JP4325369B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP4325369B2
JP4325369B2 JP2003382197A JP2003382197A JP4325369B2 JP 4325369 B2 JP4325369 B2 JP 4325369B2 JP 2003382197 A JP2003382197 A JP 2003382197A JP 2003382197 A JP2003382197 A JP 2003382197A JP 4325369 B2 JP4325369 B2 JP 4325369B2
Authority
JP
Japan
Prior art keywords
layer
conductive layer
metal magnetic
recording medium
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003382197A
Other languages
Japanese (ja)
Other versions
JP2005149572A (en
Inventor
康弘 西澤
秀司 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003382197A priority Critical patent/JP4325369B2/en
Publication of JP2005149572A publication Critical patent/JP2005149572A/en
Application granted granted Critical
Publication of JP4325369B2 publication Critical patent/JP4325369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録媒体に関し、特に高密度磁気記録に適した強磁性金属薄膜を磁性層とする磁気記録媒体に関するものである。   The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having a ferromagnetic metal thin film suitable for high density magnetic recording as a magnetic layer.

近年、磁気記録の高密度化が進み、高い面記録密度が実現可能な磁気テープが開発されている。特に、金属薄膜型磁気テープとして、磁性層にコバルト系斜方蒸着膜を用いダイアモンド系カーボン保護膜を用いた高性能磁気テープ(以下MEテープと呼ぶ)は、電磁変換特性や保存性、実用信頼性などで優れた特性を示すことが知られている。現在MEテープはデジタル映像記録機器であるDV方式のムービーなどに使われると共に、8mm幅のデータストレージ用テープとして用いられている。   In recent years, the magnetic recording density has been increased, and a magnetic tape capable of realizing a high surface recording density has been developed. In particular, as a metal thin film type magnetic tape, a high performance magnetic tape (hereinafter referred to as ME tape) using a cobalt-based obliquely deposited film as a magnetic layer and a diamond-based carbon protective film is an electromagnetic conversion characteristic, storage stability, and practical reliability. It is known to exhibit excellent properties such as properties. At present, the ME tape is used for a DV movie or the like which is a digital video recording device, and is also used as a data storage tape having a width of 8 mm.

今後、さらに大容量化が進みハードディスクで使われている磁気抵抗効果型ヘッド(以下MRヘッドと呼ぶ)技術を応用した高記録密度の記録再生システムが考えられ、例えば特許文献1に記載されているように、非磁性基板上の金属磁性層の膜厚、残留磁化量を最適化し、MRヘッドに適した磁気記録媒体が提案されている。   In the future, a recording / reproducing system having a high recording density applying a magnetoresistive head (hereinafter referred to as an MR head) technology used in a hard disk will be considered. As described above, there has been proposed a magnetic recording medium suitable for the MR head by optimizing the film thickness and the residual magnetization amount of the metal magnetic layer on the nonmagnetic substrate.

特許文献1に開示の磁気記録媒体300の基本構成は、図3に示すように非磁性基板301上に強磁性金属薄膜から成る金属磁性層302、保護層303を順次形成し、非磁性基板301の金属磁性層302を形成した反対面にバックコート層304を備え、酸素含有雰囲気中で結晶性を制御した金属磁性層302の膜厚を20〜120nmに成膜することで、MRヘッドに適した高密度磁気記録媒体である。   The basic configuration of the magnetic recording medium 300 disclosed in Patent Document 1 is that a nonmagnetic substrate 301 is formed by sequentially forming a metal magnetic layer 302 and a protective layer 303 made of a ferromagnetic metal thin film on a nonmagnetic substrate 301 as shown in FIG. A back coat layer 304 is provided on the opposite surface of the metal magnetic layer 302, and the metal magnetic layer 302 having a controlled crystallinity in an oxygen-containing atmosphere is formed to a thickness of 20 to 120 nm, which is suitable for an MR head. High density magnetic recording medium.

MRヘッド適正を出現させるため金属磁性層302を薄膜化し、保持力を向上させる必要性があるが、薄膜化した金属磁性層302はシート抵抗値が高くなるため、保護層303に適用しているダイヤモンドライクカーボン(以下、DLCと称す)をプラズマCVD法で成膜する際のプラズマ放電電流が流れ難くなり、成膜速度及び/または膜質が低下するという本質的な課題がある。   In order to make the MR head suitable, it is necessary to reduce the thickness of the metal magnetic layer 302 and improve the holding power. However, the reduced thickness of the metal magnetic layer 302 is applied to the protective layer 303 because the sheet resistance value is increased. When diamond-like carbon (hereinafter referred to as DLC) is formed by plasma CVD, it is difficult for a plasma discharge current to flow, and there is an essential problem that the film formation speed and / or film quality is lowered.

特許文献1に開示の磁気記録媒体300が本質的に有する上記課題を解決するため、特許文献2には非磁性基板と金属磁性層との間に導電性が高い金属層を備える構成を開示している。すなわち、特許文献2に開示の磁気記録媒体400は図4に示すように、非磁性基板401の上に金属層402を形成し、当該金属層402の上に金属磁性層403を成膜し、金属磁性層403の上にDLC膜404を備え、非磁性基板401の金属層402を形成した反対面にバックコート層405を形成している。金属層402は所定量の酸素ガスを導入した雰囲気中でアルミニウムのような卑金属材料を蒸着することにより、金属磁性層403よりも低い抵抗値を有する抵抗性金属層であり、金属層402を非磁性基板401と金属磁性層403との間に備えることにより、薄膜化した金属磁性層403のシート抵抗値は金属層402との合成抵抗値となるため低くなり、金属層402の膜厚が厚いほどDLC膜404のプラズマCVD成膜速度が向上し(10nmから100nmの結果が示され、DLC膜404の成膜速度は膜厚増加に応じて向上)、MRヘッド適正を有する薄膜金属磁性層403を備えた磁気記録媒体の生産性も向上する。
特開平11−203652号公報(段落番号0013〜同0019及び同0068〜同0090) 特開2003−16626号公報(段落番号0021〜同023、同0025〜同0034、表1及び図1)
In order to solve the above-mentioned problems inherent in the magnetic recording medium 300 disclosed in Patent Literature 1, Patent Literature 2 discloses a configuration including a highly conductive metal layer between a nonmagnetic substrate and a metal magnetic layer. ing. That is, in the magnetic recording medium 400 disclosed in Patent Document 2, as shown in FIG. 4, a metal layer 402 is formed on a nonmagnetic substrate 401, and a metal magnetic layer 403 is formed on the metal layer 402. A DLC film 404 is provided on the metal magnetic layer 403, and a backcoat layer 405 is formed on the opposite surface of the nonmagnetic substrate 401 on which the metal layer 402 is formed. The metal layer 402 is a resistive metal layer having a lower resistance than the metal magnetic layer 403 by depositing a base metal material such as aluminum in an atmosphere into which a predetermined amount of oxygen gas is introduced. By providing it between the magnetic substrate 401 and the metal magnetic layer 403, the sheet resistance value of the thinned metal magnetic layer 403 becomes a combined resistance value with the metal layer 402, and thus the thickness of the metal layer 402 is thick. As a result, the plasma CVD deposition rate of the DLC film 404 is improved (results of 10 nm to 100 nm are shown, and the deposition rate of the DLC film 404 is improved as the film thickness increases), and the thin film metal magnetic layer 403 having the MR head suitability is obtained. The productivity of the magnetic recording medium provided with is improved.
Japanese Patent Application Laid-Open No. 11-203652 (paragraph numbers 0013 to 0019 and 0068 to 0090) JP 2003-16626 A (paragraph numbers 0021 to 023, 0025 to 0034, Table 1 and FIG. 1)

MRヘッドに対して適正を有する金属磁性層は前述したように薄膜化することが要請されるが、金属磁性層を薄膜化すると当該金属磁性層の抵抗値が上昇し、DLC保護膜の成膜速度及び膜質が低下する。そこで、非磁性基板と金属磁性層との間に金属層を介在させると、金属層と金属磁性層との合成抵抗値は低下し、金属磁性層上形成するDLC膜の成膜速度は向上させることができるが、金属磁性層の結晶成長が促進され、好適な磁気特性が得られない。   As described above, it is required to reduce the thickness of the metal magnetic layer suitable for the MR head. However, when the metal magnetic layer is reduced in thickness, the resistance value of the metal magnetic layer increases, and the DLC protective film is formed. Speed and film quality are reduced. Therefore, when a metal layer is interposed between the nonmagnetic substrate and the metal magnetic layer, the combined resistance value of the metal layer and the metal magnetic layer is lowered, and the deposition rate of the DLC film formed on the metal magnetic layer is improved. However, crystal growth of the metal magnetic layer is promoted, and suitable magnetic properties cannot be obtained.

また、特許文献2に開示のように、金属材料の成膜中に酸素を導入することによって成膜した金属層402の抵抗値を金属磁性層403よりも低く制御する構成では、DLC膜404の成膜速度の観点では金属層402の膜厚を厚く成膜することが要請され、金属層402の膜厚を厚くすることで結果的に非磁性記基板401の上に積層する金属層402及び金属磁性層403の膜厚が厚くなり、磁気記録媒体の薄型化が阻害されると共に、金属層402及び金属磁性層403の成膜に時間を要するいう課題がある。   Further, as disclosed in Patent Document 2, in the configuration in which the resistance value of the metal layer 402 formed by introducing oxygen during the film formation of the metal material is controlled to be lower than that of the metal magnetic layer 403, the DLC film 404 From the viewpoint of film formation speed, it is required to increase the thickness of the metal layer 402, and as a result of increasing the thickness of the metal layer 402, the metal layer 402 and the non-magnetic recording substrate 401 are stacked. There is a problem in that the metal magnetic layer 403 is thickened to prevent the magnetic recording medium from being thinned, and it takes time to form the metal layer 402 and the metal magnetic layer 403.

そこで、本発明は係る従来の課題に鑑み、金属磁性層を保護するため、当該金属磁性層の上に成膜する保護層の成膜速度と膜質とを向上した磁気記録媒体を提供することを目的とする。   Therefore, in view of the conventional problems related to the present invention, in order to protect a metal magnetic layer, a magnetic recording medium having an improved film forming speed and film quality of a protective layer formed on the metal magnetic layer is provided. Objective.

本発明の磁気記録媒体は、非磁性基板の一方の面に非磁性導電層、金属磁性層及び保護層が順次形成された積層構造体を含み、前記非磁性導電層と前記金属磁性層との界面における前記非磁性導電層に酸素を含む構成である。   The magnetic recording medium of the present invention includes a laminated structure in which a nonmagnetic conductive layer, a metal magnetic layer, and a protective layer are sequentially formed on one surface of a nonmagnetic substrate, and includes the nonmagnetic conductive layer and the metal magnetic layer. The nonmagnetic conductive layer at the interface includes oxygen.

本発明の磁気記録媒体の製造方法は、
非磁性基板の一方の主面に非磁性導電層を蒸着により形成し、前記非磁性導電層の表面に酸素分子、酸素イオンまたは活性基の酸素の何れかの酸素源を注入し、前記酸素源を注入した導電層の上に金属磁性層を蒸着により形成し、プラズマ放電電極と前記金属磁性層との間に電圧を印加し、前記金属磁性層の上にプラズマCVD法によって炭素系保護膜を形成する構成、
または、
非磁性基板の一方の主面に非磁性導電性物質を蒸着により形成した後に、酸素分子、酸素イオンまたは活性基の酸素の何れかの酸素源の雰囲気中で前記非磁性導電性物質を蒸着により形成した導電層を形成し、前記導電層の上に金属磁性層を蒸着により形成し、プラズマ放電電極と前記金属磁性層との間に電圧を印加し、前記金属磁性層の上にプラズマCVD法によって炭素系保護膜を形成する構成を有する。
The method for producing a magnetic recording medium of the present invention comprises:
A nonmagnetic conductive layer is formed on one main surface of the nonmagnetic substrate by vapor deposition, and an oxygen source of any of oxygen molecules, oxygen ions or active group oxygen is injected into the surface of the nonmagnetic conductive layer, and the oxygen source A metal magnetic layer is formed by vapor deposition on the conductive layer implanted with a gas, a voltage is applied between the plasma discharge electrode and the metal magnetic layer, and a carbon-based protective film is formed on the metal magnetic layer by plasma CVD. Composition to form,
Or
After forming a nonmagnetic conductive material on one main surface of the nonmagnetic substrate by vapor deposition, the nonmagnetic conductive material is vapor deposited in an oxygen source atmosphere of any of oxygen molecules, oxygen ions, or active oxygen. A conductive layer is formed, a metal magnetic layer is formed on the conductive layer by vapor deposition, a voltage is applied between the plasma discharge electrode and the metal magnetic layer, and a plasma CVD method is applied on the metal magnetic layer. To form a carbon-based protective film.

本発明の磁気記録媒体は、非磁性基板、非磁性導電層及び金属磁性層の順に積層した積層構成を備え、非磁性導電層と金属磁性層との界面における非磁性導電層に酸素を含有することによって、磁気特性に優れた金属磁性層を形成できると共に、金属磁性層を保護する高膜質の保護層の成膜速度を向上でき、高い生産性を実現できる。また、非磁性導電層と金属磁性層との界面における非磁性導電層に酸素を含有した層が当該非磁性導電層のシート抵抗値を高めると共に、金属磁性層の結晶成長も制御できるため、金属磁性層の磁気特性も向上できる。これらが相俟って、高密度磁気記録媒体を安価に提供することができる効果がある。   The magnetic recording medium of the present invention has a laminated structure in which a nonmagnetic substrate, a nonmagnetic conductive layer, and a metal magnetic layer are sequentially stacked, and contains oxygen in the nonmagnetic conductive layer at the interface between the nonmagnetic conductive layer and the metal magnetic layer. As a result, a metal magnetic layer having excellent magnetic properties can be formed, and the deposition rate of a high-quality protective layer that protects the metal magnetic layer can be improved, thereby realizing high productivity. In addition, since the layer containing oxygen in the nonmagnetic conductive layer at the interface between the nonmagnetic conductive layer and the metal magnetic layer can increase the sheet resistance value of the nonmagnetic conductive layer and control the crystal growth of the metal magnetic layer, The magnetic properties of the magnetic layer can also be improved. Together, these have the effect of providing a high-density magnetic recording medium at low cost.

本発明の磁気記録媒体は、非磁性基板の一方の面に非磁性導電層、金属磁性層及び保護層が順次形成された積層構造体を含み、前記非磁性導電層と前記金属磁性層との界面における前記非磁性導電層に酸素を含む構成であり、保持力を向上させるため金属磁性層を薄膜化することによって金属磁性膜のシート抵抗値が高くなるが、金属磁性層の上に保護膜をプラズマCVDで形成する際に、プラズマ電流が金属磁性層と非磁性基板との間に備える非磁性導電層中を優先的に流れ、結果的にプラズマ放電電流が流れ易い構成となり、プラズマCVDの成膜速度を高められると共に、非磁性導電層と金属磁性層との界面における非磁性導電層に酸素を含有させることで、非磁性導電層上に形成する金属磁性層の結晶成長の制御が適正に行えるため、磁気特性に優れた金属磁性層、及び生産性と膜質とを両立した非磁性保護層を達成した磁気記録媒体を実現できる。   The magnetic recording medium of the present invention includes a laminated structure in which a nonmagnetic conductive layer, a metal magnetic layer, and a protective layer are sequentially formed on one surface of a nonmagnetic substrate, and includes the nonmagnetic conductive layer and the metal magnetic layer. The nonmagnetic conductive layer at the interface is configured to contain oxygen, and the sheet resistance value of the metal magnetic film is increased by reducing the thickness of the metal magnetic layer in order to improve the holding power. However, the protective film is formed on the metal magnetic layer. When plasma is formed by plasma CVD, the plasma current flows preferentially in the nonmagnetic conductive layer provided between the metal magnetic layer and the nonmagnetic substrate, and as a result, the plasma discharge current easily flows. Control of crystal growth of the metal magnetic layer formed on the nonmagnetic conductive layer is possible by increasing the deposition rate and incorporating oxygen into the nonmagnetic conductive layer at the interface between the nonmagnetic conductive layer and the metal magnetic layer. To be able to Excellent metallic magnetic layer on the magnetic properties, and a magnetic recording medium which has achieved productivity and nonmagnetic protective layer having both the film quality can be realized.

また、本発明の磁気記録媒体の非磁性基板と積層構造体との合成透過率が、波長600nm以上800nm以下の波長範囲において0.2%以上7%以下の構成を備えると、テープ状の磁気記録媒体での始終端検出が確実に行えるようになる。   Further, when the combined transmittance of the nonmagnetic substrate and the laminated structure of the magnetic recording medium of the present invention has a configuration of 0.2% or more and 7% or less in a wavelength range of 600 nm to 800 nm, a tape-like magnetic The start / end detection on the recording medium can be reliably performed.

また、本発明の磁気記録媒体の非磁性導電層の膜厚は5nm以上50nm以下の構成を採用すると、非磁性導電層の連続成膜を形成できると共に、磁気記録媒体の薄型化を阻害しないため好ましい。   In addition, when the film thickness of the nonmagnetic conductive layer of the magnetic recording medium of the present invention is 5 nm or more and 50 nm or less, it is possible to form a continuous film of the nonmagnetic conductive layer and to prevent the magnetic recording medium from being thinned. preferable.

また、本発明の非磁性導電層のシート抵抗値は3Ω/□以上200Ω/□以下の構成を採用すると、良好な磁気特性を現出する金属磁性層が蒸着により成膜できると共に、当該金属磁性層の上に保護層を蒸着により成膜する際に、電極と金属磁性層との間に印加する電圧に起因する電流が非磁性導電層に流れ易いため膜質及び成膜速度が高い保護膜を形成することができる。   Further, when the sheet resistance value of the nonmagnetic conductive layer of the present invention is 3Ω / □ or more and 200Ω / □ or less, a metal magnetic layer exhibiting good magnetic properties can be formed by vapor deposition, and the metal magnetic layer When a protective layer is formed on the layer by vapor deposition, a protective film with high film quality and high film formation speed is obtained because the current caused by the voltage applied between the electrode and the metal magnetic layer easily flows to the nonmagnetic conductive layer. Can be formed.

また、本発明の磁気記録媒体の非磁性導電層の光透過率が、波長600nm以上800nm以下の波長範囲において1%以上50%以下の構成を採用すると、上記非磁性導電層の好ましい膜厚及び/または非磁性導電層の好ましいシート抵抗値を実現できるため好ましい。   Further, when the light transmittance of the nonmagnetic conductive layer of the magnetic recording medium of the present invention is 1% to 50% in a wavelength range of 600 nm to 800 nm, the preferred film thickness of the nonmagnetic conductive layer and / It is preferable because a preferable sheet resistance value of the nonmagnetic conductive layer can be realized.

本発明の磁気記録媒体の製造方法は、非磁性基板上に蒸着により非磁性導電層を形成するに際して、非磁性導電層を形成した後非磁性導電層の非磁性基板に対向する表面に酸素分子、酸素イオンまたは活性基の酸素の何れかの酸素源を注入する構成、または、非磁性導電層を蒸着により形成後に酸素分子、酸素イオンまたは活性基の酸素の何れかの酸素源の雰囲気中で当該非磁性導電層の材料を蒸着により形成する構成、の何れかを含むため、非磁性導電層と金属磁性層との界面に存在する酸素源を添加した非磁性導電層が、金属磁性層の結晶成長性の制御と金属磁性層上に形成する保護膜の成膜速度及び膜質とを両立した高密度の磁気記録媒体を容易に製造できる。   In the method of manufacturing a magnetic recording medium of the present invention, when a nonmagnetic conductive layer is formed on a nonmagnetic substrate by vapor deposition, oxygen molecules are formed on the surface of the nonmagnetic conductive layer facing the nonmagnetic substrate after the nonmagnetic conductive layer is formed. In the structure of injecting an oxygen source of either oxygen ions or active group oxygen, or in an atmosphere of oxygen source of oxygen molecules, oxygen ions or active group oxygen after forming the nonmagnetic conductive layer by vapor deposition Therefore, the nonmagnetic conductive layer to which the oxygen source present at the interface between the nonmagnetic conductive layer and the metal magnetic layer is added is the metal magnetic layer. It is possible to easily manufacture a high-density magnetic recording medium that achieves both control of crystal growth and film formation speed and film quality of a protective film formed on the metal magnetic layer.

以下、本発明の磁気記録媒体に関する一実施例を、図面を参照して詳述する。図1は、本発明の磁気記録媒体の一実施例を説明する断面構成図で、図2は本発明の磁気記録媒体の保護膜を成膜する一実施例のプラズマCVD装置の概略構成を示す。   Hereinafter, an embodiment relating to a magnetic recording medium of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional configuration diagram for explaining an embodiment of the magnetic recording medium of the present invention, and FIG. 2 shows a schematic configuration of a plasma CVD apparatus of an embodiment for forming a protective film of the magnetic recording medium of the present invention. .

図1において、磁気記録媒体100は、非磁性基板101、非磁性基板101の一方の面上に形成した非磁性導電層102、非磁性基板101が対向する非磁性導電層102の面に備えた酸素源添加層103、酸素源添加層103の上に形成した金属磁性層104、金属磁性層104の上に形成した保護層を備え、非磁性基板101の他方の面にはバックコート層106を備える。   In FIG. 1, a magnetic recording medium 100 includes a nonmagnetic substrate 101, a nonmagnetic conductive layer 102 formed on one surface of the nonmagnetic substrate 101, and a surface of the nonmagnetic conductive layer 102 that the nonmagnetic substrate 101 faces. An oxygen source addition layer 103, a metal magnetic layer 104 formed on the oxygen source addition layer 103, a protective layer formed on the metal magnetic layer 104, and a back coat layer 106 on the other surface of the nonmagnetic substrate 101. Prepare.

非磁性基板101に適用できる材料としては、例えばポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリアミドフィルム、ポリイミドフィルム等の高分子フィルムで、その厚みは一般的に2μm〜10μmである。また、これら薄膜フィルムとしては巻回状態での密着性を下げる等の目的で、例えば二酸化珪素、酸化亜鉛等の無機物質やポリイミド樹脂等の有機物質の微粒子が分散及び/または固着されている場合が多い。   Examples of the material applicable to the nonmagnetic substrate 101 include polymer films such as a polyethylene terephthalate film, a polyethylene naphthalate film, a polyamide film, and a polyimide film, and the thickness is generally 2 μm to 10 μm. In addition, these thin film films are dispersed and / or fixed with fine particles of an inorganic substance such as silicon dioxide and zinc oxide and an organic substance such as polyimide resin for the purpose of lowering the adhesion in a wound state. There are many.

非磁性導電層102に適用できる材料としては、例えばアルミニウム、銅、錫、インジウム、アンチモン、亜鉛、マグネシウム、モリブデン、タングステン、タンタル、チタン等の単独または合金であり、真空蒸着法、スパッタリング、イオンプレーティング等のPVD、または、レーザーCVDやプラズマCVD等のCVDのように蒸着で形成され、必要に応じてアルゴン、キセノン等の不活性ガスや窒素、酸素、水素等の反応性ガス等が適宜導入される。   Examples of a material that can be applied to the nonmagnetic conductive layer 102 include aluminum, copper, tin, indium, antimony, zinc, magnesium, molybdenum, tungsten, tantalum, and titanium. It is formed by vapor deposition such as PVD such as Ting, or CVD such as laser CVD or plasma CVD, and reactive gases such as argon, xenon, and reactive gases such as nitrogen, oxygen, and hydrogen are introduced as needed. Is done.

酸素源添加層103は、非磁性導電層102を蒸着成膜した後、蒸着室に酸素分子、酸素イオン、酸素原子、酸素ラジカル等の酸素成分を晒し当該非磁性導電層102の少なくとも最表面を酸化した層、または、非磁性導電層102を蒸着成膜した後、酸素分子、酸素イオン、酸素原子、酸素ラジカル等の酸素成分を有する雰囲気中に当該非磁性導電層に適用した材料を通して蒸着成膜した非磁性導電層102よりも酸素成分及び/または酸化成分が多い層の何れかであり、非磁性導電層102のシート抵抗値を高抵抗化する機能を有する。なお、酸素源添加層103は、非磁性導電層102に供する材料または非磁性導電層102に供する材料以外の導電材料の何れかを酸化した酸化導電物質層であり、例えば非磁性導電層102の成膜過程で酸素を含有している場合には、非磁性導電層102よりも酸化割合が高い。非磁性導電層に酸素成分を晒すことで酸素成分を注入する注入厚及び/または注入量や、酸素成分を有する雰囲気中に導入する酸素成分量及び/または蒸着成膜した膜厚は、非磁性導電層に適用する材料によって異なり一概に規定はできないが、非磁性導電層102と酸素源添加層103との合成シート抵抗値(以下、非磁性導電層102と酸素源添加層103とを併せて導電層と称する)は、後述の金属磁性層104の磁気特性または保護層105の蒸着速度と膜質から、3Ω/□以上で200Ω/□以下に制御する。すなわち、導電層の合成シート抵抗値が3Ω/□を下回ると、保護層105を印加電圧下で成膜する際に電流が流れ難くなり、蒸着速度が低下し生産性に劣るだけではなく、保護層105の膜質も低下する傾向にある。また、導電層の合成シート抵抗値が200Ω/□を越えると、金属磁性層104の結晶成長の制御が困難になり、例えばMRヘッド適正がある高密度磁性層としての保磁力や飽和磁束密度と膜厚との積等の磁気特性を満足できない傾向にある。   After the nonmagnetic conductive layer 102 is deposited, the oxygen source addition layer 103 exposes oxygen components such as oxygen molecules, oxygen ions, oxygen atoms, and oxygen radicals to the deposition chamber so that at least the outermost surface of the nonmagnetic conductive layer 102 is exposed. After the oxidized layer or the nonmagnetic conductive layer 102 is formed by vapor deposition, the material applied to the nonmagnetic conductive layer is deposited in an atmosphere having oxygen components such as oxygen molecules, oxygen ions, oxygen atoms, oxygen radicals, and the like. It is one of the layers having more oxygen components and / or oxidation components than the nonmagnetic conductive layer 102 formed, and has a function of increasing the sheet resistance value of the nonmagnetic conductive layer 102. The oxygen source addition layer 103 is an oxidized conductive material layer obtained by oxidizing either a material provided for the nonmagnetic conductive layer 102 or a conductive material other than a material provided for the nonmagnetic conductive layer 102. When oxygen is contained in the film formation process, the oxidation rate is higher than that of the nonmagnetic conductive layer 102. The injection thickness and / or injection amount for injecting the oxygen component by exposing the non-magnetic conductive layer to the non-magnetic conductive layer, the oxygen component amount introduced into the atmosphere having the oxygen component, and / or the deposited film thickness are non-magnetic. Although it differs depending on the material applied to the conductive layer and cannot be defined generally, the combined sheet resistance value of the nonmagnetic conductive layer 102 and the oxygen source addition layer 103 (hereinafter, the nonmagnetic conductive layer 102 and the oxygen source addition layer 103 are combined. The conductive layer is controlled to 3Ω / □ or more and 200Ω / □ or less from the magnetic properties of the metal magnetic layer 104 described later or the deposition rate and film quality of the protective layer 105. That is, when the synthetic sheet resistance value of the conductive layer is less than 3 Ω / □, it becomes difficult to flow current when forming the protective layer 105 under an applied voltage, the deposition rate is reduced, and not only productivity is deteriorated, but also protection. The film quality of the layer 105 also tends to deteriorate. If the composite sheet resistance value of the conductive layer exceeds 200Ω / □, it becomes difficult to control the crystal growth of the metal magnetic layer 104. For example, the coercive force and saturation magnetic flux density as a high-density magnetic layer suitable for MR head There is a tendency that the magnetic properties such as the product with the film thickness cannot be satisfied.

また、導電層の膜厚も非磁性導電層102に適用する材料によってその最適膜厚は変動するが、5nm以上50nm以下が好ましい。導電層の膜厚が5nmを下回ると、連続した導電層を成膜し難く、導電層のシート抵抗値が異常に高くなる傾向にあり、導電層のシート抵抗値が高くなると等価的に金属磁性層104のシート抵抗値も高くなり、前述したように保護層の膜質及び成膜速度が低下する。また、50nmを上回ると、後述の金属磁性層104の膜厚との合計膜厚が厚くなり、磁気記録媒体をテープに適用する場合には巻回した後の嵩が高くなるため薄膜化を達成することができない。但し、本発明の導電層は酸素源添加層103の酸素含有量及び膜厚を同一とすると膜厚を厚くするほどシート抵抗値は低くなり、シート抵抗値を低くすると保護膜の膜質及び成膜速度は向上できるため、保護膜形成の観点では導電層の膜厚の上限は例えば70nm程度であっても良い。なお、導電層は蒸着で形成するため、導電層の膜厚は光透過率で管理することが簡便でかつ正確である。そのため導電層の光透過率は、例えば600nmから800nmの波長範囲で1%以上50%以下に制御すると、非磁性導電層102に適用する材料の種類に拘わらず良好である。なお、上記波長範囲の内、実際のDV機器に適用される波長(専ら700nmの波長が適用される)で管理すると、テープの始終端の検出精度も併せて管理できるため望ましい。また、一般的に酸化させると導電材料の色が変化するため、磁気テープとしての実使用を考慮した導電膜の光透過率測定での膜厚管理には、酸素源添加層103を含めて測定する。   The optimum film thickness of the conductive layer varies depending on the material applied to the nonmagnetic conductive layer 102, but is preferably 5 nm or more and 50 nm or less. If the thickness of the conductive layer is less than 5 nm, it is difficult to form a continuous conductive layer, and the sheet resistance value of the conductive layer tends to be abnormally high. The sheet resistance value of the layer 104 also increases, and as described above, the film quality and deposition rate of the protective layer decrease. When the thickness exceeds 50 nm, the total film thickness of the metal magnetic layer 104 described later is increased, and when the magnetic recording medium is applied to a tape, the volume after winding is increased, so that thinning is achieved. Can not do it. However, in the conductive layer of the present invention, when the oxygen content and the film thickness of the oxygen source addition layer 103 are the same, the sheet resistance value decreases as the film thickness increases, and the film quality and film formation of the protective film decrease as the sheet resistance value decreases. Since the speed can be improved, the upper limit of the thickness of the conductive layer may be, for example, about 70 nm from the viewpoint of forming the protective film. In addition, since the conductive layer is formed by vapor deposition, it is simple and accurate to manage the film thickness of the conductive layer by the light transmittance. Therefore, when the light transmittance of the conductive layer is controlled to 1% or more and 50% or less in a wavelength range of 600 nm to 800 nm, for example, the light transmittance is good regardless of the type of material applied to the nonmagnetic conductive layer 102. In addition, it is desirable to manage the wavelength that is applied to an actual DV device within the above-mentioned wavelength range (a wavelength of 700 nm is exclusively applied) because the detection accuracy of the start and end of the tape can be managed together. Moreover, since the color of the conductive material generally changes when oxidized, the film thickness management in the light transmittance measurement of the conductive film considering the actual use as a magnetic tape is measured including the oxygen source addition layer 103. To do.

また、酸素源添加層103の酸素成分を付与する手法としては、例えばグロー放電、アーク放電、スパッタ雰囲気等に酸素分子を導入しイオン化、ラジカル化または発生基状態にする、または非磁性導電層102に酸素分子を晒す等通常の手法で良く、注入または含有させる酸素量に応じて適宜併用や選択することができる。なお、非磁性導電層102に適用する導電性材料と酸素源添加層103に適用する材料とは同一であっても異なる材料であっても何れでも良いが、導電層の成膜効率を考慮すると非磁性導電層102の成膜後に酸素成分を注入または非磁性導電層102に供した導電性材料に酸素成分を含有した雰囲気中で成膜の何れかが好ましく、導電層のシート抵抗値の管理の面では非磁性導電層102の上に例えば酸化錫、酸化インジウム、酸化亜鉛等比較的低抵抗値の酸化物や例えば酸化アルミニウム等の比較的高抵抗値の酸化物等を適宜積層することが好ましく、導電層に要求される電気特性に応じて適宜選択して用いることができる。   In addition, as a method for providing the oxygen component of the oxygen source addition layer 103, for example, oxygen molecules are introduced into a glow discharge, arc discharge, sputtering atmosphere, or the like to be in an ionized, radicalized or generated group state, or the nonmagnetic conductive layer 102 is used. Ordinary techniques such as exposure of oxygen molecules may be used, and can be used together or selected as appropriate according to the amount of oxygen to be injected or contained. Note that the conductive material applied to the nonmagnetic conductive layer 102 and the material applied to the oxygen source addition layer 103 may be the same or different materials, but considering the deposition efficiency of the conductive layer Either the oxygen component is injected after the nonmagnetic conductive layer 102 is formed, or the film is formed in an atmosphere containing the oxygen component in the conductive material used for the nonmagnetic conductive layer 102, and the sheet resistance value of the conductive layer is managed. In this aspect, a relatively low resistance oxide such as tin oxide, indium oxide or zinc oxide or a relatively high resistance oxide such as aluminum oxide is appropriately laminated on the nonmagnetic conductive layer 102. Preferably, the conductive layer can be appropriately selected and used according to electrical characteristics required for the conductive layer.

金属磁性層104に適用される材料としては、Fe、Co、Ni等の強磁性金属単体、Fe−Co、Co−Ni、Co−O、Fe−Co−Ni、Fe−Cu、Co−Cu、Co−Au、Co−Pt、Fe−Cr、Co−Cr、Ni−Cr、Fe−Co−Cr、Co−Ni−Cr、Co−Pt−Cr、Fe−Co−Ni−Cr、Mn−Bi、Mn−Al等の合金から選択される1つまたは複数の材料で、単層膜であっても多層膜であっても良い。金属磁性層104は、上述の材料を例えばイオンプレーティングまたはスパッタリング等の手法で、金属磁性層104に供する材料の蒸気の入射角を連続的に変化させる斜方蒸着法や、傾斜蒸着法を適用して垂直磁化膜として成膜できる。なお、上記蒸着を酸素雰囲気下で行うことにより、高効率の電気・磁気変換特性を有する酸素含有金属磁性膜が成膜できる。なお、金属磁性層104を蒸着で成膜する際の膜厚管理は、光透過率で行うのが最も簡便で精度が高いことは導電層の成膜と同様である。このため金属磁性層104の膜厚管理も光透過率で管理する際に、金属磁性層104単独の光透過率で管理する手法と、導電層と金属磁性層104との複合光透過率で管理する手法の何れでも良いが、磁気記録媒体を磁気テープとして用いる場合には、前述したように始終端検出検査も兼ねられるので複合光透過率で管理することが好ましい。また、測定波長範囲も導電層と同様に600nm〜800nmの何れかで行い、当該波長範囲における金属磁性層104単独の光透過率は10%以上60%以下の範囲が好ましい。特に後述する保護層105及び必要に応じて適用する滑材層107での透過率損失はほぼ0であるため、複合光透過率の測定はほぼ実使用での磁気テープの光透過率そのものを現し、DV機器でのテープ始終端の位置検出を兼ねられる。この複合光透過率が7%を越えると、リーダーテープと磁気テープとの光透過率の差を検知し難くなる傾向が見受けられ、0.2%を下回ると金属磁性層104の膜厚管理の精度が劣る。この理由から、複合光透過率は0.2%以上7%以下が好ましく、0.2%以上4%以下が望ましい。また、MRヘッド適正を有する磁気記録媒体にするためには、金属磁性膜104の膜厚は20nm〜120nmの範囲にすることが望ましい。   As the material applied to the metal magnetic layer 104, ferromagnetic metal such as Fe, Co, Ni, Fe-Co, Co-Ni, Co-O, Fe-Co-Ni, Fe-Cu, Co-Cu, Co-Au, Co-Pt, Fe-Cr, Co-Cr, Ni-Cr, Fe-Co-Cr, Co-Ni-Cr, Co-Pt-Cr, Fe-Co-Ni-Cr, Mn-Bi, One or a plurality of materials selected from an alloy such as Mn—Al may be a single layer film or a multilayer film. For the metal magnetic layer 104, an oblique deposition method or a gradient deposition method in which the incident angle of the vapor of the material used for the metal magnetic layer 104 is continuously changed by a technique such as ion plating or sputtering is used. Thus, it can be formed as a perpendicular magnetization film. Note that an oxygen-containing metal magnetic film having high-efficiency electric / magnetic conversion characteristics can be formed by performing the vapor deposition in an oxygen atmosphere. It is to be noted that the film thickness control when the metal magnetic layer 104 is formed by vapor deposition is the simplest and most accurate with the light transmittance, similar to the formation of the conductive layer. For this reason, when managing the film thickness of the metal magnetic layer 104 by the light transmittance, it is managed by the method of managing the light transmittance of the metal magnetic layer 104 alone and the composite light transmittance of the conductive layer and the metal magnetic layer 104. However, when using a magnetic recording medium as a magnetic tape, it is also preferable to manage with a composite light transmittance since it also serves as a start / end detection test as described above. The measurement wavelength range is also set to any of 600 nm to 800 nm as in the conductive layer, and the light transmittance of the metal magnetic layer 104 alone in the wavelength range is preferably in the range of 10% to 60%. In particular, the transmittance loss in the protective layer 105, which will be described later, and the lubricant layer 107 applied as necessary is almost zero. Therefore, the measurement of the composite light transmittance almost shows the light transmittance itself of the magnetic tape in actual use. It can also be used to detect the position of the beginning and end of the tape in DV equipment. When this composite light transmittance exceeds 7%, it tends to be difficult to detect the difference in light transmittance between the leader tape and the magnetic tape. When the composite light transmittance is less than 0.2%, the thickness of the metal magnetic layer 104 can be controlled. The accuracy is inferior. For this reason, the composite light transmittance is preferably 0.2% to 7%, and more preferably 0.2% to 4%. Further, in order to obtain a magnetic recording medium having MR head suitability, it is desirable that the metal magnetic film 104 has a thickness in the range of 20 nm to 120 nm.

磁気記録媒体の磁性層は磁気ヘッドが摺動当接することで、当該磁性層に情報信号を記録または記録されている情報信号を再生するため、金属磁性層104を磁気ヘッドから保護する保護層105が必要である。一方、磁性層に対して磁気的に記録再生するには周知のように磁気ギャップの適正化が必要である。従って、金属磁性層104を保護する保護層105には薄膜、機械的強度が高くかつ摺動性にも優れる物性が要求される。上記要請を満足する保護層105としては、炭素系薄膜が適用され、その中でもダイヤモンド構造的な立体構造を含有するいわゆるダイヤモンドライクカーボン(DLC)膜は、膜の硬度が適度に高いため磁気記録媒体の耐久性や保存性等の信頼性が高いと共に、磁気ヘッドの磨耗等の損傷の抑制効果が高いため、広く適用されている。このような保護層105は、炭素を含む原料を蒸着によって金属磁性層104の上に成膜することで形成され、炭素のみで形成した膜の他、炭素を主成分とし窒素、酸素、水素、弗素、硼素から選択される1種または複数種の原子を含む膜であっても良い。保護層105を緻密に成膜するには、原料蒸気に電荷を与える電界印加蒸着が好ましく、その中でも特にプラズマCVDが好適である。なお、図1に示した保護層105は単層構成であるが、例えば組成、材料、及び/または蒸着方式等を変化させて成膜した多層構成であっても適用できる。また、保護層105の膜厚は5nm〜20nmが好ましく、8nm〜16nmが望ましい。   The magnetic layer of the magnetic recording medium has a protective layer 105 that protects the metal magnetic layer 104 from the magnetic head so that the magnetic head slides and comes into contact with the magnetic layer to reproduce the information signal recorded or recorded on the magnetic layer. is required. On the other hand, in order to perform magnetic recording / reproducing with respect to the magnetic layer, it is necessary to optimize the magnetic gap as is well known. Therefore, the protective layer 105 that protects the metal magnetic layer 104 is required to have a thin film, high mechanical strength, and excellent physical properties. As the protective layer 105 that satisfies the above requirements, a carbon-based thin film is applied. Among them, a so-called diamond-like carbon (DLC) film containing a three-dimensional structure having a diamond structure has a moderately high film hardness, so that the magnetic recording medium is used. In addition to high reliability such as durability and storage stability, and high effect of suppressing damage such as wear of the magnetic head, it is widely applied. Such a protective layer 105 is formed by depositing a raw material containing carbon on the metal magnetic layer 104 by vapor deposition. In addition to a film formed only of carbon, nitrogen, oxygen, hydrogen, It may be a film containing one or more kinds of atoms selected from fluorine and boron. In order to form the protective layer 105 densely, field-applied vapor deposition that gives an electric charge to the raw material vapor is preferable, and plasma CVD is particularly preferable among them. The protective layer 105 shown in FIG. 1 has a single-layer structure, but can be applied to a multilayer structure formed by changing the composition, material, and / or vapor deposition method, for example. The thickness of the protective layer 105 is preferably 5 nm to 20 nm, and preferably 8 nm to 16 nm.

図2は、本発明の磁気記録媒体にも適用できるプラズマCVD装置の構成を説明する図である。プラズマCVD装置200は、真空ポンプ201で所定の高真空に保持したチャンバーの中に備える繰出ローラ202に巻回したテープ状の磁気記録媒体前駆体(金属磁性層104のみの磁気記録媒体)203は、成膜ローラ204を通して巻取ローラ205で保護層105を形成した磁気記録媒体206を巻き取る。繰出ローラ202と成膜ローラ204との間、及び成膜ローラ204と巻取ローラ205との間には、張力や蛇行を調整するサブローラ207及び208をそれぞれ備える。磁気記録媒体前駆体203は、プラズマ放電管209が対向する位置で保護層105を成膜し磁気記録媒体206となる。プラズマ放電管209には、例えばメタンガス、ヘキサンガス等の炭素源とアルゴン等の導入ガスとを所定比率で混合した原料ガスが導入管210を介してプラズマ放電管211に導入されると共に、プラズマ放電電極209と磁気記録媒体前駆体203の金属磁性層104との間に、例えば周波数20kHz実効値800Vの交流電源に900Vの直流電源を重畳した電源212の電圧を印加する。同図では、電源212からプラズマ放電電極211と磁気記録媒体前駆体203及び磁気記録媒体206とを介してサブローラ207及び208に電圧を印加しているが、この電圧印加に起因して電源212とサブローラ207及び208との間に流れる電流がプラズマ電流と称される。   FIG. 2 is a diagram illustrating the configuration of a plasma CVD apparatus that can be applied to the magnetic recording medium of the present invention. The plasma CVD apparatus 200 includes a tape-shaped magnetic recording medium precursor (magnetic recording medium only of the metal magnetic layer 104) 203 wound around a feeding roller 202 provided in a chamber maintained at a predetermined high vacuum by a vacuum pump 201. Then, the magnetic recording medium 206 on which the protective layer 105 is formed is taken up by the take-up roller 205 through the film forming roller 204. Sub rollers 207 and 208 for adjusting tension and meandering are provided between the feeding roller 202 and the film forming roller 204 and between the film forming roller 204 and the take-up roller 205, respectively. The magnetic recording medium precursor 203 forms a magnetic recording medium 206 by forming a protective layer 105 at a position where the plasma discharge tube 209 faces. In the plasma discharge tube 209, for example, a raw material gas obtained by mixing a carbon source such as methane gas or hexane gas and an introduction gas such as argon at a predetermined ratio is introduced into the plasma discharge tube 211 through the introduction tube 210, and plasma discharge is performed. Between the electrode 209 and the metal magnetic layer 104 of the magnetic recording medium precursor 203, for example, a voltage of a power source 212 in which a 900V DC power source is superimposed on an AC power source having a frequency of 20 kHz effective value 800V is applied. In the figure, a voltage is applied from the power source 212 to the sub-rollers 207 and 208 via the plasma discharge electrode 211, the magnetic recording medium precursor 203, and the magnetic recording medium 206. A current flowing between the sub rollers 207 and 208 is referred to as a plasma current.

プラズマ電流の電流路を鑑みると、電流は抵抗値が低い箇所を優先的に流れ、かつ前述したように金属磁性層104の膜厚は高々数十nm程度であるため、本発明の磁気記録媒体ではシート抵抗値が高い金属磁性層104よりも、シート抵抗値がはるかに低い導電層を優先的にしかも面方向に均一に流れる。プラズマ電流が均一、かつ多く流れるということは、印加電圧も高くすることができ、等価的に保護層105(この場合はDLC膜)の膜質が緻密で成膜速度が速いことになる。なお、磁気記録媒体前駆体203及び磁気記録媒体206は、成膜ローラ204に沿って順次移動するため、サブローラ207と磁気記録媒体前駆体203との接触箇所及びサブローラ208と磁気記録媒体206との接触箇所は共に変化するため、シート抵抗値が高い金属磁性層104を破壊することはない。一方、前述の特許文献1等の導電層を具備しない磁気記録媒体では、電流路はシート抵抗値が高い金属磁性層302のみであるため、成膜速度向上のため印加電圧を高めると、金属磁性層302の高いシート抵抗値により発熱または金属磁性層302中に集中的に流れる電流路を膜面方向に関して不均一に形成してしまい、両者が相俟って異常放電を発生し、例えば非磁性基材301を溶融または断裂するという課題を克服できる。   In view of the current path of the plasma current, the current preferentially flows through a portion having a low resistance value, and the thickness of the metal magnetic layer 104 is about several tens of nm as described above. Then, the conductive layer having a much lower sheet resistance value preferentially flows in the plane direction than the metallic magnetic layer 104 having a higher sheet resistance value. When the plasma current is uniform and flows a lot, the applied voltage can be increased, and the film quality of the protective layer 105 (in this case, the DLC film) is dense and the film formation speed is high. Since the magnetic recording medium precursor 203 and the magnetic recording medium 206 sequentially move along the film forming roller 204, the contact portion between the sub roller 207 and the magnetic recording medium precursor 203 and the sub roller 208 and the magnetic recording medium 206 Since both the contact locations change, the metal magnetic layer 104 having a high sheet resistance value is not destroyed. On the other hand, in the magnetic recording medium that does not include the conductive layer described in Patent Document 1 and the like, the current path is only the metal magnetic layer 302 having a high sheet resistance value. Due to the high sheet resistance value of the layer 302, heat paths or current paths that flow intensively in the metal magnetic layer 302 are formed unevenly with respect to the film surface direction. The problem of melting or tearing the substrate 301 can be overcome.

このような保護層105を形成した磁気記録媒体206の非磁性基板101の他方の面に、バックコート層106を必要に応じて形成する。バックコート層106は、ポリエステル系樹脂等の溶剤溶解性を有する結着剤と、カーボン、タルク、フッ化硼素等の固体潤滑剤とを所定量混入し、溶剤等で希釈調粘した分散液を湿式塗布することが一般的であるが、カーボン等の固体潤滑剤または酸化珪素等を蒸着等の手法で乾式に成膜しても良い。膜厚は一般的に0.2μm〜1μm程度で、DV機器等の磁気ヘッドに対して挟持する際にテープ裏面の滑り性を付与できればよい。さらに、保護層105の上に、保護層105の表面滑性をさらに付加するため、例えば弗素系潤滑剤等を湿式で塗布した潤滑層107を最表面に備えてもよい。潤滑層107を湿式塗布で形成すると、潤滑剤は保護層105等に吸収されるため潤滑層107として出現する膜厚を湿式塗布の溶液から換算すると、0.05nm〜50nm程度である。図1に示した磁気記録媒体100は、バックコート層106及び潤滑層107を備えた構成を示しているが、前述したようにバックコート層106及び潤滑層107は必須ではない。   A back coat layer 106 is formed on the other surface of the nonmagnetic substrate 101 of the magnetic recording medium 206 on which such a protective layer 105 is formed, if necessary. The back coat layer 106 is a dispersion obtained by mixing a predetermined amount of a binder having a solvent solubility such as a polyester resin and a solid lubricant such as carbon, talc, boron fluoride, and the like. In general, wet coating is performed, but a solid lubricant such as carbon or silicon oxide may be formed into a dry film by a technique such as vapor deposition. The film thickness is generally about 0.2 μm to 1 μm, and it is sufficient that the back surface of the tape can be given slidability when sandwiched with a magnetic head such as a DV device. Furthermore, in order to further add the surface lubricity of the protective layer 105 on the protective layer 105, for example, a lubricating layer 107 coated with a fluorine-based lubricant or the like may be provided on the outermost surface. When the lubricating layer 107 is formed by wet coating, the lubricant is absorbed by the protective layer 105 and the like, and the film thickness that appears as the lubricating layer 107 is about 0.05 nm to 50 nm when converted from the wet coating solution. The magnetic recording medium 100 shown in FIG. 1 shows a configuration including the backcoat layer 106 and the lubricating layer 107, but as described above, the backcoat layer 106 and the lubricating layer 107 are not essential.

以下、具体的な実施例を挙げ、本発明を詳細に説明する。なお、下記実施例及び比較例は、非磁性基板として膜厚6.3μmのポリエチレンテレフタレートフィルムを適用し、非磁性導電層は銅をスパッタリングで形成し、酸素源添加層は非磁性導電層を形成した後でグロー放電中を通過させた酸素により非磁性導電層の表面を酸化させて形成し、金属磁性層は斜方蒸着技術を用いて酸素雰囲気中でCoを電子ビーム蒸着で形成し、その後図2に示したプラズマCVD装置で、メタンガスとアルゴンガスとを等量混合し、総ガス圧13.3Pa、プラズマ放電電極に20kHz実効値800Vの交流電源に900Vの直流電源を重畳した電圧を印加してグロー放電を生じさせて、成膜ローラ204の速度を調整して金属磁性層の上に10nmとなるようにDLC膜を成膜し、保護層の上に含弗素カルボン酸系の潤滑剤を湿式塗布によりウェット換算で4nm塗布して磁気記録媒体を得、その後1/4インチ幅にスリットして磁気記録テープとした。また、酸素源添加層を含む非磁性導電層(すなわち、導電層)及び金属磁性層の膜厚は、それぞれ単独で700nmの光透過率を測定することで管理した。
(実施例1)
導電層の光透過率を10%に制御することで膜厚を30nm、シート抵抗値9Ω/□の導電層の上に、金属磁性膜を光透過率で制御することで90nm、70nm及び50nm積層した試料番号1、2及び3を作製し、金属磁性層の膜厚の影響を検証した。
(実施例2)
導電層の光透過率を6%、10%及び45%それぞれに制御し、膜厚を6nm、10nm及び45nm、シート抵抗値を180Ω/□、120Ω/□及び4Ω/□の導電層それぞれに、金属磁性層を光透過率で制御することで90nm積層した試料番号4、5及び6を作製し、導電層の膜厚及びシート抵抗値依存性を検証した。
(比較例1)
実施例1の比較として導電層の有無を検証するため、非磁性基板上に直接金属磁性層を光透過率で制御することで90nm成膜した試料番号1’を作製した。
(比較例2)
実施例1の比較として酸化源添加層の有無を検証するため、導電層の光透過率を10%に制御することで膜厚を30nm成膜し、酸化処理を施さない導電層の上に、金属磁性層を光透過率で制御することで90nm積層した試料番号2’を作製した。導電層は酸化未処理であるため、シート抵抗値8Ω/□であった。
(比較例3)
実施例2の比較として導電層の膜厚及びシート抵抗値の依存性を検証するため、導電層の光透過率を60%及び0.6%それぞれに制御し、膜厚を4nm及び45nm、シート抵抗値を300Ω/□及び2Ω/□の導電層それぞれに、金属磁性層を光透過率で制御することで90nm積層した試料番号3’及び4’を作製した。なお、導電層の酸素源添加層への酸化処理は、実施例2と全く同じ条件で行った。
Hereinafter, the present invention will be described in detail with specific examples. In the following examples and comparative examples, a polyethylene terephthalate film with a film thickness of 6.3 μm is applied as a nonmagnetic substrate, the nonmagnetic conductive layer is formed by sputtering copper, and the oxygen source added layer is formed by a nonmagnetic conductive layer. After that, the surface of the nonmagnetic conductive layer is oxidized by oxygen passed through the glow discharge, and the metal magnetic layer is formed by electron beam evaporation in an oxygen atmosphere using oblique deposition technique, and then In the plasma CVD apparatus shown in FIG. 2, methane gas and argon gas are mixed in equal amounts, and a total gas pressure of 13.3 Pa is applied to the plasma discharge electrode and a voltage obtained by superimposing a 900 V DC power supply on a 20 kHz effective value 800 V AC power supply. Glow discharge is generated, the speed of the film forming roller 204 is adjusted to form a DLC film on the metal magnetic layer so as to have a thickness of 10 nm, and the fluorine-containing carbon is formed on the protective layer. The phosphate-based lubricant was 4nm applied wet terms by wet coating to obtain a magnetic recording medium, and a magnetic recording tape was slit thereafter 1/4 inch wide. The film thicknesses of the nonmagnetic conductive layer (that is, the conductive layer) and the metal magnetic layer including the oxygen source addition layer were controlled by measuring the light transmittance of 700 nm independently.
Example 1
By controlling the light transmittance of the conductive layer to 10%, a film thickness of 30 nm and a sheet resistance value of 9Ω / □ are laminated on the metal magnetic film by controlling the light transmittance of 90 nm, 70 nm and 50 nm on the conductive layer. Sample Nos. 1, 2 and 3 were prepared and the influence of the film thickness of the metal magnetic layer was verified.
(Example 2)
The light transmittance of the conductive layer is controlled to 6%, 10%, and 45%, respectively, the film thickness is 6 nm, 10 nm, and 45 nm, and the sheet resistance value is 180Ω / □, 120Ω / □, and 4Ω / □, respectively. Sample numbers 4, 5, and 6 were prepared by laminating 90 nm by controlling the metal magnetic layer with light transmittance, and the film thickness and sheet resistance dependency of the conductive layer were verified.
(Comparative Example 1)
In order to verify the presence or absence of a conductive layer as a comparison with Example 1, Sample No. 1 ′ having a film thickness of 90 nm was produced by directly controlling the metal magnetic layer with a light transmittance on a nonmagnetic substrate.
(Comparative Example 2)
In order to verify the presence or absence of an oxidation source addition layer as a comparison with Example 1, a film thickness of 30 nm was formed by controlling the light transmittance of the conductive layer to 10%, and on the conductive layer not subjected to oxidation treatment, Sample number 2 ′ was prepared by laminating 90 nm by controlling the metal magnetic layer with light transmittance. Since the conductive layer was not oxidized, the sheet resistance value was 8Ω / □.
(Comparative Example 3)
As a comparison with Example 2, in order to verify the dependency of the film thickness of the conductive layer and the sheet resistance value, the light transmittance of the conductive layer was controlled to 60% and 0.6%, respectively, the film thickness was 4 nm and 45 nm, and the sheet Sample numbers 3 ′ and 4 ′ were prepared by laminating a metal magnetic layer by 90 nm on conductive layers having resistance values of 300Ω / □ and 2Ω / □, respectively, by controlling the light transmittance. The oxidation treatment of the conductive layer to the oxygen source addition layer was performed under exactly the same conditions as in Example 2.

上記10試料それぞれの構成を(表1)に示す。なお、(表1)には、試料番号1〜6及び試料番号1’〜4’をそれぞれ10サンプルずつ用意し、導電層と金属磁性層との合成シート抵抗値及び複合透過率の測定結果の平均値も付記した。   The configuration of each of the 10 samples is shown in (Table 1). In (Table 1), 10 samples each of sample numbers 1 to 6 and sample numbers 1 ′ to 4 ′ are prepared, and the measurement results of the composite sheet resistance value and the composite transmittance of the conductive layer and the metal magnetic layer are shown. Average values are also noted.

Figure 0004325369
Figure 0004325369

以上の10個の試料それぞれ10サンプルずつを、DLC膜を10nm成膜できる成膜速度、DLC膜の膜質の評価としてスチル耐性、DV機器に実装した場合の始終端検出、MRヘッドの適正として保磁力及び電気・磁気変換特性の評価(飽和磁束密度と膜厚との積)を評価項目として挙げた。それぞれの評価項目の結果を(表2)に示す。   Ten samples of each of the above 10 samples are kept as the deposition speed at which a DLC film can be formed to 10 nm, still resistance as an evaluation of the DLC film quality, detection of the start and end when mounted on a DV device, and appropriateness of the MR head. Evaluation of magnetic force and electrical / magnetic conversion characteristics (product of saturation magnetic flux density and film thickness) was listed as an evaluation item. The results of each evaluation item are shown in (Table 2).

なお、スチル耐性の評価には、ステンレス(SUS420J2、表面粗度0.2S、外径6mm)の摩擦部材に、巻付角90°で各試料を巻き付け、張力を20gfの条件で巻出及び巻取を100回繰り返して往復させ、巻出側及び巻取側それぞれのテンションを測定し、巻取側のテンションを巻出側のテンションとの比からオイラーの式に基づき動摩擦係数を計算した。なお、初期の動摩擦係数は1回目の値とした。   For evaluation of still resistance, each sample was wound around a friction member made of stainless steel (SUS420J2, surface roughness 0.2S, outer diameter 6 mm) at a winding angle of 90 °, and unwound and wound under the condition of a tension of 20 gf. The take-up was repeated 100 times, the tensions on the unwinding side and the winding side were measured, and the dynamic friction coefficient was calculated from the ratio of the winding-side tension to the unwinding-side tension based on Euler's equation. The initial dynamic friction coefficient was the first value.

また、始終端検出は、それぞれの試料を市販のDVカセットに組み込み、DVデッキで走行させて、リーダテープと磁気テープとの間の透過率を、700nmの波長の光透過率による検出の有無で評価した。   In addition, the start / end detection is performed by incorporating each sample into a commercially available DV cassette and running on the DV deck, and detecting the transmittance between the leader tape and the magnetic tape based on the light transmittance at a wavelength of 700 nm. evaluated.

Figure 0004325369
Figure 0004325369

(表2)から実施例に係る試料番号1〜6は、比較例に係る試料番号1’〜4’に比べると優れていることが明らかである。以下、各試料の構成と各評価項目について詳細に考察する。   From Table 2, it is clear that the sample numbers 1 to 6 according to the examples are superior to the sample numbers 1 'to 4' according to the comparative example. Hereinafter, the configuration of each sample and each evaluation item will be considered in detail.

先ず、非磁性基板と金属磁性層との間に備える導電層の有無については、DLC膜の成膜速度、動摩擦係数、始終端検出の全てに亘って試料番号1及び4〜6が試料番号1’より優れていることが(表2)から明らかである。すなわち、上記全ての試料の金属磁性層の膜厚は90nmとしているため、金属磁性層のシート抵抗値は一定であると想定されるが、試料番号1’のDLC膜の成膜速度は毎分32mと格段に遅く、動摩擦係数も初期値はほぼ同一であるにも拘わらず100回後は格段に劣化している結果が得られた。このことは、試料番号1’に導電層を備えていないことに起因して、導電層と金属磁性層(表では導電層・磁性層で標記)との合成シート抵抗値(抵抗値と標記しているが、以下合成抵抗値と称す)が高いため、DLC膜の成膜速度が遅い上にDLC膜の膜質も低く、DLC膜がスチル試験に耐えられなかったためだと想定される。これに対して、試料番号1、4〜6ではDLC膜の成膜速度が一律に高く生産性が大幅に改善されることが判明すると共に、スチル耐性の評価でも動摩擦係数が高々0.01〜0.04上昇するだけに留まっていることから、高速成膜性と高膜質であることが分かる。また、試料番号1’の導電層と金属磁性層との複合透過率(表では透過率と標記、以下複合透過率と称す)が15.0%と高いため、始終端検出においてもDVデッキで検出できなかったことから、評価に適用した実DVデッキでの走行は不能であり、導電層を具備しない構成では少なくとも90nmの膜厚の金属磁性層では隠蔽性に欠けるため、厚膜化する必要性があることが分かり、金属磁性層を厚膜化するとMRヘッド適正に欠ける可能性があることが想定される。   First, regarding the presence or absence of a conductive layer provided between the non-magnetic substrate and the metal magnetic layer, sample numbers 1 and 4 to 6 are sample number 1 over all of the DLC film deposition rate, dynamic friction coefficient, and start / end detection. 'It is clear from (Table 2) that it is superior. That is, since the film thickness of the metal magnetic layer of all the samples is 90 nm, the sheet resistance value of the metal magnetic layer is assumed to be constant, but the deposition rate of the DLC film of sample number 1 ′ is Although the initial value was almost the same as the dynamic friction coefficient, it was remarkably deteriorated after 100 times. This is due to the fact that Sample No. 1 ′ is not provided with a conductive layer, and therefore the combined sheet resistance value (labeled as the resistance value) of the conductive layer and the metal magnetic layer (indicated in the table as conductive layer / magnetic layer). However, it is assumed that this is because the DLC film formation rate is slow and the DLC film quality is low and the DLC film cannot withstand the still test. On the other hand, in Sample Nos. 1 and 4 to 6, it was found that the deposition rate of the DLC film was uniformly high and the productivity was greatly improved, and the coefficient of dynamic friction was 0.01 to at most in the evaluation of still resistance. Since it only stays at 0.04, it can be seen that it has high film-forming properties and high film quality. In addition, since the composite transmittance of the conductive layer of sample No. 1 ′ and the metal magnetic layer (in the table, referred to as “transmissivity”, referred to as “composite transmittance”) is as high as 15.0%. Since it could not be detected, it was impossible to run on the actual DV deck applied to the evaluation, and in the configuration without the conductive layer, the metal magnetic layer having a thickness of at least 90 nm lacked the concealability, so it is necessary to increase the thickness. It is assumed that there is a possibility of lack of proper MR head when the metal magnetic layer is thickened.

次に、導電層に備える酸素源添加層の有無については、試料番号1と1’とを比較すると、DLC膜の成膜速度及びスチル耐性の評価項目は同様であるためDLC膜に関しては同程度に良好であり、また始終端検出も共に検出できているが、保磁力の観点では試料番号1’は低下が見受けられた。これは試料番号1’では、金属磁性層と接する面を酸化処理を施していないため、金属磁性層の強磁性金属材料の結晶成長の制御に限界が生じ、結晶粒が大きくなったためだと想定される。従って、非磁性基板と金属磁性層との間に導電性が良好な導電層または金属層を備えるとDLC膜の観点では共に良好な結果が得られるものの、例えばMRヘッド等高密度強磁気ヘッド適正の磁気記録媒体に要請される保持力の観点では、酸素源添加層は強磁性金属材料の結晶制御性を発揮し得る。   Next, regarding the presence or absence of the oxygen source addition layer provided in the conductive layer, when the sample numbers 1 and 1 ′ are compared, the DLC film deposition rate and the still resistance evaluation items are the same, so the DLC film has the same degree. The sample No. 1 ′ showed a decrease from the viewpoint of coercive force. It is assumed that in Sample No. 1 ′, the surface in contact with the metal magnetic layer was not oxidized, so that control of crystal growth of the ferromagnetic metal material in the metal magnetic layer was limited, and the crystal grains became larger. Is done. Therefore, if a conductive layer or metal layer having good conductivity is provided between the nonmagnetic substrate and the metal magnetic layer, good results can be obtained from the viewpoint of the DLC film. From the viewpoint of the coercive force required for such magnetic recording media, the oxygen source addition layer can exhibit the crystal controllability of the ferromagnetic metal material.

次に、導電層の膜厚の影響については、試料番号3’、4、5、1、6、4’の順で導電層の膜厚が厚くなり、それに応じて合成抵抗値及び複合透過率共に膜厚変化と逆傾向を示すことが(表1)から分かる。この(表1)の結果と(表2)の結果とを照らし合わせると、金属磁性層の膜厚は90nmと全試料一定であるため保磁力はほぼ同程度であり差違はないが、最も導電層の厚みが薄い試料番号3’では導電層のシート抵抗値が300Ω/□と高いため等価的に合成抵抗値も150Ω/□と高くなり、DLC膜の成膜速度及び膜質は他の5者に比べると低下が見受けられ、また複合透過率が9.0%と高いため始終端検出もできなかった。これに対して試料番号4ではDLC膜の成膜速度は良好で、その膜質もスチル耐性試験では動摩擦係数の変動が0.04とほぼ許容できる範囲にあり、しかも実DVデッキによる始終端検出も問題なく検出できている。このことから、複合透過率で7%以下であれば実DVデッキでの始終端検出は可能であり、合成抵抗値110Ω/□の主要因である導電層のシート抵抗値180Ω/□近辺以上であれば、DLC膜の成膜速度、膜質、スチル耐性、始終端検出及び保磁力の全ての評価項目全てに亘り満足できる特性が得られる。なお、試料番号4及び3’の(表1)における導電層と導電層・磁性層との数値と、(表2)における各評価結果とを鑑みると、導電層のシート抵抗値は200Ω/□以下、膜厚は5nm以上、光透過率は50%以下が導電層の限界値であることが想定される。   Next, regarding the influence of the film thickness of the conductive layer, the film thickness of the conductive layer increases in the order of sample numbers 3 ′, 4, 5, 1, 6, 4 ′, and the combined resistance value and composite transmittance are accordingly increased. It can be seen from Table 1 that both show a tendency opposite to the change in film thickness. When the results of (Table 1) and the results of (Table 2) are collated, the thickness of the metal magnetic layer is 90 nm and the entire sample is constant, so the coercive force is almost the same and there is no difference. In Sample No. 3 ′ where the layer thickness is thin, the sheet resistance value of the conductive layer is as high as 300Ω / □, so the combined resistance value is equivalently as high as 150Ω / □, and the film formation speed and quality of the DLC film are the other five. Compared to, a decrease was observed, and since the composite transmittance was as high as 9.0%, the start / end could not be detected. In contrast, sample No. 4 has a good DLC film deposition rate, and its film quality is within the allowable range of 0.04 in the coefficient of dynamic friction in the still resistance test, and the start / end detection by the actual DV deck is also possible. It has been detected without problems. From this, if the composite transmittance is 7% or less, it is possible to detect the start and end of the actual DV deck, and the conductive layer sheet resistance value of around 180Ω / □ is the main factor of the combined resistance value 110Ω / □. If so, satisfactory characteristics can be obtained over all the evaluation items of the DLC film deposition rate, film quality, still resistance, start / end detection, and coercive force. In view of the numerical values of the conductive layer and the conductive layer / magnetic layer in (Table 1) of Sample Nos. 4 and 3 ′ and the evaluation results in (Table 2), the sheet resistance value of the conductive layer is 200Ω / □. Hereinafter, it is assumed that the thickness of the conductive layer is 5 nm or more and the light transmittance is 50% or less.

一方、逆に導電層の膜厚が65nmと最も厚い試料番号4’では、導電層のシート抵抗値が2Ω/□と最も低いため等価的に合成抵抗値も2Ω/□と最も低く、(表2)に示したようにDLC膜の成膜速度、DLC膜の膜質、始終端検出及び保磁力等全てに亘り良好であるが、複合透過率が0.1%であるため、磁気記録媒体の金属磁性層の生産管理の面では膜厚管理のほぼ限界値近傍である点と、導電層の膜厚が65nmと厚いため磁気テープの薄型化には不利である。一方試料番号6では、導電層の膜厚が45nmで、導電層のシート抵抗値は4Ω/□であり等価的に合成抵抗値も試料番号4’に継いで低く、試料番号4’と同様に(表2)に示した各評価項目全てに亘り満足できる結果が得られている。但し、試料番号6の複合透過率は0.3%であり、磁気記録媒体の生産上の金属磁性層の膜厚管理の限界より光透過率が高いため、膜厚管理が行き届いた金属磁性層を備えた磁気テープを提供できると共に、磁気テープとしての薄型化も試料番号4’に比べると効果はある。なお、金属磁性層の膜厚管理限界の光透過率は前述したように0.1%程度である点を鑑みると、試料番号6の導電層より5nm程度厚くして50nm程度であれば、金属磁性層を例えば90nm程度成膜しても光透過率は0.2%程度と見込まれ、試料番号6と4’との結果を鑑みると、その時の導電層の光透過率は1%程度、シート抵抗値は3Ω/□程度であると想定されるので、導電層の限界値と想定できる。   On the other hand, in the sample No. 4 ′ where the thickness of the conductive layer is 65 nm, which is the thickest, the sheet resistance value of the conductive layer is as low as 2Ω / □, so the combined resistance value is equivalently as low as 2Ω / □. As shown in 2), the film formation rate of the DLC film, the film quality of the DLC film, the start / end detection and the coercive force are all good, but the composite transmittance is 0.1%. In terms of production management of the metal magnetic layer, it is disadvantageous for thinning the magnetic tape because it is almost in the vicinity of the limit value of film thickness management and the conductive layer is as thick as 65 nm. On the other hand, in Sample No. 6, the thickness of the conductive layer is 45 nm, the sheet resistance value of the conductive layer is 4Ω / □, and the combined resistance value is equivalently lower than that of Sample No. 4 ′. Satisfactory results have been obtained for all the evaluation items shown in (Table 2). However, the composite transmittance of Sample No. 6 is 0.3%, and the light transmittance is higher than the limit of the thickness control of the metal magnetic layer in the production of the magnetic recording medium. Can be provided, and thinning as a magnetic tape is more effective than Sample No. 4 ′. In light of the fact that the light transmittance at the film thickness control limit of the metal magnetic layer is about 0.1% as described above, if the thickness is about 5 nm thicker than the conductive layer of sample number 6 and is about 50 nm, the metal Even if the magnetic layer is formed to a thickness of about 90 nm, for example, the light transmittance is expected to be about 0.2%. In view of the results of Sample Nos. 6 and 4 ′, the light transmittance of the conductive layer at that time is about 1%, Since the sheet resistance value is assumed to be about 3Ω / □, it can be assumed to be the limit value of the conductive layer.

また、試料番号4、5、1及び6は何れも金属磁性層の膜厚は同一で、導電層の膜厚を変化させた試料であるが、導電層の膜厚に応じて導電層の透過率及びシート抵抗値も変化し、等価的に合成抵抗値及び複合透過率の値も変化している。同試料は(表2)から全評価項目に亘り良好な結果が得られている。このことから、上述した導電層の膜厚、光透過率、シート抵抗値、合成抵抗値及び複合透過率の各上限値と下限値は上記の範囲が適正であることが分かる。従って、本発明の磁気記録媒体における各構成要素の数値範囲は、導電層の膜厚は5nm以上で50nm以下、導電層のシート抵抗値は3Ω/□以上で200Ω/□以下、導電層を波長700nmの光で測定した光透過率は1%以上で50%以下、波長700nmで測定した複合透過率は0.2%以上で7%以下が最適である。なお、本発明で適用する導電層の材料及び金属磁性層の材料は共に600nmから800nmの波長範囲に特異的な吸収域を有していないため、本実施例では700nmの波長を用いて測定したが、600nm以上800nm以下の波長範囲であれば、(表1)に示した光透過率及び複合透過率は殆ど変化はない。   Sample Nos. 4, 5, 1 and 6 are samples in which the metal magnetic layer has the same thickness and the thickness of the conductive layer is changed, but the transmission of the conductive layer depends on the thickness of the conductive layer. The ratio and the sheet resistance value are also changed, and equivalently, the combined resistance value and the composite transmittance value are also changed. The sample obtained favorable results over all the evaluation items from (Table 2). From this, it is understood that the above ranges are appropriate for the upper limit value and the lower limit value of the film thickness, light transmittance, sheet resistance value, combined resistance value, and composite transmittance of the conductive layer described above. Accordingly, the numerical range of each component in the magnetic recording medium of the present invention is that the film thickness of the conductive layer is 5 nm or more and 50 nm or less, the sheet resistance value of the conductive layer is 3Ω / □ or more and 200Ω / □ or less, and the conductive layer has a wavelength. The light transmittance measured with light of 700 nm is optimally 1% to 50%, and the composite transmittance measured at wavelength 700 nm is optimally 0.2% to 7%. In addition, since the material of the conductive layer and the material of the metal magnetic layer applied in the present invention do not have a specific absorption range in the wavelength range of 600 nm to 800 nm, in this example, measurement was performed using a wavelength of 700 nm. However, when the wavelength range is 600 nm or more and 800 nm or less, the light transmittance and the composite transmittance shown in (Table 1) hardly change.

さらに、試料番号1〜3は何れも導電層の膜厚を30nmと一定にし、等価的に導電層の光透過率及びシート抵抗値も同一であり、同試料に金属磁性層の膜厚を変化させた場合である。金属磁性層の膜厚変化により複合透過率はそれぞれ変化しているが、導電層のシート抵抗が何れも9Ω/□と低いため、合成抵抗値はほぼ導電層のシート抵抗値に影響を直接受けほぼ同じ値であった。なお、金属磁性層の膜厚は、MRヘッド適正を有する膜厚範囲内から選択している。(表1)の合成抵抗値及び複合透過率の値が上記した各範囲内にあるため、DLC膜の成膜速度、DLC膜の膜質及び始終端検出全てに亘り良好な結果が得られていることが(表2)から伺うことができる。試料番号1〜3で注目すべき点は保磁力及び飽和磁束密度と膜厚との積である。MRヘッド適正を確実にするためには、保磁力が大きく、かつ、電気・磁気変換特性の一つの指標となる飽和磁束密と塗膜圧との積の値が小さいほど良好であることから、金属磁性層の膜厚は薄い方が好ましいことが想定される。金属磁性層の膜厚を薄くすると、前述したように保護層の成膜過程でプラズマ電流が流れ難くなるが、本発明では導電層を備えるため金属磁性層の膜厚を薄くしても、量産性に課題は発生しない。しかも特許文献2に開示されている技術、すなわち抵抗性金属層を非磁性基板と金属磁性層との間に介在させる構成では、実用的な保護層の成膜速度を達成するためには抵抗性金属層の膜厚だけでも100nm程度成膜することが要求されるが、本発明の酸素源添加層を有する導電層を適用することにより、導電層と金属磁性層との積層構成の膜厚が大凡100nmで実用に耐え得る保護層と、優れた磁気特性とを両立することができることが判明した。   Further, in each of sample numbers 1 to 3, the thickness of the conductive layer is kept constant at 30 nm, the light transmittance and the sheet resistance value of the conductive layer are equivalently the same, and the thickness of the metal magnetic layer is changed to the same sample. This is the case. Although the composite transmittance varies with the thickness of the metal magnetic layer, the combined resistance is almost directly affected by the sheet resistance of the conductive layer because the sheet resistance of the conductive layer is as low as 9Ω / □. It was almost the same value. The film thickness of the metal magnetic layer is selected from a film thickness range having MR head suitability. Since the combined resistance value and the composite transmittance value in (Table 1) are within the above-described ranges, good results are obtained over the DLC film deposition rate, DLC film quality, and start / end detection. (Table 2). What should be noted in sample numbers 1 to 3 is the product of coercive force and saturation magnetic flux density and film thickness. In order to ensure the proper MR head, the smaller the value of the product of the saturation magnetic flux density and the coating film pressure, which is one of the indicators of the electrical / magnetic conversion characteristics, is better. It is assumed that the metal magnetic layer is preferably thin. If the thickness of the metal magnetic layer is reduced, the plasma current becomes difficult to flow in the process of forming the protective layer as described above. However, since the present invention includes a conductive layer, mass production is possible even if the thickness of the metal magnetic layer is reduced. There is no problem with sex. In addition, in the technique disclosed in Patent Document 2, that is, a configuration in which a resistive metal layer is interposed between the nonmagnetic substrate and the metal magnetic layer, resistance is required to achieve a practical protective layer deposition rate. A film thickness of about 100 nm is required only for the thickness of the metal layer, but by applying the conductive layer having the oxygen source addition layer of the present invention, the film thickness of the laminated structure of the conductive layer and the metal magnetic layer can be reduced. It has been found that both a protective layer that can withstand practical use at about 100 nm and excellent magnetic properties can be achieved.

本発明は、情報信号を高密度に記録・再生できる磁気記録媒体の生産効率を大幅に向上でき、MRヘッドやそれ以上の高密度記録ヘッドにも適用でき得る磁気記録媒体を提供できる。   The present invention can greatly improve the production efficiency of a magnetic recording medium capable of recording / reproducing information signals at high density, and can provide a magnetic recording medium that can be applied to MR heads and higher density recording heads.

本発明の磁気記録媒体の一実施形態における断面図Sectional drawing in one Embodiment of the magnetic-recording medium of this invention 本発明の磁気記録媒体の保護層を形成する一蒸着装置の概略構成図Schematic configuration diagram of one vapor deposition apparatus for forming a protective layer of a magnetic recording medium of the present invention 従来の磁気記録媒体の一例を説明する断面図Sectional drawing explaining an example of the conventional magnetic recording medium 従来の磁気記録媒体の他の例を説明する断面図Sectional drawing explaining the other example of the conventional magnetic recording medium

符号の説明Explanation of symbols

101 非磁性基板
102 導電層
103 酸素源添加層
104 金属磁性層
105 保護層
106 バックコート層
107 潤滑剤層
DESCRIPTION OF SYMBOLS 101 Nonmagnetic board | substrate 102 Conductive layer 103 Oxygen source addition layer 104 Metal magnetic layer 105 Protective layer 106 Backcoat layer 107 Lubricant layer

Claims (7)

非磁性基板の一方の面に非磁性導電層、金属磁性層及び保護層が順次形成された積層構造体を含み、前記非磁性導電層と前記金属磁性層との界面における前記非磁性導電層に酸素を含む磁気記録媒体。 A laminated structure in which a nonmagnetic conductive layer, a metal magnetic layer, and a protective layer are sequentially formed on one surface of the nonmagnetic substrate; and the nonmagnetic conductive layer at the interface between the nonmagnetic conductive layer and the metal magnetic layer A magnetic recording medium containing oxygen. 波長600nm以上800nm以下の波長範囲における前記非磁性基板と前記積層構造体との複合光透過率が、0.2%以上7%以下である請求項1記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein a composite light transmittance of the nonmagnetic substrate and the laminated structure in a wavelength range of 600 nm to 800 nm is 0.2% to 7%. 前記導電層の膜厚が5nm以上50nm以下である請求項1または2何れかに記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the conductive layer has a thickness of 5 nm to 50 nm. 前記導電層のシート抵抗値が3Ω/□以上200Ω/□以下である請求項1または2何れかに記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the conductive layer has a sheet resistance value of 3Ω / □ or more and 200Ω / □ or less. 波長600nm以上800nm以下の波長範囲における前記導電層の光透過率が1%以上50%以下である請求項1または2何れかに記載の磁気記録媒体。 3. The magnetic recording medium according to claim 1, wherein the light transmittance of the conductive layer in a wavelength range of 600 nm to 800 nm is 1% to 50%. 非磁性基板の一方の主面に非磁性導電層を蒸着により形成し、
前記非磁性導電層の表面に酸素分子、酸素イオンまたは活性基の酸素の何れかの酸素源を注入し、
前記酸素源を注入した導電層の上に金属磁性層を蒸着により形成し、
プラズマ放電電極と前記金属磁性層との間に電圧を印加し、前記金属磁性層の上にプラズマCVD法によって炭素系保護膜を形成する磁気記録媒体の製造方法。
Forming a nonmagnetic conductive layer on one main surface of the nonmagnetic substrate by vapor deposition;
Injecting an oxygen source of oxygen molecules, oxygen ions, or active group oxygen into the surface of the nonmagnetic conductive layer,
Forming a metal magnetic layer on the conductive layer injected with the oxygen source by vapor deposition;
A method for manufacturing a magnetic recording medium, wherein a voltage is applied between a plasma discharge electrode and the metal magnetic layer, and a carbon-based protective film is formed on the metal magnetic layer by a plasma CVD method.
非磁性基板の一方の主面に非磁性導電性物質を蒸着により形成した後に、酸素分子、酸素イオンまたは活性基の酸素の何れかの酸素源の雰囲気中で前記非磁性導電性物質を蒸着により形成した導電層を形成し、
前記導電層の上に金属磁性層を蒸着により形成し、
プラズマ放電電極と前記金属磁性層との間に電圧を印加し、前記金属磁性層の上にプラズマCVD法によって炭素系保護膜を形成する磁気記録媒体の製造方法。
After forming a nonmagnetic conductive material on one main surface of the nonmagnetic substrate by vapor deposition, the nonmagnetic conductive material is vapor deposited in an oxygen source atmosphere of any of oxygen molecules, oxygen ions, or active oxygen. Forming the formed conductive layer,
A metal magnetic layer is formed on the conductive layer by vapor deposition,
A method for manufacturing a magnetic recording medium, wherein a voltage is applied between a plasma discharge electrode and the metal magnetic layer, and a carbon-based protective film is formed on the metal magnetic layer by a plasma CVD method.
JP2003382197A 2003-11-12 2003-11-12 Magnetic recording medium Expired - Fee Related JP4325369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382197A JP4325369B2 (en) 2003-11-12 2003-11-12 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382197A JP4325369B2 (en) 2003-11-12 2003-11-12 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005149572A JP2005149572A (en) 2005-06-09
JP4325369B2 true JP4325369B2 (en) 2009-09-02

Family

ID=34691342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382197A Expired - Fee Related JP4325369B2 (en) 2003-11-12 2003-11-12 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4325369B2 (en)

Also Published As

Publication number Publication date
JP2005149572A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4193268B2 (en) Thin film forming apparatus, thin film forming method, and guide guide roll
JP3852476B2 (en) Magnetic recording medium
JP2003208710A (en) Magnetic recording medium
JP4385235B2 (en) Magnetic recording medium and magnetic recording / reproducing system
JP4325369B2 (en) Magnetic recording medium
US20050266273A1 (en) Magnetic recording medium
JPH1049853A (en) Magnetic recording medium and its manufacture
JPH11328645A (en) Method for reproducing magnetic recording medium
US7303829B2 (en) Magnetic recording medium
JP2004192711A (en) Magnetic recording medium
JP2000195035A (en) Magnetic recording medium and method of manufacturing the same
JP2002230742A (en) Magnetic recording medium and manufacturing method of magnetic recording medium
JP2004046928A (en) Magnetic recording medium
JP2003085724A (en) Magnetic recording medium
JP2006134396A (en) Linear tape system
JP2002367135A (en) Magnetic recording medium and manufacturing method therefor
JP2006131965A (en) Film-forming apparatus and magnetic recording medium produced by using the same
JP2004039195A (en) Magnetic recording medium
JP2005063508A (en) Magnetic recording medium and its manufacturing method
JPH103651A (en) Magnetic recording medium
JP2001344736A (en) Magnetic recording medium and magnetic recording method
JP2004355784A (en) Magnetic recording medium
JPH10106834A (en) Magnetic recording medium
JP2004039078A (en) Magnetic recording medium
JP2003346329A (en) Magnetic recording medium and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees