JP4326079B2 - Cylindrical electric double layer capacitor - Google Patents

Cylindrical electric double layer capacitor Download PDF

Info

Publication number
JP4326079B2
JP4326079B2 JP22671899A JP22671899A JP4326079B2 JP 4326079 B2 JP4326079 B2 JP 4326079B2 JP 22671899 A JP22671899 A JP 22671899A JP 22671899 A JP22671899 A JP 22671899A JP 4326079 B2 JP4326079 B2 JP 4326079B2
Authority
JP
Japan
Prior art keywords
electrode
strip
shaped
separator
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22671899A
Other languages
Japanese (ja)
Other versions
JP2001052974A (en
Inventor
茂樹 小山
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22671899A priority Critical patent/JP4326079B2/en
Priority to US09/635,273 priority patent/US6414838B1/en
Publication of JP2001052974A publication Critical patent/JP2001052974A/en
Application granted granted Critical
Publication of JP4326079B2 publication Critical patent/JP4326079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical electric double-layered capacitor with increased electrostatic capacity and superior durability. SOLUTION: A cylindrical electric double-layered capacitor 1 comprises an electrode wound body 3, wherein a laminated object A with a band-like positive pole 12 and a band-like negative pole 15 stacked together with a first separator 13 in between and one of the band-like positive and negative poles 12 and 15, is stacked to a second separator 16 is wound in spiral, such that the second separator 16 is positioned on the outermost side, and a vessel 2 for housing the electrode wound body 3. A cylindrical electrode 18 is provided at the inside surface of the vessel 2, which faces the outside surface of the electrode wound body 3. The polarity of the cylindrical electrode 18 is a part of one of the band-like positive and negative poles 12 and 15, while being disposed opposite to the polarity of one positioned on the outermost side of the electrode wound body 3.

Description

【0001】
【発明の属する技術分野】
本発明は筒型電気二重層コンデンサ、特に、帯状正極と帯状負極とを第1のセパレータを挟んで重ね合せ、また帯状正、負極の一方に第2のセパレータを重ね合せた重ね合せ物を、第2のセパレータが最外側に位置するように渦巻状に巻回した電極巻回体と、その電極巻回体を収容する容器を備えた筒型電気二重層コンデンサであって、帯状正極が、第1の帯状集電体の両面にそれぞれ接合した一対の帯状分極性電極より構成され、帯状負極が、第2の帯状集電体の両面にそれぞれ接合した一対の帯状分極性電極より構成されるものに関する。
【0002】
【従来の技術】
前記構成の電極巻回体においては、帯状正、負極の一方の一部であって、最外周に位置するもの、つまり最後の一周分の環状外周面がそれと対向する相手電極を持たない。
【0003】
【発明が解決しようとする課題】
前記従来例においては、前記一周分の環状外周面が静電容量確保に関与せずに無用と化しており、またその帯状正、負極の電極利用量の異なりは電位の不均衡を招き、性能を劣化させる原因となる、といった不具合があった。
【0004】
【課題を解決するための手段】
本発明は電極巻回体の帯状正、負極の両面全体を静電容量確保のために有効に利用し、またこの帯状正、負極の電極利用量の同一化により性能の劣化を極力抑制し得るようにした前記筒型電気二重層コンデンサを提供することを目的とする。
【0005】
前記目的を達成するため請求項1の発明によれば、帯状正極と帯状負極とを第1のセパレータを挟んで重ね合せ、また帯状正、負極の一方に第2のセパレータを重ね合せた重ね合せ物を、前記第2のセパレータが最外側に位置するように渦巻状に巻回した電極巻回体と、その電極巻回体を収容する容器を備えた筒型電気二重層コンデンサであって、前記帯状正極が、第1の帯状集電体の両面にそれぞれ接合した一対の帯状分極性電極より構成され、前記帯状負極が、第2の帯状集電体の両面にそれぞれ接合した一対の帯状分極性電極より構成されるものにおいて、前記電極巻回体の外周面と対向する前記容器の内周面に、メソフェーズピッチ由来のアルカリ賦活炭により形成されて前記第2のセパレータに接触する円筒型電極を設け、その円筒型電極の極性を、前記帯状正、負極の一方の一部であって、前記電極巻回体の最外周に位置するものの極性と逆に設定したことを特徴とする筒型電気二重層コンデンサが提供され、また請求項2の発明によれば、請求項1の発明の前記構成に加えて、前記円筒型電極を膨潤させて前記第2のセパレータに密着させることを特徴とする筒型電気二重層コンデンサが提供される。
【0006】
前記のように構成すると、電極巻回体における帯状正、負極の一方の一部であって、最後の一周分の環状外周面が、それと極性を異にする容器の円筒型電極と第2のセパレータを挟んで対向して相手電極を持つこととなり、その際にメソフェーズピッチ由来のアルカリ賦活炭により形成される上記円筒型電極は膨潤して第2のセパレータに密着することができる。これにより電極巻回体の帯状正、負極の両面全体を静電容量確保のために有効に利用してその静電容量を従来例よりも増加させることができる。また帯状正、負極の電極利用量の同一化により、電気二重層コンデンサの性能の劣化を極力抑制することが可能である。
【0007】
【発明の実施の形態】
図1、2において、筒型、図示例では円筒型をなす電気二重層コンデンサ1は、容器2と、その容器2内に収容された電極巻回体3と、その容器2内に注入された電解液とを有する。容器2はAl合金製有底筒型本体4と、その一端開口部を閉鎖する端子板5とよりなり、その端子板5に正、負端子6、7と安全弁8とが設けられている。
【0008】
電極巻回体3は、正極積層帯9と負極積層帯10とを有する。その正極積層帯9は、アルミ箔よりなる第1の帯状集電体11の両面に、それぞれ帯状分極性電極eを導電性接着剤を用いて貼付し、一方の帯状分極性電極eにPTFE(ポリテトラフルオロエチレン)よりなる第1のセパレータ13を重ね合せたものである。これら一対の分極性電極eより帯状正極12が構成される。また第1のセパレータ13に電解液が含浸保持される。負極積層帯10は、アルミ箔よりなる第2の帯状集電体14の両面に、それぞれ帯状分極性電極eを導電性接着剤を用いて貼付し、一方の帯状分極性電極eにPTFEよりなる第2のセパレータ16を重ね合せたものである。これら一対の分極性電極eより帯状負極15が構成される。また第2のセパレータ16に電解液が含浸保持される。
【0009】
電極巻回体3の製造に当っては、負極積層帯10の、露出している分極性電極eに正極積層帯9の第1のセパレータ13を重ね合せる。これにより、図3に示すように、帯状正極12と帯状負極15とを第1のセパレータ13を挟んで重ね合せると共に帯状正、負極12,15の一方、図示例では帯状負極15に第2のセパレータ16を重ね合せた重ね合せ物Aが構成される。この重ね合せ物Aを、負極積層帯10の第2のセパレータ16が最外側に位置するように渦巻き状に巻回するものである。
【0010】
帯状正極12および帯状負極15は、静電容量の増加を図るべく、メソフェーズピッチを原料とするアルカリ賦活炭を主成分として構成される。電解液としては、ホウフッ化第4アンモニウム化合物、例えばTEMA・BF4 [(C2 5 3 CH3 N・BF4 (ホウフッ化トリエチルメチルアンモニウム)、溶質]のPC(プロピレンカーボネート、溶媒)溶液が用いられる。
【0011】
有底筒型本体4の内周面がAl合金面である電気二重層コンデンサ1において充電を行うと、図4に示すように、電極巻回体3における帯状負極15の最後の一周分の環状外周面17が静電容量確保に関与せずに無用と化している。
【0012】
そこで、図2、5に示すように、電極巻回体3の外周面と対向する容器2の内周面、したがって有底筒型本体4の内周面に筒型、図示例では円筒型電極18を設け、その円筒型電極18の極性を、帯状正、負極12,15の一方、図示例は帯状負極15の一部であって、電極巻回体3の最外周に位置するものの極性と逆、つまり正極に設定したものである。
【0013】
前記のように構成すると、電極巻回体3における帯状負極15の最後の一周分の環状外周面17が、それと極性を異にする容器2の円筒型電極18と第2のセパレータ16を挟んで対向して相手電極を持つ。これにより、電極巻回体3の帯状正、負極12,15の両面全体を静電容量確保のために有効に利用してその静電容量を従来例よりも増加させることができる。また帯状正、負極12,15の電極利用量の同一化により電気二重層コンデンサ1の性能の劣化を極力抑制することができる。
【0014】
円筒型電極18を、メソフェーズピッチを原料とするアルカリ賦活炭を用いて形成した場合、その極性は前記のように正極に設定される。これにより、正極側の酸化電流を下げて、その耐久性を向上させ、また円筒型電極18を膨潤させて第2のセパレータ16に密着させることができる。
【0015】
以下、具体例について説明する。
【0016】
先ず、活性炭として、メソフェーズピッチを原料とするアルカリ賦活炭、実施例ではKOH賦活炭を次のような方法で製造した。
(a)塊状をなすメソフェーズピッチに室温下で粉砕処理を施して平均粒径300μmの粉砕粉を製造し、次いで粉砕粉に、大気気流中、350℃、2時間の不融化処理を施し、その後、粉砕粉に、窒素気流中、700℃、1時間の炭化処理を施して炭化粉を得た。
(b)炭化粉と、その炭素重量の2倍量のKOHとを混合し、次いで混合物に窒素雰囲気中、800℃、5時間のアルカリ賦活処理としてのカリウム賦活処理を施し、その後、混合物の、塩酸による中和、洗浄及び乾燥といった後処理を行ってKOH賦活炭を得た。
(c)KOH賦活炭にジェットミルによる粉砕処理を施して、平均粒径30μmの微細なKOH賦活炭を得た。以下、この微細KOH賦活炭を単にKOH賦活炭と言う。
〔例−I〕
KOH賦活炭、黒鉛粉末(導電フィラ)およびPTFE(バインダ)を85:12.5:2.5の重量比となるように秤量し、次いでその秤量物を混練し、その後、混練物を用いて圧延を行うことにより厚さ175μmの電極シートを製作した。
【0017】
この電極シートから幅95mm、長さ1500mmの2枚の帯状分極性電極eを切出し、次いでそれら分極性電極eを幅105mm、長さ1500mm、厚さ40μmの帯状集電体11の両面にそれぞれ導電性接着剤を用いて接着することにより帯状正極12を形成し、その後、一方の分極性電極eにPTFEよりなる厚さ75μmの第1のセパレータ13を重ね合せて正極積層帯9を構成した。
【0018】
次に、前記電極シートから幅95mm、長さ1500mmの2枚の帯状分極性電極eを切出し、次いでそれら分極性電極eを幅105mm、長さ1500mm、厚さ40μmの帯状集電体14の両面にそれぞれ導電性接着剤を用いて接着することにより帯状負極15を形成し、その後、一方の分極性電極eにPTFEよりなる厚さ75μmの第2のセパレータ16を重ね合せて負極積層帯10を構成した。
【0019】
そして、負極積層帯10の、露出している帯状分極性電極eに正極積層帯9の第1のセパレータ13を重ね合せ、その重ね合せ物Aを、負極積層帯10の第2のセパレータ16が最外側に位置するように渦巻き状に巻回して電極巻回体3を製造した。
【0020】
一方、容器2における内径50mm、長さ130mmの有底筒型本体4内周面に、前記電極シートから切出された幅95mm、長さ157mmの分極性電極eを導電性接着剤を用いて接着することにより長さ95mm、厚さ175μmの円筒型電極18を形成した。
【0021】
そして、電極巻回体3と、1.5モルのTEMA・BF4 をPC溶液に溶解した電解液とを有底筒型本体4内に入れ、その開口部を端子板5を用いて閉鎖した。その閉鎖の際に、正極積層帯9および負極積層帯10の両集電体11,14は端子板5の正端子6および負端子7にそれぞれ接続され、また円筒型電極18は正端子6に接続される。この円筒型電気二重層コンデンサ1を実施例(1)とする。なお、図2において、重ね合せ物Aの巻終り端と円筒型電極18との間に比較的大きな空隙aが生じているが、この空隙aは作図上形成されたもので、実際には、重ね合せ物Aは極めて薄いので、このような空隙aは生じない。
〔例−II〕
KOH賦活炭、黒鉛粉末(導電フィラ)ならびにPTFEおよびPVDF(ポリフッ化ビニリデン、バインダ)を80:12:2:6の重量比となるように秤量し、次いでその秤量物に、それの重量の5倍量のN−メチル−2−ピロリドン(溶剤)を加えて混合し、ペースト状電極混合物を得た。その電極混合物をドクタブレード法により、幅105mm、長さ1500mm、厚さ40μmの帯状集電体11の両面に幅95mm、長さ1500mm、厚さ220μmにそれぞれ塗布し、次いで圧延を行って、厚さ175μmの2枚の帯状分極性電極eよりなる帯状正極12を形成し、その後、一方の分極性電極eにPTFEよりなる厚さ75μmの第1のセパレータ13を重ね合せて、正極積層帯9を構成した。
【0022】
次に、前記電極混合物をドクタブレード法により、幅105mm、長さ1500mm、厚さ40μmの帯状集電体14の両面に幅95mm、長さ1500mm、厚さ220μmにそれぞれ塗布し、次いで圧延を行って、厚さ175μmの2枚の帯状分極性電極eよりなる帯状負極15を形成し、その後、一方の分極性電極eにPTFEよりなる厚さ75μmの第2のセパレータ16を重ね合せて、負極積層帯10を構成した。
【0023】
そして、負極積層帯10の、露出している帯状分極性電極eに正極積層帯9の第1のセパレータ13を重ね合せ、その重ね合せ物を、負極積層帯10の第2のセパレータ16が最外側に位置するように渦巻き状に巻回して電極巻回体3を製造した。
【0024】
一方、容器2における内径50mm、長さ130mmの有底筒型本体4内周面に、前記電極混合物をドクタブレード法により塗布して長さ95mm、厚さ175μmの円筒型電極18を形成した。
【0025】
そして、電極巻回体3と、1.5モルのTEMA・BF4 をPC溶液に溶解した電解液とを有底筒型本体4内に入れ、その開口部を端子板5を用いて閉鎖した。その閉鎖の際に、正極積層帯9および負極積層帯10の両集電体11,14は端子板5の正端子6および負端子7にそれぞれ接続され、また円筒型電極18は正端子6に接続される。この円筒型電気二重層コンデンサ1を実施例(2)とする。
〔例−III 〕
比較例(1)として、有底筒型本体4の内周面に円筒型電極18を持たないものを用いた、ということ以外は実施例(1)と同様の構造を有する円筒型電気二重層コンデンサ1を製造した。
〔例−IV〕
比較例(2)として、有底筒型本体4の内周面に円筒型電極18を持たないものを用いた、ということ以外は実施例(2)と同様の構造を有する円筒型電気二重層コンデンサ1を製造した。
〔電気二重層コンデンサの性能〕
表1は実施例(1)、(2)および比較例(1)、(2)の初期性能を示す。
【0026】
【表1】

Figure 0004326079
【0027】
表1より、内部抵抗は実施例(1)、(2)および比較例(1)、(2)について略同じであるが、静電容量については実施例(1)は比較例(1)よりも、また実施例(2)は比較例(2)よりもそれぞれ約5%向上していることが判る。これは、円筒型電極18の存在により電極巻回体3の帯状正、負極12,15の両面全体が静電容量確保のために有効に利用されたことに起因する。
【0028】
次に、実施例(1)、(2)および比較例(1)、(2)について、実用寿命を考慮して、45℃雰囲気中にて2.5V、1700時間の連続電圧印加を行って、それらの静電容量劣化率および内部抵抗上昇率を測定したところ、図6、7の結果を得た。図6、7より、実施例(1)は比較例(1)に比べ、また実施例(2)は比較例(2)に比べて静電容量劣化率および内部抵抗上昇率が共に低く、高い実用寿命を有することが判る。これは、円筒型電極18の存在によって、帯状正、負極12,15の電極利用量の同一化を図ったことに起因する。
【0029】
なお、静電容量劣化率および内部抵抗上昇率が長時間に亘って変化している原因はガス発生等にある。
【0030】
【発明の効果】
本発明によれば、帯状正極と帯状負極とを第1のセパレータを挟んで重ね合せ、また帯状正、負極の一方に第2のセパレータを重ね合せた重ね合せ物を、前記第2のセパレータが最外側に位置するように渦巻状に巻回した電極巻回体と、その電極巻回体を収容する容器を備えた筒型電気二重層コンデンサであって、前記帯状正極が、第1の帯状集電体の両面にそれぞれ接合した一対の帯状分極性電極より構成され、前記帯状負極が、第2の帯状集電体の両面にそれぞれ接合した一対の帯状分極性電極より構成されるものにおいて、電極巻回体における帯状正、負極の一方の一部であって、最後の一周分の環状外周面が、それと極性を異にする容器の円筒型電極と第2のセパレータを挟んで対向して相手電極を持つことができ、しかもメソフェーズピッチ由来のアルカリ賦活炭により形成される上記円筒型電極は膨潤して第2のセパレータに密着することができる。その結果、電極巻回体の帯状正、負極の両面全体を静電容量確保のために有効に利用してその静電容量を従来例よりも増加させることができ、また帯状正、負極の電極利用量の同一化により、電気二重層コンデンサの性能の劣化を極力抑制することが可能となって、優れた耐久性を有する筒型電気二重層コンデンサを提供することができる。
【図面の簡単な説明】
【図1】 円筒型電気二重層コンデンサの要部破断斜視図である。
【図2】 図1の2−2線断面図である。
【図3】 正極積層帯および負極積層帯よりなる重ね合せ物の要部側面図である。
【図4】 容器の内周面に円筒型電極が存在しない場合の充電状態を示す説明図である。
【図5】 容器の内周面に円筒型電極が存在する場合の充電状態を示す説明図である。
【図6】 経過時間と静電容量劣化率との関係を示すグラフである。
【図7】 経過時間と内部抵抗上昇率との関係を示すグラフである。
【符号の説明】
1 円筒型電気二重層コンデンサ
2 容器
3 電極巻回体
11 第1の帯状集電体
12 帯状正極
13 第1のセパレータ
14 第2の帯状集電体
15 帯状負極
16 第2のセパレータ
18 円筒型電極
A 重ね合せ物
帯状分極性電極 [0001]
BACKGROUND OF THE INVENTION
The present invention is a cylindrical electric double layer capacitor, in particular, a laminate in which a strip-like positive electrode and a strip-like negative electrode are sandwiched with a first separator interposed therebetween, and a second separator is superimposed on one of the strip-like positive and negative electrodes, second separator is a cylindrical electric double-layer capacitor having the electrode winding body wound in a spiral shape so as to be positioned on the outermost side, and a container for accommodating the electrode winding body, is strip-shaped positive electrode And a pair of band-shaped polarizable electrodes bonded to both surfaces of the first band-shaped current collector, and a band-shaped negative electrode is composed of a pair of band-shaped polarizable electrodes bonded to both surfaces of the second band-shaped current collector. About things .
[0002]
[Prior art]
In the electrode winding body having the above-described configuration, one of the belt-like positive and negative electrodes, which is located on the outermost periphery, that is, the annular outer peripheral surface for the last one round does not have a counter electrode facing it.
[0003]
[Problems to be solved by the invention]
In the conventional example, the annular outer peripheral surface for one round is not used without securing the capacitance, and the difference in the amount of electrode usage of the belt-like positive and negative leads to potential imbalance, and the performance There was a problem of causing deterioration.
[0004]
[Means for Solving the Problems]
The present invention can effectively use both the positive and negative electrode strips of the wound electrode body to secure the capacitance, and can suppress degradation of performance as much as possible by making the electrode usage of the positive and negative electrodes uniform. An object of the present invention is to provide the cylindrical electric double layer capacitor as described above.
[0005]
To achieve the above object, according to the first aspect of the present invention, the belt-like positive electrode and the belt-like negative electrode are overlapped with the first separator interposed therebetween, and the second separator is overlapped with either the belt-like positive electrode or the negative electrode. things, the second separator is a cylindrical electric double-layer capacitor having the electrode winding body wound in a spiral shape so as to be positioned on the outermost side, and a container for accommodating the electrode winding body The band-shaped positive electrode is composed of a pair of band-shaped polarizable electrodes bonded to both surfaces of the first band-shaped current collector, and the band-shaped negative electrode is bonded to both surfaces of the second band-shaped current collector. in those constituted from the polarizable electrode, the inner peripheral surface of the container that faces an outer circumferential surface of the electrode winding body, cylindrical in contact is formed by alkali activation coal from mesophase pitch in the second separator Provide electrodes, A cylindrical electric double layer capacitor characterized in that the polarity of the cylindrical electrode is set to be opposite to the polarity of one of the belt-like positive and negative electrodes and located on the outermost periphery of the electrode winding body Further, according to the invention of claim 2, in addition to the structure of the invention of claim 1, the cylindrical electrode is swelled and closely attached to the second separator. A double layer capacitor is provided.
[0006]
If comprised as mentioned above, it is one part of the strip | belt-shaped positive | negative and negative electrode in an electrode winding body, Comprising: The cyclic | annular outer peripheral surface for the last one round is the cylindrical electrode of a container which differs in polarity, and 2nd The opposite electrode is held across the separator, and the cylindrical electrode formed by the alkali activated carbon derived from the mesophase pitch can swell and adhere to the second separator. This makes it possible to effectively utilize both the belt-like positive and negative surfaces of the electrode winding body for securing the capacitance, and to increase the capacitance compared to the conventional example. In addition, it is possible to suppress the deterioration of the performance of the electric double layer capacitor as much as possible by making the electrode usage amounts of the positive and negative belts the same.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2, an electric double layer capacitor 1 having a cylindrical shape, which is a cylindrical shape in the illustrated example, is injected into a container 2, an electrode winding body 3 accommodated in the container 2, and the container 2. An electrolyte solution. The container 2 includes a bottomed tubular body 4 made of an Al alloy and a terminal plate 5 that closes an opening at one end thereof. Positive and negative terminals 6 and 7 and a safety valve 8 are provided on the terminal plate 5.
[0008]
The electrode winding body 3 has a positive electrode laminate band 9 and a negative electrode laminate band 10. In the positive electrode laminated band 9, a band-shaped polarizable electrode e is attached to both surfaces of a first band-shaped current collector 11 made of an aluminum foil using a conductive adhesive, and PTFE ( The first separator 13 made of polytetrafluoroethylene is superposed. A belt-like positive electrode 12 is constituted by the pair of polarizable electrodes e. Further, the first separator 13 is impregnated and held with the electrolytic solution. The negative electrode laminate band 10 is formed by attaching a band-shaped polarizable electrode e to both surfaces of a second band-shaped current collector 14 made of an aluminum foil using a conductive adhesive, and one band-shaped polarizable electrode e made of PTFE. The second separator 16 is superposed. A strip-shaped negative electrode 15 is constituted by the pair of polarizable electrodes e. Further, the second separator 16 is impregnated and held with the electrolytic solution.
[0009]
In manufacturing the electrode winding body 3, the first separator 13 of the positive electrode laminate 9 is overlapped with the exposed polarizable electrode e of the negative electrode laminate 10. As a result, as shown in FIG. 3, the strip-shaped positive electrode 12 and the strip-shaped negative electrode 15 are overlapped with the first separator 13 interposed therebetween, and one of the strip-shaped positive and negative electrodes 12, 15, A superposed product A in which the separators 16 are superposed is formed. This superposed product A is wound in a spiral shape so that the second separator 16 of the negative electrode laminate strip 10 is located on the outermost side.
[0010]
The strip-shaped positive electrode 12 and the strip-shaped negative electrode 15 are composed mainly of alkali-activated charcoal using mesophase pitch as a raw material in order to increase the capacitance. As the electrolytic solution, a PC (propylene carbonate, solvent) solution of a quaternary ammonium borofluoride compound such as TEMA · BF 4 [(C 2 H 5 ) 3 CH 3 N · BF 4 (triethylmethylammonium borofluoride), solute]. Is used.
[0011]
When charging is performed in the electric double layer capacitor 1 in which the inner peripheral surface of the bottomed cylindrical body 4 is an Al alloy surface, as shown in FIG. The outer peripheral surface 17 becomes useless without being involved in securing the capacitance.
[0012]
Therefore, as shown in FIGS. 2 and 5, the inner peripheral surface of the container 2 facing the outer peripheral surface of the electrode winding body 3, and hence the inner peripheral surface of the bottomed cylindrical main body 4, is cylindrical, and in the illustrated example, the cylindrical electrode 18, and the polarity of the cylindrical electrode 18 is one of the strip-like positive and negative electrodes 12, 15, and the polarity in the example shown in the figure is a part of the strip-like negative electrode 15 and is located on the outermost periphery of the electrode winding body 3. In other words, the positive electrode is set.
[0013]
If comprised as mentioned above, the cyclic | annular outer peripheral surface 17 for the last round of the strip | belt-shaped negative electrode 15 in the electrode winding body 3 will pinch | interpose the cylindrical electrode 18 and the 2nd separator 16 of the container 2 which differs in polarity from it. Opposite the opposite electrode. This makes it possible to effectively utilize both the belt-like positive and negative electrodes 12 and 15 of the electrode winding body 3 for securing the capacitance, and increase the capacitance as compared with the conventional example. Further, the deterioration of the performance of the electric double layer capacitor 1 can be suppressed as much as possible by making the electrode utilization amounts of the strip-like positive and negative electrodes 12 and 15 the same.
[0014]
When the cylindrical electrode 18 is formed using alkali activated charcoal using mesophase pitch as a raw material, the polarity is set to the positive electrode as described above. Thereby, the oxidation current on the positive electrode side can be lowered to improve the durability, and the cylindrical electrode 18 can be swollen and brought into close contact with the second separator 16.
[0015]
Hereinafter, specific examples will be described.
[0016]
First, as activated carbon, alkali activated charcoal using mesophase pitch as a raw material, and in the examples, KOH activated charcoal was produced by the following method.
(A) A pulverized mesophase pitch is pulverized at room temperature to produce a pulverized powder having an average particle size of 300 μm, and then the pulverized powder is subjected to an infusibilization treatment at 350 ° C. for 2 hours in an air current, The carbonized powder was obtained by carbonizing the pulverized powder at 700 ° C. for 1 hour in a nitrogen stream.
(B) Carbonized powder and KOH having twice the carbon weight are mixed, and then the mixture is subjected to a potassium activation treatment as an alkali activation treatment at 800 ° C. for 5 hours in a nitrogen atmosphere. Post-treatments such as neutralization with hydrochloric acid, washing and drying were performed to obtain KOH activated charcoal.
(C) The KOH activated charcoal was pulverized by a jet mill to obtain fine KOH activated charcoal having an average particle size of 30 μm. Hereinafter, this fine KOH activated charcoal is simply referred to as KOH activated charcoal.
[Example-I]
KOH activated carbon, graphite powder (conductive filler) and PTFE (binder) are weighed to a weight ratio of 85: 12.5: 2.5, then the weighed material is kneaded, and then the kneaded product is used. An electrode sheet having a thickness of 175 μm was manufactured by rolling.
[0017]
Two strip-shaped polarizable electrodes e having a width of 95 mm and a length of 1500 mm are cut out from the electrode sheet, and then the polarizable electrodes e are electrically conductive on both surfaces of the strip-shaped current collector 11 having a width of 105 mm, a length of 1500 mm, and a thickness of 40 μm. A belt-like positive electrode 12 was formed by bonding using a conductive adhesive, and then a positive separator strip 9 was formed by superimposing a 75 μm thick first separator 13 made of PTFE on one polarizable electrode e.
[0018]
Next, two strip-shaped polarizable electrodes e having a width of 95 mm and a length of 1500 mm are cut out from the electrode sheet, and then the polarizable electrodes e are formed on both surfaces of the strip-shaped current collector 14 having a width of 105 mm, a length of 1500 mm, and a thickness of 40 μm. The strip-shaped negative electrode 15 is formed by adhering to each of the first and second electrodes by using a conductive adhesive, and then the second separator 16 made of PTFE and having a thickness of 75 μm is superimposed on one of the polarizable electrodes e to form the negative electrode multilayer strip 10. Configured.
[0019]
Then, the first separator 13 of the positive electrode laminate band 9 is overlaid on the exposed strip-shaped polarizable electrode e of the negative electrode laminate band 10, and the superposed product A is the second separator 16 of the negative electrode laminate band 10. The electrode winding body 3 was manufactured by being wound in a spiral shape so as to be located on the outermost side.
[0020]
On the other hand, a polarizable electrode e having a width of 95 mm and a length of 157 mm cut out from the electrode sheet is formed on the inner peripheral surface of the bottomed cylindrical body 4 having an inner diameter of 50 mm and a length of 130 mm in the container 2 using a conductive adhesive. The cylindrical electrode 18 having a length of 95 mm and a thickness of 175 μm was formed by bonding.
[0021]
Then, an electrode winding body 3, the 1.5 moles of TEMA · BF 4 and an electrolyte dissolved in PC solution was placed in a bottomed tubular body 4, closed with terminal plate 5 and its opening . At the time of closing, the current collectors 11 and 14 of the positive electrode laminate band 9 and the negative electrode laminate band 10 are connected to the positive terminal 6 and the negative terminal 7 of the terminal plate 5 respectively, and the cylindrical electrode 18 is connected to the positive terminal 6. Connected. This cylindrical electric double layer capacitor 1 is referred to as Example (1). In FIG. 2, a relatively large gap a is generated between the winding end of the overlapped product A and the cylindrical electrode 18, but this gap a is formed on the drawing, and actually, Since the superposed product A is extremely thin, such a gap a does not occur.
(Example-II)
KOH activated charcoal, graphite powder (conductive filler) and PTFE and PVDF (polyvinylidene fluoride, binder) are weighed to a weight ratio of 80: 12: 2: 6, then the weighed product is added to its weight of 5 Double amount of N-methyl-2-pyrrolidone (solvent) was added and mixed to obtain a paste-like electrode mixture. The electrode mixture was applied to both sides of a strip-shaped current collector 11 having a width of 105 mm, a length of 1500 mm, and a thickness of 40 μm by a doctor blade method to a width of 95 mm, a length of 1500 mm, and a thickness of 220 μm, followed by rolling, A strip-shaped positive electrode 12 made of two strip-shaped polarizable electrodes e having a thickness of 175 μm is formed, and then the first separator 13 made of PTFE and having a thickness of 75 μm is superimposed on one of the polarizable electrodes e. Configured.
[0022]
Next, the electrode mixture was applied to both sides of the belt-like current collector 14 having a width of 105 mm, a length of 1500 mm, and a thickness of 40 μm by a doctor blade method to a width of 95 mm, a length of 1500 mm, and a thickness of 220 μm, followed by rolling. Then, a strip-shaped negative electrode 15 made of two strip-shaped polarizable electrodes e having a thickness of 175 μm is formed, and then a second separator 16 made of PTFE and having a thickness of 75 μm is superposed on one polarizable electrode e, A laminated strip 10 was constructed.
[0023]
Then, the first separator 13 of the positive electrode laminate band 9 is overlaid on the exposed strip-shaped polarizable electrode e of the negative electrode laminate band 10, and the overlap is the second separator 16 of the negative electrode laminate band 10. The electrode winding body 3 was manufactured by being wound in a spiral shape so as to be located outside.
[0024]
On the other hand, the electrode mixture was applied to the inner peripheral surface of the bottomed cylindrical main body 4 having an inner diameter of 50 mm and a length of 130 mm in the container 2 by the doctor blade method to form a cylindrical electrode 18 having a length of 95 mm and a thickness of 175 μm.
[0025]
Then, an electrode winding body 3, the 1.5 moles of TEMA · BF 4 and an electrolyte dissolved in PC solution was placed in a bottomed tubular body 4, closed with terminal plate 5 and its opening . At the time of closing, the current collectors 11 and 14 of the positive electrode laminate band 9 and the negative electrode laminate band 10 are connected to the positive terminal 6 and the negative terminal 7 of the terminal plate 5 respectively, and the cylindrical electrode 18 is connected to the positive terminal 6. Connected. This cylindrical electric double layer capacitor 1 is referred to as Example (2).
[Example-III]
As a comparative example (1), a cylindrical electric double layer having the same structure as that of the example (1) except that the inner peripheral surface of the bottomed cylindrical body 4 does not have the cylindrical electrode 18 is used. Capacitor 1 was manufactured.
[Example-IV]
As a comparative example (2), a cylindrical electric double layer having a structure similar to that of the embodiment (2) except that the inner peripheral surface of the bottomed cylindrical body 4 does not have the cylindrical electrode 18 is used. Capacitor 1 was manufactured.
[Performance of electric double layer capacitor]
Table 1 shows the initial performance of Examples (1) and (2) and Comparative Examples (1) and (2).
[0026]
[Table 1]
Figure 0004326079
[0027]
From Table 1, the internal resistance is substantially the same for the examples (1) and (2) and the comparative examples (1) and (2), but the electrostatic capacity of the example (1) is greater than that of the comparative example (1). In addition, it can be seen that Example (2) is about 5% better than Comparative Example (2). This is due to the fact that the entire surface of the belt-like positive and negative electrodes 12 and 15 of the electrode winding body 3 is effectively used for securing the capacitance due to the presence of the cylindrical electrode 18.
[0028]
Next, for Examples (1) and (2) and Comparative Examples (1) and (2), a continuous voltage application of 2.5 V and 1700 hours was performed in a 45 ° C. atmosphere in consideration of a practical life. When the capacitance deterioration rate and internal resistance increase rate were measured, the results of FIGS. 6 and 7 were obtained. 6 and 7, Example (1) is lower than Comparative Example (1), and Example (2) is both lower and higher in capacitance deterioration rate and internal resistance increase rate than Comparative Example (2). It can be seen that it has a practical life. This is due to the fact that the electrode usage of the belt-like positive and negative electrodes 12 and 15 is equalized by the presence of the cylindrical electrode 18.
[0029]
Note that the cause of the change in the capacitance deterioration rate and the internal resistance increase rate over a long time is gas generation.
[0030]
【The invention's effect】
According to the present invention, the strip-shaped positive electrode and the strip-shaped negative electrode are overlapped with the first separator interposed therebetween, and the second separator is formed by stacking the second separator on one of the strip-shaped positive and negative electrodes. A cylindrical electric double layer capacitor including an electrode winding body wound in a spiral shape so as to be located on the outermost side, and a container for housing the electrode winding body , wherein the belt-like positive electrode is a first belt-like capacitor It is composed of a pair of band-shaped polarizable electrodes bonded to both surfaces of the current collector, and the band-shaped negative electrode is composed of a pair of band-shaped polarizable electrodes bonded to both surfaces of the second band-shaped current collector , One of the belt-like positive and negative electrodes in the electrode winding body, and the annular outer peripheral surface for the last round is opposed to the cylindrical electrode of the container having a polarity different from that of the second separator. Can have a mating electrode and mesofe The cylindrical electrode which is formed by alkali activation coal derived Zupitchi can be in close contact with the second separator swells. As a result, it is possible to effectively use both the positive and negative surfaces of the wound electrode body for securing the electrostatic capacity, and to increase the capacitance as compared with the conventional example. By using the same amount, it is possible to suppress the deterioration of the performance of the electric double layer capacitor as much as possible, and it is possible to provide a cylindrical electric double layer capacitor having excellent durability.
[Brief description of the drawings]
FIG. 1 is a cutaway perspective view of a main part of a cylindrical electric double layer capacitor.
2 is a cross-sectional view taken along line 2-2 of FIG.
FIG. 3 is a side view of an essential part of a superposed product composed of a positive electrode laminate band and a negative electrode laminate band.
FIG. 4 is an explanatory diagram showing a state of charge when there is no cylindrical electrode on the inner peripheral surface of the container.
FIG. 5 is an explanatory view showing a charged state when a cylindrical electrode is present on the inner peripheral surface of the container.
FIG. 6 is a graph showing the relationship between elapsed time and capacitance deterioration rate.
FIG. 7 is a graph showing the relationship between elapsed time and internal resistance increase rate.
[Explanation of symbols]
1 Cylindrical electric double layer capacitor 2 Container 3 Electrode winding body
11 First strip-shaped current collector 12 Strip-shaped positive electrode 13 First separator
14 Second strip current collector 15 Strip negative electrode 16 Second separator 18 Cylindrical electrode A Overlay
e- band polarizable electrode

Claims (2)

帯状正極(12)と帯状負極(15)とを第1のセパレータ(13)を挟んで重ね合せ、また帯状正、負極(12,15)の一方に第2のセパレータ(16)を重ね合せた重ね合せ物(A)を、前記第2のセパレータ(16)が最外側に位置するように渦巻状に巻回した電極巻回体(3)と、その電極巻回体(3)を収容する容器(2)を備えた筒型電気二重層コンデンサであって、
前記帯状正極(12)が、第1の帯状集電体(11)の両面にそれぞれ接合した一対の帯状分極性電極(e,e)より構成され、前記帯状負極(15)が、第2の帯状集電体(14)の両面にそれぞれ接合した一対の帯状分極性電極(e,e)より構成されるものにおいて、
前記電極巻回体(3)の外周面と対向する前記容器(2)の内周面に、メソフェーズピッチ由来のアルカリ賦活炭により形成されて前記第2のセパレータ(16)に接触する円筒型電極(18)を設け、
その円筒型電極(18)の極性を、前記帯状正、負極(12,15)の一方の一部であって、前記電極巻回体(3)の最外周に位置するものの極性と逆に設定したことを特徴とする筒型電気二重層コンデンサ。
The strip-shaped positive electrode (12) and the strip-shaped negative electrode (15) are overlapped with the first separator (13) interposed therebetween, and the second separator (16) is overlapped on one of the strip-shaped positive and negative electrodes (12, 15). An electrode winding body (3) in which the overlapped product (A) is wound in a spiral shape so that the second separator (16) is positioned on the outermost side, and the electrode winding body (3) are accommodated. a cylindrical electric double-layer capacitor comprising a container (2),
The strip-shaped positive electrode (12) is composed of a pair of strip-shaped polarizable electrodes (e, e) joined to both surfaces of the first strip-shaped current collector (11), and the strip-shaped negative electrode (15) In what is constituted by a pair of band-shaped polarizable electrodes (e, e) respectively bonded to both surfaces of the band-shaped current collector (14) ,
Cylindrical electrode formed on the inner peripheral surface of the container (2) facing the outer peripheral surface of the electrode winding body (3) by alkali activated carbon derived from mesophase pitch and in contact with the second separator (16) (18) is provided,
The polarity of the cylindrical electrode (18) is set to be opposite to the polarity of one of the belt-like positive and negative electrodes (12, 15) and located on the outermost periphery of the electrode winding body (3). A cylindrical electric double layer capacitor characterized by the above.
円筒型電極(18)を膨潤させて前記第2のセパレータ(16)に密着させることを特徴とする、請求項1に記載の筒型電気二重層コンデンサ。  The cylindrical electric double layer capacitor according to claim 1, characterized in that a cylindrical electrode (18) is swollen and brought into close contact with the second separator (16).
JP22671899A 1999-08-10 1999-08-10 Cylindrical electric double layer capacitor Expired - Fee Related JP4326079B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22671899A JP4326079B2 (en) 1999-08-10 1999-08-10 Cylindrical electric double layer capacitor
US09/635,273 US6414838B1 (en) 1999-08-10 2000-08-09 Cylindrical electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22671899A JP4326079B2 (en) 1999-08-10 1999-08-10 Cylindrical electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2001052974A JP2001052974A (en) 2001-02-23
JP4326079B2 true JP4326079B2 (en) 2009-09-02

Family

ID=16849551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22671899A Expired - Fee Related JP4326079B2 (en) 1999-08-10 1999-08-10 Cylindrical electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4326079B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719466B2 (en) 2000-08-24 2010-05-18 Sirf Technology Holdings, Inc. Communications systems that reduces auto-correlation or cross-correlation in weak signals
US7877104B2 (en) 2001-05-21 2011-01-25 Sirf Technology Inc. Method for synchronizing a radio network using end user radio terminals
US7933627B2 (en) 2000-12-01 2011-04-26 Sirf Technology, Inc. GPS RF front end IC with frequency plan for improved integrability
US8138972B2 (en) 2003-09-02 2012-03-20 Csr Technology Inc. Signal processing system for satellite positioning signals
US8164517B2 (en) 2003-09-02 2012-04-24 Csr Technology Inc. Global positioning system receiver timeline management
US8593345B2 (en) 2003-09-02 2013-11-26 Csr Technology Inc. Signal processing system for satellite positioning signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267740A1 (en) * 2010-04-29 2011-11-03 Shrisudersan Jayaraman Packaging for electrochemically active materials, devices made therefrom, and methods of making the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719466B2 (en) 2000-08-24 2010-05-18 Sirf Technology Holdings, Inc. Communications systems that reduces auto-correlation or cross-correlation in weak signals
US7933627B2 (en) 2000-12-01 2011-04-26 Sirf Technology, Inc. GPS RF front end IC with frequency plan for improved integrability
US7877104B2 (en) 2001-05-21 2011-01-25 Sirf Technology Inc. Method for synchronizing a radio network using end user radio terminals
US8138972B2 (en) 2003-09-02 2012-03-20 Csr Technology Inc. Signal processing system for satellite positioning signals
US8164517B2 (en) 2003-09-02 2012-04-24 Csr Technology Inc. Global positioning system receiver timeline management
US8593345B2 (en) 2003-09-02 2013-11-26 Csr Technology Inc. Signal processing system for satellite positioning signals
US8947300B2 (en) 2003-09-02 2015-02-03 Csr Technology Inc. Control and features for satellite positioning system receivers
US9869770B2 (en) 2003-09-02 2018-01-16 Qualcomm Incorporated Control and features for satellite positioning system receivers

Also Published As

Publication number Publication date
JP2001052974A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
JP6928918B2 (en) Rechargeable battery
KR20060050524A (en) Electrical double layer capacitor
CN112236895B (en) Nonaqueous electrolyte secondary battery
JP6401197B2 (en) Electrochemical device and method for producing electrochemical device
WO2018168628A1 (en) Non-aqueous electrolyte secondary battery
JP3509735B2 (en) Cylindrical electric double layer capacitor
EP3933961A1 (en) Secondary battery
JP7321158B2 (en) Non-aqueous electrolyte secondary battery
JP4326079B2 (en) Cylindrical electric double layer capacitor
JP6684034B2 (en) Electrochemical device and method for manufacturing electrochemical device
JP2004335889A (en) Electrochemical capacitor
US20200321593A1 (en) Nonaqueous electrolyte secondary battery
JP7458008B2 (en) Secondary batteries and insulation materials
JPH1097956A (en) Electric double-layer capacitor
JP2004253562A (en) Electrochemical capacitor
WO2017010129A1 (en) Electrochemical device
US20210226199A1 (en) Nonaqueous electrolyte secondary battery
JP2009026853A (en) Electric double-layer capacitor
JP2009088279A (en) Electrochemical device
JP3422406B2 (en) Electric double layer capacitor
JP2005183806A (en) Electrochemical capacitor
JPH07307250A (en) Electric double-layer capacitor
JP2001052970A (en) Cylindrical electric double-layered capacitor
WO2023210640A1 (en) Secondary battery
CN115039254B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees