanning mechanism. A galvano scan mechanism is employed when scanning laser light.
[0014]
Note that the irradiation focal point position can be made substantially constant with respect to the single-wafer processing medium by scanning the laser beam in a one-dimensional manner. In this embodiment, for example, scanning is performed in the medium conveyance direction. .
[0015]
The camera 16 images the position of the single-wafer processing medium positioned on the processing stage 12 and performs transfer positioning by a transfer means described later. That is, the first transfer unit 17 is disposed between the belt conveyance unit 13 and the processing stage 12, and the second transfer unit 18 is disposed between the processing stage 12 and the belt conveyance unit 14. The first and second transfer means 17 and 18 are connected to suction means (not shown) and provided with a suction plate at the tip, and both of the suction plates are driven to rotate up and down and substantially in the transport direction.
[0016]
That is, the first transfer means 17 is for sucking the sheet processing medium transported from the belt transport means 13 by the suction disk and transferring it onto the processing stage 12, and based on the image data taken by the camera 16 as described above. Thus, the machining stage 12 is positioned at a predetermined position. Further, the second transfer means 18 is for transferring the single-wafer processing medium on which the laser processing on the processing stage 12 has been performed onto the belt transfer means 14 and transferring it to a predetermined discharge position.
[0017]
For example, the first tilting means 19 is provided at the lower end of the processing stage 12 on the belt conveying means 13 side, for example, and the second tilting means 20 is provided at the end on the belt conveying means 14 side, for example. That is, when the first and second tilting means 19 and 20 are moved up and down with respect to the laser irradiation direction of the laser irradiation means 15, the single-wafer processing medium on the processing stage 12 is tilted at a predetermined angle. is there.
[0018]
Here, FIG. 2 shows an explanatory diagram of the processing stage and the tilting means of FIG. FIG. 2A shows the processing stage 12, in which a predetermined number of suction holes 12A are formed on the surface side on which the sheet processing medium is located. Further, the internal space is communicated with the suction means 22 through the flexible duct 21 at a predetermined lower portion, for example. That is, when the single-wafer processing medium is positioned on the processing stage 12, the suction means 22 sucks and fixes it through the suction hole 12A, and the processing stage 12 is moved by the first and second tilting means 19 and 20. Even if it is inclined, suction is ensured by the flexible duct 21. The flexible duct 21 and the suction means 22 including the suction hole 12A constitute a fixing means.
[0019]
FIG. 2B shows the first and second tilting means 19 and 20. The first tilting means 19 includes the first and second vertical driving means 31 and 32, and the first and second scanning drives. And means 33 and 34. The first and second scanning driving means 33 and 34 are fixed on a straight line, and the first vertical rod 31A of the first vertical driving means 31 and the first scanning rod 33A of the first scanning driving means 33 are rotatable. And the second vertical rod 32A of the second vertical driving means 32 and the second scanning rod 34A of the second scanning driving means 34 are rotatably connected.
[0020]
On the other hand, the second tilting means 20 is composed of third and fourth vertical driving means 35 and 36 and third and fourth scanning driving means 37 and 38. The third and fourth scanning driving means 37 and 38 are fixed on a straight line, and the third vertical rod 35A of the third vertical driving means 35 and the third scanning rod 37A of the third scanning driving means 37 are freely rotatable. In addition, the fourth vertical rod 36A of the fourth vertical driving means 36 and the fourth scanning rod 38A of the fourth scanning driving means 38 are rotatably connected.
[0021]
The first to fourth vertical driving means 31, 32, 35, and 36 and the first to fourth scanning driving means 33, 34, 37, and 38 can be realized by an electric cylinder, for example. That is, the first to fourth vertical driving means 31, 32, 35, and 36 move the processing stage 12 up and down to incline the sheet processing medium on the processing stage 12 at a predetermined angle. Further, the first to fourth scanning driving means 33, 34, 37, 38 move the processing stage 12 in a direction different from the laser irradiation scanning direction by the laser irradiation means 15, and the single wafer processing medium on the processing stage 12 is moved. Scanning is performed to cover the laser irradiation range.
[0022]
FIG. 3 is a block diagram of control processing means for controlling the drive of this system. In FIG. 3, the control processing means 41 is connected to an input means 42 for appropriately inputting set machining data. At least the laser irradiation means 15 is driven based on predetermined machining data, and the single wafer processing is performed. The angle of the minute hole formed in the medium by laser irradiation is adjusted by driving the first and second tilting means 19 and 20 up and down to specify the tilt angle of the processing stage 12. For this purpose, the control means 51, bus 52, interfaces (IF) 53A, 53B, machining data file creation means 54, laser irradiation control means 55, vertical drive control type 56, scanning drive control means 57, and conveyance control means 58 are appropriately set. Prepare.
[0023]
The control means 51 controls the drive control of this system and stores a program for this purpose. The IF 53A is for ensuring the consistency of signal exchange with the laser irradiation means 15, the camera 16, the transfer means 17, 18 and the suction means 22, and the IF 53B is the first to fourth vertical drive means 31, 32. , 35, 36 and the first to fourth scanning drive means 33, 34, 37, 38 for the consistency of the output signals.
[0024]
The machining data file creation means 54 creates a machining data file based on the set machining data such as the machining position input from the input means 42. The laser irradiation control means 55 sends processing data such as a laser irradiation position, irradiation timing, and laser power to the laser irradiation means 15 based on the created processing data file. The vertical movement drive control means 56 generates a drive control signal for the first to fourth vertical drive means 31, 32, 35, 36 in accordance with the micro-hole formation angle set by the input means 42. And output. The driving amount may be a table corresponding to the formation angle in advance, for example, and may be calculated by calculation each time depending on the formation angle.
[0025]
The scanning drive control means 57 determines the processing area range (here, the range in the width direction with respect to the transport direction) in accordance with the size of the sheet processing medium set by the input means 42 and the position state on the processing stage 12. ), A drive control signal is generated and output to the first to fourth scanning drive means 33, 34, 37, and 38 in order to scan the processing stage 12. Then, the transfer control means 58 generates a drive control signal for the first transfer means 17 while positioning the single-wafer processing medium on the processing stage 12 based on the image data taken by the camera 16. Along with the output, a drive control signal is generated and output to the second transfer means 18.
[0026]
The illustrations of the drive control for the belt conveying means 13 and 14 and the suction means 22, the sensor for obtaining the timing for driving the first and second transfer means 17 and 18, the sensor for imaging with the camera 16, etc. are shown. Omitted.
[0027]
Next, FIG. 4 shows an explanatory diagram of stage tilt in laser processing by this system. FIGS. 4A to 4D show, as an example, a case where a microhole is formed in a single-sided processing medium with a right-angled inclination of a predetermined angle (the operation principle is the same for a downward-left inclination). As shown in A), for example, the case where the sheet processing medium 61 positioned on each stage 12 is in a horizontal state is used as a reference.
[0028]
Incidentally, when the microhole 61A is formed in the sheet processing medium 61 in a direction perpendicular to the thickness direction, the laser beam is irradiated from the laser irradiation means 15 in this horizontal state to form the microhole 61A. Is. In this case, as described above, the first to fourth scanning driving means 33 and 34 are assumed to be one-dimensionally scanned with laser light irradiation from the front side of the drawing to the back side (conveying direction of the sheet processing medium 61). , 37 and 38 move the processing stage 12 in the direction perpendicular to the transport direction, thereby scanning the single-wafer processing medium 61 in the direction.
[0029]
Therefore, as shown in FIG. 4B, the second and fourth vertical driving means 32, 36 are driven from the reference horizontal state of FIG. 4A, and the second and fourth vertical rods 32A, 36A are inclined. The first and third vertical driving means 31 and 35 are driven, and the first and third vertical rods 31A and 35A are lowered by the driving amount corresponding to the inclination angle. In this case, the irradiation focus of the laser irradiation means 15 is made substantially constant by inclining the stage 12 (sheet processing medium 61) with a drive amount that does not change the position P of the laser irradiation.
[0030]
Then, as shown in FIG. 4C, the first and third scanning drive means 33, 37 are driven to shorten the first and third scanning rods 33A, 37A, and the second and fourth scanning means 34, A state in which the second and fourth scanning rods 34A and 38A are extended by driving 38 is set as a laser processing start position, for example, and as shown in FIG. 4D, the first and third scanning driving means 33 and 37 are The first and third scanning rods 33A, 37A are driven to extend sequentially, and the second and fourth scanning means 34, 38 are driven to shorten the second and fourth scanning rods 34A, 38A in sequence while irradiating laser. As a result, the minute holes 61 </ b> A are formed in the formation region of the sheet processing medium 61.
[0031]
Next, FIG. 5 shows a flowchart of laser processing by this system. Here, a case will be described in which three types of micro holes 61A are formed sequentially with respect to the thickness direction of the sheet processing medium 61, for example, in the vertical direction (90 degrees), right-down oblique and left-down oblique.
[0032]
In FIG. 5, first, after confirming that the single-wafer processing medium 61 is positioned at a predetermined position on the processing stage 12 by the camera 16, the vertical direction is based on the processing data file created from the input set processing data. The processing data for forming the minute hole 61A in the direction is extracted, and the vertical drive control means 56 is fixed to the first to fourth vertical drive means 31, 32, 35, while the sheet processing medium 61 is fixed by suction from the suction means 22. 36 is driven to set the first to fourth vertical rods 31A, 32A, 35A, 36A to the horizontal reference position as shown in FIG. S) 1). In the case of a horizontal state from the beginning, driving is not performed.
[0033]
Further, the scanning drive control means 57 drives the first to fourth scanning driving means 33, 34, 37, and 38 to expand and contract the first to fourth scanning rods 33A, 34A, 37A, and 38A as described above. The laser processing control is performed based on the processing data extracted from the processing data file by the laser irradiation control means 55 while moving to the irradiation start position and expanding and contracting the first to fourth scanning rods 33A, 34A, 37A, and 38A as described above. By sending a signal to the laser irradiation means 15 and driving it, the vertical minute holes 61A are sequentially formed (S2).
[0034]
When all the vertical holes 61A in the vertical direction are formed on the sheet processing medium 61 (S3), processing data for forming the minute holes 61A that are inclined to the right is extracted based on the created processing data file. At the same time, the second and fourth vertical driving means 32, 36 are driven to raise the second and fourth vertical rods 32A, 36A by an adaptive amount, and the first and third vertical driving means 31, 35 are driven to provide the first. Then, the third vertical rods 31A and 35A are lowered by an appropriate amount, and the single-wafer processing medium 61 is inclined obliquely to the right by a predetermined angle (S4).
[0035]
Subsequently, the scanning drive control unit 57 drives the first to fourth scanning driving units 33, 34, 37, and 38 to expand and contract the first to fourth scanning rods 33A, 34A, 37A, and 38A, thereby starting the laser irradiation start position. The laser irradiation control means 55 sends a laser processing control signal to the laser irradiation means 15 based on the processing data extracted from the processing data file while the first to fourth scanning rods 33A, 34A, 37A, 38A are expanded and contracted. By sending out and driving, the minute holes 61A inclined downward to the right at a predetermined angle are sequentially formed (S5).
[0036]
Further, when all the right-sloping diagonal micro holes 61A are formed on the single-wafer processing medium 61 (S6), the machining data for forming the left-sloping diagonal micro holes 61A based on the created processing data file. And the first and third vertical drive means 31, 35 are driven to raise the first and third vertical rods 31A, 35A by an adaptive amount, and the second and fourth vertical drive means 32, 36 are driven. Then, the second and fourth vertical rods 32A, 36A are lowered by an appropriate amount, and the single-wafer processing medium 61 is inclined obliquely downwardly to the left by a predetermined angle (S7).
[0037]
Then, the scanning drive control means 57 drives the first to fourth scanning driving means 33, 34, 37, and 38 to expand and contract the first to fourth scanning rods 33A, 34A, 37A, and 38A to the laser irradiation start position. The laser irradiation control means 55 sends a laser processing control signal to the laser irradiation means 15 based on the processing data extracted from the processing data file while moving and expanding and contracting the first to fourth scanning rods 33A, 34A, 37A, 38A. By driving in this manner, left-slanting diagonal micro holes 61A having a predetermined angle are sequentially formed (S8), and all the left-slanting micro holes 61A are formed (S9).
[0038]
In this way, the processing stage 12 can be moved up and down by the first to fourth vertical driving means 31, 32, 35, 36 to tilt the sheet processing medium 61 at a desired angle. It is possible to easily form micro holes of a predetermined angle in the single-wafer processing medium 61 without changing the configuration.
[0039]
By the way, in the said embodiment, although the case where the two 1st and 2nd inclination means 19 and 20 were provided in the process stage 12 was shown, one end is made into a single inclination means (the other end is made into a fulcrum by a rotation hinge etc.). (Vertical drive means) may be provided. In this case, laser irradiation by the laser irradiation means is performed while changing the focal position as needed.
[0040]
In the above embodiment, the first and second tilting means 19 and 20 are provided at the lower ends of the processing stage 12 in the direction perpendicular to the medium transport direction. However, the processing is performed in the same direction as the medium transport direction. It may be provided at both lower ends of the stage 12. In this case, the laser irradiation scanning direction is perpendicular to the medium conveyance direction.
[0041]
Further, in the above embodiment, the case where the first and second tilting means 19 and 20 are driven up and down by two systems has been shown, but each of the vertical driving means 31, 32, 35 and 36 may be driven separately. Good. As a result, the minute holes 61A can be formed on the single-wafer processing medium 61 at angles in any direction.
[0042]
【The invention's effect】
As described above, according to the present invention, with respect to a processing stage that performs laser processing on a single-wafer processing medium, a vertical movement drive unit that includes a vertical rod that moves the processing stage up and down in the laser irradiation direction, and A scanning rod having the same driving configuration as that of the vertical driving means is rotatably connected to the vertical rod, and the laser light from the laser irradiation means is directed to the conveyance direction of the single-wafer processing medium or a conveyance direction that is different from the conveyance direction. A single wafer on the processing stage is provided at each corner portion as a set of scanning drive means for scanning the single wafer processing medium on the processing stage by moving in a direction different from the laser irradiation scanning direction scanned in the vertical direction. By inclining the processing medium at a predetermined angle, the structure can be easily set to a predetermined angle in the processing area with respect to the processing surface of the single wafer processing medium, In which it is possible to form a small hole.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a laser processing system according to the present invention.
FIG. 2 is an explanatory diagram of the processing stage and the tilting means in FIG.
FIG. 3 is a block configuration diagram of control processing means for driving and controlling the system.
FIG. 4 is an explanatory diagram of stage tilt in laser processing by the present system.
FIG. 5 is a flowchart of laser processing by this system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Laser processing system 12 Processing stage 13, 14 Belt conveyance means 15 Laser irradiation means 16 Camera 17, 18 Transfer means 19 First inclination means 20 Second inclination means 21 Flexible duct 22 Suction means 31, 32, 35, 36 Up and down Driving means 33, 34, 37, 38 Scanning driving means 41 Control processing means 42 Input means 61 Single wafer processing medium

Claims (2)

加工ステージ上に搬送される枚葉加工媒体に対し、レーザ光を照射して当該枚葉加工媒体の厚さ方向に対して所定角度の微小孔を所定数形成するための加工を行うレーザ加工システムであって、
前記加工ステージ上に搬送される前記枚葉加工媒体に対して、レーザ光を当該枚葉加工媒体の搬送方向又は当該搬送方向とは異なる方向である搬送方向に対する垂直方向に走査して照射することにより前記所定数の微小孔を形成するレーザ照射手段と、
前記加工ステージを上下動させる垂直ロッドを備える上下駆動手段、及び当該上下駆動手段と同一駆動構成で走査ロッドを備え、当該走査ロッドが上下駆動手段の垂直ロッドと回転自在に連結されて当該加工ステージを前記レーザ照射手段によるレーザ照射走査方向と異なる方向に可動させて当該加工ステージ上の前記枚葉加工媒体を走査させる走査駆動手段の組を2組として当該走査駆動手段同士を直線上に固定した構成とし、直線上に固定した走査駆動手段を、当該加工ステージの下部の対向する端部にそれぞれ設けることで当該加工ステージ上の枚葉加工媒体を所定角度に傾斜させる傾斜手段と、
少なくとも、前記レーザ照射手段を所定の加工データに基づいて駆動すると共に、前記枚葉加工媒体にレーザ照射で形成する前記微小孔の角度を、前記傾斜手段を上下駆動させて前記加工ステージの傾斜角度を特定することで調整する制御処理手段と、
を有することを特徴とするレーザ加工システム。
A laser processing system that performs processing to form a predetermined number of micro holes with a predetermined angle with respect to the thickness direction of the single wafer processing medium by irradiating the single wafer processing medium conveyed on the processing stage with laser light Because
Scanning and irradiating the single-wafer processing medium transported on the processing stage with a laser beam in a direction perpendicular to the transport direction of the single-wafer processing medium or a direction different from the transport direction. Laser irradiation means for forming the predetermined number of microholes by
A vertical drive means having a vertical rod for moving the machining stage up and down, and a scanning rod having the same drive configuration as the vertical drive means, the scanning rod being rotatably connected to the vertical rod of the vertical drive means and the machining stage Are moved in a direction different from the laser irradiation scanning direction by the laser irradiation means, and two sets of scanning drive means for scanning the single-wafer processing medium on the processing stage are fixed on the straight line. configuration and then, the scan driving unit is fixed in a straight line, and tilting means for tilting the lower portion of the opposed sheet processing medium on the working stages in their respective set kick the end of the processing stage at a predetermined angle,
At least the laser irradiation unit is driven based on predetermined processing data, and the angle of the minute hole formed in the single-wafer processing medium by laser irradiation is set so that the tilting unit is driven up and down to tilt the processing stage. Control processing means for adjusting by specifying,
A laser processing system comprising:
請求項1記載のレーザ加工システムであって、前記加工ステージは、搬送される前記枚葉加工媒体を当該加工ステージ上で固定させる固定手段を備えることを特徴とするレーザ加工システム。The laser processing system according to claim 1, wherein the processing stage includes a fixing unit that fixes the single-wafer processing medium to be transported on the processing stage.
JP2003124790A 2003-04-30 2003-04-30 Laser processing system Expired - Fee Related JP4326257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124790A JP4326257B2 (en) 2003-04-30 2003-04-30 Laser processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124790A JP4326257B2 (en) 2003-04-30 2003-04-30 Laser processing system

Publications (2)

Publication Number Publication Date
JP2004330197A JP2004330197A (en) 2004-11-25
JP4326257B2 true JP4326257B2 (en) 2009-09-02

Family

ID=33502233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124790A Expired - Fee Related JP4326257B2 (en) 2003-04-30 2003-04-30 Laser processing system

Country Status (1)

Country Link
JP (1) JP4326257B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055682B1 (en) * 2008-10-07 2011-08-09 인하대학교 산학협력단 Inclination device for laser processing
DE102009020365A1 (en) * 2009-05-07 2010-11-11 Jenoptik Automatisierungstechnik Gmbh Process for the production of thin-film solar cell modules with a predetermined transparency
KR101406139B1 (en) 2014-04-01 2014-06-16 주식회사 고려반도체시스템 Method of finishing side surfaces of transparent substrate for display device and finishing apparatus using same
CN109848572A (en) * 2019-03-07 2019-06-07 浙江云景精密设备有限公司 A kind of Medical bracket laser marking machine

Also Published As

Publication number Publication date
JP2004330197A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP3213882B2 (en) Laser processing apparatus and processing method
TWI344947B (en)
CN102754108A (en) Device and method for scanning an object on a working surface
JP4326257B2 (en) Laser processing system
TW200815943A (en) Method and apparatus for obtaining drawing point data, and drawing method and apparatus
JP2009058730A (en) Image forming apparatus and method for adjusting glossiness of image
JP2007082005A (en) Image reading apparatus and image reading method
JP4133591B2 (en) Laser processing system
TW200821763A (en) Pattern drawing apparatus
JP2008203635A (en) Plotting method and plotting device
JPH10170850A (en) Pre-objective type scanner
JP2009246620A (en) Image data generating device
JP2009012014A (en) Laser beam machining apparatus, and its setting method and setting program
JP3651718B2 (en) Screen printing apparatus and printing method
US6292275B1 (en) Image scanning apparatus and method, and mirror drive method and mechanism
JP4353725B2 (en) Laser processing system
JP2005062311A (en) Device and method for preventing resonance
JP2004298914A (en) Laser beam processing system
JP3341114B2 (en) Laser processing apparatus and laser processing method
JP2004177685A (en) Photograph processing system
JP4184145B2 (en) Laser processing system
JP3687340B2 (en) Image reading device
JP4565382B2 (en) Photo processing apparatus and photo processing method
JP2024002707A (en) Exposure head for exposure device, and exposure device
TW202309476A (en) Drawing apparatus, drawing method and program product containing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4326257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees