JP4324309B2 - Submerged arc press welding method for steel bars - Google Patents

Submerged arc press welding method for steel bars Download PDF

Info

Publication number
JP4324309B2
JP4324309B2 JP2000148662A JP2000148662A JP4324309B2 JP 4324309 B2 JP4324309 B2 JP 4324309B2 JP 2000148662 A JP2000148662 A JP 2000148662A JP 2000148662 A JP2000148662 A JP 2000148662A JP 4324309 B2 JP4324309 B2 JP 4324309B2
Authority
JP
Japan
Prior art keywords
welding
bar
steel
steel bar
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000148662A
Other languages
Japanese (ja)
Other versions
JP2001321941A (en
Inventor
真二 児玉
靖友 一山
滋樹 寺崎
正邦 若林
嘉之 江良
年誠 遠藤
徹 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000148662A priority Critical patent/JP4324309B2/en
Publication of JP2001321941A publication Critical patent/JP2001321941A/en
Application granted granted Critical
Publication of JP4324309B2 publication Critical patent/JP4324309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直径29mm以上の太径棒鋼のサブマージアークプレス溶接方法に関し、主として、土木建築基礎現場における定着板とアンカー鉄筋の溶接や基礎杭の端板とアンカー鉄筋の溶接を行うさいに良好な溶接部が得られるサブマージアークプレス溶接方法に関するものである。
【0002】
【従来の技術】
従来の棒鋼の溶接法としては、例えば特開平9−155591号公報に示される棒鋼と鋼板とをエンクローズアーク溶接する方法がある。エンクローズアーク溶接は、鉛直方向に配置された鋼板に対して棒鋼を水平に支持するとともに、鋼板面と棒鋼端部を円筒形のセラミックス製裏当て材を介して所定開先ギャップになるように固定し、裏当て材の上部開口部から溶接ワイヤによりアーク溶接する方法であり、自動化を図るなどの工夫によってD51程度のサイズの鉄筋を高品質で溶接できる。しかしながら、この溶接方法は、水平に配置された棒鋼を鉛直方向から溶接する場合には適用可能であるが、アンカー鉄筋と定着板を溶接する場合のように鉛直に配置された鉄筋を溶接するさいには、溶接姿勢が横向きになり、溶融金属が流れやすくなるため、溶接部の品質を確保できない。
【0003】
また、水平に配置された鋼板に対して鉄筋を鉛直に配置して鉄筋の端部と鋼板表面とを溶接する方法では、例えば特開平3−258462号公報で開示されているように、セラミックス製のフェルールで開先部を囲い棒鋼と鋼板の間にアークを発生させて溶接部を加熱溶融させた後、棒鋼を鋼板上の溶融池に押し込むことによって溶接するスタッド溶接法が挙げられる。このスタッド溶接は、直流の溶接電源を用いて2000アンペア程度の大電流で溶接を行うことによって溶接時間が1秒程度という非常に高能率な溶接を達成している。
【0004】
スタッド溶接法の溶接部の品質を制御する方法として、例えば特開平11−10342公報に示されるように溶接中の平均電圧値や平均電流値を用いて溶接入熱を求めることによって溶接結果の判定を行う方法がある。しかしながら、スタッド溶接は溶接時間が極めて短いためにこれらの管理データを溶接プロセスにフィードバック制御することによって品質の安定化を図ることは困難であった。また、スタッド溶接法は高価な定電流型の直流溶接電源を必要とするために他のアーク溶接方法に対して経済的に不利であった。
【0005】
さらに、スタッド溶接方法は直流の大電流を使用するため、鋼材自身の残留磁界や溶接電流によって発生する誘導磁界の影響を受けて溶接アークが不安定となり易いという問題がある。このため棒鋼サイズの増加とともに溶接部端面の溶融が不均一となり、高品質で溶接できる棒鋼のサイズは直径25mm程度が限界であった。
【0006】
一方、スタッド溶接よりもさらに太径(直径32mm程度)の棒鋼をより安価な垂下特性の交流溶接電源を用いて溶接する方法として、例えば特開昭41−76859号公報に示されるサブマージアークプレス溶接法が挙げられる。従来のサブマージアークプレス溶接法は、棒鋼端部をアーク発生用挿入体を介して被溶接材に接触させるとともに、溶接ギャップ部を粉粒体フラックスで包囲し、棒鋼に通電して前記溶接ギャップ間に溶接アークを発生させることにより前記棒鋼端部を加熱溶融させ、その後、被溶接材上に生成した溶融池に棒鋼を押し込むことにより溶接を行っていた。
【0007】
この溶接法は、溶接アークによる熱で溶けた粉粒体フラックスが溶融スラグとなり溶接部全体を覆うため、安価な交流電源を用いても溶接アークが安定しており、1000A程度のスタッド溶接法に比べて、比較的低電流で太径の棒鋼の溶接を行っていた。
【0008】
しかしながら、従来のサブマージアークプレス溶接法は、溶接品質を安定化させるための制御がほとんどなされておらず、例えば溶接開始後タイマーのみに従って一定時間溶接アークを保持した後に棒鋼を溶融池に押し込むことによって溶接を行なっていた。このため、溶接施工時の種々の変動要因によって溶接品質にばらつきが生じていた。
【0009】
【発明が解決しようとする課題】
サブマージアークプレス溶接方法における溶接品質の劣化要因として、以下の点が挙げられる。
【0010】
第1に溶接時に溶接入熱量の変動が挙げられる。
従来、サブマージアークプレス溶接法は主に土木建築の現場施工で用いられているが、作業能率を考慮して重量物である溶接電源は1カ所に固定しておき、この溶接電源と溶接装置の間に30mから80mの長い電源ケーブルを接続し、溶接箇所に溶接装置のみを移動させて溶接する方法を採用している。この結果、電源ケーブルにおける電力損失量が極めて大きく、また、その電力損失量は電源ケーブルの劣化状態や発熱状態の違いによっても大きく変動するため溶接部に投入される入熱量も変動し溶接品質の劣化要因となっていた。加えて、工事現場における1次電源は主にエンジン発電機が用いられるが、周辺機器の使用状態によって出力電圧が大きく変動するため、これも溶接品質の劣化要因となっていた。
【0011】
したがって、電源ケーブルの長さや1次電源の出力状態による溶接入熱の変動を抑制し、棒鋼のサイズおよび材質に応じて溶接入熱を常に一定に制御することがサブマージアークプレス溶接方法の溶接品質を向上させるうえで重要である。
【0012】
第2の品質劣化要因として、溶接中の溶接電圧変動が挙げられる。
サブマージアークプレス溶接方法では、溶接アークが棒鋼と鋼板のギャップで発生するが、溶接が進行するに従って溶融した金属が棒鋼先端から垂れ下がり、鋼板上の溶融池と短絡するため、溶接電圧が変動しやすい。このため鋼板上の溶融金属を均一に加熱することが困難となり、これが溶接部品質の劣化の要因となる。この傾向は棒鋼サイズの太径化とともに強くなり、特に棒鋼径が38mmより太い、太径鉄筋を溶接するさいに溶接部の品質を維持するためには溶接中の溶接電圧の制御は不可欠となる。
【0013】
サブマージアークプレス溶接方法においては、上記の溶接品質の劣化を抑制するとともに、溶接作業性を向上させるためにアークスタート(溶接開始)時の安定性が課題となる。サブマージアークプレス溶接方法では、棒鋼と鋼板などの被溶接材との間にアーク発生用挿入体を介して固定し、棒鋼に通電を開始してアーク発生用挿入体を溶融させることによってアークスタートを行なっていたが、挿入体セット時の接触不良やアークスタート時の挿入体の溶融状態の変動また粉粒体フラックスの巻き込みによってアークスタートに失敗することがあり、作業能率の低下要因となっていた。このため、安定した溶接開始方法を確立することもサブマージアークプレス溶接方法において重要な課題であった。
【0014】
本発明は、以上のサブマージアークプレス溶接方法における問題点を克服し、溶接品質および作業能率に優れたサブマージアークプレス溶接方法提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明は、上記の課題を解決するものであり、その要旨とするところは以下の通りである。
(1)棒鋼の端部を水平方向に配置された被溶接材の表面にアーク発生用挿入体を介して接触させるとともに、溶接ギャップの周りを粉粒体フラックスで包囲した状態で、前記棒鋼に通電して棒鋼端部から被溶接材にアークを発生させるとともに、棒鋼端部を加熱溶融させて被溶接材の表面上に溶融池を生成させた後、棒鋼を溶融池に押し込んで溶接するサブマージアークプレス溶接方法において、前記棒鋼のアーク発生時から溶接電流及び溶接電圧を測定し、前記溶接電圧の測定値が予め定められた所定の電圧になるように、前記被溶接材に対する棒鋼の高さをフィードバック制御するとともに、これらの測定値から溶接入熱量を計算し、該溶接入熱量の計算値が予め定めた所定の溶接入熱量に達した後、棒鋼の端部を溶融池に押し込むさいの押し込み量を予め定められた所定の押し込み量と、アーク発生時の棒鋼の高さに対する押し込む時の棒鋼の高さの変位量との和として当該棒鋼を溶融池に押し込むことを特徴とする棒鋼のサブマージアークプレス溶接方法。
(2)前記溶接入熱量の計算値は、アーク発生時から所定の時間間隔で測定した溶接電流と溶接電圧の積算値を時間積分して求めることを特徴とする上記(1)記載の棒鋼のサブマージアークプレス溶接方法。
(3)前記アーク発生時の溶接電圧の測定値が予め定められた所定の電圧になるように棒鋼の高さを調整することを特徴とする上記(1)または(2)記載の棒鋼のサブマージアークプレス溶接方法。
【0016】
【発明の実施の形態】
図2に代表的なサブマージアークプレス溶接部の断面形状と主な溶接欠陥を示す。サブマージアークプレス溶接方法で問題となる溶接欠陥は、溶接金属7と棒鋼6の止端部に生ずるアンダーカット欠陥9(図2(a))やオーバーラップ欠陥10(図2(b))、溶接金属7と鋼板8の境目に生じる余盛り形状不良11(図2(c))である。
【0017】
本発明者らは、サブマージアークプレス溶接方法において発生するこれらの溶接欠陥を防止する方法について種々検討した結果、アンダーカット欠陥及びオーバーラップ欠陥は溶接入熱の制御を行うことによって、また余盛り形状不良は溶接電圧制御を行うことによって防止することが出来ることが判った。本発明は、これらの知見に基づいてなされたものである。
【0018】
以下に本発明の詳細について説明する。
図3はサブマージアークプレス溶接方法により直径32mmの軟鋼の棒鋼を鋼板に溶接した時の溶接押し込み量と溶接入熱量との関係、およびそのときの溶接部の欠陥発生状況を調査した結果である。
【0019】
ここで、溶接時の入熱量は下記の(1)式に示すように溶接時の溶接電圧と溶接電流の積算値を溶接時の投入エネルギーとして算出した。
[入熱量]=ΣV(t)×I(t)×Δt ・・・・・ (1)
ただし、V(t):溶接電圧 、I(t):溶接電流、Δt:溶接時間
【0020】
図3に示すように溶接時の入熱量が適正範囲よりも大きい場合は棒鋼の溶融量が過度に増加し押し込み不足となりアンダーカット欠陥(図2(a))が生じ、入熱量が適正範囲よりも小さい場合は棒鋼の溶融量が過度に減少し押し込み過多となりオーバーラップ欠陥(図2(b))が生じる傾向が高く、これらの溶接部欠陥を防止するためには溶接入熱量を適正な範囲にすることが重要である。
【0021】
図4は、サブマージアークプレス溶接における被溶接材の鉄筋サイズと溶接電圧の関係、およびその時の溶接部の欠陥発生状況を調査した結果である。
図4に示すとおり、溶接電圧が低い場合は、短絡の発生率が増し、鋼板上の溶融金属が広がり難くなるため溶接部の余盛り形状が不良(凸形状)となり、溶接電圧が高すぎる場合は、アーク途絶やスラグインの原因となる。ここで余盛り形状不良(図2(c))とは、溶接金属と鋼板の境目のなじみが悪くなり溶接金属の止端部の角度が90度以下となる場合を指す。このように、溶接時の溶接電圧を適正範囲に制御することにより溶接部の余盛り形状の不良を防止できる。
【0022】
上記の溶接欠陥を防止するための本発明の溶接方法における溶接入熱量および溶接電圧の制御方法を以下に説明する。
はじめに、図7の本発明に用いたサブマージアークプレス溶接装置の概略図により本発明の実施形態を説明する。サブマージアークプレス溶接を行うさいの事前準備として、まず溶接する鋼板8上に溶接装置を配置する。このさい棒鋼6は溶接装置のクランプ27で保持され、アーク発生用挿入体21を介して鋼板8上に固定する。次に、鋼板8と棒鋼6との溶接ギャップをフラックスホルダー20で囲み、さらにフラックスホルダー20内にフラックス19を充填して溶接ギャップ(溶接部)の周囲を粉粒体フラックス19で包囲する。
【0023】
以上の溶接準備が完了後、溶接電源22から棒鋼6に溶接電流を通電する。このさい溶接電流はアーク発生用挿入体を介して棒鋼から鋼板に流れるが、溶接電流によりアーク発生用挿入体が溶融し、棒鋼6と鋼板8の溶接ギャップ間にアークが発生する。
【0024】
アークの発生により溶接が開始されるが、本発明では、アーク発生(溶接開始)時から溶接が完了するまで電源ケーブル23に挿入したシャント抵抗28の出力電圧を検出して溶接電流を測定するとともに、できるだけ溶接部近傍の電圧を取り込むためにクランプ27と鋼板8の間の電圧値を検出して溶接電圧を測定する。
【0025】
アーク発生(溶接開始)後、溶接電源22により粉粒体フラックス19中で棒鋼6と鋼板8間のアークを保持させて棒鋼6の端面を加熱溶融させるとともに、溶接電圧の測定値が所定の値となるように溶接装置の押し込み装置により棒鋼の高さを調整する。ここで、押し込み装置は、押し込み動作の駆動力を与えるサーボモータ24およびその制御装置5、サーボモータ24の回転運動を押し込み動作に変換するためのねじ棒25およびナット体26、棒鋼6をナット体26に固定させるためのクランプ27から構成されている。
【0026】
また本発明では、アーク発生(溶接開始)から溶接電流および溶接電圧を測定し、それらの測定値から溶接入熱量を計算し、溶接時の溶接入熱量を管理し、その溶接入熱量(演算値)が所定の値に達した瞬間に棒鋼6を鋼板8上の溶融金属に押し込んで溶接が完了する。
【0027】
本発明の溶接入熱量の制御方法を図5を用いて説明する。溶接入熱量14は、ある時刻での溶接電流値In および溶接電圧値Vn から所定の時間間隔△t(0.5s程度)の投入エネルギーの時間積分値として下記の(1)式により求められる。棒鋼の押し込みタイミング17は、溶接入熱量14が基準となる所定の入熱量16と等しくなる時刻(Tweld)とする。
[入熱量]=ΣVn(t)×In(t)×Δt ・・・・・ (1)
但し、Vn(t):溶接電圧値 、In(t):溶接電流値、
Δt:所定の時間間隔
【0028】
本発明では、上記のように棒鋼の押し込みタイミングすなわち溶接時間Tweldを制御することによって、溶接電源パワーケーブルによる電力損失や溶接1次電源の変動による溶接入熱量の変動を抑制でき、常に一定の溶接入熱量を維持することができるため、それによりアンダーカット欠陥やオーバーラップ欠陥等の溶接欠陥を防止し、良好な溶接品質が得られる。
【0029】
本発明の溶接電圧の制御方法を図6を用いて説明する。本発明では、溶接中の溶接電圧の測定値が所定値に一定131となるように棒鋼高さを制御151することによって溶接電圧の変動を防止する。これにより、溶接電圧の一定制御をしない場合に発生し易い棒鋼先端の溶融金属と鋼板上の溶融金属の短絡(電圧波形18)防止でき、それによる余盛り形状不良の溶接欠陥を防止でき、良好な溶接品質が得られる。
【0030】
なお、この溶接電圧の一定制御を行う場合、前述の溶接入熱量の制御によって棒鋼の溶融量は一定に保たれているため、溶接終了時Tweldの棒鋼押し込み量は、予め定められた押し込み量Lと溶接電圧制御の開始からの棒鋼高さの変位量hの和となる。
【0031】
本発明の溶接入熱量制御法及び溶接電圧制御方法を図1のブロック図を用いて詳しく説明する。また表1には、異なるサイズおよび材質の棒鋼ごとの代表的な溶接条件および制御パラメータを示す。溶接入熱量制御は、溶接電圧値:Vと溶接電流値:Iの測定値をもとに式(符号1)によって、溶接における所定の時間間隔Δtで積分演算し、その計算値:Eが予め定めた所定の入熱量の値:Erefに達した時(符号2)に、棒鋼の押し込みの開始指令を押し込み装置のサーボモーター制御装置5に出すことによってなされる。
【0032】
【表1】

Figure 0004324309
【0033】
また、溶接電圧制御は、アーク長が長くなると溶接電圧も増加するという溶接アーク特性の関係をもとに棒鋼の高さ位置を制御する方法である。すなわち、溶接電圧:Vの測定値と予め定めた所定の溶接電圧の値:Vref との差分:ΔV(符号3)を計算し、ΔVから溶接電圧測定値Vが小さいときは棒鋼高さ位置を引き上げ、溶接電圧測定値Vが大きい場合は棒鋼高さ位置を下げるように押し込み装置のサーボモーター制御装置5で棒鋼高さ位置を制御することによって常に溶接電圧値がVref になるように制御することができる。
【0034】
また本発明では、上記の溶接電圧制御を応用してアークスタートの制御も行う。アークスタート(溶接開始)時にアーク発生用挿入体が瞬時に溶融し溶接アークが途絶した場合、無負荷電圧となり電圧値が70V程度まで上昇する。一方、アークスタート(溶接開始)時にアーク発生用挿入体が溶融せずに短絡電流が流れる場合は電圧値がほぼ零となる。
【0035】
そこで本発明では、スタート(溶接開始)時に溶接開始電圧:Vsを予め定めておき、溶接電圧の測定値が無負荷電圧となり急激に上昇する場合は、溶接電圧の測定値が設定値Vsとなるように棒鋼の高さ位置を引き下げ、棒鋼の先端をアーク発生用挿入体の溶け残り部分に接触させることによって再スタートさせ、一方、短絡電流が流れ、溶接電圧の測定値がほぼ零となった場合は、棒鋼の高さ位置を引き上げることによって溶接アークを発生させることができる。設定電圧Vsは棒鋼の種類に関わらず、例えば30Vくらいに設定すれば良い。
【0036】
【実施例】
以下に本発明のサブマージアークプレス溶接方法を用いた実施例によりその効果を説明する。
呼び径でD32及びD38のSD295鉄筋および板厚22mmのSM490鋼板を用いてサブマージアークプレス溶接を行なった。溶接時には、表2に示す成分組成の粉粒体フラックスを使用し、アーク発生用挿入体は鋼製の薄板をキャップ状に加工したものを使用した。また、溶接電源ケーブルの長さは10mと50mのものを用い、溶接入熱制御および溶接電圧制御を行う本発明例とそれらの制御を行わない比較例で、溶接部欠陥の発生状況を確認した。
【0037】
【表2】
Figure 0004324309
【0038】
表3に本発明例と比較例の溶接部の溶接欠陥数を示す。溶接本数は各条件に対して20本とし溶接欠陥のある鉄筋本数を比較した。溶接入熱制御および溶接電圧制御を行なわなかった比較例では、鉄筋径の拡大および電源ケーブル長さの増加とともに溶接欠陥の発生率が増加する。一方、本発明例では溶接欠陥の発生は皆無であった。また、溶接開始時の安定性に関しても、比較例では全溶接本数160本中12回のアークスタート不良がみられたが、本発明例ではいずれも安定したアークスタートを示した。
【0039】
【表3】
Figure 0004324309
【0040】
【発明の効果】
本発明によれば、溶接中の入熱量を一定に制御することによって棒鋼の溶融量の適正化を図り、かつ溶接電圧を所定の値に保つことによって直径38mm以上の太径棒鋼においても溶接欠陥のない形状の良い溶接部を得ることができる。このため従来の溶接法においてみられたアンダーカットやオーバーラップ、余盛り形状不良といった溶接欠陥を防止することができ、高い溶接品質を再現性良く得ることができる。さらに、溶接電圧制御を応用した溶接開始時の電圧制御によりアークスタートの失敗を防止することが可能となるため、溶接工程の効率化にも大きく貢献する。
【図面の簡単な説明】
【図1】本発明の溶接入熱量制御方法及び溶接電圧制御方法を示すブロック図である。
【図2】サブマージアークプレス溶接時に発生する主な溶接欠陥を示す図で、(a)アンダーカット欠陥、(b)オーバーラップ欠陥、(c)余盛り形状不良を示す図である。
【図3】棒鋼の押し込み量と溶接入熱量、溶接欠陥発生状況の関係を示す図である。
【図4】種々の鉄筋径における溶接時の溶接電圧値と溶接欠陥発生状況の関係を示す図である。
【図5】溶接入熱量制御方法の概略を示す図である。
【図6】溶接電圧制御方法の概略を示す図である。
【図7】本発明のサブマージアークプレス溶接制御法に用いるサブマージアークプレス溶接装置を示す図である。
【符号の説明】
1 溶接入熱演算部
2 基準となる溶接入熱との比較器
3 基準となる溶接電圧とのずれ量演算部
4 高さ制御量演算器
5 サーボモータ制御装置
6 棒鋼
7 溶接金属(余盛り金属)
8 鋼板
9 アンダーカット欠陥
10 オーバーラップ欠陥
11 余盛り止端部角度
12 溶接電流波形
13 溶接電圧波形(制御なし)
14 溶接入熱量
15 溶接中の棒鋼の高さ位置(制御なし)
16 基準となる入熱
17 棒鋼の押し込みタイミング
18 短絡状態
19 粉粒体フラックス
20 フッラクスホルダー
21 アーク発生用挿入体
22 交流溶接電源
23 溶接電源パワーケーブル
24 サーボモータ
25 ねじ棒
26 ナット体
27 クランプ
28 シャント抵抗
29 制御量演算装置
30 溶接電圧計測ケーブル
31 溶接電流計測ケーブル
131 溶接電圧波形(制御あり)
151 溶接中の棒鋼の高さ位置(制御あり)
I 溶接電流
In ある時刻での溶接電流
V 溶接電圧
Vref 溶接中の基準となる溶接電圧
Vs 溶接開始時の基準となる溶接電圧
Vn ある時刻での溶接電圧
△V 基準電圧からのずれ量
E 溶接入熱
Eref 基準となる溶接入熱
L 棒鋼の押し込み量
△L 棒鋼高さ制御量
△t 所定の時間間隔
Tweld 溶接時間
h 押し込み直前時の棒鋼の高さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a submerged arc press welding method for a large diameter steel bar having a diameter of 29 mm or more, and is mainly suitable for welding a fixing plate and an anchor reinforcing bar or a foundation pile end plate and an anchor reinforcing bar at a civil engineering building foundation site. The present invention relates to a submerged arc press welding method for obtaining a welded portion.
[0002]
[Prior art]
As a conventional welding method for a steel bar, for example, there is a method of enclosing arc welding of a steel bar and a steel plate disclosed in JP-A-9-155591. Enclosed arc welding supports the steel bar horizontally with respect to the steel plates arranged in the vertical direction, and the steel plate surface and the end of the steel bar become a predetermined groove gap through a cylindrical ceramic backing material. It is a method of fixing and arc welding with a welding wire from the upper opening of the backing material, and a rebar having a size of about D51 can be welded with high quality by means such as automation. However, this welding method can be applied when welding horizontally arranged steel bars from the vertical direction. However, when welding anchor reinforcing bars and anchor plates, the vertically arranged reinforcing bars are welded. In this case, the welding posture becomes sideways and the molten metal easily flows, so the quality of the welded portion cannot be ensured.
[0003]
Further, in a method in which reinforcing bars are vertically arranged with respect to steel plates arranged horizontally and the ends of the reinforcing bars and the steel plate surface are welded, as disclosed in, for example, Japanese Patent Laid-Open No. 3-258462, a ceramic product is used. There is a stud welding method in which an arc is generated between a steel bar and a steel plate by enclosing the groove with the ferrule, and the weld is heated and melted, and then welding is performed by pushing the steel bar into a molten pool on the steel plate. This stud welding achieves very efficient welding with a welding time of about 1 second by performing welding with a large current of about 2000 amperes using a DC welding power source.
[0004]
As a method for controlling the quality of the welded portion of the stud welding method, for example, as shown in Japanese Patent Application Laid-Open No. 11-10342, the welding result is determined by obtaining the welding heat input using the average voltage value or average current value during welding. There is a way to do. However, since stud welding has an extremely short welding time, it is difficult to stabilize the quality by feedback control of these management data to the welding process. In addition, the stud welding method requires an expensive constant current type DC welding power source, which is economically disadvantageous to other arc welding methods.
[0005]
Further, since the stud welding method uses a large DC current, there is a problem that the welding arc is likely to be unstable due to the influence of the residual magnetic field of the steel material itself or the induction magnetic field generated by the welding current. For this reason, the melting of the end face of the welded portion becomes uneven as the size of the steel bar increases, and the size of the steel bar that can be welded with high quality is limited to about 25 mm in diameter.
[0006]
On the other hand, as a method for welding a steel bar having a larger diameter (about 32 mm in diameter) than stud welding using an AC welding power source having a lower drooping characteristic, for example, submerged arc press welding disclosed in JP-A-41-76859 is disclosed. Law. In the conventional submerged arc press welding method, the end of the steel bar is brought into contact with the material to be welded through the arc generating insert, and the welding gap is surrounded by the granular flux, and the steel bar is energized to energize the gap between the welding gaps. The end of the bar is heated and melted by generating a welding arc, and then welding is performed by pushing the bar into the molten pool formed on the material to be welded.
[0007]
In this welding method, the granular flux melted by the heat from the welding arc becomes molten slag and covers the entire welded part, so that the welding arc is stable even when using an inexpensive AC power source. In comparison, welding of large diameter steel bars was performed at a relatively low current.
[0008]
However, in the conventional submerged arc press welding method, there is almost no control for stabilizing the welding quality, for example, by holding the welding arc for a certain time only in accordance with the timer after the start of welding and then pushing the bar steel into the molten pool. We were welding. For this reason, variation in welding quality has occurred due to various fluctuation factors during welding construction.
[0009]
[Problems to be solved by the invention]
The following points can be cited as factors of deterioration in welding quality in the submerged arc press welding method.
[0010]
First, there is a variation in the amount of heat input during welding.
Conventionally, the submerged arc press welding method is mainly used in the field construction of civil engineering buildings, but in consideration of work efficiency, a heavy welding power source is fixed at one place. A long power cable of 30 to 80 m is connected between them, and only the welding device is moved to the welding location for welding. As a result, the amount of power loss in the power cable is extremely large, and the amount of power loss varies greatly depending on the deterioration of the power cable and the difference in heat generation. It was a deterioration factor. In addition, an engine generator is mainly used as the primary power source at the construction site. However, since the output voltage fluctuates greatly depending on the usage state of the peripheral equipment, this is also a factor of deterioration in welding quality.
[0011]
Therefore, the welding quality of the submerged arc press welding method is to suppress fluctuations in welding heat input due to the length of the power cable and the output state of the primary power supply, and to always control the welding heat input according to the size and material of the steel bar. It is important to improve
[0012]
As a second quality deterioration factor, there is a welding voltage fluctuation during welding.
In the submerged arc press welding method, a welding arc occurs in the gap between the steel bar and the steel plate, but as the welding progresses, the molten metal hangs down from the tip of the steel bar and short-circuits with the molten pool on the steel plate, so the welding voltage tends to fluctuate. . For this reason, it becomes difficult to uniformly heat the molten metal on the steel plate, which causes deterioration of the quality of the weld. This tendency becomes stronger as the diameter of the steel bar becomes larger. In particular, in order to maintain the quality of the welded part when welding a steel bar having a diameter larger than 38 mm, it is indispensable to control the welding voltage during welding. .
[0013]
In the submerged arc press welding method, stability at the time of arc start (welding start) becomes a problem in order to suppress the deterioration of the welding quality and to improve welding workability. In the submerged arc press welding method, an arc start is performed by fixing an arc generating insert between a bar steel and a material to be welded such as a steel plate, and starting energization of the bar steel to melt the arc generating insert. Although it was done, the arc start may fail due to poor contact when inserting the insert, fluctuation of the molten state of the insert at the start of the arc, or entrainment of the powder flux, which was a factor in reducing work efficiency . For this reason, establishing a stable welding start method was also an important issue in the submerged arc press welding method.
[0014]
An object of the present invention is to overcome the above problems in the submerged arc press welding method and to provide a submerged arc press welding method excellent in welding quality and work efficiency.
[0015]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
(1) The end of the steel bar is brought into contact with the surface of the workpiece to be welded in the horizontal direction through the arc generating insert, and the welding steel bar is surrounded by the powder flux while being surrounded by the powder flux. Submerging is performed by energizing the steel bar to generate an arc from the end of the steel bar and heating and melting the end of the steel bar to create a molten pool on the surface of the welded material, then pushing the bar into the molten pool for welding In the arc press welding method, the welding current and welding voltage are measured from when the arc of the steel bar is generated, and the height of the steel bar with respect to the welded material is set so that the measured value of the welding voltage becomes a predetermined voltage. The welding heat input is calculated from these measured values, and after the calculated value of the welding heat input reaches a predetermined welding heat input, the end of the bar is pushed into the molten pool. Wherein pressing amount, and a predetermined pushing amount of predetermined, that as the sum of the displacement of the height of the steel bar when pushed to the height of the steel bar during arcing pushing the steel bar to the molten pool of submerged in to that bar steel and arc press welding method.
(2) the welding Calculated heat input, the (1), wherein the rod steel and obtains the integrated value of welding current and welding voltage measured at predetermined time intervals from the time of arc generation time integration to Submerged arc press welding method.
(3) pre-Symbol the measurement of arcing during the welding voltage and adjusting the height of the bars so as to have a predetermined voltage that is determined in advance (1) or (2), wherein the rod steel Submerged arc press welding method.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a cross-sectional shape of a typical submerged arc press weld and main welding defects. The welding defects that cause problems in the submerged arc press welding method are the undercut defect 9 (FIG. 2 (a)) and the overlap defect 10 (FIG. 2 (b)) that occur at the toe portion of the weld metal 7 and the steel bar 6. This is a surplus shape defect 11 (FIG. 2C) that occurs at the boundary between the metal 7 and the steel plate 8.
[0017]
As a result of various studies on a method for preventing these welding defects that occur in the submerged arc press welding method, the present inventors have found that undercut defects and overlap defects are controlled by controlling the heat input of welding, and are also used as extra shapes. It has been found that defects can be prevented by performing welding voltage control. The present invention has been made based on these findings.
[0018]
Details of the present invention will be described below.
FIG. 3 is a result of investigating the relationship between the amount of welding indentation and the amount of heat input when welding a mild steel bar having a diameter of 32 mm to a steel plate by the submerged arc press welding method, and the occurrence of defects in the weld at that time.
[0019]
Here, the amount of heat input at the time of welding was calculated as an input energy at the time of welding as an integrated value of the welding voltage and welding current at the time of welding as shown in the following equation (1).
[Amount of heat input] = ΣV (t) × I (t) × Δt (1)
Where V (t): welding voltage, I (t): welding current, Δt: welding time
As shown in FIG. 3, when the heat input during welding is larger than the appropriate range, the melting amount of the steel bar is excessively increased and insufficient push-in occurs, resulting in an undercut defect (FIG. 2 (a)), and the heat input exceeds the appropriate range. Is too small, the amount of melting of the steel bar is excessively reduced and excessive push-in is likely to cause overlap defects (Fig. 2 (b)). To prevent these weld defects, the welding heat input is within an appropriate range. It is important to make it.
[0021]
FIG. 4 is a result of investigating the relationship between the reinforcing bar size of the material to be welded and the welding voltage in submerged arc press welding, and the occurrence of defects in the weld at that time.
As shown in FIG. 4, when the welding voltage is low, the incidence of short-circuiting increases and the molten metal on the steel sheet becomes difficult to spread, resulting in a poor weld shape (convex shape) and a welding voltage that is too high. Causes arc interruption and slag in. Here, the excess shape defect (FIG. 2C) refers to a case where the familiarity between the weld metal and the steel plate becomes worse and the angle of the toe portion of the weld metal is 90 degrees or less. In this way, it is possible to prevent a defective shape of the welded portion by controlling the welding voltage during welding to an appropriate range.
[0022]
A method for controlling the welding heat input and welding voltage in the welding method of the present invention for preventing the above welding defects will be described below.
First, an embodiment of the present invention will be described with reference to the schematic diagram of the submerged arc press welding apparatus used in the present invention in FIG. As a preliminary preparation for performing the submerged arc press welding, first, a welding apparatus is arranged on the steel plate 8 to be welded. The steel bar 6 is held by a clamp 27 of a welding device and fixed on the steel plate 8 via an arc generating insert 21. Next, the welding gap between the steel plate 8 and the steel bar 6 is surrounded by the flux holder 20, and the flux holder 20 is further filled with the flux 19 to surround the periphery of the welding gap (welded portion) with the granular material flux 19.
[0023]
After the above preparation for welding is completed, a welding current is applied to the steel bar 6 from the welding power source 22. This welding current flows from the steel bar to the steel plate through the arc generating insert, but the arc generating insert is melted by the welding current, and an arc is generated between the welding gap between the steel bar 6 and the steel plate 8.
[0024]
Welding is started by the generation of an arc. In the present invention, the welding current is measured by detecting the output voltage of the shunt resistor 28 inserted into the power cable 23 from the time of arc generation (welding start) until the welding is completed. In order to capture the voltage in the vicinity of the weld as much as possible, the voltage value between the clamp 27 and the steel plate 8 is detected to measure the welding voltage.
[0025]
After the arc is generated (welding is started), the arc between the bar 6 and the steel plate 8 is held in the granular flux 19 by the welding power source 22 to heat and melt the end surface of the bar 6 and the measured value of the welding voltage is a predetermined value. The height of the steel bar is adjusted by the pushing device of the welding device so that Here, the pushing device includes a servo motor 24 and a control device 5 for providing a driving force for the pushing operation, a screw rod 25 and a nut body 26 for converting the rotational motion of the servo motor 24 into the pushing operation, and a bar 6 to the nut body. 26, a clamp 27 for fixing to 26.
[0026]
In the present invention, the welding current and the welding voltage are measured from the occurrence of arc (welding start), the welding heat input is calculated from the measured values, the welding heat input at the time of welding is managed, and the welding heat input (calculated value) ) Reaches a predetermined value, the steel bar 6 is pushed into the molten metal on the steel plate 8 to complete the welding.
[0027]
The method for controlling the amount of welding heat input according to the present invention will be described with reference to FIG. The welding heat input 14 is obtained by the following equation (1) as a time integral value of input energy at a predetermined time interval Δt (about 0.5 s) from the welding current value In and the welding voltage value Vn at a certain time. The steel bar push-in timing 17 is a time (Tweld) when the welding heat input 14 becomes equal to a predetermined heat input 16 as a reference.
[Amount of heat input] = ΣVn (t) × In (t) × Δt (1)
Where Vn (t): welding voltage value, In (t): welding current value,
Δt: predetermined time interval
In the present invention, by controlling the push-in timing of the steel bar, that is, the welding time Tweld as described above, it is possible to suppress the fluctuation of the welding heat input due to the power loss due to the welding power source power cable and the fluctuation of the primary welding power source. Since the amount of heat input can be maintained, weld defects such as undercut defects and overlap defects are thereby prevented, and good weld quality can be obtained.
[0029]
The method for controlling the welding voltage of the present invention will be described with reference to FIG. In the present invention, the fluctuation of the welding voltage is prevented by controlling 151 the bar height so that the measured value of the welding voltage during welding is constant 131 at a predetermined value. As a result, it is possible to prevent a short-circuit (voltage waveform 18) between the molten metal at the tip of the steel bar and the molten metal on the steel plate, which is likely to occur when the welding voltage is not controlled at a constant level, thereby preventing a weld defect due to a defective superposition shape. High welding quality.
[0030]
When performing constant control of this welding voltage, since the amount of steel bar melt is kept constant by controlling the amount of welding heat input described above, the amount of steel bar indented at the end of welding Tweld is a predetermined amount of indentation L. And the amount of displacement h of the bar height from the start of the welding voltage control.
[0031]
The welding heat input amount control method and welding voltage control method of the present invention will be described in detail with reference to the block diagram of FIG. Table 1 shows typical welding conditions and control parameters for each steel bar of different sizes and materials. In the welding heat input control, the integral calculation is performed at a predetermined time interval Δt in welding based on the measured value of the welding voltage value: V and the welding current value: I according to the formula (symbol 1). A predetermined predetermined heat input value: when Eref is reached (reference numeral 2), a start command for pushing the steel bar is issued to the servo motor control device 5 of the pushing device.
[0032]
[Table 1]
Figure 0004324309
[0033]
The welding voltage control is a method of controlling the height position of the bar based on the relationship of the welding arc characteristics that the welding voltage increases as the arc length increases. That is, the difference between the measured value of welding voltage: V and the predetermined welding voltage value: Vref: ΔV (symbol 3) is calculated, and when the measured value of welding voltage V is small from ΔV, the bar height position is calculated. When the measured value V of the welding voltage is large, the welding bar servomotor controller 5 controls the steel bar height position so as to lower the steel bar height position, so that the welding voltage value is always controlled to Vref. Can do.
[0034]
In the present invention, arc start control is also performed by applying the above welding voltage control. When the arc generating insert is instantaneously melted at the time of arc start (welding start) and the welding arc is interrupted, there is no load voltage and the voltage value rises to about 70V. On the other hand, when a short-circuit current flows without melting the arc generating insert at the time of arc start (start of welding), the voltage value becomes almost zero.
[0035]
Therefore, in the present invention, when starting (welding start), the welding start voltage: Vs is determined in advance, and when the measured value of the welding voltage becomes a no-load voltage and rapidly increases, the measured value of the welding voltage becomes the set value Vs. The steel bar was restarted by lowering the height of the steel bar and bringing the tip of the steel bar into contact with the unmelted portion of the arc generating insert, while the short-circuit current flowed and the measured value of the welding voltage became almost zero. In this case, a welding arc can be generated by raising the height position of the steel bar. The set voltage Vs may be set to about 30 V, for example, regardless of the type of steel bar.
[0036]
【Example】
The effect is demonstrated by the Example using the submerged arc press welding method of this invention below.
Submerged arc press welding was performed using SD295 rebars with nominal diameters of D32 and D38 and SM490 steel plates with a plate thickness of 22 mm. At the time of welding, the granular material flux of the component composition shown in Table 2 was used, and the arc generating insert used a thin steel plate processed into a cap shape. Moreover, the length of the welding power cable was 10 m and 50 m, and the occurrence of weld defects was confirmed in the present invention example in which welding heat input control and welding voltage control were performed and in a comparative example in which those controls were not performed. .
[0037]
[Table 2]
Figure 0004324309
[0038]
Table 3 shows the number of weld defects in the welds of the present invention and the comparative example. The number of welds was 20 for each condition, and the number of reinforcing bars with welding defects was compared. In the comparative example in which the welding heat input control and the welding voltage control are not performed, the incidence of welding defects increases as the reinforcing bar diameter increases and the power cable length increases. On the other hand, in the example of the present invention, no weld defect was generated. Further, regarding the stability at the start of welding, in the comparative example, 12 arc start failures were observed in 160 of the total number of welds, but all of the inventive examples showed stable arc start.
[0039]
[Table 3]
Figure 0004324309
[0040]
【The invention's effect】
According to the present invention, the amount of heat input during welding is controlled to be constant so that the amount of melting of the bar is optimized, and the welding voltage is maintained even in a large-diameter bar having a diameter of 38 mm or more by maintaining the welding voltage at a predetermined value. It is possible to obtain a welded portion having a good shape without any defects. For this reason, it is possible to prevent welding defects such as undercuts, overlaps, and excess shape defects found in conventional welding methods, and high weld quality can be obtained with good reproducibility. Furthermore, it is possible to prevent arc start failure by voltage control at the start of welding using welding voltage control, which greatly contributes to the efficiency of the welding process.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a welding heat input amount control method and a welding voltage control method of the present invention.
FIG. 2 is a diagram showing main welding defects that occur during submerged arc press welding, and is a diagram showing (a) an undercut defect, (b) an overlap defect, and (c) a surplus shape defect.
FIG. 3 is a diagram showing the relationship between the indentation amount of the steel bar, the welding heat input amount, and the welding defect occurrence status.
FIG. 4 is a diagram showing the relationship between the welding voltage value during welding with various reinforcing bar diameters and the state of occurrence of welding defects.
FIG. 5 is a diagram showing an outline of a welding heat input control method.
FIG. 6 is a diagram showing an outline of a welding voltage control method.
FIG. 7 is a diagram showing a submerged arc press welding apparatus used in the submerged arc press welding control method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Welding heat input calculating part 2 Comparator with welding heat input used as reference 3 Amount calculating part with deviation from reference welding voltage 4 Height control amount calculating unit 5 Servo motor controller 6 Bar steel 7 Weld metal (excess metal) )
8 Steel plate 9 Undercut defect 10 Overlap defect 11 Overfill toe angle 12 Welding current waveform 13 Welding voltage waveform (no control)
14 Weld heat input 15 Height position of steel bar during welding (no control)
Reference heat input 17 Bar steel push-in timing 18 Short-circuit state 19 Powder flux 20 Flax holder 21 Insert for arc generation 22 AC welding power source 23 Welding power cable 24 Servo motor 25 Screw rod 26 Nut body 27 Clamp 28 Shunt resistance 29 Control amount calculation device 30 Welding voltage measuring cable 31 Welding current measuring cable 131 Welding voltage waveform (with control)
151 Height position of steel bar during welding (with control)
I Welding current In Welding current V at a certain time V Welding voltage Vref Welding voltage Vs serving as a reference during welding Welding voltage Vn serving as a reference at the start of welding Vn Welding voltage at a certain time ΔV Deviation amount from reference voltage E Welding Heat Eref Reference welding heat input L Bar steel push-in amount ΔL Bar steel height control amount Δt Predetermined time interval Tweld Welding time h Bar steel height just before push-in

Claims (3)

棒鋼の端部を水平方向に配置された被溶接材の表面にアーク発生用挿入体を介して接触させるとともに、溶接ギャップの周りを粉粒体フラックスで包囲した状態で、前記棒鋼に通電して棒鋼端部から被溶接材にアークを発生させるとともに、棒鋼端部を加熱溶融させて被溶接材の表面上に溶融池を生成させた後、棒鋼を溶融池に押し込んで溶接するサブマージアークプレス溶接方法において、前記棒鋼のアーク発生時から溶接電流及び溶接電圧を測定し、前記溶接電圧の測定値が予め定められた所定の電圧になるように、前記被溶接材に対する棒鋼の高さをフィードバック制御するとともに、これらの測定値から溶接入熱量を計算し、該溶接入熱量の計算値が予め定めた所定の溶接入熱量に達した後、棒鋼の端部を溶融池に押し込むさいの押し込み量を予め定められた所定の押し込み量と、アーク発生時の棒鋼の高さに対する押し込む時の棒鋼の高さの変位量との和として当該棒鋼を溶融池に押し込むことを特徴とする棒鋼のサブマージアークプレス溶接方法。The end of the steel bar is brought into contact with the surface of the workpiece to be welded in the horizontal direction via the arc generating insert, and the steel bar is energized with the powder flux surrounding the welding gap. Submerged arc press welding in which an arc is generated from the end of the steel bar to the welded material, and the end of the steel bar is heated and melted to form a molten pool on the surface of the welded material, and then the bar steel is pushed into the molten pool and welded In the method, the welding current and the welding voltage are measured from when the arc of the steel bar is generated, and the height of the steel bar with respect to the welded material is feedback controlled so that the measured value of the welding voltage becomes a predetermined voltage. At the same time, the welding heat input is calculated from these measured values, and when the calculated value of the welding heat input reaches a predetermined welding heat input, the end of the bar is pushed into the molten pool. The write amount, the characteristics and predetermined pushing amount predetermined to be pushed the bars as the sum of the displacement of the height of the steel bar when pushed to the height of the steel bar during arcing molten pool submerged arc press welding method to that bar steel. 前記溶接入熱量の計算値は、アーク発生時から所定の時間間隔で測定した溶接電流と溶接電圧の積算値を時間積分して求めることを特徴とする請求項1記載の棒鋼のサブマージアークプレス溶接方法。The welding Calculated heat input submerged arc press of claim 1, wherein the rod steel and obtains the integrated value of welding current and welding voltage measured at predetermined time intervals from the time of arc generation time integration to Welding method. 前記アーク発生時の溶接電圧の測定値が予め定められた所定の電圧になるように棒鋼の高さを調整することを特徴とする請求項1又は2に記載の棒鋼のサブマージアークプレス溶接方法。Submerged arc press welding method bar steel according to claim 1 or 2, characterized in that to adjust the height of the bars so as to have a predetermined voltage measurements of the welding voltage is predetermined at the time of the arc .
JP2000148662A 2000-05-19 2000-05-19 Submerged arc press welding method for steel bars Expired - Fee Related JP4324309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148662A JP4324309B2 (en) 2000-05-19 2000-05-19 Submerged arc press welding method for steel bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148662A JP4324309B2 (en) 2000-05-19 2000-05-19 Submerged arc press welding method for steel bars

Publications (2)

Publication Number Publication Date
JP2001321941A JP2001321941A (en) 2001-11-20
JP4324309B2 true JP4324309B2 (en) 2009-09-02

Family

ID=18654654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148662A Expired - Fee Related JP4324309B2 (en) 2000-05-19 2000-05-19 Submerged arc press welding method for steel bars

Country Status (1)

Country Link
JP (1) JP4324309B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492207A1 (en) * 2017-12-04 2019-06-05 HILTI Aktiengesellschaft Stud welding device and method
CN117226227B (en) * 2023-11-09 2024-01-30 中国核工业二四建设有限公司 Automatic double-station steel bar submerged arc stud welding equipment

Also Published As

Publication number Publication date
JP2001321941A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
US8809736B2 (en) Arc welding method and arc welding apparatus
JP5234042B2 (en) Arc welding method and apparatus
US4456810A (en) Adaptive schedule selective weld control
US20100230389A1 (en) Waveform control in drawn arc fastener welding
US10661371B2 (en) Short circuit welding method
JPH0994673A (en) Device and method for controlling resistance welding
CN112423926B (en) Arc welding method including consumable wire
JP4324309B2 (en) Submerged arc press welding method for steel bars
US6518545B1 (en) Welding arc penetrating power real-time detection system
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JP4151777B2 (en) Hot wire welding method and apparatus
JP2916872B2 (en) Method and apparatus for controlling welding wire position
US11872659B2 (en) Welding device and welding method with self-setting welding wire feed speed
JP3739219B2 (en) Control method of steel bar welding
KR101221052B1 (en) Resistance spot welding method
JP2002224829A (en) Method and equipment for welding narrow groove with peak pulse tig
JPS5868472A (en) Arc welding device using consumable electrode
US3280296A (en) Welding method
EP0142582B1 (en) Adaptive schedule selective weld control
JP2001259840A (en) Arc length controller
JP2587137B2 (en) Pulse welding equipment
JPH09182961A (en) Carbon dioxide gas shielded pulsed arc welding method
JPS6036860B2 (en) Wire position control device in welding machine
JP2004050202A (en) Consumable electrode type arc spot welding method and consumable electrode type arc welding equipment
JPH0631447A (en) Method for controlling filler wire feed position of non-consumable electrode type arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R151 Written notification of patent or utility model registration

Ref document number: 4324309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees