JP4325737B2 - Motor controller for hybrid vehicle - Google Patents

Motor controller for hybrid vehicle Download PDF

Info

Publication number
JP4325737B2
JP4325737B2 JP2008268502A JP2008268502A JP4325737B2 JP 4325737 B2 JP4325737 B2 JP 4325737B2 JP 2008268502 A JP2008268502 A JP 2008268502A JP 2008268502 A JP2008268502 A JP 2008268502A JP 4325737 B2 JP4325737 B2 JP 4325737B2
Authority
JP
Japan
Prior art keywords
engine
motor
filter
forced regeneration
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008268502A
Other languages
Japanese (ja)
Other versions
JP2009057045A (en
Inventor
誠 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2008268502A priority Critical patent/JP4325737B2/en
Publication of JP2009057045A publication Critical patent/JP2009057045A/en
Application granted granted Critical
Publication of JP4325737B2 publication Critical patent/JP4325737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ハイブリッド車両のモータ制御装置に関し、特に排ガス中の微粒子を捕集するフィルタの強制再生時におけるモータの制御に関するものである。   The present invention relates to a motor control device for a hybrid vehicle, and more particularly to control of a motor during forced regeneration of a filter that collects particulates in exhaust gas.

従来より、内燃機関(エンジン)と電動機(モータ)とを組み合わせて車両の駆動力を得るようにしたハイブリッド車両又はハイブリッド電気自動車が開発、実用化されている。このようなハイブリッド車両では、エンジンを専らモータの電力供給源(発電機)として用いるシリーズ式ハイブリッド車両や、エンジンの出力軸とモータの出力軸とを機械的に接続して、両方の駆動力により駆動輪を駆動し得るようにしたパラレル式ハイブリッド車両が知られている。   Conventionally, a hybrid vehicle or a hybrid electric vehicle in which a driving force of a vehicle is obtained by combining an internal combustion engine (engine) and an electric motor (motor) has been developed and put into practical use. In such a hybrid vehicle, a series hybrid vehicle that uses the engine exclusively as a motor power supply source (generator), or mechanically connecting the engine output shaft and the motor output shaft, 2. Description of the Related Art A parallel hybrid vehicle that can drive a drive wheel is known.

このうちパラレル式ハイブリッド車両では、ドライバのアクセル踏込み量等の負荷情報と、エンジン回転数とから要求駆動トルクを求めるとともに、バッテリの残存容量(充電率)からエンジンとモータとの出力配分が設定されるようになっている。
ところで、パラレル式ハイブリッド車両のエンジンとしてディーゼルエンジンを適用することが考えられる。この場合、ディーゼルエンジンの排気通路中に酸化触媒(DOC)及びパティキュレート捕集用のフィルタ(以下、単にフィルタという)を設け、排ガス中に含まれる粒子状物質(PM:Particulate Matter)をフィルタで捕集するとともにフィルタに堆積したPMを酸化(燃焼)させてフィルタを連続再生するようにした技術が知られている。なお、以下では、粒子状物質をPMと表記するが、すす,パティキュレート及びスートと同一の意味である。
Among these, in a parallel hybrid vehicle, the required drive torque is obtained from the load information such as the accelerator depression amount of the driver and the engine speed, and the output distribution between the engine and the motor is set from the remaining battery capacity (charge rate). It has become so.
By the way, it is conceivable to apply a diesel engine as an engine of a parallel hybrid vehicle. In this case, an oxidation catalyst (DOC) and a particulate collection filter (hereinafter simply referred to as a filter) are provided in the exhaust passage of the diesel engine, and particulate matter (PM) contained in the exhaust gas is filtered. A technique is known in which the filter is continuously regenerated by oxidizing (combusting) PM collected and deposited on the filter. In the following, the particulate matter is expressed as PM, which has the same meaning as soot, particulate and soot.

このような技術では、例えばフィルタの入口と出口との間の圧力差を検出する差圧センサを設け、この差圧センサで検出された差圧が所定値以上になると、フィルタが目詰まりを起こしているものと判定して、フィルタの強制再生が実行されるようになっている。
また、強制再生時には、膨張行程の後期又は排気行程の初期に追加燃料噴射(ポスト燃料噴射)を行い、この追加燃料のうちの未燃燃料(HC;炭化水素)を酸化触媒で酸化反応(燃焼)させて、このときの反応熱によりフィルタに流入する排ガス温度を上昇させる。そして、フィルタに流入する排ガス温度を高温化することでフィルタ内のPMを自己着火させてPMを燃焼させ、フィルタの強制再生を図っている(第1の従来技術)。
In such a technique, for example, a differential pressure sensor that detects a pressure difference between the inlet and the outlet of the filter is provided, and if the differential pressure detected by the differential pressure sensor exceeds a predetermined value, the filter is clogged. Therefore, the filter is forcedly regenerated.
During forced regeneration, additional fuel injection (post fuel injection) is performed at the later stage of the expansion stroke or at the beginning of the exhaust stroke, and unburned fuel (HC; hydrocarbon) of the additional fuel is oxidized (combusted) with an oxidation catalyst. And the exhaust gas temperature flowing into the filter is raised by the reaction heat at this time. The exhaust gas flowing into the filter is heated to cause the PM in the filter to self-ignite to burn the PM, thereby forcibly regenerating the filter (first prior art).

なお、特許文献1には、エンジン走行とモータ走行とを切り換えながら走行する通常走行モードと、エンジンのみで走行する特別走行モードとをそなえたハイブリッド自動車において、触媒が活性化していないときには走行モードを強制的に特別走行モードに切り換えるようにした技術が開示されている。そして、このような制御により、触媒温度の低下時に触媒温度を速やかに上昇させることができる(第2の従来技術)。
特開2001−115869号公報
In Patent Document 1, in a hybrid vehicle having a normal travel mode that travels while switching between engine travel and motor travel and a special travel mode that travels only by the engine, the travel mode is set when the catalyst is not activated. A technique for forcibly switching to a special traveling mode is disclosed. Such control makes it possible to quickly increase the catalyst temperature when the catalyst temperature decreases (second conventional technique).
JP 2001-115869 A

ところで、パラレル式ハイブリッドではバッテリ残存容量が低下するとエンジンによりモータを駆動し、モータを発電機として作動させることによりバッテリを充電する場合がある。
しかしながら、上述の第1の従来技術では、停車中におけるバッテリの充電(以下、停車発電制御又は単に発電制御という)とフィルタの強制再生とが重なると、燃料の燃焼に酸素を消費してしまうため強制再生が促進されず強制再生時間が長くなり、燃費が悪化するという課題がある。つまり、モータを発電機としてエンジンにより駆動しているときには、エンジンの負荷が増大して燃料噴射量が増大し、空気過剰率が低下(つまりリッチ化)して、ほとんどの酸素が燃焼に用いられてしまう。このため排ガス内の酸素濃度が低下して、フィルタに供給される酸素量が低下し、フィルタ内におけるPMの燃焼(酸化)が促進されずに強制再生時間が長くなる。そして、強制再生時間が長引く分だけ燃費が悪化することになる。
By the way, in a parallel hybrid, when a battery remaining capacity falls, a motor may be driven by an engine and a battery may be charged by operating a motor as a generator.
However, in the first prior art described above, if charging of the battery during stoppage (hereinafter referred to as stop power generation control or simply power generation control) and forced regeneration of the filter overlap, oxygen is consumed for fuel combustion. There is a problem that forced regeneration is not promoted and the forced regeneration time becomes longer, resulting in deterioration of fuel consumption. In other words, when the motor is driven by the engine as a generator, the load on the engine increases, the fuel injection amount increases, the excess air ratio decreases (ie, enriches), and most oxygen is used for combustion. End up. For this reason, the oxygen concentration in the exhaust gas decreases, the amount of oxygen supplied to the filter decreases, and the forced regeneration time becomes longer without promoting the combustion (oxidation) of PM in the filter. Then, the fuel consumption is deteriorated by the amount that the forced regeneration time is prolonged.

また、特許文献1の技術(第2の従来技術)では、触媒が活性化していないときには走行モードを強制的にエンジンのみで走行する特別走行モードに切り換えている。しかしながら、この第2の従来技術は車両走行中の場合に適用される技術であって、車両の停車中に生じる上記課題の解決手段に関しては何ら開示されていない。
本発明は、このような要望に応えるべく創案されたもので、ハイブリッド車両の強制再生時間の短縮を図り燃費の向上を図るようにした、ハイブリッド車両のモータ制御装置を提供することを目的とする。
Further, in the technique of Patent Document 1 (second conventional technique), when the catalyst is not activated, the traveling mode is forcibly switched to a special traveling mode in which traveling is performed only by the engine. However, this second conventional technique is a technique applied when the vehicle is running, and does not disclose any means for solving the above-mentioned problems that occur while the vehicle is stopped.
The present invention has been developed to meet such demands, and an object of the present invention is to provide a motor control device for a hybrid vehicle that reduces the forced regeneration time of the hybrid vehicle and improves fuel efficiency. .

このため、本発明のハイブリッド車両のモータ制御装置は、車両に搭載されたディーゼルエンジンと、前記車両に搭載されたモータと、前記モータに電力供給可能に接続されたバッテリと、前記ディーゼルエンジンの排ガス中の粒子状物質を捕集するフィルタと、前記フィルタを強制再生させる強制再生手段と、前記バッテリの充電状態に基づいて前記ディーゼルエンジンの出力を電力に変換して前記バッテリを充電するバッテリ充電手段と、前記車両が停車中であり、前記強制再生手段による強制再生が実行中であり、且つ前記バッテリの充電率が所定値より高い場合には、前記モータにより前記ディーゼルエンジンの出力をアシストする強制再生時アシスト手段とを備えていることを特徴としている(請求項1)。   For this reason, the motor controller for a hybrid vehicle according to the present invention includes a diesel engine mounted on the vehicle, a motor mounted on the vehicle, a battery connected to the motor so as to be able to supply power, and exhaust gas of the diesel engine. A filter for collecting particulate matter therein, a forced regeneration means for forcibly regenerating the filter, and a battery charging means for charging the battery by converting the output of the diesel engine into electric power based on the state of charge of the battery And when the vehicle is stopped, forced regeneration by the forced regeneration means is being performed, and the charging rate of the battery is higher than a predetermined value, the motor is used to assist the output of the diesel engine. And a playback assist means. (Claim 1)

また、所定の停止条件を満たすと前記ディーゼルエンジンの運転を自動停止する自動停止手段と、前記強制再生が実行されているときは前記自動停止手段による運転停止を禁止する自動停止禁止手段とを備えていることを特徴としている(請求項2)。
また、前記ディーゼルエンジンの出力軸は、クラッチを介して前記モータの入力軸に接続されていることを特徴としている(請求項3)。
And an automatic stop means for automatically stopping the operation of the diesel engine when a predetermined stop condition is satisfied, and an automatic stop prohibiting means for prohibiting the operation stop by the automatic stop means when the forced regeneration is being executed. (Claim 2).
The output shaft of the diesel engine is connected to the input shaft of the motor via a clutch (claim 3).

本発明のハイブリッド車両のモータ制御装置によれば、停車時に強制再生実行中であり、且つバッテリの充電率が所定値より高い場合には、モータによりディーゼルエンジンの出力がアシストされるので、エンジンの負荷が低下して、空気過剰率を高めることができる。これにより、排ガス中の酸素濃度が高められ、強制再生時にフィルタに供給される酸素量を増大させることができ再生時間の短縮を図ることができる。したがって、燃費の向上を図ることができる。   According to the hybrid vehicle motor control device of the present invention, when the forced regeneration is being executed when the vehicle is stopped and the battery charging rate is higher than the predetermined value, the motor assists the output of the diesel engine. The load can be reduced and the excess air ratio can be increased. As a result, the oxygen concentration in the exhaust gas is increased, the amount of oxygen supplied to the filter during forced regeneration can be increased, and the regeneration time can be shortened. Therefore, the fuel consumption can be improved.

また、強制再生が実行されているときはエンジンの自動停止(アイドルストップ)が禁止されるので、フィルタの強制再生中のエンジン停止を確実に回避できる。   Further, since the engine automatic stop (idle stop) is prohibited when the forced regeneration is being performed, it is possible to reliably avoid the engine stop during the forced regeneration of the filter.

以下、図面により、本発明の一実施形態に係るハイブリッド車両のモータ制御装置について説明すると、図1は本発明が適用される車両のパワートレインを示す模式図である。図示するように、この車両は、駆動源8としてエンジン1と電動機(又はモータ/ジェネレータ、以下、単にモータという)2とを用いたパラレル式ハイブリッド自動車(HEV)であって、このエンジン1とモータ2との合計出力により車両が駆動されるようになっている。   Hereinafter, a motor control apparatus for a hybrid vehicle according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a power train of a vehicle to which the present invention is applied. As shown in the figure, this vehicle is a parallel hybrid vehicle (HEV) using an engine 1 and an electric motor (or a motor / generator, hereinafter simply referred to as a motor) 2 as a drive source 8. The vehicle is driven by the total output of 2.

また、エンジン1とモータ2との間には、エンジン1とモータ2との駆動力を断接しうるクラッチ3が設けられている。また、モータ2の出力側には、エンジン1及び/又はモータ2からの出力回転数を変速する変速機4が設けられている。つまり、この車両ではエンジン1、クラッチ3、モータ2、変速機4の順で各機器が直列に配設されており、エンジン1の出力軸は、クラッチ3を介してモータ2の入力軸に接続されている。そして、変速機4から出力された駆動力が駆動輪7に伝達されるようになっている。   A clutch 3 that can connect and disconnect the driving force between the engine 1 and the motor 2 is provided between the engine 1 and the motor 2. On the output side of the motor 2, a transmission 4 that changes the output rotation speed from the engine 1 and / or the motor 2 is provided. That is, in this vehicle, each device is arranged in series in the order of the engine 1, the clutch 3, the motor 2, and the transmission 4, and the output shaft of the engine 1 is connected to the input shaft of the motor 2 through the clutch 3. Has been. The driving force output from the transmission 4 is transmitted to the drive wheels 7.

また、モータ2にはインバータ5を介して充放電可能なバッテリ6が接続されており、このインバータ5の作動を制御することにより、モータ2の作動状態が制御されるようになっている。
このような構成により、クラッチ3を接続してモータ2を駆動することで、エンジン1の駆動力をモータ2の駆動力でアシストしながら走行することができる。また、インバータ5によりモータ2を発電機として機能させることで、エンジン2の駆動力で発電を行ってバッテリ6を充電したり、エンジンブレーキ相当の回生ブレーキを作用させて電力を回生したりすることができる。なお、クラッチ3を切断した状態で、モータ2がバッテリ6から電力供給を受けて力行することにより、モータ2の駆動力のみで駆動輪7を駆動することも可能である。
Further, a chargeable / dischargeable battery 6 is connected to the motor 2 via an inverter 5, and the operation state of the motor 2 is controlled by controlling the operation of the inverter 5.
With such a configuration, by driving the motor 2 with the clutch 3 connected, it is possible to travel while assisting the driving force of the engine 1 with the driving force of the motor 2. Further, by causing the motor 2 to function as a generator by the inverter 5, the battery 6 is charged by generating power with the driving force of the engine 2, or the electric power is regenerated by applying a regenerative brake equivalent to the engine brake. Can do. In addition, it is also possible to drive the driving wheel 7 only by the driving force of the motor 2 by the motor 2 being powered by receiving power supply from the battery 6 with the clutch 3 disconnected.

ところで、本実施形態では変速機4として自動変速機が適用されている。この自動変速機4は、シフトマップで設定された目標変速段となるように現在の変速段を切り換えるような有段式の自動変速機であって、特に、ここでは、平行2軸歯車式の手動変速機をベースにして図示しない複数のアクチュエータを作動させることにより変速段を切り換えるような自動変速機として構成されている。   By the way, in this embodiment, an automatic transmission is applied as the transmission 4. This automatic transmission 4 is a stepped automatic transmission that switches the current shift stage so as to be the target shift stage set in the shift map. The automatic transmission is configured to switch a gear position by operating a plurality of actuators (not shown) based on a manual transmission.

このため、この変速機4には、上記図示しない複数のアクチュエータを有するギアシフトユニット(GSU)9が付設されている(図2参照)。なお、変速機としてはこのような変速機以外にも、手動変速機を用いても良いし、トルクコンバータと遊星歯車機構とを組み合わせた自動変速機を用いても良い。
また、クラッチ3は変速段の切り換え時に自動的にクラッチの断接を行う自動クラッチであって、やはり図示しないクラッチアクチュエータが上記GSU9と協調して作動することにより、クラッチ3の断接が実行されるようになっている。なお、変速機2にトルクコンバータを有する自動変速機が適用された場合には、このクラッチ3は省略可能である。
Therefore, the transmission 4 is provided with a gear shift unit (GSU) 9 having a plurality of actuators (not shown) (see FIG. 2). In addition to such a transmission, a manual transmission may be used as the transmission, or an automatic transmission combining a torque converter and a planetary gear mechanism may be used.
The clutch 3 is an automatic clutch that automatically engages and disengages the clutch when the gear position is changed. The clutch actuator (not shown) operates in cooperation with the GSU 9 so that the clutch 3 is engaged and disengaged. It has become so. When an automatic transmission having a torque converter is applied to the transmission 2, the clutch 3 can be omitted.

また、本実施形態においては、エンジン1はディーゼルエンジンとして構成されており、インジェクタ10(図2参照)の駆動時間(即ち燃料噴射量)を制御することで、エンジン1の出力トルクが制御されるようになっている。
次に、図2を用いて本発明の要部について説明すると、上述のディーゼルエンジン1の排気通路31には、上流側から順に排ガス中の成分を酸化させる酸化触媒32と排ガス中のPM(カーボンCを主体とする粒子状物質)を捕集するフィルタ33とが設けられている。
In the present embodiment, the engine 1 is configured as a diesel engine, and the output torque of the engine 1 is controlled by controlling the drive time (that is, the fuel injection amount) of the injector 10 (see FIG. 2). It is like that.
Next, the main part of the present invention will be described with reference to FIG. 2. In the exhaust passage 31 of the diesel engine 1 described above, an oxidation catalyst 32 that oxidizes components in the exhaust gas in order from the upstream side and PM (carbon in the exhaust gas). And a filter 33 for collecting (particulate matter mainly composed of C).

ここで、酸化触媒32は、通常走行時は、排ガス中のNOをNO2 に酸化し、このNO2 を酸化剤としてフィルタ33に供給するものである。そして、フィルタ33ではこのNO2 とPMとが反応することによりPMが燃焼して、フィルタ33の連続再生が図られるようになっている。
また、強制再生時には、排ガス中の未燃燃料(HC)を酸化反応(燃焼)させて、このときの反応熱により高温となった排ガスをフィルタ33に供給する機能を有している。そして、フィルタ33に流入する排ガス温度を高温化することでフィルタ33内のPMを自己着火させてPMを燃焼させ、フィルタ33を強制的に再生させるようになっている。
Here, during normal travel, the oxidation catalyst 32 oxidizes NO in the exhaust gas to NO 2 and supplies this NO 2 to the filter 33 as an oxidant. In the filter 33, the NO 2 and PM react with each other to burn the PM, and the filter 33 can be continuously regenerated.
Further, at the time of forced regeneration, there is a function of oxidizing unburned fuel (HC) in the exhaust gas (combustion) and supplying the exhaust gas heated to high temperature by the reaction heat at this time to the filter 33. Then, by raising the temperature of the exhaust gas flowing into the filter 33, the PM in the filter 33 is self-ignited to burn the PM, and the filter 33 is forcibly regenerated.

ここで、詳細は図示しないが、フィルタ33は、全体が多孔質材で形成されるとともに、上流側が開口し下流側が閉塞された第1通路と、上流側が閉塞され下流側が開口する第2通路とが交互に隣接して配設されている。これにより、フィルタ33に供給された排ガスは、多孔質の壁部を介して第1通路から第2通路に流入し、このときに排ガス中のPMが壁部において捕集されるようになっている。また、排気通路31上にはフィルタ33の上流側(入口)と下流側(出口)との圧力差を検出する差圧センサ34が設けられている。   Here, although not shown in detail, the filter 33 is formed of a porous material as a whole, and includes a first passage opened on the upstream side and closed on the downstream side, and a second passage closed on the upstream side and opened on the downstream side. Are alternately arranged adjacent to each other. As a result, the exhaust gas supplied to the filter 33 flows from the first passage into the second passage through the porous wall, and at this time, PM in the exhaust gas is collected in the wall. Yes. A differential pressure sensor 34 that detects a pressure difference between the upstream side (inlet) and the downstream side (outlet) of the filter 33 is provided on the exhaust passage 31.

一方、この車両には図2に示すように、ハイブリッドシステムを統括的に管理,制御するシステム管理手段(システムマネジメントユニット)11が設けられており、上記の差圧センサ34はこのシステム管理手段11に設けられた強制再生手段35に接続されている。ここで、この強制再生手段35は、差圧センサ34からの情報に基づいてフィルタ33の上流側と下流側との差圧が所定値以上となると、所定量のPMがフィルタ33に堆積してフィルタ33が目詰まりを生じているものと判定して、フィルタ33の強制再生を実行するものである。   On the other hand, as shown in FIG. 2, the vehicle is provided with a system management means (system management unit) 11 for comprehensively managing and controlling the hybrid system, and the differential pressure sensor 34 is provided with the system management means 11. Is connected to the forced regeneration means 35 provided in FIG. Here, the forced regeneration means 35 accumulates a predetermined amount of PM on the filter 33 when the differential pressure between the upstream side and the downstream side of the filter 33 exceeds a predetermined value based on the information from the differential pressure sensor 34. It is determined that the filter 33 is clogged, and forced regeneration of the filter 33 is executed.

そして、強制再生手段35により強制再生が開始されると、後述のECU12から強制再生指令がインジェクタ10に出力され、主燃料噴射の後に追加燃料噴射(ポスト噴射)が実行されるようになっている。このポスト噴射は、例えば排気行程において噴射されるものであって、このようなタイミングで燃料を噴射することにより、燃料がシリンダ内や排気通路等で燃焼することなく酸化触媒32に達し、触媒32において酸化(燃焼)が行なわれる。これにより、触媒32の下流側にあるフィルタ33が熱せられて、PMが酸化可能な温度(600℃)までフィルタ33が昇温されてPMの焼却(フィルタの再生)が実行されるようになっている。また、このようなポスト燃料噴射量は、エンジン回転数Ne,負荷(ここでは主噴射量qmain)及び触媒32の出口温度等に応じて設定されるようになっている。   When forced regeneration is started by the forced regeneration means 35, a forced regeneration command is output from the ECU 12, which will be described later, to the injector 10, and additional fuel injection (post-injection) is executed after main fuel injection. . This post-injection is, for example, injected in the exhaust stroke. By injecting fuel at such timing, the fuel reaches the oxidation catalyst 32 without burning in the cylinder, the exhaust passage, or the like, and the catalyst 32 is injected. Oxidation (combustion) takes place at. As a result, the filter 33 on the downstream side of the catalyst 32 is heated, the temperature of the filter 33 is increased to a temperature at which PM can be oxidized (600 ° C.), and PM incineration (filter regeneration) is performed. ing. Further, such a post fuel injection amount is set according to the engine speed Ne, the load (here, the main injection amount qmain), the outlet temperature of the catalyst 32, and the like.

一方、システム管理手段11には、エンジン出力を制御するエンジンコントロールユニット(ECU)12と、インバータ5の作動状態を制御してモータ出力を制御するモータコントロールユニット(MCU)13とを備えている。また、図示はしないが上記変速機4の目標変速段を設定するとともにGSU9の作動を制御する変速機コントローラ、及び変速機コントローラと協調してクラッチ3の断接状態を制御するクラッチコントローラも設けられている。   On the other hand, the system management means 11 includes an engine control unit (ECU) 12 that controls the engine output and a motor control unit (MCU) 13 that controls the motor output by controlling the operating state of the inverter 5. Although not shown, a transmission controller that sets the target gear position of the transmission 4 and controls the operation of the GSU 9 and a clutch controller that controls the connection / disconnection state of the clutch 3 in cooperation with the transmission controller are also provided. ing.

また、システム管理手段11内には、車両の走行状態やドライバの運転操作状態に基づいて、駆動源8に対する要求トルクを算出する要求トルク算出手段14と、この要求トルク算出手段14で算出された駆動源8の要求トルクのうち、エンジン1が受け持つ出力トルク(エンジンの出力配分)と、モータ2が受け持つ出力トルク(モータの出力配分)を設定する出力配分決定手段15が設けられている。   Further, in the system management means 11, the required torque calculation means 14 for calculating the required torque for the drive source 8 based on the running state of the vehicle and the driving operation state of the driver, and the required torque calculation means 14 are used. Of the required torque of the drive source 8, output distribution determining means 15 is provided for setting the output torque (engine output distribution) handled by the engine 1 and the output torque (motor output distribution) handled by the motor 2.

また、システム管理手段11には、上記差圧センサ34以外にも、エンジン1のエンジン回転数Neを検出するエンジン回転数センサ21、ドライバのアクセル踏み込み量(アクセル開度)θACCを検出するアクセル開度センサ23、及びバッテリ6の残存容量(充
電率)SOCを検出する残存容量センサ24が接続されている。
ここで、図示するように、要求トルク算出手段14には、エンジン回転数センサ21及びアクセル開度センサ23によりそれぞれ検出されたエンジン回転数Ne及びアクセル開度θACCが入力されるようになっており、要求トルク算出手段14では、これらの情報(
Ne,θACC)に基づいて、ドライバがエンジン1及びモータ2からなる駆動源8に対し
て要求する要求トルクTを算出するようになっている。
In addition to the differential pressure sensor 34, the system management means 11 includes an engine speed sensor 21 for detecting the engine speed Ne of the engine 1 and an accelerator for detecting the accelerator depression amount (accelerator opening) θ ACC of the driver. An opening sensor 23 and a remaining capacity sensor 24 for detecting the remaining capacity (charge rate) SOC of the battery 6 are connected.
Here, as shown in the figure, the engine speed Ne and the accelerator opening θ ACC detected by the engine speed sensor 21 and the accelerator opening sensor 23 are input to the required torque calculation means 14. Therefore, the required torque calculation means 14 provides these pieces of information (
Ne, θ ACC ), the required torque T requested by the driver to the drive source 8 composed of the engine 1 and the motor 2 is calculated.

また、出力配分決定手段15には、バッテリ電圧とバッテリ電流とに基づきバッテリ6の残存容量SOCを算出する残存容量センサ24が接続されている。また、出力配分決定手段15には、残存容量センサ24で得られるバッテリ残存容量SOCと、要求トルク算出手段14で設定された要求合計トルクTとをパラメータとして、エンジン1とモータ2との出力配分を設定する出力配分設定マップ(図示省略)が設けられており、このマップから、エンジン1及びモータ2の出力配分(トルク配分又は割合)が設定されるようになっている。なお、この出力配分設定マップでは、基本的にはバッテリ6の残存容量SOCが低くなるほどエンジンの出力配分を高く設定するような特性に設定されている。   The output distribution determining means 15 is connected to a remaining capacity sensor 24 that calculates the remaining capacity SOC of the battery 6 based on the battery voltage and the battery current. Further, the output distribution determining means 15 uses the remaining battery capacity SOC obtained by the remaining capacity sensor 24 and the requested total torque T set by the requested torque calculating means 14 as parameters, and the output distribution between the engine 1 and the motor 2. An output distribution setting map (not shown) is set, and output distribution (torque distribution or ratio) of the engine 1 and the motor 2 is set from this map. In this output distribution setting map, the characteristic is basically set such that the output distribution of the engine is set higher as the remaining capacity SOC of the battery 6 becomes lower.

このようにして出力配分が決定されると、要求トルク算出手段14で算出された駆動源8の要求トルクTと上記の出力配分と基づいて、エンジン1の目標トルクTe及びモータ2の目標トルクTmがそれぞれ設定されるようになっている。
また、上述のようにしてエンジン目標トルクTe及びモータ目標トルクTmが設定されると、このうちエンジン目標トルクTeがECU12に入力されるようになっており、ECU12では、上記エンジン目標トルクTeを出力するためのインジェクタ駆動時間が設定(又は算出)されるようになっている。これにより、ECU12で設定されたインジェクタ駆動時間でインジェクタ10が駆動され、エンジン出力トルクが目標トルクTeとなるようにエンジン1が制御される。
When the output distribution is determined in this way, the target torque Te of the engine 1 and the target torque Tm of the motor 2 are calculated based on the required torque T of the drive source 8 calculated by the required torque calculation means 14 and the above output distribution. Are set respectively.
In addition, when the engine target torque Te and the motor target torque Tm are set as described above, the engine target torque Te is input to the ECU 12, and the ECU 12 outputs the engine target torque Te. The injector drive time for this is set (or calculated). Thereby, the injector 10 is driven with the injector driving time set by the ECU 12, and the engine 1 is controlled so that the engine output torque becomes the target torque Te.

また、モータ目標トルクTmが設定されると、このモータ目標トルクTmがMCU13に入力されて、この目標トルクTmとなるようにインバータ5の作動が制御されるようになっている。そして、これによりモータ出力トルクが目標トルクTmとなるようにモータ2が制御される。
さて、ここまではモータ2が駆動源として機能する場合について説明したが、このモータ2はバッテリ6の残存容量SOCが第1所定値(例えば33%)以下まで低下すると、発電機として機能してバッテリ6を充電するようになっている。
When the motor target torque Tm is set, the motor target torque Tm is input to the MCU 13 and the operation of the inverter 5 is controlled so as to be the target torque Tm. As a result, the motor 2 is controlled so that the motor output torque becomes the target torque Tm.
The case where the motor 2 functions as a drive source has been described so far, but the motor 2 functions as a generator when the remaining capacity SOC of the battery 6 decreases to a first predetermined value (for example, 33%) or less. The battery 6 is charged.

すなわち、図2に示すように、残存容量センサ24で得られた情報は、上記出力配分決定手段15以外にも、ECU12,MCU13及びインバータ5からなるバッテリ充電手段41に入力されるようになっており、バッテリ充電手段41では、以下の条件がすべて成立すると、エンジン1によりモータ2を駆動してバッテリ6を充電する制御(以下、発電制御という)を実行するようになっている。
・残存容量センサ24で検出された残存容量SOCが上記第1所定値以下。
・車両が停止している(車速=0)。
That is, as shown in FIG. 2, the information obtained by the remaining capacity sensor 24 is input to the battery charging means 41 including the ECU 12, the MCU 13 and the inverter 5 in addition to the output distribution determining means 15. In the battery charging means 41, when all of the following conditions are satisfied, the engine 1 drives the motor 2 to charge the battery 6 (hereinafter referred to as power generation control).
The remaining capacity SOC detected by the remaining capacity sensor 24 is equal to or less than the first predetermined value.
-The vehicle is stopped (vehicle speed = 0).

なお、これらの条件が全て成立した場合を、以下では充電開始条件が成立したという。そして、充電開始条件が成立した場合には、変速機コントローラ及びクラッチコントローラ(ともに図示省略)により変速機4はニュートラルに保持されるとともに、クラッチ3は接続状態に保持される。そして、ECU12により、エンジン1の運転状態が発電に適した運転状態に制御されるとともに、モータ2が発電機として機能するように、MCU13によりインバータ5が制御されるようになっている。   A case where all of these conditions are satisfied is hereinafter referred to as a charging start condition being satisfied. When the charging start condition is satisfied, the transmission 4 is held neutral by the transmission controller and the clutch controller (both not shown), and the clutch 3 is held in the connected state. The ECU 12 controls the operation state of the engine 1 to an operation state suitable for power generation, and the inverter 5 is controlled by the MCU 13 so that the motor 2 functions as a generator.

これにより、エンジン1が運転されるとこのエンジン1の駆動力はクラッチ3を介してモータ(発電機)2に伝達され、このとき発生した電力がバッテリ6に充電されるようになっている。なお、このときは変速機4がニュートラルとなっているので車両に駆動力が伝達されることはない。
また、以下の条件のいずれかが成立すると、上述の発電制御が終了又は中止される。
・バッテリ6の残存容量SOCが第2所定値(例えば35%)以上となった。
・変速機4が走行段に変速された。
・車速が検出された。
Thus, when the engine 1 is operated, the driving force of the engine 1 is transmitted to the motor (generator) 2 via the clutch 3, and the electric power generated at this time is charged in the battery 6. At this time, since the transmission 4 is neutral, no driving force is transmitted to the vehicle.
Further, when any of the following conditions is satisfied, the above-described power generation control is terminated or stopped.
The remaining capacity SOC of the battery 6 is equal to or greater than a second predetermined value (for example, 35%).
The transmission 4 has been shifted to the travel stage.
・ Vehicle speed was detected.

なお、上記の条件のいずれか1つでも成立した場合を、以下、充電終了条件が成立したという。また、上述の各条件のうち、バッテリ6の残存容量SOCが第2所定値になった場合には、エンジン2による発電によりバッテリ6の残存容量が十分回復したと判定して発電制御を終了するものであり、変速機4が走行段に変速された場合及び車速が検出された場合は、発電制御の前提条件(つまり、車両停車中)が不成立となり発電制御を中止するようになっている。   A case where any one of the above conditions is satisfied is hereinafter referred to as a charging end condition being satisfied. In addition, among the above-described conditions, when the remaining capacity SOC of the battery 6 reaches the second predetermined value, it is determined that the remaining capacity of the battery 6 has sufficiently recovered by the power generation by the engine 2 and the power generation control is terminated. However, when the transmission 4 is shifted to the travel stage and when the vehicle speed is detected, the precondition of the power generation control (that is, when the vehicle is stopped) is not established, and the power generation control is stopped.

ところで、本装置のシステム管理手段11にはバッテリ充電手段41によるバッテリ6ヘの充電を禁止する充電禁止手段が設けられている。具体的には、上記充電開始条件が成立した場合であっても、上述したフィルタ33が強制再生中であると判定した場合には発電制御が禁止されるようになっている。
これは主に以下の理由によるものである。つまり、停車中にエンジン1によりモータ2を発電機として駆動すると、エンジン1はモータ(発電機)2を駆動する分だけ負荷が大きくなるため、その分燃料噴射量が増大することになる。燃料噴射量が増えると、空燃比が低下(即ち、空気過剰率が低下、つまりリッチ化)するため、排ガス中の酸素濃度も低下することになり、フィルタ33に供給される酸素量が低下する。
By the way, the system management means 11 of this apparatus is provided with a charge prohibiting means for prohibiting the battery charging means 41 from charging the battery 6. Specifically, even when the charging start condition is satisfied, power generation control is prohibited when it is determined that the above-described filter 33 is being forcibly regenerated.
This is mainly due to the following reasons. That is, when the motor 1 is driven as a generator by the engine 1 while the vehicle is stopped, the engine 1 has a load that is increased by driving the motor (generator) 2, so that the fuel injection amount increases accordingly. When the fuel injection amount increases, the air-fuel ratio decreases (that is, the excess air ratio decreases, that is, becomes rich), so that the oxygen concentration in the exhaust gas also decreases, and the amount of oxygen supplied to the filter 33 decreases. .

ここで、フィルタの強制再生時の再生時間はフィルタ33に供給される酸素量で変化する。つまり、酸素供給量が十分でないとフィルタ33内におけるPMの燃焼(酸化)が促進されずに強制再生時間が長くなり、酸素供給量が十分であればPMの燃焼が速やかに行われ強制再生時間が短くなる。また、強制再生時には、上述したように主噴射後にポスト噴射を行うため、燃料消費量が通常の運転状態よりも多くなっている。このため、強制再生時間が長くなるほど燃費が悪化する。   Here, the regeneration time during forced regeneration of the filter varies depending on the amount of oxygen supplied to the filter 33. That is, if the oxygen supply amount is not sufficient, the combustion (oxidation) of PM in the filter 33 is not promoted and the forced regeneration time becomes long. If the oxygen supply amount is sufficient, the PM combustion is performed quickly and the forced regeneration time is increased. Becomes shorter. Further, at the time of forced regeneration, post-injection is performed after the main injection as described above, so that the fuel consumption is larger than in the normal operating state. For this reason, the longer the forced regeneration time, the worse the fuel consumption.

したがって、発電制御とフィルタ33の強制再生とが同時が実行されると、フィルタ33に供給される酸素量が低下して、これに起因して強制再生時間が長くなり、この結果、ポスト噴射の時間が増大して燃費が悪化することになるのである。
そこで、本装置では、フィルタ33が強制再生中である場合には、たとえ充電開始条件が成立している場合であっても、発電制御を禁止しているのである。なお、本実施形態では、充電禁止手段は、バッテリ充電手段41がその機能を兼用している。
Therefore, when the power generation control and the forced regeneration of the filter 33 are performed simultaneously, the amount of oxygen supplied to the filter 33 is reduced, resulting in an increase in the forced regeneration time. The time will increase and the fuel consumption will deteriorate.
Therefore, in the present apparatus, when the filter 33 is being forcibly regenerated, the power generation control is prohibited even if the charging start condition is satisfied. In the present embodiment, the charging prohibiting means is also used by the battery charging means 41.

そして、このようにフィルタ33の強制再生時に発電制御を禁止することにより、エンジン1の負荷を低減でき、この分燃料噴射量を低減することができるようになり、酸素過剰率を増大させる(リーン化させる)ことができる。これにより、排ガス中の酸素濃度を高めることができるので、フィルタ33に供給される酸素量が増大し、フィルタ33の強制再生時間の短縮を図ることができるのである。したがって、ポスト噴射を行う時間が低減されて燃費が向上するという利点がある。   In this way, by prohibiting power generation control during forced regeneration of the filter 33, the load on the engine 1 can be reduced, and the fuel injection amount can be reduced by this amount, thereby increasing the oxygen excess rate (lean). Can be made. Thereby, since the oxygen concentration in the exhaust gas can be increased, the amount of oxygen supplied to the filter 33 is increased, and the forced regeneration time of the filter 33 can be shortened. Accordingly, there is an advantage that the time for performing the post injection is reduced and the fuel consumption is improved.

ところで、システム管理手段11には、以下の条件が全て成立したときに、モータ2を駆動してエンジン1の出力をアシストする強制再生時アシスト手段も設けられている。なお、本実施形態では、強制再生時アシスト手段についてもバッテリ充電手段41がその機能を兼用している。
・車両停車中
・強制再生実行中
・バッテリ6の残存容量SOCが第3の所定値(例えば65%)以上
なお、これらの条件が全て成立した場合を強制再生アシスト条件が成立したという。そして、このような強制再生アシスト条件が成立したときに、モータ2を駆動してエンジン1の運転をアシストすることにより、エンジン1の負荷がさらに低減されて燃料噴射量が低下し、これによりさらに空気過剰率を増大させてフィルタ33の強制再生時間の更なる短縮を図ることができるのである。
Incidentally, the system management means 11 is also provided with forced regeneration assist means for driving the motor 2 and assisting the output of the engine 1 when all of the following conditions are satisfied. In the present embodiment, the battery charging means 41 also functions as the assisting means for forced regeneration.
The vehicle is stopped, the forced regeneration is being executed, the remaining capacity SOC of the battery 6 is equal to or greater than a third predetermined value (for example, 65%), and the forced regeneration assist condition is satisfied when all of these conditions are satisfied. When such a forced regeneration assist condition is satisfied, the motor 2 is driven to assist the operation of the engine 1, whereby the load on the engine 1 is further reduced and the fuel injection amount is further reduced. It is possible to further shorten the forced regeneration time of the filter 33 by increasing the excess air ratio.

なお、第3の所定値としては、バッテリ6が満充電に近いSOCが望ましい。このようなSOCであれば、エンジン1をアシストするためにモータ2を駆動しても大きなSOCの低下を招くことがない。
ところで、本実施形態のハイブリッド車両は、所定のエンジン停止条件が成立するとエンジン1の運転を自動停止するとともに、上記所定のエンジン停止条件とは異なる所定のエンジン再始動条件が成立するとエンジン1を再始動させる、いわゆるアイドルストップスタート(ISS)機能を有している。なお、このようなISS機能を有する車両をISS車両ともいう。
The third predetermined value is preferably SOC in which the battery 6 is almost fully charged. With such an SOC, even if the motor 2 is driven to assist the engine 1, there is no significant decrease in the SOC.
By the way, the hybrid vehicle of the present embodiment automatically stops the operation of the engine 1 when a predetermined engine stop condition is satisfied, and restarts the engine 1 when a predetermined engine restart condition different from the predetermined engine stop condition is satisfied. It has a so-called idle stop start (ISS) function for starting. A vehicle having such an ISS function is also referred to as an ISS vehicle.

このため、システム管理手段11には、図2に示すように、エンジン1の運転を自動停止させる自動停止手段51と、エンジン1の運転を再始動させる再始動手段52とを有するISS機能部50が設けられている。また、図示はしないが、これらの自動停止手段51及び再始動手段52にはエンジン回転数センサ21や残存容量センサ24以外にも、車速センサ(図示省略)や変速段を検出するギヤポジションセンサ等が接続されており、これらのセンサからの情報に基づいてエンジンの停止条件が成立すると、自動停止手段51ではECU12にエンジン停止信号を送り、インジェクタ10の駆動を停止することでエンジン1を自動的に停止させるようになっている。   Therefore, as shown in FIG. 2, the system management unit 11 includes an ISS function unit 50 having an automatic stop unit 51 that automatically stops the operation of the engine 1 and a restart unit 52 that restarts the operation of the engine 1. Is provided. Although not shown, these automatic stop means 51 and restart means 52 include a vehicle speed sensor (not shown), a gear position sensor for detecting a gear position, etc. in addition to the engine speed sensor 21 and the remaining capacity sensor 24. When the engine stop condition is established based on information from these sensors, the automatic stop means 51 sends an engine stop signal to the ECU 12 to stop the drive of the injector 10 so that the engine 1 is automatically To stop.

また、各センサからの情報に基づいて、エンジン再始動条件が成立すると、再始動手段52ではECU12に再始動信号を送り、図示しないスタータモータを作動させてエンジン1を再始動させるようになっている。なお、モータ2にスタータモータの機能を兼用させても良い。
なお、このISS機能自体は従来より広く知られたものであるので、エンジン停止条件及びエンジン再始動条件については説明を省略する。
Further, when the engine restart condition is established based on information from each sensor, the restart means 52 sends a restart signal to the ECU 12 to operate a starter motor (not shown) to restart the engine 1. Yes. In addition, you may make the motor 2 share the function of a starter motor.
Since the ISS function itself has been widely known in the past, description of the engine stop condition and the engine restart condition will be omitted.

また、本装置には、エンジン停止条件が成立していても自動停止手段51によるエンジン1の運転停止を禁止する自動停止禁止手段53が設けられている。ここで、この自動停止禁止手段53は、強制再生手段35からの情報に基づいて、フィルタ33の強制再生が実行されていると判定されると、たとえエンジン1の停止条件が成立している場合であっても、自動停止手段51によるエンジン1の運転停止を禁止して、エンジン1の運転を継続させるようになっている。   Further, the present apparatus is provided with automatic stop prohibiting means 53 that prohibits the automatic stop means 51 from stopping the operation of the engine 1 even if the engine stop condition is satisfied. Here, when it is determined that the forced regeneration of the filter 33 is being executed based on the information from the forced regeneration means 35, the automatic stop prohibiting means 53 is when the stop condition of the engine 1 is satisfied. Even so, the operation of the engine 1 by the automatic stop means 51 is prohibited and the operation of the engine 1 is continued.

これは、上述したように、フィルタ33の強制再生時には、主噴射後にポスト燃料噴射を行い、このポスト燃料噴射の未燃燃料を酸化触媒32で酸化反応(燃焼)させて、このときの反応熱によりフィルタ33内のPMを燃焼させてフィルタ33を再生しているからであり、フィルタ33の強制再生時には、エンジン1が運転状態であることが必須の条件となるからである。   As described above, when the filter 33 is forcibly regenerated, post fuel injection is performed after the main injection, and the unburned fuel of the post fuel injection is oxidized (combusted) by the oxidation catalyst 32. This is because the PM in the filter 33 is burned to regenerate the filter 33, and when the filter 33 is forcibly regenerated, it is essential that the engine 1 is in an operating state.

そこで、フィルタ33の強制再生時には、自動停止手段51でエンジン1の停止条件が成立していると判定されても、自動停止禁止手段53によりエンジン1の運転停止を禁止するようにしているのである。
本発明の一実施形態に係るハイブリッド車両のモータ制御装置は上述のように構成されているので、その作用について図3のフローチャートを用いて説明すると以下のようになる。
Therefore, at the time of forced regeneration of the filter 33, even if it is determined by the automatic stop means 51 that the stop condition of the engine 1 is satisfied, the automatic stop prohibiting means 53 prohibits the engine 1 from being stopped. .
Since the hybrid vehicle motor control apparatus according to the embodiment of the present invention is configured as described above, its operation will be described below with reference to the flowchart of FIG.

このフローチャートは車両の停止を検出するとこの車両停止をトリガに開始されるものであって、車両が停止すると、まずフィルタ33の状態が強制再生中か否かを判定する(ステップS11)。そして、強制再生中でないと判定された場合には、バッテリの残存容量SOCを検出し、SOCが第1所定値(例えば33%)以下か否かを判定する(ステップS12)。   In this flowchart, when the stop of the vehicle is detected, the stop of the vehicle is started as a trigger. When the vehicle stops, it is first determined whether or not the state of the filter 33 is being forcibly regenerated (step S11). If it is determined that the forced regeneration is not being performed, the remaining capacity SOC of the battery is detected, and it is determined whether the SOC is equal to or less than a first predetermined value (for example, 33%) (step S12).

そして、SOCが第1所定値以下であれば、発電制御が実行される(ステップS13)。すなわち、この場合にはバッテリ6の充電が燃費向上よりも優先されるので、エンジン1によりモータ2が駆動されるとともに、モータ2を発電機として作動させることにより、エンジン1の駆動力が電力に変換されて、この電力がバッテリ6に蓄えられる。
一方、SOCが第1所定値よりも大きければ、通常のアイドル運転が行われる(ステップS14)。なお、このときに所定のエンジン停止条件が成立していれば、ISS機能によりエンジン1が自動停止する。
And if SOC is below a 1st predetermined value, electric power generation control will be performed (step S13). That is, in this case, charging of the battery 6 is prioritized over improvement of fuel consumption, so that the motor 2 is driven by the engine 1 and the driving force of the engine 1 is converted into electric power by operating the motor 2 as a generator. The electric power is converted and stored in the battery 6.
On the other hand, if the SOC is greater than the first predetermined value, normal idle operation is performed (step S14). If a predetermined engine stop condition is satisfied at this time, the engine 1 is automatically stopped by the ISS function.

また、ステップS11において強制再生中であると判定された場合には、次にSOCが第3所定値(例えば65%)以上か否かを判定する(ステップS15)。そして、SOCが第3所定値未満であれば、発電制御を禁止してバッテリ6への充電を禁止する(ステップS16)。そして、ポスト噴射等の強制再生に適した運転状態でエンジン1を運転する(ステップS17)。   If it is determined in step S11 that forced regeneration is being performed, it is next determined whether or not the SOC is greater than or equal to a third predetermined value (for example, 65%) (step S15). If the SOC is less than the third predetermined value, power generation control is prohibited and charging of the battery 6 is prohibited (step S16). Then, the engine 1 is operated in an operation state suitable for forced regeneration such as post injection (step S17).

したがって、この場合には、フィルタ33の強制再生時に発電制御を禁止することにより、エンジン1の負荷を低減でき、燃料噴射量を低減できる。これにより、酸素過剰率を増大させて、排ガス中の酸素濃度を高めることができ、フィルタ33に供給される酸素量が増大して、フィルタ33の再生時間の短縮を図ることができる。
また、SOCが第3所定値以上であれば、モータ2を駆動してエンジン1の運転をアシストする(ステップS18)。つまり、この場合には、車両停車中、且つフィルタ33の強制再生中、且つSOCが第3所定値以上の強制再生アシスト条件が成立した場合であり、このときには、モータ2を駆動してエンジン1の運転をアシストすることにより、エンジン1の駆動負荷がさらに低減されて燃料噴射量を低減させることができる。これにより、空気過剰率がさらに増大して、フィルタ33の強制再生時間が大幅に短縮される。
Therefore, in this case, by prohibiting power generation control during forced regeneration of the filter 33, the load on the engine 1 can be reduced and the fuel injection amount can be reduced. Thereby, the oxygen excess rate can be increased, the oxygen concentration in the exhaust gas can be increased, the amount of oxygen supplied to the filter 33 can be increased, and the regeneration time of the filter 33 can be shortened.
If the SOC is equal to or greater than the third predetermined value, the motor 2 is driven to assist the operation of the engine 1 (step S18). That is, in this case, the vehicle is stopped, the filter 33 is being forcedly regenerated, and a forced regeneration assist condition in which the SOC is equal to or greater than the third predetermined value is satisfied. In this case, the motor 2 is driven to drive the engine 1 By assisting the operation, the driving load of the engine 1 can be further reduced and the fuel injection amount can be reduced. As a result, the excess air ratio further increases, and the forced regeneration time of the filter 33 is greatly shortened.

以上詳述したように、本実施形態に係るハイブリッド車両のモータ制御装置によれば、車両停車中で、且つ強制再生実行中であって、SOCが第3所定値未満であれば、発電制御が禁止されるので、エンジン1の負荷を低減して空気過剰率を増大させることができ、フィルタ33の強制再生時間が短縮されて、燃費が向上するという利点がある。
また、SOCが第3所定値以上であれば、モータ2を駆動してエンジン1の運転をアシストすることにより、エンジン1の負荷がさらに低減されて空気過剰率をさらに増大させることができる。したがって、フィルタ33の強制再生時間をさらに短縮させることができ、燃費がさらに向上するという利点がある。
また、フィルタ33の強制再生時には、自動停止禁止手段53によりエンジン1の運転停止が禁止されるので、フィルタ33の強制再生中にエンジン1が停止するような事態を確実に回避することができるという利点がある。
As described above in detail, according to the motor control device for a hybrid vehicle according to the present embodiment, when the vehicle is stopped and forced regeneration is being executed and the SOC is less than the third predetermined value, the power generation control is performed. Since it is prohibited, the load on the engine 1 can be reduced and the excess air ratio can be increased, and there is an advantage that the forced regeneration time of the filter 33 is shortened and fuel efficiency is improved.
If the SOC is equal to or greater than the third predetermined value, driving the motor 2 and assisting the operation of the engine 1 can further reduce the load on the engine 1 and further increase the excess air ratio. Therefore, there is an advantage that the forced regeneration time of the filter 33 can be further shortened and the fuel consumption is further improved.
Further, during the forced regeneration of the filter 33, the automatic stop prohibiting means 53 prohibits the operation stop of the engine 1, so that it is possible to reliably avoid a situation in which the engine 1 is stopped during the forced regeneration of the filter 33. There are advantages.

以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。例えば、本発明は、図4に示すように、エンジン1とモータ2とを隣接して設け、モータ1と変速機4との間にクラッチ3を介装させたハイブリッド自動車に適用しても良い。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, as shown in FIG. 4, the present invention may be applied to a hybrid vehicle in which an engine 1 and a motor 2 are provided adjacent to each other and a clutch 3 is interposed between the motor 1 and the transmission 4. .

本発明の一実施形態に係るハイブリッド車両のモータ制御装置が適用される車両のパワートレインを示す模式図である。1 is a schematic diagram showing a power train of a vehicle to which a hybrid vehicle motor control device according to an embodiment of the present invention is applied. 本発明の一実施形態に係るハイブリッド車両のモータ制御装置の要部機能に着目したブロック図である。It is a block diagram which paid its attention to the principal function of the motor control apparatus of the hybrid vehicle which concerns on one Embodiment of this invention. 本発明の一実施形態に係るハイブリッド車両のモータ制御装置の作用を説明するためのフローチャートである。It is a flowchart for demonstrating the effect | action of the motor control apparatus of the hybrid vehicle which concerns on one Embodiment of this invention. 本発明の一実施形態に係るハイブリッド車両のモータ制御装置の変形例について示す図である。It is a figure shown about the modification of the motor control apparatus of the hybrid vehicle which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 エンジン
2 電動機(モータ)
3 クラッチ
4 変速機
5 インバータ
6 バッテリ
7 駆動輪
8 駆動源
9 ギアシフトユニット(GSU)
10インジェクタ
11 システム管理手段
12 エンジンコントロールユニット(ECU)
13 モータコントロールユニット(MCU)
14 要求トルク算出手段
15 出力配分決定手段
21 エンジン回転数センサ
22 入力軸回転数センサ
23 アクセル開度センサ
24 残存容量センサ
31 排気通路
32 酸化触媒
33 フィルタ
34 差圧センサ
35 強制再生手段
41 バッテリ充電手段/充電禁止手段/強制再生アシスト手段
51 自動停止手段
53 自動停止禁止手段
1 Engine 2 Electric motor (motor)
3 Clutch 4 Transmission 5 Inverter 6 Battery 7 Drive Wheel 8 Drive Source 9 Gear Shift Unit (GSU)
10 injector 11 system management means 12 engine control unit (ECU)
13 Motor control unit (MCU)
DESCRIPTION OF SYMBOLS 14 Required torque calculation means 15 Output distribution determination means 21 Engine speed sensor 22 Input shaft speed sensor 23 Accelerator opening sensor 24 Residual capacity sensor 31 Exhaust passage 32 Oxidation catalyst 33 Filter 34 Differential pressure sensor 35 Forced regeneration means 41 Battery charging means / Charging prohibition means / Forced regeneration assist means 51 Automatic stop means 53 Automatic stop prohibition means

Claims (3)

車両に搭載されたディーゼルエンジンと、
前記車両に搭載されたモータと、
前記モータに電力供給可能に接続されたバッテリと、
前記ディーゼルエンジンの排ガス中の粒子状物質を捕集するフィルタと、
前記フィルタを強制再生させる強制再生手段と、
前記バッテリの充電状態に基づいて前記ディーゼルエンジンの出力を電力に変換して前記バッテリを充電するバッテリ充電手段と、
前記車両が停車中であり、前記強制再生手段による強制再生が実行中であり、且つ前記バッテリの充電率が所定値より高い場合には、前記モータにより前記ディーゼルエンジンの出力をアシストする強制再生時アシスト手段とを備えている
ことを特徴とする、ハイブリッド車両のモータ制御装置。
A diesel engine installed in the vehicle,
A motor mounted on the vehicle;
A battery connected to the motor so as to be able to supply power;
A filter for collecting particulate matter in the exhaust gas of the diesel engine;
Forced regeneration means for forcibly regenerating the filter;
Battery charging means for charging the battery by converting the output of the diesel engine into electric power based on the state of charge of the battery;
When the vehicle is stopped, forced regeneration by the forced regeneration means is being performed, and when the charging rate of the battery is higher than a predetermined value, the motor assists the output of the diesel engine by the motor. A motor control device for a hybrid vehicle, comprising: an assist unit.
所定のエンジン停止条件を満たすと前記ディーゼルエンジンの運転を自動停止する自動停止手段と、
前記強制再生が実行されているときは前記自動停止手段による運転停止を禁止する自動停止禁止手段とを備えている
ことを特徴とする、請求項1記載のハイブリッド車両のモータ制御装置。
Automatic stop means for automatically stopping operation of the diesel engine when a predetermined engine stop condition is satisfied;
2. The motor control device for a hybrid vehicle according to claim 1, further comprising automatic stop prohibiting means for prohibiting operation stop by the automatic stop means when the forced regeneration is being executed.
前記ディーゼルエンジンの出力軸は、クラッチを介して前記モータの入力軸に接続されている
ことを特徴とする、請求項1又は2記載のハイブリッド車両のモータ制御装置。
The motor control apparatus for a hybrid vehicle according to claim 1 or 2, wherein an output shaft of the diesel engine is connected to an input shaft of the motor via a clutch.
JP2008268502A 2008-10-17 2008-10-17 Motor controller for hybrid vehicle Expired - Fee Related JP4325737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268502A JP4325737B2 (en) 2008-10-17 2008-10-17 Motor controller for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268502A JP4325737B2 (en) 2008-10-17 2008-10-17 Motor controller for hybrid vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005098886A Division JP4293154B2 (en) 2005-03-30 2005-03-30 Motor controller for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2009057045A JP2009057045A (en) 2009-03-19
JP4325737B2 true JP4325737B2 (en) 2009-09-02

Family

ID=40553161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268502A Expired - Fee Related JP4325737B2 (en) 2008-10-17 2008-10-17 Motor controller for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP4325737B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305025B2 (en) * 2009-07-06 2013-10-02 スズキ株式会社 Hybrid vehicle
KR101360500B1 (en) * 2011-12-14 2014-02-10 기아자동차주식회사 A Battery Recharging Method for Hybrid Electric Vehicles
JP2013147090A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Control apparatus for hybrid vehicle
JP6149510B2 (en) * 2013-05-21 2017-06-21 いすゞ自動車株式会社 Hybrid vehicle and control method thereof
JP2019142247A (en) * 2018-02-15 2019-08-29 トヨタ自動車株式会社 Hybrid vehicle
JP7155933B2 (en) * 2018-11-21 2022-10-19 トヨタ自動車株式会社 Plug-in hybrid vehicle and its control method
CN114475568B (en) * 2020-11-12 2023-07-21 宇通客车股份有限公司 Control method and system for DPF regeneration device of new energy hybrid electric vehicle
JP7414022B2 (en) 2021-01-13 2024-01-16 トヨタ自動車株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP2009057045A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4293154B2 (en) Motor controller for hybrid vehicle
JP4293153B2 (en) Motor controller for hybrid vehicle
JP4325737B2 (en) Motor controller for hybrid vehicle
JP4328973B2 (en) Control device for hybrid electric vehicle
JP5145542B2 (en) Drive control device for hybrid vehicle
RU2749608C2 (en) Method and device for restoring the particulate filter in a car with a hybrid drive
CN107339138B (en) Method and device for regenerating a particle filter in a motor vehicle with a hybrid drive
CN103195548B (en) The method of protection explosive motor DPF
JP2015140150A (en) hybrid vehicle
JP5808997B2 (en) Control device for hybrid vehicle
JP2007246009A (en) Controller for hybrid electric car
JP2011085092A (en) Dpf regenerating device for series hybrid vehicle
JP4428350B2 (en) Hybrid vehicle exhaust purification system
JP2009036183A (en) Exhaust emission control device of engine and exhaust emission control device of hybrid vehicle using the same
JP2008082288A (en) Dpf regeneration device
WO2014188870A1 (en) Hybrid vehicle and method for controlling same
JP6459583B2 (en) Control method of hybrid vehicle
JP4080457B2 (en) Filter clogging suppression control method for diesel hybrid vehicle
JP2013001165A (en) Regeneration control device, hybrid vehicle, regeneration control method and program
JP2006220036A (en) Control system for hybrid engine with filter
JP2005330844A (en) Vacuum pump control method and vacuum pump mounting structure for diesel hybrid vehicle
JP3905515B2 (en) Regeneration control method of exhaust purification device in diesel hybrid vehicle
JP3802881B2 (en) Particulate filter bed temperature control method for hybrid system
KR20180129251A (en) Method and appratus for controlling mhsg of mild hybrid electric vehicle
JP2004324436A (en) Control method in shifting of diesel hybrid vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees