JP4323467B2 - Sintered valve guide and manufacturing method thereof - Google Patents

Sintered valve guide and manufacturing method thereof Download PDF

Info

Publication number
JP4323467B2
JP4323467B2 JP2005205377A JP2005205377A JP4323467B2 JP 4323467 B2 JP4323467 B2 JP 4323467B2 JP 2005205377 A JP2005205377 A JP 2005205377A JP 2005205377 A JP2005205377 A JP 2005205377A JP 4323467 B2 JP4323467 B2 JP 4323467B2
Authority
JP
Japan
Prior art keywords
iron
phase
phosphorus
powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005205377A
Other languages
Japanese (ja)
Other versions
JP2006052468A (en
Inventor
克直 近畑
幸一郎 林
裕樹 藤塚
徹 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005205377A priority Critical patent/JP4323467B2/en
Publication of JP2006052468A publication Critical patent/JP2006052468A/en
Application granted granted Critical
Publication of JP4323467B2 publication Critical patent/JP4323467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内燃機関のバルブガイドに関し、特に、耐摩耗性及び被削性に優れた焼結合金材で形成される焼結バルブガイド及びその製造方法に関する。   The present invention relates to a valve guide for an internal combustion engine, and more particularly to a sintered valve guide formed of a sintered alloy material having excellent wear resistance and machinability and a method for manufacturing the same.

従来、内燃機関のバルブガイドとしては鋳鉄製のものが使用されてきたが、耐摩耗性と量産性の点から焼結合金製のものが使われてきている。本願出願人も、例えば下記の公報(特許文献1及び特許文献2参照)において、耐摩耗性に優れたバルブガイド材を提案している。   Conventionally, a cast iron valve guide has been used as a valve guide for an internal combustion engine, but a sintered alloy valve guide has been used in terms of wear resistance and mass productivity. The applicant of the present application has also proposed a valve guide material having excellent wear resistance in, for example, the following publications (see Patent Document 1 and Patent Document 2).

特許文献1で開示するバルブガイド材は、組成が、質量比で、C:1.5〜4%、Cu:1〜5%、Sn:0.1〜2%、P:0.1〜0.3%未満およびFe残部であり、パーライトとフェライトの混合基地中にFe−P−Cの共晶化合物である鉄−リン−炭素化合物相と、Cu−Sn相と遊離黒鉛が分散する組織を呈するもので、鋳鉄製のものよりも優れた耐摩耗性と、鋳鉄製のものに比べれば削り難いものの、従来の鉄系焼結合金よりも改良された被削性を有する点が評価され自動車メーカー各社において採用されてきた。   The valve guide material disclosed in Patent Document 1 has a mass ratio of C: 1.5 to 4%, Cu: 1 to 5%, Sn: 0.1 to 2%, P: 0.1 to 0 Less than 3% and the balance of Fe, a structure in which an iron-phosphorus-carbon compound phase, which is an eutectic compound of Fe-PC, in a mixed base of pearlite and ferrite, a Cu-Sn phase, and free graphite is dispersed. It is an automobile that is highly evaluated for its wear resistance superior to that of cast iron and that it has improved machinability compared to conventional iron-based sintered alloys, although it is harder to cut than cast iron. It has been adopted by manufacturers.

また、特許文献2で開示するバルブガイド材は、特許文献1で開示するバルブガイド材を改良したもので、上記の金属組織中の粒間に珪酸マグネシウム鉱物を分散させて耐摩耗性を損なうことなく被削性を改善したものである。   Further, the valve guide material disclosed in Patent Document 2 is an improvement of the valve guide material disclosed in Patent Document 1, and the magnesium silicate mineral is dispersed among the grains in the metal structure to impair wear resistance. The machinability is improved.

特許文献2で開示するバルブガイド材は、特許文献1で開示するバルブガイド材と同等の優れた耐摩耗性を示し、被削性について改善されているものの、未だ鋳鉄製のものの被削性には及ばず、よりいっそうの被削性の改善が望まれている。そこで、本出願人は耐摩耗性を多少犠牲にしてでも被削性の改良を主眼として開発を行い、下記の公報(特許文献3)で開示するバルブガイド材を開発している。   The valve guide material disclosed in Patent Document 2 shows excellent wear resistance equivalent to the valve guide material disclosed in Patent Document 1 and has improved machinability, but still has the machinability of cast iron. Therefore, further improvement in machinability is desired. Accordingly, the present applicant has developed with a focus on improving machinability at the expense of some wear resistance, and has developed a valve guide material disclosed in the following publication (Patent Document 3).

特許文献3で開示するバルブガイド材は、組成が、質量比で、C:1.5〜4%、Cu:1〜5%、Sn:0.1〜2%、P:0.01〜0.1%未満およびFe残部であり、パーライトを主体とする基地中に遊離黒鉛が分散する組織を呈するものである。
特公昭55−34858号公報 特許第2680927号公報 特開2002−69597号公報
The valve guide material disclosed in Patent Document 3 has a mass ratio of C: 1.5 to 4%, Cu: 1 to 5%, Sn: 0.1 to 2%, P: 0.01 to 0 Less than 1% and the balance of Fe, exhibiting a structure in which free graphite is dispersed in a matrix mainly composed of pearlite.
Japanese Patent Publication No.55-34858 Japanese Patent No. 2680927 JP 2002-69597 A

しかし、製品製造における効率化の必要性に伴い、バルブガイド材の加工性に対して改善を求める声も強くなり、より被削性に優れたバルブガイド材のニーズが高まっている。   However, along with the need for higher efficiency in product manufacturing, there is an increasing demand for improvement in the workability of the valve guide material, and the need for a valve guide material with better machinability is increasing.

本発明は、上記のようなバルブガイド材の問題を解決し、耐摩耗性と被削性のバランスがとれた焼結合金をバルブガイド材として効率よく製造できる、耐久性の高い焼結バルブガイドを提供するものである。   The present invention solves the problems of the valve guide material as described above, and can efficiently produce a sintered alloy having a good balance between wear resistance and machinability as a valve guide material. Is to provide.

上記課題を解決するために、本発明においては、バルブガイド材の金属組織構造に注目し、組織中の各相の役割を考慮して組織構造をデザインし、使用する原料粉末の組成や粒度等及び製造条件の適正化を図ることによりこれを実現して、耐摩耗性を損うことなく被削性が大幅に改善された合金材による焼結バルブガイドの提供を可能とした。   In order to solve the above problems, in the present invention, paying attention to the metal structure of the valve guide material, designing the structure in consideration of the role of each phase in the structure, the composition and particle size of the raw material powder to be used, etc. This has been achieved by optimizing the manufacturing conditions, and it has become possible to provide a sintered valve guide made of an alloy material with significantly improved machinability without impairing wear resistance.

本発明の一態様によれば、焼結バルブガイドは、全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、及び、鉄:残部からなる焼結合金で形成され、前記焼結合金は、パーライト相、鉄−リン−炭素化合物相及び銅−錫合金相を有する基地と、気孔と、黒鉛相とからなる金属組織を有し、前記黒鉛相は質量比で焼結合金の1.2〜1.7%の割合で分散し、前記焼結合金の金属組織断面において、前記パーライト相が前記基地に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを要旨とする。   According to one aspect of the present invention, the sintered valve guide has a mass ratio of copper: 3.5-5%, tin: 0.3-0.6%, phosphorus: 0.04-0. 15%, carbon: 1.5 to 2.5%, and iron: formed from a sintered alloy composed of the balance, and the sintered alloy includes a pearlite phase, an iron-phosphorus-carbon compound phase, and a copper-tin alloy phase. The graphite phase is dispersed in a mass ratio of 1.2 to 1.7% of the sintered alloy, and the sintered alloy metal. In the structure cross section, the ratio of the pearlite phase to the base is 90% or more in area ratio, and the ratio of the iron-phosphorus-carbon compound phase to the metal structure cross section is 0.1 to 3% in area ratio. In the iron-phosphorus-carbon compound phase, the proportion of the copper-tin alloy phase in the metal structure cross section is 1 to 3% by area ratio. Saga 15μm or more portions wherein the iron - phosphorus - and summarized in that the proportion of carbon compound phase is 10% or less in area ratio.

又、本発明の他の態様によれば、焼結バルブガイドは、全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、金属酸化物:0.46〜1.41%、及び、鉄:残部からなる焼結合金で形成され、前記焼結合金は、パーライト相、鉄−リン−炭素化合物相、銅−錫合金相及び金属酸化物相を有する基地と、気孔と、黒鉛相とからなる金属組織を有し、前記黒鉛相は質量比で焼結合金の1.2〜1.7%の割合で分散し、前記焼結合金の金属組織断面において、前記パーライト相が前記基地に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを要旨とする。   According to another aspect of the present invention, the sintered valve guide has a mass composition of copper: 3.5 to 5%, tin: 0.3 to 0.6%, phosphorus: 0.04. -0.15%, carbon: 1.5-2.5%, metal oxide: 0.46-1.41%, and iron: the sintered alloy consisting of the balance, It has a metal structure composed of a pearlite phase, an iron-phosphorus-carbon compound phase, a copper-tin alloy phase and a metal oxide phase, pores, and a graphite phase, and the graphite phase is a sintered alloy in a mass ratio. 1.2 to 1.7% of the above, and in the metallographic cross section of the sintered alloy, the ratio of the pearlite phase to the matrix is 90% or more in area ratio, and the iron-phosphorus-carbon The proportion of the compound phase in the metal structure cross section is 0.1 to 3% in area ratio, and the proportion of the copper-tin alloy phase in the metal structure cross section is area. The ratio of the portion of the iron-phosphorus-carbon compound phase having a thickness of 15 μm or more to the iron-phosphorus-carbon compound phase is 10% or less in terms of area ratio. .

又、本発明の他の態様によれば、焼結バルブガイドは、全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、硫化マンガン及び珪酸マグネシウム鉱物から少なくとも1種選択される固体潤滑剤:1.6%以下、及び、鉄:残部からなる焼結合金で形成され、前記焼結合金は、パーライト相、鉄−リン−炭素化合物相及び銅−錫合金相を有する基地と、気孔と、黒鉛相と、前記気孔中又は粉末粒界に分散する前記固体潤滑剤からなる金属組織を有し、前記焼結合金の金属組織断面において、前記パーライト相が金属組織断面に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記黒鉛相は面積比で金属組織断面の0.8〜3.2%の割合で前記気孔中に分散し、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを要旨とする。   According to another aspect of the present invention, the sintered valve guide has a mass composition of copper: 3.5 to 5%, tin: 0.3 to 0.6%, phosphorus: 0.04. -0.15%, Carbon: 1.5-2.5%, Solid lubricant selected from at least one of manganese sulfide and magnesium silicate mineral: 1.6% or less, and sintered alloy comprising iron: balance The sintered alloy is a solid having a pearlite phase, an iron-phosphorus-carbon compound phase, and a copper-tin alloy phase, a pore, a graphite phase, and the solid dispersed in the pores or at a powder grain boundary. It has a metal structure composed of a lubricant, and in the metal structure section of the sintered alloy, the ratio of the pearlite phase to the metal structure section is 90% or more in area ratio, and the iron-phosphorus-carbon compound phase is a metal The proportion in the cross section of the structure is 0.1 to 3% by area ratio, and the copper-tin alloy phase The area occupied by the metal structure cross section is 1 to 3% by area ratio, and the graphite phase is dispersed in the pores at an area ratio of 0.8 to 3.2% of the metal structure cross section. The gist is that the ratio of the portion of the carbon compound phase having a thickness of 15 μm or more to the iron-phosphorus-carbon compound phase is 10% or less in terms of area ratio.

又、本発明の他の態様によれば、焼結バルブガイドは、全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、金属酸化物:0.46〜1.41%、硫化マンガン及び珪酸マグネシウム鉱物から少なくとも1種選択される固体潤滑剤:1.6%以下、及び、鉄:残部からなる焼結合金で形成され、前記焼結合金は、パーライト相、鉄−リン−炭素化合物相、銅−錫合金相及び金属酸化物相を有する基地と、気孔と、黒鉛相と、前記気孔中又は粉末粒界に分散する前記固体潤滑剤からなる金属組織を有し、前記焼結合金の金属組織断面において、前記パーライト相が金属組織断面に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記黒鉛相は面積比で金属組織断面の0.8〜3.2%の割合で前記気孔中に分散し、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%
以下であることを要旨とする。
According to another aspect of the present invention, the sintered valve guide has a mass composition of copper: 3.5 to 5%, tin: 0.3 to 0.6%, phosphorus: 0.04. -0.15%, carbon: 1.5-2.5%, metal oxide: 0.46-1.41%, solid lubricant selected from at least one selected from manganese sulfide and magnesium silicate mineral: 1.6 %, And a sintered alloy consisting of iron: balance, the sintered alloy comprising a matrix having a pearlite phase, an iron-phosphorus-carbon compound phase, a copper-tin alloy phase and a metal oxide phase, and pores And the graphite phase and the metal structure composed of the solid lubricant dispersed in the pores or at the powder grain boundaries, the ratio of the pearlite phase in the metal structure cross section in the metal structure cross section of the sintered alloy is the area The ratio is 90% or more, and the iron-phosphorus-carbon compound phase occupies a cross section of the metal structure The ratio is 0.1 to 3% by area ratio, the ratio of the copper-tin alloy phase to the metal structure cross section is 1 to 3% by area ratio, and the graphite phase is 0.3% of the metal structure cross section by area ratio. The proportion of the iron-phosphorus-carbon compound phase that is dispersed in the pores at a rate of 8 to 3.2% and the iron-phosphorus-carbon compound phase having a thickness of 15 μm or more occupies the iron-phosphorus-carbon compound phase is 10% by area ratio.
The summary is as follows.

また、本発明の一態様によれば、焼結バルブガイドの製造方法は、リン含有量が15〜21質量%で残部がFe及び不可避不純物からなる鉄−リン合金粉末、錫含有量が8〜11質量%で残部が銅及び不可避不純物からなる銅−錫合金粉末及び黒鉛粉末を鉄粉末に添加して、鉄−リン合金粉末:0.27〜0.7質量%、銅−錫合金粉末:3.93〜5.44質量%、黒鉛粉末:1.7〜2.7質量%及び残部が鉄粉末からなる混合粉末を調製する工程と、成形型の円管状のキャビティに前記混合粉末を充填し加圧圧縮して、該混合粉末を円管状の圧粉体に成形する工程と、前記圧粉体を、非酸化性雰囲気中で、加熱温度950〜1050℃で焼結する工程とを有することを要旨とする。   Moreover, according to one aspect of the present invention, the sintered valve guide manufacturing method includes an iron-phosphorus alloy powder having a phosphorus content of 15 to 21% by mass, the balance being Fe and inevitable impurities, and a tin content of 8 to 8%. Copper-tin alloy powder and graphite powder consisting of 11% by mass and the balance consisting of copper and inevitable impurities are added to iron powder, and iron-phosphorus alloy powder: 0.27 to 0.7% by mass, copper-tin alloy powder: 3.93 to 5.44% by mass, graphite powder: 1.7 to 2.7% by mass, and a step of preparing a mixed powder composed of iron powder in the remainder, and filling the mixed powder into a cylindrical cavity of a mold Pressurizing and compressing to form the mixed powder into a cylindrical green compact; and sintering the green compact at a heating temperature of 950 to 1050 ° C. in a non-oxidizing atmosphere. This is the gist.

本発明によれば、耐摩耗性と被削性のバランスがとれたバルブガイド材により耐久性の高い焼結バルブガイドを効率よく製造することができる。   According to the present invention, a highly durable sintered valve guide can be efficiently manufactured by a valve guide material in which wear resistance and machinability are balanced.

粉末冶金による焼結合金は、使用する原料粉末の組成及び粉末粒径や加熱温度及び時間等の製造条件によって、全体組成が同じであっても金属組織の構造が異なる合金が得られ、組織構造によって焼結合金の機械的強度などの材料特性は大きく異なる。そこで、本発明では、焼結合金中に存在する各相の材料特性への寄与を考慮して、バルブガイドを構成する材料に必要とされている材料特性を焼結合金に付与するようにバルブガイド材の組織構造をデザインし、これに基づいて使用原料や製造条件が設定される。   Sintered alloys by powder metallurgy can produce alloys with different metallographic structures, even if the overall composition is the same, depending on the manufacturing conditions such as the composition of the raw material powder used, powder particle size, heating temperature and time. Depending on the material characteristics of the sintered alloy, such as mechanical strength, vary greatly. Therefore, in the present invention, in consideration of the contribution to the material characteristics of each phase existing in the sintered alloy, the valve is provided so as to give the sintered alloy the material characteristics required for the material constituting the valve guide. The structure of the guide material is designed, and the raw materials used and production conditions are set based on this design.

バルブガイドは強度と耐摩耗性とを有することが必要とされ、従来のバルブガイド用合金材はこれらの要求に応えられるが、被削性が未だ不十分であるとして、加工の際の不具合に対する改善が需要者から強く求められている。このため、本発明では、鉄を主成分とする基地、耐摩耗性に寄与する銅−錫合金相、鉄−リン−炭素化合物相及び遊離黒鉛相を有する合金をベースとして、需要者のニーズに合うように被削性の改善が施される。以下、本発明の焼結バルブガイドを構成する焼結合金の金属組織構造について説明する。   Valve guides are required to have strength and wear resistance, and conventional valve guide alloy materials can meet these requirements. However, since the machinability is still insufficient, Improvement is strongly demanded by consumers. For this reason, in the present invention, based on a base mainly composed of iron, a copper-tin alloy phase that contributes to wear resistance, an iron-phosphorus-carbon compound phase, and an alloy having a free graphite phase, the needs of customers are met. The machinability is improved to fit. Hereinafter, the metallographic structure of the sintered alloy constituting the sintered valve guide of the present invention will be described.

焼結合金の基地は、基地強度を高めるためにパーライト組織とし、黒鉛粉末を混合した原料鉄粉末を焼結することにより鉄粉末に炭素が拡散して生成する。炭素が金属に固溶した金属粉末は固く圧縮性が低いので、鉄粉末及び黒鉛粉末を原料粉末として使用する。黒鉛粉末の量が不足すると、基地と結合する炭素量が乏しくなり、基地中にフェライト(α−鉄)相が多く生成して基地の強度が低下する。但し、後述するように、鉄−リン−炭素化合物相の生成に関連して若干のフェライト相がステダイト相の周囲に生成する傾向があるが、面積比で基地の90%以上がパーライトであれば、残余としてフェライトが発生しても基地強度の低下は僅かであり許容できる範囲である。   The base of the sintered alloy has a pearlite structure in order to increase the strength of the base, and the raw iron powder mixed with the graphite powder is sintered so that carbon is diffused into the iron powder. Since metal powder in which carbon is solid-dissolved in metal is hard and has low compressibility, iron powder and graphite powder are used as raw material powder. If the amount of the graphite powder is insufficient, the amount of carbon bonded to the matrix becomes insufficient, and a large amount of ferrite (α-iron) phase is generated in the matrix, so that the strength of the matrix decreases. However, as will be described later, there is a tendency that some ferrite phase is generated around the steadite phase in relation to the generation of the iron-phosphorus-carbon compound phase, but if the area ratio is 90% or more of pearlite Even if ferrite is generated as a residue, the decrease in base strength is slight and acceptable.

パーライト基地中には鉄−リン−炭素化合物相が分散する。鉄−リン−炭素化合物は、黒鉛粉末と共に鉄−リン合金粉末を原料鉄粉末に配合して焼結することによってパーライト相の結晶粒界に薄層状に析出して硬質な鉄−リン−炭素化合物相を生成し、焼結合金の耐摩耗性の向上に寄与する。この耐摩耗性向上効果は、鉄−リン−炭素化合物相が金属組織断面に占める割合が0.1面積%以上において顕著になる。他方、鉄−リン−炭素化合物相の生成量が多くなると、層の厚みが増して板状の鉄−リン−炭素化合物相が形成され、焼結合金の被削性を極端に劣化させる。従って、焼結合金の被削性を低下させないためには、鉄−リン−炭素化合物相の生成量を抑制すると共に、鉄−リン−炭素化合物相が薄く分散することが肝要である。具体的には、金属組織断面において、鉄−リン−炭素化合物相が金属組織断面に占める割合が3面積%以下で、且つ、鉄−リン−炭素化合物相の厚さが15μm以上の部分が鉄−リン−炭素化合物相全体の10面積%以下である必要がある。更に特定すると、鉄−リン−炭素化合物相の厚さ15μm以上の部分が鉄−リン−炭素化合物相全体の0.1面積%以下で、厚さ5μm以上15μm未満の部分が10〜40面積%であり、残りの鉄−リン−炭素化合物相は厚さ5μm未満となるような組織構造が好ましい。また、鉄−リン−炭素化合物相は、生成する際にパーライト基地から炭素を奪取する傾向があるため、鉄−リン−炭素化合物相の周囲に若干のフェライトが生成し得る。フェライト相は強度が低く、焼結合金の基地中に10面積%以下程度であれば許容されるが、多量に分散するのは好ましくない。つまり、原料粉末のリンの含有量が過剰であると、生成する鉄−リン−炭素化合物相が厚くなるだけではなく、同時に、パーライト基地から炭素を奪って基地中に強度の低いフェライト相が多量に分散するようになる。従って、鉄−リン−炭素化合物相の生成量は、これらが防止されるように抑制する必要があり、具体的には、金属組織断面において鉄−リン−炭素化合物相が0.1〜3面積%の範囲となるように留める必要がある。このため、焼結合金中のリン含有量が0.04〜0.15質量%となるように鉄−リン合金粉末の使用量を調整し、強度又は耐磨耗性を重視する場合には0.1〜0.15質量%、被削性を重視する場合には0.04〜0.1質量%とするのが好ましい。   An iron-phosphorus-carbon compound phase is dispersed in the perlite base. The iron-phosphorus-carbon compound is a hard iron-phosphorus-carbon compound that is deposited in a thin layer at the grain boundaries of the pearlite phase by sintering the graphite powder together with the iron-phosphorus alloy powder together with the graphite powder. A phase is generated and contributes to improvement of wear resistance of the sintered alloy. This effect of improving the wear resistance becomes significant when the ratio of the iron-phosphorus-carbon compound phase in the metal structure cross section is 0.1 area% or more. On the other hand, when the amount of iron-phosphorus-carbon compound phase generated increases, the thickness of the layer increases and a plate-like iron-phosphorus-carbon compound phase is formed, and the machinability of the sintered alloy is extremely deteriorated. Therefore, in order not to reduce the machinability of the sintered alloy, it is important to suppress the generation amount of the iron-phosphorus-carbon compound phase and to disperse the iron-phosphorus-carbon compound phase thinly. Specifically, in the cross section of the metal structure, the proportion of the iron-phosphorus-carbon compound phase in the cross section of the metal structure is 3 area% or less, and the portion where the thickness of the iron-phosphorus-carbon compound phase is 15 μm or more is iron. -It needs to be 10 area% or less of the whole phosphorus-carbon compound phase. More specifically, the portion of the iron-phosphorus-carbon compound phase having a thickness of 15 μm or more is 0.1 area% or less of the entire iron-phosphorus-carbon compound phase, and the portion having a thickness of 5 μm or more but less than 15 μm is 10 to 40 area%. And the remaining iron-phosphorus-carbon compound phase preferably has a structure of less than 5 μm in thickness. In addition, since the iron-phosphorus-carbon compound phase tends to take carbon from the pearlite matrix when it is produced, some ferrite can be produced around the iron-phosphorus-carbon compound phase. The ferrite phase has a low strength and is acceptable if it is about 10 area% or less in the base of the sintered alloy, but it is not preferable to disperse in a large amount. That is, if the phosphorus content of the raw material powder is excessive, not only the iron-phosphorus-carbon compound phase that is produced becomes thick, but at the same time, a large amount of ferrite phase with low strength is taken away from the pearlite matrix by depriving the carbon. To be distributed. Therefore, the amount of iron-phosphorus-carbon compound phase must be suppressed so as to prevent them. Specifically, the iron-phosphorus-carbon compound phase has an area of 0.1 to 3 in the metal structure cross section. It is necessary to keep it in the range of%. For this reason, the amount of iron-phosphorus alloy powder used is adjusted so that the phosphorus content in the sintered alloy is 0.04 to 0.15 mass%, and 0 when the strength or wear resistance is important. 0.1 to 0.15% by mass, and when emphasizing machinability, 0.04 to 0.1% by mass is preferable.

更に、本発明における焼結合金中には銅−錫合金相が分散する。銅−錫合金相は軟質で、摺動相手であるバルブとのなじみ性を向上して耐摩耗性に寄与する。組織断面の1面積%以上の割合で基地中に分散した状態で銅−錫相の効果が顕著になり、約3面積%を超えると、焼結時の銅の膨張によって焼結時の寸法安定性が損なわれるので、組織断面中の銅−錫合金相が1〜3面積%となるように原料粉末の配合を調整する。銅−錫合金相は、単味銅粉末及び単味錫粉末を原料粉末として用いても生じるが、その場合、焼結合金中に生じる合金相の組成及び分布のばらつきが大きくなり、焼結合金の寸法安定性や耐摩耗性が低下する。このため、銅−錫合金粉末を原料として使用するのが望ましい。又、パーライト基地中に分散する銅−錫合金相において、最大粒径が20μm以下の微細なものが銅−錫合金相の80面積%以上になると、銅−錫合金相の分散均一性が高まり、なじみ性の点から特に有効である。但し、圧粉成形時の粉末のブリッジング状態によっては銅−錫合金粉末が未拡散のまま残留する場合があるが、このような未拡散の銅−錫合金粉末による150μm以上の銅−錫合金相は、組織断面において銅−錫合金相全体の5面積%以下であれば差し支えない。銅−錫合金粉末は、焼結中に液相を生じて焼結の促進に寄与し、銅及び錫は、各々、基地に拡散固溶して基地を強化するが、過剰の銅が固溶すると銅膨張による寸法安定性の低下が著しく、又、過剰の錫が固溶すると基地が脆化する。これらを防止して銅−錫合金相を好適に分散生成するために、使用する銅−錫合金粉末の錫含有量が8〜11質量%であることが好ましい。これに従って、焼結合金中の銅−錫合金相の組成もこの範囲付近のものとなる。上記に基づいて、銅−錫合金粉末の組成及び組織断面中の銅−錫合金相の面積割合から銅及び錫の合金組成全体における適正な含有量を導き出すと、銅は、3.5〜5.0質量%、錫は、0.3〜0.6質量%となる。   Furthermore, a copper-tin alloy phase is dispersed in the sintered alloy in the present invention. The copper-tin alloy phase is soft and contributes to wear resistance by improving the compatibility with the valve which is the sliding partner. The effect of the copper-tin phase becomes prominent when dispersed in the matrix at a ratio of 1 area% or more of the cross section of the structure. When the area exceeds about 3 area%, dimensional stability during sintering is caused by the expansion of copper during sintering. Therefore, the blending of the raw material powder is adjusted so that the copper-tin alloy phase in the structure cross section is 1 to 3% by area. The copper-tin alloy phase is produced even if plain copper powder and plain tin powder are used as raw material powders, but in that case, the variation in composition and distribution of the alloy phase generated in the sintered alloy becomes large, and the sintered alloy Dimensional stability and wear resistance of the steel deteriorate. For this reason, it is desirable to use copper-tin alloy powder as a raw material. Moreover, in the copper-tin alloy phase dispersed in the pearlite matrix, when the fine particle having a maximum particle size of 20 μm or less is 80% by area or more of the copper-tin alloy phase, the dispersion uniformity of the copper-tin alloy phase is increased. This is particularly effective from the viewpoint of compatibility. However, depending on the bridging state of the powder at the time of compacting, the copper-tin alloy powder may remain undiffused, but a copper-tin alloy of 150 μm or more with such undiffused copper-tin alloy powder. The phase may be 5 area% or less of the entire copper-tin alloy phase in the structure cross section. The copper-tin alloy powder generates a liquid phase during sintering and contributes to the promotion of sintering. Copper and tin each diffuse and dissolve in the matrix to strengthen the matrix. Then, the dimensional stability is significantly lowered due to copper expansion, and the base becomes brittle when excessive tin is dissolved. In order to prevent these and form a copper-tin alloy phase in a dispersed manner, the copper content of the copper-tin alloy powder to be used is preferably 8 to 11% by mass. Accordingly, the composition of the copper-tin alloy phase in the sintered alloy is also in the vicinity of this range. Based on the above, when an appropriate content in the overall alloy composition of copper and tin is derived from the composition of the copper-tin alloy powder and the area ratio of the copper-tin alloy phase in the cross section of the structure, copper is 3.5-5 0.0 mass% and tin will be 0.3-0.6 mass%.

パーライト基地中に、更に微量の金属酸化物相が分散すると好ましい。この金属酸化物相は、アルミニウム、珪素、マグネシウム、鉄、チタン及びカルシウムからなる群の少なくとも1種の金属の酸化物であり、これらの酸化物は快削成分として働き、被削性の向上に寄与する。但し、金属酸化物の含有量が過剰になると、基地が脆くなるので、全体組成中の0.46〜1.41質量%の金属酸化物がパーライト基地中に分散するのが好ましい。このような金属酸化物相は、基地中に均一に分散することが肝要であり、上記の金属酸化物を含んだ鉄粉末を原料粉末として用いるのが妥当である。上記金属酸化物を総量で0.5〜1.5質量%の割合で含有する鉄粉末であることが好ましく、このような鉄粉末には鉱石還元鉄粉末がある。一般に用いられるアトマイズ鉄粉末やミルスケール還元鉄粉末は金属酸化物の含有量が少ない。   It is preferable that a trace amount of metal oxide phase is further dispersed in the pearlite matrix. This metal oxide phase is an oxide of at least one metal selected from the group consisting of aluminum, silicon, magnesium, iron, titanium, and calcium. These oxides act as free-cutting components and improve machinability. Contribute. However, since the base becomes brittle when the content of the metal oxide is excessive, it is preferable that 0.46 to 1.41% by mass of the metal oxide in the entire composition is dispersed in the pearlite base. It is important that such a metal oxide phase is uniformly dispersed in the matrix, and it is appropriate to use iron powder containing the metal oxide as a raw material powder. It is preferable that it is an iron powder which contains the said metal oxide in the ratio of 0.5-1.5 mass% in total amount, and there exists an ore reduction iron powder in such an iron powder. Generally used atomized iron powder and mill scale reduced iron powder have a low metal oxide content.

更に、金属組織中には遊離黒鉛相が分散する。これは、原料黒鉛粉末に由来し、固体潤滑剤として作用して焼結合金の被削性及び耐摩耗性の向上に寄与する。焼結合金中の遊離黒鉛相の割合を組織断面の顕微鏡写真から正確に知ることは、試料作成作業中に脱落等が起こるために難しいが、JIS−G1211「鉄及び鋼中の炭素定量方法」に規定される遊離炭素定量方法により求められる遊離黒鉛の質量比と黒鉛の比重からは、遊離黒鉛相の割合がおよそ0.8面積%以上において遊離黒鉛相による効果が顕著であり、3.2面積%を超える遊離黒鉛相を生成しようとすると、基地中に硬質なセメンタイト(FeC)が析出して焼結合金の被削性を損なう。また、過剰の黒鉛粉末は、粉末の圧縮性を損なうと共に、焼結合金中の基地の割合を低下させるので、焼結合金の強度が低下することとなる。従って、遊離黒鉛相の割合は組織断面中でおよそ0.8面積%以上3.2面積%以下が好ましい。 Furthermore, a free graphite phase is dispersed in the metal structure. This originates from the raw graphite powder and acts as a solid lubricant, contributing to the improvement of the machinability and wear resistance of the sintered alloy. It is difficult to accurately know the proportion of the free graphite phase in the sintered alloy from the micrograph of the cross section of the structure because it falls off during sample preparation work, but JIS-G1211 “Method for quantifying carbon in iron and steel” From the mass ratio of free graphite and the specific gravity of graphite determined by the free carbon quantification method stipulated in (1), the effect of the free graphite phase is remarkable when the ratio of the free graphite phase is about 0.8 area% or more. If an attempt is made to generate a free graphite phase exceeding the area%, hard cementite (Fe 3 C) precipitates in the matrix and impairs the machinability of the sintered alloy. In addition, excessive graphite powder impairs the compressibility of the powder and reduces the proportion of the matrix in the sintered alloy, so that the strength of the sintered alloy is reduced. Therefore, the ratio of the free graphite phase is preferably about 0.8 area% or more and 3.2 area% or less in the structure cross section.

より一層の被削性の向上を望む場合には、固体潤滑剤として、硫化マンガン(MnS)粉末及び珪酸マグネシウム鉱物粉末の少なくとも1種を総量で原料粉末の1質量%以下の割合で配合して、これらの成分を焼結合金の気孔及び粉末粒界に分散させてもよい。MnS相及び珪酸マグネシウム相は耐摩耗性の向上に寄与するが、特に被削性向上の効果が大きい。又、MnS相は切削工具の刃先を保護して工具寿命の延長に寄与し、珪酸マグネシウム鉱物は劈開性があり切削加工時に劈開するので切削に要する力の低減に効果がある。また、両成分ともチップブレーク作用を有し、切りくずを細かく剪断することで工具の刃先への熱のこもりを防止して工具寿命を延長する効果を有する。   When further improvement of machinability is desired, as a solid lubricant, at least one of manganese sulfide (MnS) powder and magnesium silicate mineral powder is blended in a ratio of 1% by mass or less of the raw material powder in total amount. These components may be dispersed in pores and powder grain boundaries of the sintered alloy. Although the MnS phase and the magnesium silicate phase contribute to the improvement of wear resistance, the effect of improving the machinability is particularly great. Further, the MnS phase protects the cutting edge of the cutting tool and contributes to the extension of the tool life, and the magnesium silicate mineral is cleaved and is cleaved during the cutting process, so it is effective in reducing the force required for cutting. Further, both components have a chip breaking action, and have the effect of extending tool life by preventing the accumulation of heat on the cutting edge of the tool by finely shearing the chips.

上述のような遊離黒鉛相、鉄−リン−炭素化合物相、銅−錫合金相、金属酸化物相及び必要に応じて固体潤滑剤相を金属組織中に分散させた焼結合金は、以下に説明するような製造方法に従って得ることができ、その成形工程においてバルブガイドに対応する形状に成形すれば焼結バルブガイドが得られる。この結果、製造される焼結合金及び焼結バルブガイドの全体組成は、銅:3.5〜5質量%、錫:0.3〜0.6質量%、リン:0.04〜0.15質量%、炭素:1.5〜2.5質量%、上記金属酸化物:0.5〜1.5質量%、及び、残部鉄となる。固体潤滑剤を使用する場合は、合金全体組成の1質量%以下が固体潤滑剤となる。   A sintered alloy in which a free graphite phase, an iron-phosphorus-carbon compound phase, a copper-tin alloy phase, a metal oxide phase and, if necessary, a solid lubricant phase are dispersed in a metal structure as described above is as follows. A sintered valve guide can be obtained by molding in a shape corresponding to the valve guide in the molding step. As a result, the overall composition of the sintered alloy and the sintered valve guide to be produced is as follows: copper: 3.5 to 5% by mass, tin: 0.3 to 0.6% by mass, phosphorus: 0.04 to 0.15 Mass%, carbon: 1.5 to 2.5 mass%, metal oxide: 0.5 to 1.5 mass%, and the balance iron. When a solid lubricant is used, 1% by mass or less of the total alloy composition is a solid lubricant.

尚、バルブガイドは、一般に密度6.3〜6.9g/cmのものが用いられ、密度比でおよそ4〜15%程度の気孔を含む。上述した本発明の焼結バルブガイドもこの点では同様である。 The valve guide generally has a density of 6.3 to 6.9 g / cm 3 and includes pores of about 4 to 15% in density ratio. The above-described sintered valve guide of the present invention is the same in this respect.

焼結合金及び焼結バルブガイドの製造方法においては、まず、混合粉末の調製を行う。その原料として、黒鉛粉末、鉄−リン合金粉末、銅−錫合金粉末、鉱石還元鉄粉末、及び、必要に応じて固体潤滑剤粉末を用い、これらを均一混合して混合粉末を得る。各原料粉末の詳細は以下の通りである。   In the method for manufacturing a sintered alloy and a sintered valve guide, first, a mixed powder is prepared. As the raw material, graphite powder, iron-phosphorus alloy powder, copper-tin alloy powder, ore-reduced iron powder, and solid lubricant powder as necessary are mixed uniformly to obtain a mixed powder. Details of each raw material powder are as follows.

パーライト基地を生成する原料鉄粉末としては、粒度が−150〜−65メッシュ(最大粒径が104〜200μm)程度のアトマイズ鉄粉末を用いることができる。又、鉱石還元鉄粉末であって、前述の金属酸化物の含有割合が金属酸化物総量で0.5〜1.5質量%、粒度が−150〜−65メッシュ程度の粉末を使用すると被削性を向上できるので好ましい。鉱石還元鉄粉末は、その製造方法に起因して金属酸化物の含有量が多い粉末であり、この金属酸化物が被削性の向上に効果がある。金属酸化物の含有量が上記範囲を下回ると、被削性改善の効果が減少する。金属酸化物の含有量が上記範囲を超えると、粉末が硬く圧縮性が低下するので好ましくない。鉱石還元鉄粉末は多孔質であるので、焼結時に生じる銅−錫合金液相を毛細管力で吸収し易く、焼結合金の成分分布を均質にする作用も有する。鉱石還元鉄粉末の粒径が粗大であると、粉末の密度が上昇し難く、微細であると粉末の流動性が低下するため、−150〜−65メッシュ程度の粉末が適している。但し、鉱石還元鉄粉末は、金属酸化物の含有量が多いためにアトマイズ鉄粉末等に比べて若干固く圧縮性が低いという性質を有しており、このため、得られる焼結バルブガイドの強度は、アトマイズ鉄粉によるものに比べて若干低下することになる。従って、焼結バルブガイドの原料粉末は、強度又は被削性の何れかの要求特性に応じて原料鉄粉末を選択すればよい。又、鉱石還元鉄粉末の10質量%以上をアトマイズ鉄粉末に代えて鉱石還元鉄粉末とアトマイズ鉄粉末との混合粉末として用いると圧縮性が改善され、得られる焼結合金の強度が向上する。この場合、アトマイズ鉄粉末の代替割合が30質量%を超えると、金属酸化物の分布が不均一化したり被削性の改善効果が得られなくなるので、アトマイズ鉄粉末と鉱石還元鉄粉末とを併用する場合、アトマイズ鉄粉末の代替割合は10〜30質量%とするのが望ましい。アトマイズ鉄粉末の粒径は、鉱石還元鉄粉末と同じあるいはそれ以下とする。   As the raw iron powder for generating the pearlite base, atomized iron powder having a particle size of about −150 to −65 mesh (maximum particle size of 104 to 200 μm) can be used. In addition, when using iron-reduced iron powder having a metal oxide content of 0.5 to 1.5 mass% and a particle size of about -150 to -65 mesh, It is preferable because the property can be improved. Ore-reduced iron powder is a powder having a high content of metal oxide due to its production method, and this metal oxide is effective in improving machinability. When content of a metal oxide is less than the said range, the effect of machinability improvement will reduce. If the content of the metal oxide exceeds the above range, the powder is hard and the compressibility is lowered, which is not preferable. Since the ore-reduced iron powder is porous, the copper-tin alloy liquid phase generated during sintering is easily absorbed by capillary force, and has an effect of homogenizing the component distribution of the sintered alloy. When the particle size of the ore-reduced iron powder is coarse, the density of the powder is difficult to increase, and when it is fine, the fluidity of the powder decreases. Therefore, a powder of about −150 to −65 mesh is suitable. However, ore-reduced iron powder has a property that it is slightly harder and less compressible than atomized iron powder because of its high content of metal oxides. Is slightly lower than that due to atomized iron powder. Therefore, the raw material powder for the sintered valve guide may be selected according to the required characteristics of strength or machinability. Moreover, when 10 mass% or more of the ore reduced iron powder is used as a mixed powder of the ore reduced iron powder and the atomized iron powder instead of the atomized iron powder, the compressibility is improved and the strength of the obtained sintered alloy is improved. In this case, if the replacement ratio of the atomized iron powder exceeds 30% by mass, the distribution of the metal oxide becomes non-uniform or the effect of improving the machinability cannot be obtained, so the atomized iron powder and the ore reduced iron powder are used in combination. In that case, it is desirable that the replacement ratio of the atomized iron powder is 10 to 30% by mass. The particle size of the atomized iron powder is the same as or smaller than that of the ore reduced iron powder.

鉄−リン合金粉末は、リンを配合するための原料であり、単独では不安定で発火性があるリンを安全に扱うために鉄−リン合金として使用する。リンは、鉄基地に拡散してパーライト基地の強度を高めると共に、鉄−リン−炭素化合物相を生成して耐摩耗性の向上に寄与する。リン含有量がおよそ10〜13質量%程度の鉄−リン合金は、950〜1050℃の温度範囲で鉄−リン合金の液相を生じ、多量の液相は焼結合金の寸法安定性を損なうため好ましくないが、適量の液相はネック成長を促進し、焼結合金の強度を向上させるので、液相の生成を適度に抑制するためにリン含有量が15質量%以上の鉄−リン合金粉末を使用する。リン含有量が15質量%以上の鉄−リン合金粉末中のリンは、焼結時に鉄粉末中に拡散し、一部のリン含有量が上記範囲となって液相を発生する。この液相は鉄粉表面を濡らして覆うが、覆った液相からリンが鉄粉末中に急速に拡散し、液相中のリン含有量が上記範囲を下回ることにより固相となる。従って、鉄粉末どうしのネックの成長を促進して強度の向上に寄与すると共に、液相の生成が一部に抑えられ且つ短時間で固相になることから、極端な寸法安定性の劣化が防止される。使用する鉄−リン合金粉末のリン含有量が15質量%に満たないと、焼結時のリンの拡散により鉄−リン合金の組成が上記液相生成範囲となって液相の生成が激しくなるため寸法安定性が損なわれると共に、リンが基地全体に拡散して薄まるため鉄−リン−炭素化合物相の生成量が不足する。他方、鉄−リン合金粉末のリン含有量が21質量%を超えると、鉄−リン合金粉末が硬くなるために混合粉末の圧縮性が損なわれ、圧粉体及び焼結合金の密度が低下して焼結バルブガイドの強度が不足すると共に、生成する鉄−リン−炭素化合物相が厚くなって焼結合金の被削性が低下する。従って、リン含有量が15〜21質量%の鉄−リン合金粉末を使用し、使用量は、混合粉末全量の0.27〜0.7質量%程度とする。混合粉末の圧縮性の点から、粒度が−250〜−150メッシュ(最大粒径が61〜104μm)程度の鉄−リン合金粉末を用いることが好ましい。使用する鉄−リン合金粉末が不可避量の不純物を含むことは許容され、例えば、炭素、珪素、マンガン等を総量で1.5質量%以下の範囲で含み得る。   The iron-phosphorus alloy powder is a raw material for blending phosphorus, and is used as an iron-phosphorus alloy in order to safely handle phosphorus that is unstable and ignitable alone. Phosphorus diffuses into the iron base to increase the strength of the pearlite base, and forms an iron-phosphorus-carbon compound phase to contribute to the improvement of wear resistance. An iron-phosphorus alloy having a phosphorus content of about 10 to 13% by mass generates a liquid phase of an iron-phosphorus alloy in the temperature range of 950 to 1050 ° C., and a large amount of the liquid phase impairs the dimensional stability of the sintered alloy. Therefore, although an appropriate amount of the liquid phase promotes neck growth and improves the strength of the sintered alloy, an iron-phosphorus alloy having a phosphorus content of 15% by mass or more in order to moderately suppress the formation of the liquid phase. Use powder. Phosphorus in the iron-phosphorus alloy powder having a phosphorus content of 15% by mass or more diffuses into the iron powder during sintering, and a part of the phosphorus content falls within the above range to generate a liquid phase. This liquid phase wets and covers the surface of the iron powder, but phosphorus diffuses rapidly from the covered liquid phase into the iron powder, and becomes a solid phase when the phosphorus content in the liquid phase falls below the above range. Therefore, the growth of the neck between the iron powders is promoted, contributing to the improvement of the strength, and the formation of the liquid phase is partially suppressed and the solid phase is formed in a short time. Is prevented. If the phosphorus content of the iron-phosphorus alloy powder to be used is less than 15% by mass, the composition of the iron-phosphorus alloy becomes the above-mentioned liquid phase generation range due to the diffusion of phosphorus during sintering, and the generation of the liquid phase becomes intense. Therefore, the dimensional stability is impaired, and phosphorus is diffused and thinned throughout the base, resulting in an insufficient amount of iron-phosphorus-carbon compound phase. On the other hand, when the phosphorus content of the iron-phosphorus alloy powder exceeds 21% by mass, the iron-phosphorus alloy powder becomes hard, so the compressibility of the mixed powder is impaired, and the density of the green compact and the sintered alloy decreases. As a result, the strength of the sintered valve guide is insufficient, and the iron-phosphorus-carbon compound phase to be formed becomes thick and the machinability of the sintered alloy decreases. Therefore, an iron-phosphorus alloy powder having a phosphorus content of 15 to 21% by mass is used, and the amount used is about 0.27 to 0.7% by mass of the total amount of the mixed powder. From the viewpoint of compressibility of the mixed powder, it is preferable to use an iron-phosphorus alloy powder having a particle size of about −250 to −150 mesh (maximum particle size of 61 to 104 μm). The iron-phosphorus alloy powder to be used is allowed to contain an unavoidable amount of impurities, and may contain, for example, carbon, silicon, manganese or the like in a total amount of 1.5% by mass or less.

銅−錫合金粉末は、焼結合金中の銅−錫合金相の微細化及び分散均一性を高めるために用い、鉄粉の粒径よりも細かい銅−錫合金粉末であることが好ましい。銅膨張による寸法安定性の低下や錫の過剰固溶による基地の脆化を防止するために、錫含有量が8〜11質量%の銅−錫合金粉末を使用することが好ましく、使用量は、混合粉末全量の3.93〜5.44質量%程度とする。これにより、混合粉末中の銅含有量は約3.5〜5.0質量%、錫含有量は0.3〜0.6質量%となる。銅−錫合金粉末が混合粉末中で均一に分散し焼結合金に銅−錫合金相が微細且つ均一に分散生成するために、鉄粉末より小さい粒径の銅−錫合金粉末を用いる。好ましくは、粒度が−250〜−400メッシュ(最大粒径が35〜61μm)程度の銅−錫合金粉末を使用する。銅−錫合金粉末が不可避量の不純物を含むことは許容される。   The copper-tin alloy powder is used to increase the fineness and dispersion uniformity of the copper-tin alloy phase in the sintered alloy, and is preferably a copper-tin alloy powder finer than the particle size of the iron powder. In order to prevent deterioration of dimensional stability due to copper expansion and embrittlement of the base due to excessive solid solution of tin, it is preferable to use a copper-tin alloy powder having a tin content of 8 to 11% by mass. And about 3.93 to 5.44% by mass of the total amount of the mixed powder. Thereby, copper content in mixed powder will be about 3.5-5.0 mass%, and tin content will be 0.3-0.6 mass%. In order that the copper-tin alloy powder is uniformly dispersed in the mixed powder and the copper-tin alloy phase is finely and uniformly dispersed in the sintered alloy, a copper-tin alloy powder having a particle size smaller than that of the iron powder is used. Preferably, a copper-tin alloy powder having a particle size of about −250 to −400 mesh (maximum particle size of 35 to 61 μm) is used. The copper-tin alloy powder is allowed to contain unavoidable impurities.

黒鉛粉末は、焼結時に鉄粉末及び鉄−リン合金粉末と結合してパーライト組織及び鉄−リン−炭素化合物を生じ、残留した黒鉛は遊離黒鉛相を形成する。焼結合金中の炭素の適正な含有量は1.5〜2.5質量%であるが、鉄粉末中の金属酸化物の還元や雰囲気ガス中の水分との結合による損失分を考慮する必要があるので、黒鉛粉末の使用量は、混合粉末全量の1.7〜2.7質量%程度となる。但し、過剰の黒鉛は、パーライト基地中にセメンタイトを析出させるだけでなく、混合粉末の圧縮性を低下させるため、圧粉体及び焼結合金の密度が低下し、バルブガイドの強度が不足する。用いる黒鉛粉末の粒径が過小であると焼結後に残留する遊離黒鉛相が不足し、粒径が過大であると混合粉末の圧縮性の低下が激しく、焼結合金中の成分分布が著しく不均一になり、鉄−リン−炭素化合物相周囲にフェライト相が生じ易くなる。   The graphite powder combines with the iron powder and the iron-phosphorus alloy powder during sintering to produce a pearlite structure and an iron-phosphorus-carbon compound, and the remaining graphite forms a free graphite phase. The appropriate carbon content in the sintered alloy is 1.5 to 2.5% by mass, but it is necessary to consider the loss due to reduction of metal oxides in iron powder and bonding with moisture in the atmospheric gas Therefore, the amount of graphite powder used is about 1.7 to 2.7% by mass of the total amount of the mixed powder. However, excessive graphite not only precipitates cementite in the pearlite matrix, but also reduces the compressibility of the mixed powder, so that the density of the green compact and the sintered alloy is lowered, and the strength of the valve guide is insufficient. If the particle size of the graphite powder used is too small, the free graphite phase remaining after sintering will be insufficient, and if the particle size is too large, the compressibility of the mixed powder will deteriorate drastically, and the component distribution in the sintered alloy will be extremely poor. It becomes uniform and a ferrite phase is likely to occur around the iron-phosphorus-carbon compound phase.

固体潤滑剤は、前述したようにMnS粉末及び/又は珪酸マグネシウム鉱物粉末であり、珪酸マグネシウム鉱物には、メタ珪酸マグネシウム鉱物及びオルト珪酸マグネシウム鉱物がある。メタ珪酸マグネシウム鉱物としては、エンスタタイト、クリノエンスタタイト、エンステナイト、ハイパーステン等が挙げられ、オルト珪酸マグネシウム鉱物としては、フォルステライト、クリソライト等が挙げられる。固体潤滑剤を用いる場合、焼結合金の強度低下を防止するために、使用量は総量で混合粉末の1.6質量%以下とする。   As described above, the solid lubricant is a MnS powder and / or a magnesium silicate mineral powder, and the magnesium silicate mineral includes a magnesium metasilicate mineral and a magnesium orthosilicate mineral. Examples of the magnesium magnesium silicate mineral include enstatite, clinoenstatite, enstenite, hypersten, and the like. Examples of the magnesium orthosilicate mineral include forsterite and chrysolite. When a solid lubricant is used, the amount used is 1.6% by mass or less of the mixed powder in order to prevent a decrease in strength of the sintered alloy.

上記に従って原料粉末を均一に混合した混合粉末は、成形型を用いて圧粉体に圧縮成形する。この際に、製品に対応した形状の成形型を用い、バルブガイドの場合に用いる成形型は縦長の円管状のキャビティを有する。具体例としては、円筒形の孔部を有するダイスと、ダイスの孔部中央に配置されてダイスとの間に縦長な円管状キャビティを構成する円筒形のコアロッドと、キャビティに嵌入される断面円環状の上下パンチとを用い、下パンチをキャビティ底部に嵌装して混合粉末をキャビティに充填し、上パンチをキャビティに挿入して上下パンチ間の混合粉末を軸方向に加圧することにより混合粉末を圧縮する。この時、圧粉体の成形密度が6.5〜7.1g/cm程度となるように成形圧力を適宜調節することが好ましい。 The mixed powder obtained by uniformly mixing the raw material powders according to the above is compression-molded into a green compact using a molding die. At this time, a mold having a shape corresponding to the product is used, and the mold used in the case of the valve guide has a vertically long cylindrical cavity. As a specific example, a die having a cylindrical hole, a cylindrical core rod disposed in the center of the die and forming a vertically long tubular cavity between the die, and a cross-sectional circle inserted into the cavity Using an annular upper and lower punch, the lower punch is fitted into the bottom of the cavity, the mixed powder is filled into the cavity, the upper punch is inserted into the cavity, and the mixed powder is pressed in the axial direction between the upper and lower punches. Compress. At this time, it is preferable to appropriately adjust the molding pressure so that the green compact has a molding density of about 6.5 to 7.1 g / cm 3 .

上記の成形においては、成形形状が縦長であるために、成形圧力が円管形状の軸方向中央部まで伝播し難いため、圧粉体の成形密度が軸方向両端部に比べて中央部で上がり難い。この結果、得られる焼結バルブガイドの強度は軸方向中央部において低くなる。これを改善するには、キャビティがパンチの進行方向に向かって僅かにテーパになるようにダイス孔部及びコアロッド周部のうちの少なくとも一方において径面を傾斜させることが有効である。テーパの傾斜が僅かであれば、圧粉体の寸法への影響は粉末粒子のスプリングバック効果によって解消されるので、製品の寸法に実質的な影響を与えることなく成形圧力を軸方向中央部まで作用させて成形密度を均一化することができる。テーパの比率は1/5000〜1/1000程度が好ましく、1/5000より小さいと中央部の成形密度の向上が不十分であり、1/1000を超えると、圧粉体の両端部間で明らかな寸法差が生じる。   In the above molding, since the molding shape is vertically long, it is difficult for the molding pressure to propagate to the axial central part of the tube shape, so the compacting density of the green compact is higher at the central part than at both axial end parts. hard. As a result, the strength of the obtained sintered valve guide is lowered at the central portion in the axial direction. In order to improve this, it is effective to incline the radial surface in at least one of the die hole portion and the core rod peripheral portion so that the cavity is slightly tapered in the punching direction. If the taper is slightly inclined, the effect on the green compact size is eliminated by the springback effect of the powder particles, so the molding pressure can be reduced to the center in the axial direction without substantially affecting the product size. By acting, the molding density can be made uniform. The taper ratio is preferably about 1/5000 to 1/1000, and if it is smaller than 1/5000, the improvement of the molding density in the center is insufficient, and if it exceeds 1/1000, it is apparent between both ends of the green compact. Dimensional difference occurs.

成形した圧粉体は、非酸化雰囲気中において950〜1050℃の温度に加熱して焼結した後冷却する。この範囲での加熱により焼結が保持され、黒鉛は鉄粉末と結合してパーライト組織を形成する。又、鉄−リン合金粉末は、一部が液相を生成して粉末同士の拡散による焼結結合に寄与すると共に、リンが鉄粉末中に拡散し黒鉛と化合して鉄−リン−炭素化合物相を生成し、焼結後の冷却過程において、鉄−リン−炭素化合物相が析出する。銅−錫合金粉末は焼結時の昇温過程で液相を生成して焼結を促進し、銅及び錫が鉄基地に拡散固溶する。焼結を経て冷却した焼結合金においては、パーライト組織中に生成した鉄−リン−炭素化合物相が薄層状に分散析出し、液化拡散した銅及び錫から微細な銅−錫合金相が分散析出する。上記の金属組織は、5分程度の焼結保持時間で形成されるが、焼結保持時間を長くすると、鉄粉末間のネックの成長が進行することにより強度が向上するので、強度の点から焼結保持時間は20分以上が好ましく、より好ましくは45分以上である。但し、焼結温度が1050℃を越える、あるいは焼結時間が90分を超えると、黒鉛の基地への拡散が進行して残留する遊離黒鉛量が低下するとともに、析出する鉄−リン−炭素化合物の量が増え、また鉄−リン−炭素化合物相の厚さも増大するため被削性が著しく低下することとなる。一方、焼結温度が950℃に満たないと焼結が十分に進行せず、所望の金属組織が得られなくなると共に、強度が著しく低下する。焼結時の加熱温度によって液相の生成速度や拡散・分散速度が変化するので、好適な金属組織構造となるためには、高めの温度で焼結する場合は焼結時間を短く、低めの温度で焼結する場合は焼結時間を長くすることが好ましい。冷却速度が遅くなると、鉄−リン−炭素化合物相及びフェライト相の析出量が多くなり厚さも厚くなるので、約8℃/分以上、好ましくは約10℃/分以上であることが好ましい。   The green compact thus formed is heated and sintered at a temperature of 950 to 1050 ° C. in a non-oxidizing atmosphere and then cooled. Sintering is maintained by heating in this range, and graphite combines with iron powder to form a pearlite structure. The iron-phosphorus alloy powder partly forms a liquid phase and contributes to the sintering bond by diffusion between the powders, and phosphorus diffuses in the iron powder and combines with the graphite to form an iron-phosphorus-carbon compound. A phase is formed, and an iron-phosphorus-carbon compound phase is precipitated in the cooling process after sintering. The copper-tin alloy powder promotes sintering by generating a liquid phase in the temperature rising process during sintering, and copper and tin are diffused and dissolved in the iron base. In a sintered alloy cooled through sintering, the iron-phosphorus-carbon compound phase formed in the pearlite structure is dispersed and precipitated in a thin layer, and a fine copper-tin alloy phase is dispersed and precipitated from liquefied and diffused copper and tin. To do. The above metal structure is formed with a sintering holding time of about 5 minutes, but if the sintering holding time is lengthened, the strength is improved by the growth of the neck between the iron powders. The sintering holding time is preferably 20 minutes or more, more preferably 45 minutes or more. However, when the sintering temperature exceeds 1050 ° C. or the sintering time exceeds 90 minutes, the amount of free graphite remaining due to the diffusion of graphite to the matrix decreases and the iron-phosphorus-carbon compound that precipitates. Since the amount of iron increases and the thickness of the iron-phosphorus-carbon compound phase also increases, the machinability is significantly reduced. On the other hand, if the sintering temperature is less than 950 ° C., the sintering does not proceed sufficiently, the desired metal structure cannot be obtained, and the strength is significantly reduced. Since the liquid phase generation rate and diffusion / dispersion rate change depending on the heating temperature during sintering, in order to obtain a suitable metal structure, the sintering time should be shorter and lower when sintering at higher temperatures. When sintering at temperature, it is preferable to lengthen the sintering time. When the cooling rate is slow, the amount of iron-phosphorus-carbon compound phase and ferrite phase deposited increases and the thickness also increases. Therefore, it is preferably about 8 ° C./min or more, preferably about 10 ° C./min or more.

上記焼結によって、焼結バルブガイドの粗製品が得られ、この内径を更にリーマによって精密に機械加工することにより、焼結バルブガイドの最終製品となる。本発明においては、焼結バルブガイドを構成する焼結合金の被削性が改善されるので、リーマによる機械加工に要する時間が短縮され、加工不良も減少する。   The sintered product of the sintered valve guide is obtained by the above-described sintering, and the inner diameter of the sintered valve guide is further precisely machined by a reamer to be the final product of the sintered valve guide. In the present invention, since the machinability of the sintered alloy constituting the sintered valve guide is improved, the time required for machining by the reamer is shortened, and defective machining is also reduced.

焼結バルブガイドの粗製品をオイルに浸漬すると、毛細管力により気孔中にオイルが吸収され、焼結バルブガイドの気密性を高めるので効果的である。また、機械加工時に潤滑油として作用して被削性を向上させる効果も有する。浸漬の際、真空にして脱気することにより強制的に焼結バルブガイド粗製品の気孔中に含浸しても良い。また、オイルに二硫化モリブデン等を分散させると、被削性が向上すると共に耐摩耗性も向上するので好適である。   When the crude product of the sintered valve guide is immersed in oil, the oil is absorbed into the pores by the capillary force, which is effective because the hermeticity of the sintered valve guide is enhanced. It also has the effect of improving machinability by acting as a lubricating oil during machining. At the time of immersion, the pores of the sintered valve guide crude product may be forcibly impregnated by vacuuming and degassing. In addition, it is preferable to disperse molybdenum disulfide or the like in the oil because machinability is improved and wear resistance is also improved.

上述に従って得られる本発明の焼結バルブガイドの金属組織断面を模式的に表わすと、図1のようになる。金属組織は、基地と、気孔と、気孔中に分散する黒鉛相とからなり、基地は、金属酸化物相を含み得るパーライト相と、銅−錫合金相と、鉄−リン−炭素化合物相とを有する。鉄−リン−炭素化合物相は薄く分散しており、その周囲に極僅かにフェライト相が形成される。   FIG. 1 is a schematic representation of the cross section of the metal structure of the sintered valve guide of the present invention obtained as described above. The metal structure includes a matrix, pores, and a graphite phase dispersed in the pores. The matrix includes a pearlite phase that may include a metal oxide phase, a copper-tin alloy phase, and an iron-phosphorus-carbon compound phase. Have The iron-phosphorus-carbon compound phase is thinly dispersed, and a very slight ferrite phase is formed around it.

図2は、リンの含有量が増加した、特許文献1等に記載される従来の焼結合金の金属組織断面を模式的に表した図であり、鉄−リン−炭素化合物相において厚さが15μm以上の部分が多く、鉄−リン−炭素化合物相の周囲には、炭素が奪取されて生じるフェライト相が多量に存在する。このような金属組織の場合、図1の場合と比べて被削性に劣り、強度も低い。前述の特許文献1に示される焼結合金は、図2に示すような厚い鉄−リン−炭素化合物相を有する。   FIG. 2 is a diagram schematically showing a cross-section of a metal structure of a conventional sintered alloy described in Patent Document 1 and the like in which the content of phosphorus is increased. In the iron-phosphorus-carbon compound phase, the thickness is There are many portions of 15 μm or more, and a large amount of ferrite phase is generated around the iron-phosphorus-carbon compound phase by carbon deprivation. In the case of such a metal structure, the machinability is inferior and the strength is low as compared with the case of FIG. The sintered alloy shown in Patent Document 1 has a thick iron-phosphorus-carbon compound phase as shown in FIG.

以下、実施例を参照して本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(試料1〜27)
鉄粉末として鉱石還元鉄粉末(金属酸化物0.1質量%含有)又はアトマイズ鉄粉末(金属酸化物0.2質量%含有)を用いて、表1に記載の配合比に従って、鉄粉末、鉄−リン合金粉末、銅−錫合金粉末及び黒鉛粉末を混合して試料1〜27の混合粉末を各々調製した。各試料について、混合粉末全体の成分組成を表2に示す。尚、用いた各粉末の粒径は、鉱石還元鉄粉末(150μm以上:5%,45〜150μm:75%,45μm未満:20%)、アトマイズ鉄粉末(150μm以上:17%,45〜150μm:58%,45μm未満:25%)、鉄−リン合金粉末(63μm以上:3%,45〜63μm:10%,45μm未満:87%)、銅−錫合金粉末(150μm以上:7%,45〜150μm:73%,45μm未満:20%)及び黒鉛粉末(平均粒径:0.6〜0.8)であった。
(Samples 1 to 27)
Using iron-reduced iron powder (containing 0.1% by mass of metal oxide) or atomized iron powder (containing 0.2% by mass of metal oxide) as iron powder, iron powder, iron according to the compounding ratio shown in Table 1 -Phosphor alloy powder, copper-tin alloy powder, and graphite powder were mixed to prepare mixed powders of Samples 1 to 27, respectively. Table 2 shows the component composition of the entire mixed powder for each sample. The particle size of each powder used was ore reduced iron powder (150 μm or more: 5%, 45 to 150 μm: 75%, less than 45 μm: 20%), atomized iron powder (150 μm or more: 17%, 45 to 150 μm: 58%, less than 45 μm: 25%), iron-phosphorus alloy powder (63 μm or more: 3%, 45-63 μm: 10%, less than 45 μm: 87%), copper-tin alloy powder (150 μm or more: 7%, 45%) 150 μm: 73%, less than 45 μm: 20%) and graphite powder (average particle size: 0.6 to 0.8).

各試料について、混合粉末を550MPaの圧力で加圧圧縮して、外経11mm、内経6mm、長さ40mmの円管形状の圧粉体(摩耗試験及び被削性試験用)及び外経18mm、内経10mm、長さ10mmの円環形状の圧粉体(圧環試験用)に成形し、非酸化雰囲気中で1000℃の温度で60分間焼結し、1000℃から600℃までを12℃/分の冷却速度で冷却し、その後室温まで戻して試料1〜27の焼結体を得た。   For each sample, the mixed powder was pressed and compressed at a pressure of 550 MPa to obtain a cylindrical compact having an outer diameter of 11 mm, an inner diameter of 6 mm, and a length of 40 mm (for wear test and machinability test) and an outer diameter of 18 mm. , Molded into an annular green compact (for pressure ring test) with an inner diameter of 10 mm and a length of 10 mm, sintered in a non-oxidizing atmosphere at a temperature of 1000 ° C. for 60 minutes, and from 1000 ° C. to 600 ° C. at 12 ° The sample was cooled at a cooling rate of 1 minute, and then returned to room temperature to obtain sintered bodies of Samples 1 to 27.

試料1〜27の焼結体について、顕微鏡を用いて焼結体の金属組織断面(×340)を観察し、金属組織断面中に占める鉄−リン−炭素化合物相及び銅−錫合金相の割合(面積%)、基地中に占めるフェライト相の割合(面積%)、遊離黒鉛の割合(質量%)、鉄−リン−炭素化合物相における厚さが5μm未満、5μm以上15μm未満、15μm以上の各部分の割合(面積%)を求めた。この結果を表3に示す。   About the sintered compact of samples 1-27, the metal structure cross section (x340) of a sintered compact is observed using a microscope, and the ratio of the iron-phosphorus-carbon compound phase and copper-tin alloy phase which occupy in a metal structure cross section (Area%), ratio of ferrite phase in the base (area%), ratio of free graphite (mass%), thickness in the iron-phosphorus-carbon compound phase is less than 5 μm, 5 μm or more and less than 15 μm, 15 μm or more The proportion (area%) of the part was determined. The results are shown in Table 3.

又、試料1〜27の焼結体について、下記に従って摩耗試験、被削性試験及び圧環試験を行って、摩耗量、被削性指数及び圧環強さを測定した。この結果を表3に示す。   Moreover, about the sintered compact of samples 1-27, the abrasion test, the machinability test, and the crushing test were done according to the following, and the wear amount, the machinability index | exponent, and the crushing strength were measured. The results are shown in Table 3.

(摩耗試験)
円管形状の焼結体を縦型バルブガイド摩耗試験機に取り付けて摩耗試験を行った。摩耗試験では、軸線を鉛直方向に設定したピストンの下端部にバルブステムを取り付けてバルブを焼結体内経に挿通し、3MPaの横加重をピストンに加えながら、500℃の排気ガス雰囲気中でバルブを往復動させた。この際のストローク速度は3000回/分、ストローク長は8mmとした。30時間の往復動の後、焼結体の内周面の摩耗量(μm)を測定した。
(Abrasion test)
A wear test was performed by attaching a circular tube-shaped sintered body to a vertical valve guide wear tester. In the wear test, the valve stem was attached to the lower end of the piston with the axis set in the vertical direction, the valve was inserted into the sintered body, a 3 MPa lateral load was applied to the piston, and the valve was placed in an exhaust gas atmosphere at 500 ° C. Was reciprocated. In this case, the stroke speed was 3000 times / minute, and the stroke length was 8 mm. After 30 hours of reciprocation, the amount of wear (μm) on the inner peripheral surface of the sintered body was measured.

(被削性試験)
超硬合金製リーマを用い、円管形状の焼結体の内径にリーマ加工を施して軸方向に10mm切削するまでの所要時間を求めた。各試料における所要時間を、試料13(特公昭55−034858号記載の合金組成に相当し、以下、従来合金と称する)における所要時間を100とする指数に換算した。この指数が小さいほど、焼結体は削り易く加工時間が短くて済む、つまり、被削性が良いことを意味する。
(Machinability test)
Using a cemented carbide reamer, the reaming time was applied to the inner diameter of the circular tube-shaped sintered body and the time required for cutting 10 mm in the axial direction was determined. The required time in each sample was converted into an index with the required time in Sample 13 (corresponding to the alloy composition described in Japanese Patent Publication No. 55-034858, hereinafter referred to as conventional alloy) being 100. The smaller the index, the easier it is to cut the sintered body and the shorter the processing time, that is, the better the machinability.

(圧環試験)
JIS Z2507「焼結軸受−圧環強さ試験方法」に規定する方法に従って、円環形状の焼結体を径方向に押圧し、押圧加重を増加させて焼結体が破壊した時の最大加重を求めて下記数式1により圧環強さ(N/mm)を算出した(但し、式中、F:破壊した時の最大加重(N)、L:円環の長さ(mm)、D:円環の外径(mm)、e:円環の壁厚(mm)である。)。
(Pressure test)
In accordance with the method specified in JIS Z2507 “Sintered bearing-crushing strength test method”, the maximum load when the sintered body is destroyed by pressing the annular shaped sintered body in the radial direction and increasing the pressing load. The crushing strength (N / mm 2 ) was calculated by the following formula 1 (where F: maximum weight at break (N), L: length of the ring (mm), D: circle) (Outer diameter of the ring (mm), e: wall thickness of the ring (mm).)

(数1)
K=F(D−e)/(L*e

(Equation 1)
K = F (D−e) / (L * e 2 )


試料1〜9は、全体組成中のリン量を変化させたもので、試料1〜7は鉄−リン合金粉末のリン含有量を一定とし、試料8、9は、全体組成中のリン量及び鉄−リン合金粉末のリン含有量の両方を変化させたものである。これら及び試料10(特公昭55−034858号公報に開示される焼結合金、従来合金と表示)について、全体組成中のリン量と各相の割合との関係を図3に、リン量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図4に示す。

Samples 1 to 9 are obtained by changing the amount of phosphorus in the entire composition. Samples 1 to 7 have a constant phosphorus content in the iron-phosphorus alloy powder. Samples 8 and 9 are the amount of phosphorus in the entire composition. Both the phosphorus contents of the iron-phosphorus alloy powder are changed. Regarding these and Sample 10 (sintered alloy disclosed in Japanese Patent Publication No. 55-034858, labeled as a conventional alloy), the relationship between the amount of phosphorus in the overall composition and the proportion of each phase is shown in FIG. FIG. 4 shows the relationship between the thickness of the phosphorus-carbon compound phase and material properties (amount of wear, machinability index, and crushing strength).

リン量によって銅−錫合金相の割合は変動しない(図3(b))が、鉄−リン−炭素化合物相の割合及び厚さがリン量の増加により急激に増加し、リン量が0.15質量%を越えた領域で遊離黒鉛相の量の減少及びフェライト相の増加が起こることが図3(a),(c),(d)及び図4(a)から解る。これは、リン量が増加することにより、鉄−リン−炭素化合物の形成が促進されるが、この鉄−リン−炭素化合物の形成のために遊離黒鉛及び基地に固溶した炭素が消費され、その結果、フェライト相が増加することを意味する。又、図4(b),(c),(d)によれば、リン量が0.04質量%未満であると、被削性は良好であるが、摩耗量が大きく、かつ圧環強さが低い値を示している。リン量が0.04質量%以上では、リン量の増加に従って圧環強さが増加し摩耗量が低下するが、被削性指数が上昇し被削性が悪くなる。特にリン量が0.15質量%以上において被削性指数の増加が著しい。   The proportion of the copper-tin alloy phase does not vary depending on the amount of phosphorus (FIG. 3B), but the proportion and thickness of the iron-phosphorus-carbon compound phase increase rapidly with an increase in the amount of phosphorus, and the amount of phosphorus is 0.1. It can be seen from FIGS. 3 (a), (c), (d) and FIG. 4 (a) that the amount of free graphite phase decreases and the ferrite phase increases in the region exceeding 15% by mass. This is because the formation of iron-phosphorus-carbon compound is promoted by increasing the amount of phosphorus, but free graphite and carbon dissolved in the matrix are consumed for the formation of this iron-phosphorus-carbon compound, As a result, it means that the ferrite phase increases. Further, according to FIGS. 4B, 4C, and 4D, when the phosphorus amount is less than 0.04 mass%, the machinability is good, but the wear amount is large, and the crushing strength is high. Indicates a low value. When the phosphorus amount is 0.04% by mass or more, the crushing strength increases and the wear amount decreases as the phosphorus amount increases, but the machinability index increases and the machinability deteriorates. In particular, when the amount of phosphorus is 0.15% by mass or more, the machinability index is remarkably increased.

図3(d)及び図4(a),(c)から、被削性指数の変動は、鉄−リン−炭素化合物相の生成割合及びその厚さが15μm以上の割合と関連性が認められ、リン量が0.15質量%以下の領域において、厚さ15μm以上の鉄−リン−炭素化合物相の割合が10面積%以下となり、被削性指数も35以下と小さく抑えられる。つまり、鉄−リン−炭素化合物相が微細化することによって被削性が良好となると言える。   From FIG. 3 (d) and FIGS. 4 (a) and 4 (c), it is recognized that the change in the machinability index is related to the generation ratio of the iron-phosphorus-carbon compound phase and the ratio of the thickness of 15 μm or more. In the region where the amount of phosphorus is 0.15% by mass or less, the ratio of the iron-phosphorus-carbon compound phase having a thickness of 15 μm or more is 10% by area or less, and the machinability index is suppressed to 35 or less. That is, it can be said that the machinability is improved when the iron-phosphorus-carbon compound phase is refined.

他方、圧環強さの変動は鉄−リン−炭素化合物相の割合と関連性が認められ、鉄−リン−炭素化合物相の割合の増加と共に圧環強さは増加し、鉄−リン−炭素化合物相の割合が0.1面積%以上となるリン量0.04質量%以上の領域において500MPa程度以上の十分な圧環強さが得られ、リン量が0.1質量%以上で従来合金よりも高い圧環強さを示すが、リン量の増加と共に強度の低いフェライト相の割合も増加するため、リン量が0.2質量%以上ではかえって強度の低下が生じる。   On the other hand, the fluctuation of the crushing strength is recognized to be related to the ratio of the iron-phosphorus-carbon compound phase, and the crushing strength increases as the ratio of the iron-phosphorus-carbon compound phase increases, A sufficient crushing strength of about 500 MPa or more is obtained in a region where the amount of phosphorus is 0.1 area% or more and the phosphorus amount is 0.04 mass% or more, and the phosphorus amount is 0.1 mass% or more, which is higher than the conventional alloy Although the crushing strength is shown, the ratio of the ferrite phase having low strength increases with an increase in the amount of phosphorus. Therefore, when the amount of phosphorus is 0.2% by mass or more, the strength is reduced.

また摩耗量の変動は、鉄−リン−炭素化合物相の生成割合と関連性が認められ、リン量が0.04質量%以上であり鉄−リン−炭素化合物相の割合が0.1面積%となる領域において、急激に摩耗量が減少し、リン量の増加及び鉄−リン−炭素化合物相の生成割合の増加に従って摩耗量も減少する。   In addition, the variation in the amount of wear is recognized to be related to the generation ratio of the iron-phosphorus-carbon compound phase, the phosphorus amount is 0.04% by mass or more, and the ratio of the iron-phosphorus-carbon compound phase is 0.1 area%. In this region, the amount of wear decreases rapidly, and the amount of wear decreases as the amount of phosphorus increases and the rate of formation of the iron-phosphorus-carbon compound phase increases.

上記から、全体組成中のリン量が0.04〜0.15質量%であり、鉄−リン−炭素化合物相の割合が0.1〜3面積%であって、且つ、その鉄−リン−炭素化合物相における厚さが15μm以上のものの占める割合が面積比で10%以下である時、圧環強さ、被削性及び耐摩耗性の全てにおいて適正なバルブガイドとなる。   From the above, the amount of phosphorus in the overall composition is 0.04 to 0.15 mass%, the ratio of the iron-phosphorus-carbon compound phase is 0.1 to 3 area%, and the iron-phosphorus- When the proportion of the carbon compound phase having a thickness of 15 μm or more is 10% or less in terms of area ratio, it becomes an appropriate valve guide in all of the crushing strength, machinability and wear resistance.

試料4及び11〜23は、全体組成中の錫量又は及び銅量を変化させたもので、試料4、11〜14は銅量を一定とし、試料4、15〜19は、用いる銅−錫合金粉末の組成を一定とし、試料20〜23は全体組成中の錫量、銅量及び銅−錫合金粉末の組成を変えている。これら及び試料13について、全体組成中の錫量と各相の割合との関係を図5に、錫量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図6に示す。又、全体組成中の銅量と各相の割合との関係を図7に、銅量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図8に示す。   Samples 4 and 11-23 were obtained by changing the amount of tin or copper in the overall composition. Samples 4, 11-14 had a constant amount of copper, and samples 4, 15-19 were copper-tin used. The composition of the alloy powder is constant, and Samples 20 to 23 have different amounts of tin, copper, and copper-tin alloy powder in the overall composition. For these and sample 13, the relationship between the amount of tin in the overall composition and the proportion of each phase is shown in FIG. 5. The amount of tin, the thickness of the iron-phosphorus-carbon compound phase, and the material properties (wear amount, machinability index and FIG. 6 shows the relationship with the crushing strength. Moreover, the relationship between the copper content in the overall composition and the ratio of each phase is shown in FIG. 7. The copper content, the thickness of the iron-phosphorus-carbon compound phase, and material properties (amount of wear, machinability index, and crushing strength) FIG. 8 shows the relationship.

図5(b)における銅−錫合金相の割合の変化は、錫の添加形態によって大きく異なり、これと図7(b)とを考え併せると、銅−錫合金相の割合は、錫量よりもむしろ銅量によって変化すると考えられる。更に、図5(a),(c),(d)及び図6(a)も、錫量が金属組織の相構成に与える影響が小さいことを示している。   The change in the proportion of the copper-tin alloy phase in FIG. 5 (b) varies greatly depending on the addition form of tin, and when this is combined with FIG. 7 (b), the proportion of the copper-tin alloy phase is determined by the amount of tin. Rather, it is thought to change depending on the amount of copper. Further, FIGS. 5 (a), (c), (d) and FIG. 6 (a) also show that the influence of the amount of tin on the phase structure of the metal structure is small.

他方、耐摩耗性及び圧環強さは、錫量の増加により向上し、被削性は低下する。これは、基地に固溶する錫の増加によるもので、錫量が全体組成の0.3質量%以上において摩耗量70μm以下、圧環強さ500MPa以上と良好な耐摩耗性及び圧環強さを示し、被削性においては錫量が0.6質量%以下が好ましい。   On the other hand, wear resistance and crushing strength are improved by increasing the amount of tin, and machinability is lowered. This is due to an increase in tin dissolved in the base. When the amount of tin is 0.3% by mass or more of the total composition, the wear amount is 70 μm or less and the crushing strength is 500 MPa or more, which shows good wear resistance and crushing strength. In terms of machinability, the tin content is preferably 0.6% by mass or less.

図7(a)、図8(a)によれば、銅量の増加は、鉄−リン−炭素化合物相の割合及び厚さを減少させ、従って図8(c)のように被削性を向上させる。これは、銅により基地の焼き入れ性が向上し、見かけの冷却速度が速くなることによる(冷却速度による影響の詳細は後述する)。又、図7(b)によれば、銅量の増加は、銅−錫合金相の割合を増加させる。軟質で馴染み性に優れる銅−錫合金相の存在は、耐摩耗性を向上させると共に加工も容易にし、銅量が3.5質量%以上の領域で被削性指数が35以下の良好な値を示す(図8(c))。尚、銅−錫合金相は圧環強さも向上させる(図8(d))が、5.0質量%以上では銅−錫合金相の軟質さが過剰に作用して強度を低下させる。これらの結果から、適正な錫量の範囲は0.3〜0.6質量%であり、適正な銅量の範囲は3.5〜5.0質量%となる。   According to FIGS. 7 (a) and 8 (a), the increase in the amount of copper decreases the ratio and thickness of the iron-phosphorus-carbon compound phase, and therefore the machinability is reduced as shown in FIG. 8 (c). Improve. This is because the hardenability of the base is improved by copper and the apparent cooling rate is increased (details of the influence of the cooling rate will be described later). Moreover, according to FIG.7 (b), the increase in the amount of copper increases the ratio of a copper-tin alloy phase. The presence of a soft and adaptable copper-tin alloy phase improves wear resistance and facilitates processing, and a good value with a machinability index of 35 or less in a region where the amount of copper is 3.5% by mass or more. (FIG. 8C). The copper-tin alloy phase also improves the crushing strength (FIG. 8 (d)), but at 5.0% by mass or more, the softness of the copper-tin alloy phase acts excessively and decreases the strength. From these results, the range of the appropriate amount of tin is 0.3 to 0.6% by mass, and the range of the appropriate amount of copper is 3.5 to 5.0% by mass.

試料4及び24〜27は、全体組成中の炭素量を変化させたもので、これら及び試料13について、全体組成中の炭素量と各相の割合との関係を図9に、炭素量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図10に示す。   Samples 4 and 24 to 27 were obtained by changing the carbon amount in the entire composition. Regarding these and sample 13, the relationship between the carbon amount in the entire composition and the ratio of each phase is shown in FIG. FIG. 10 shows the relationship between the thickness of the phosphorus-carbon compound phase and material properties (amount of wear, machinability index, and crushing strength).

炭素量の増加により鉄−リン−炭素化合物相の割合及び相の厚さが増加することが図9(a)及び図10(a)から解る。遊離黒鉛相の割合も増加する(図9(c))。但し、図9(d)は、炭素量が2.5質量%を越えると急激にフェライト相の割合が増加することを示し、鉄−リン−炭素化合物相の生成に伴い基地から炭素奪取が起こることを表わす。   It can be seen from FIGS. 9A and 10A that the ratio of the iron-phosphorus-carbon compound phase and the thickness of the phase increase as the amount of carbon increases. The proportion of free graphite phase also increases (FIG. 9 (c)). However, FIG. 9 (d) shows that when the carbon content exceeds 2.5% by mass, the proportion of the ferrite phase increases abruptly, and carbon capture occurs from the base with the formation of the iron-phosphorus-carbon compound phase. Represents.

図10(c)の被削性指数は、鉄−リン−炭素化合物相の厚さによる影響に加えて、遊離黒鉛相の割合による影響を受けている。つまり、遊離黒鉛相の増加による被削性指数の低下(被削性向上)と、鉄−リン−炭素化合物相の増加・粗大化による被削性指数の増加(被削性悪化)との和により、炭素量1.5〜2.5質量%の範囲で被削性指数が極小となる。摩耗量は、鉄−リン−炭素化合物相の割合の増加によって減少すると考えられる。しかし、圧環強さについては、鉄−リン−炭素化合物相の割合の増加によって向上するはずであるが、図10(d)によればかえって低下し、特に炭素量が2.5質量%を越えると圧環強さの低下が著しい。これは、炭素粉末量の増加により混合粉末の圧縮性が低下し、圧粉体及び焼結体の強度が低下するためである。これらの結果から、圧環強さ、被削性及び耐摩耗性の全てにおいて適正な炭素量の範囲は1.5〜2.5質量%となる。   The machinability index in FIG. 10C is influenced by the ratio of the free graphite phase in addition to the influence of the thickness of the iron-phosphorus-carbon compound phase. In other words, the sum of the decrease in the machinability index due to the increase in the free graphite phase (improving machinability) and the increase in the machinability index due to the increase and coarsening of the iron-phosphorus-carbon compound phase (deterioration in machinability). As a result, the machinability index is minimized in the range of carbon content of 1.5 to 2.5 mass%. The amount of wear is thought to decrease with increasing proportion of the iron-phosphorus-carbon compound phase. However, the crushing strength should be improved by increasing the ratio of the iron-phosphorus-carbon compound phase, but it decreases according to FIG. 10 (d), and in particular, the carbon content exceeds 2.5 mass%. And the decrease in crushing strength is remarkable. This is because the compressibility of the mixed powder decreases due to an increase in the amount of carbon powder, and the strength of the green compact and the sintered body decreases. From these results, the appropriate carbon amount range in all of the crushing strength, machinability and wear resistance is 1.5 to 2.5 mass%.

(試料28〜38)
各試料における混合粉末の配合を実施例1の試料4と同じ配合割合とし、表4に示すように、焼結温度を900℃(試料28)、950℃(試料29)、1050℃(試料30)、1100℃(試料31)に変更したこと以外は試料4と同様の操作を繰り返して混合粉末の調製、圧粉体の成形、焼結、冷却を行い、試料28〜31の焼結体を得た。尚、各試料における混合粉末全体の成分組成は表5に示す。
(Samples 28-38)
The blending ratio of the mixed powder in each sample was set to the same blending ratio as that of sample 4 in Example 1, and as shown in Table 4, sintering temperatures were 900 ° C. (sample 28), 950 ° C. (sample 29), 1050 ° C. (sample 30). ) The same operations as in Sample 4 were repeated except that the temperature was changed to 1100 ° C. (Sample 31), and mixed powder was prepared, green compact was formed, sintered, and cooled. Obtained. In addition, Table 5 shows the component composition of the entire mixed powder in each sample.

また、焼結時間を10分(試料32)、20分(試料33)、45分(試料34)、90分(試料35)、120分(試料36)に変更したこと以外は試料4と同様の操作を繰り返して混合粉末の調製、圧粉体の成形、焼結、冷却を行い、試料32〜36の焼結体を得た。   The same as sample 4 except that the sintering time was changed to 10 minutes (sample 32), 20 minutes (sample 33), 45 minutes (sample 34), 90 minutes (sample 35), and 120 minutes (sample 36). The above operations were repeated to prepare mixed powder, compact green compact, sinter, and cool to obtain sintered bodies of Samples 32-36.

更に、焼結後の冷却速度を8℃/分(試料37)、4℃/分(試料38)に変更したこと以外は試料4と同様の操作を繰り返して混合粉末の調製、圧粉体の成形、焼結、冷却を行い、試料37〜38の焼結体を得た。   Further, the same procedure as in Sample 4 was repeated except that the cooling rate after sintering was changed to 8 ° C./min (Sample 37) and 4 ° C./min (Sample 38). Molding, sintering, and cooling were performed to obtain sintered bodies of Samples 37 to 38.

試料28〜38の焼結体について、試料1〜27と同様に、組織断面観察による焼結体の金属組織断面中の各相の割合の決定、摩耗試験、被削性試験及び圧環試験を行った。これらの結果を表6に示す。
For the sintered bodies of Samples 28 to 38, as in Samples 1 to 27, determination of the proportion of each phase in the metal structure cross section of the sintered body by observation of the structure cross section, wear test, machinability test, and pressure ring test are performed. It was. These results are shown in Table 6.


試料4及び試料28〜31について、焼結温度と全体組成中の各相の割合との関係を図11に、焼結温度と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図12に示す。

FIG. 11 shows the relationship between the sintering temperature and the ratio of each phase in the overall composition of Sample 4 and Samples 28 to 31, and the sintering temperature, the thickness of the iron-phosphorus-carbon compound phase, and the material properties (amount of wear, The relationship between the machinability index and the crushing strength is shown in FIG.

図11(b)によれば、銅−錫合金相の割合は焼結温度に依存しないが、鉄−リン−炭素化合物相は900℃を越えた場合に生成し、その割合及び厚さは焼結温度の上昇により増加し(図11(a),図12(a))、遊離黒鉛相の割合は逆に減少する(図11(c))。これは、焼結温度が高いほど黒鉛の固溶拡散が進行するためで、焼結温度が低い場合にフェライト相の割合が高いのは、黒鉛粒子が拡散し難いためである。但し、焼結温度が1100℃を越えると、鉄−リン−炭素化合物相の過剰形成による炭素の不足からフェライト相の割合が増加する(図11(d))。   According to FIG. 11 (b), the proportion of the copper-tin alloy phase does not depend on the sintering temperature, but the iron-phosphorus-carbon compound phase is formed when the temperature exceeds 900 ° C., and the proportion and thickness are determined by firing. It increases with the increase of the setting temperature (FIGS. 11A and 12A), and the proportion of the free graphite phase decreases on the contrary (FIG. 11C). This is because the higher the sintering temperature is, the more the solid solution diffusion of the graphite proceeds. The lower the sintering temperature, the higher the ratio of the ferrite phase is because the graphite particles are difficult to diffuse. However, when the sintering temperature exceeds 1100 ° C., the ratio of the ferrite phase increases due to the lack of carbon due to the excessive formation of the iron-phosphorus-carbon compound phase (FIG. 11 (d)).

鉄−リン−炭素化合物相の厚さ及び遊離黒鉛相の割合と被削性指数との相関性は図11、図12においても確認でき、被削性指数が35以下となる範囲を求めると焼結温度が1050℃以下となり、この範囲において、鉄−リン−炭素化合物相の割合は約3面積%以下、厚さ15μm以上の鉄−リン−炭素化合物相の割合が10%以下となる。   The correlation between the thickness of the iron-phosphorus-carbon compound phase and the ratio of the free graphite phase and the machinability index can also be confirmed in FIGS. 11 and 12, and when the range where the machinability index is 35 or less is obtained, In this range, the ratio of the iron-phosphorus-carbon compound phase is about 3 area% or less, and the ratio of the iron-phosphorus-carbon compound phase having a thickness of 15 μm or more is 10% or less.

又、圧環強さについては、鉄−リン−炭素化合物相の割合との相関性だけでなく、フェライト相の割合との相関性もあり、フェライト相の割合が多いと圧環強さが低下する。圧環強度が500MPa以上の範囲を求めると、焼結温度は950〜1050℃となり、この範囲において、鉄−リン−炭素化合物相の割合が約0.2〜3面積%であり、フェライト相は約9面積%以下となる。   Further, the crushing strength has not only a correlation with the ratio of the iron-phosphorus-carbon compound phase but also a correlation with the ratio of the ferrite phase, and the crushing strength decreases when the ratio of the ferrite phase is large. When the range of the crushing strength is 500 MPa or more, the sintering temperature is 950 to 1050 ° C. In this range, the ratio of the iron-phosphorus-carbon compound phase is about 0.2 to 3 area%, and the ferrite phase is about 9 area% or less.

このように、組成が同じであっても焼結温度によって形成される金属組織及び発揮される材料特性が大きく異なり、発揮する焼結温度950℃〜1050℃において得られる材料特性が良好な焼結バルブガイドは、鉄−リン−炭素化合物相の割合が約0.2〜3面積%、厚さ15μm以上の鉄−リン−炭素化合物相の割合が10%以下、フェライト相が約9面積%以下となる。   Thus, even if the composition is the same, the metal structure formed and the material properties to be exhibited are greatly different depending on the sintering temperature, and the material properties obtained at the sintering temperatures to be exhibited are 950 ° C. to 1050 ° C. The valve guide has an iron-phosphorus-carbon compound phase ratio of about 0.2 to 3 area%, an iron-phosphorus-carbon compound phase ratio of 15 μm or more in thickness of 10% or less, and a ferrite phase of about 9 area% or less. It becomes.

試料4及び試料32〜36について、焼結時間と全体組成中の各相の割合との関係を図13に、焼結時間と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図14に示す。   For Sample 4 and Samples 32-36, the relationship between the sintering time and the proportion of each phase in the overall composition is shown in FIG. 13, and the sintering time, the thickness of the iron-phosphorus-carbon compound phase, and the material properties (amount of wear, The relationship between the machinability index and the crushing strength is shown in FIG.

図13(a),(c),(d)から、焼結時間の増加に従って炭素の固溶拡散及び鉄−リン−炭素化合物相の形成が進行し、炭素の拡散が不十分な場合及び鉄−リン−炭素化合物相が過剰形成される場合にフェライト相が増加する。これは、焼結温度による影響と類似する。   13 (a), (c), and (d), carbon solid solution diffusion and formation of an iron-phosphorus-carbon compound phase proceed as the sintering time increases, and carbon diffusion is insufficient and iron -When the phosphorus-carbon compound phase is excessively formed, the ferrite phase increases. This is similar to the effect of sintering temperature.

従って、鉄−リン−炭素化合物相の割合、厚さ及び遊離黒鉛相の割合と被削性指数との相関性は図13、図14においても確認でき、被削性指数が35以下となる範囲を求めると、焼結時間が90分以下となり、この範囲において、鉄−リン−炭素化合物相の割合は約3面積%以下、厚さ15μm以上の鉄−リン−炭素化合物相の割合が約10%以下、遊離黒鉛相の割合は1面積%以上となる。   Therefore, the correlation between the ratio of the iron-phosphorus-carbon compound phase, the thickness, the ratio of the free graphite phase, and the machinability index can also be confirmed in FIGS. 13 and 14, and the machinability index is 35 or less. In this range, the ratio of the iron-phosphorus-carbon compound phase is about 3 area% or less, and the ratio of the iron-phosphorus-carbon compound phase having a thickness of 15 μm or more is about 10%. %, The ratio of the free graphite phase is 1 area% or more.

また、圧環強さについては、500MPa以上となる範囲を求めると、焼結時間が20分以上となる。鉄−リン−炭素化合物相は、焼結時間が20分以下でも強度を発揮するに十分な量生成しており、金属組織自体は形成されている。焼結が保持されることにより向上する強度は、鉄粒子間にネックが成長することにより得られので、必要とされる圧環強さ及び耐摩耗性に応じて適正に焼結が保持されるように焼結時間を設定する。   Moreover, about the crushing strength, when the range which becomes 500 Mpa or more is calculated | required, sintering time will be 20 minutes or more. The iron-phosphorus-carbon compound phase is generated in a sufficient amount to exhibit strength even when the sintering time is 20 minutes or less, and the metal structure itself is formed. The strength improved by maintaining the sintering is obtained by growing the neck between the iron particles, so that the sintering is properly maintained according to the required crushing strength and wear resistance. Set the sintering time.

試料4及び試料37,38について、冷却速度と全体組成中の各相の割合との関係を図15に、冷却速度と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図16に示す。   For sample 4 and samples 37 and 38, the relationship between the cooling rate and the proportion of each phase in the overall composition is shown in FIG. 15, and the cooling rate, the thickness of the iron-phosphorus-carbon compound phase, and the material properties (amount of wear, machining) The relationship between the sex index and the crushing strength is shown in FIG.

図15及び図16(a)から、銅−錫合金相及び遊離黒鉛相の量は冷却速度によって変化しないが、鉄−リン−炭素化合物相及びフェライト相は冷却速度が速いほど少なくなり、従って、鉄−リン−炭素化合物相の厚さも減少する。   From FIG. 15 and FIG. 16 (a), the amount of the copper-tin alloy phase and the free graphite phase does not change depending on the cooling rate, but the iron-phosphorus-carbon compound phase and the ferrite phase decrease as the cooling rate increases. The thickness of the iron-phosphorus-carbon compound phase is also reduced.

一方、材料特性において冷却速度の影響を受けるのは被削性である。一般に、冷却速度の増加に従って液状物が固化する際の析出は微細化し、焼結バルブガイドにおいては、析出する鉄−リン−炭素化合物相が薄くなり、その生成量も減少し、これに伴いフェライト相の割合も減少する。この結果、被削性が向上する。銅−錫合金相も液相からの析出が微細化する。被削性指数が35以下となる冷却速度の範囲を求めると、8℃/分以上となり、この時の鉄−リン−炭素化合物相の割合は3面積%以下、厚さ15μm以上の鉄−リン−炭素化合物相の割合が10%以下、フェライト相の割合が5%以下となる。   On the other hand, the machinability is affected by the cooling rate in the material properties. In general, the precipitation when the liquid solidifies as the cooling rate increases, and in the sintered valve guide, the precipitated iron-phosphorus-carbon compound phase becomes thinner, and the amount produced is also reduced. The proportion of phases also decreases. As a result, machinability is improved. The copper-tin alloy phase is also finely precipitated from the liquid phase. When the range of the cooling rate at which the machinability index is 35 or less is obtained, it is 8 ° C./min or more. At this time, the ratio of the iron-phosphorus-carbon compound phase is 3 area% or less and the thickness is 15 μm or more. -The proportion of the carbon compound phase is 10% or less and the proportion of the ferrite phase is 5% or less.

(試料39〜49)
各試料における混合粉末の配合を示す表7に従って、原料鉄粉末中の酸化物量を0.2質量%(ミルスケール還元鉄粉末、試料39)、0.5質量%(試料40)、1.5質量%(試料41)、2.0質量%(試料42)に変更したこと以外は試料4と同様の操作を繰り返して混合粉末の調製、圧粉体の成形、焼結、冷却を行い、試料39〜42の焼結体を得た。尚、各試料における混合粉末全体の成分組成は表8に示す。
(Samples 39-49)
According to Table 7 which shows the mixing | blending of the mixed powder in each sample, the oxide amount in raw material iron powder is 0.2 mass% (mill scale reduced iron powder, sample 39), 0.5 mass% (sample 40), 1.5 Except for changing to mass% (sample 41) and 2.0 mass% (sample 42), the same operations as in sample 4 were repeated to prepare a mixed powder, mold a green compact, sinter, and cool the sample. 39-42 sintered bodies were obtained. The component composition of the entire mixed powder in each sample is shown in Table 8.

また、鉱石還元鉄粉末の一部又は全てをアトマイズ鉄粉末(酸化物量:0.2質量%)に代え、その混合粉末全組成中の割合を5質量%(試料43)、10質量%(試料44)、15質量%(試料45)、20質量%(試料46)、30質量%(試料47)、40質量%(試料48)、92.2質量%(試料49)に変更したこと以外は試料4と同様の操作を繰り返して混合粉末の調製、圧粉体の成形、焼結、冷却を行い、試料43〜49の焼結体を得た。   Moreover, a part or all of the ore reduced iron powder is replaced with atomized iron powder (amount of oxide: 0.2 mass%), and the ratio in the total composition of the mixed powder is 5 mass% (sample 43), 10 mass% (sample 44), 15% by mass (Sample 45), 20% by mass (Sample 46), 30% by mass (Sample 47), 40% by mass (Sample 48), and 92.2% by mass (Sample 49) The same operations as in Sample 4 were repeated to prepare a mixed powder, to form a green compact, to sinter and to cool, and to obtain sintered bodies of Samples 43 to 49.

試料39〜49の焼結体について、試料1〜27と同様に、組織断面観察による焼結体の金属組織断面中の各相の割合の決定、摩耗試験、被削性試験及び圧環試験を行った。これらの結果を表9に示す。
For the sintered bodies of Samples 39 to 49, as in Samples 1 to 27, determination of the proportion of each phase in the metal structure cross section of the sintered body by observation of the structure cross section, wear test, machinability test, and pressure ring test are performed. It was. These results are shown in Table 9.


試料4、10及び試料39〜42について、鉄粉末中の酸化物量と全体組成中の各相の割合との関係を図17に、鉄粉末中の酸化物量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図18に示す。

For Samples 4 and 10 and Samples 39 to 42, the relationship between the amount of oxide in the iron powder and the proportion of each phase in the overall composition is shown in FIG. 17, and the amount of oxide in the iron powder and the thickness of the iron-phosphorus-carbon compound phase are shown in FIG. FIG. 18 shows the relationship between the thickness and material characteristics (amount of wear, machinability index, and crushing strength).

図17及び図18(a)によれば、鉄粉末中の酸化物量は、鉄−リン−炭素化合物相や銅−錫合金相等の他の相の形成に殆ど影響を与えず、酸化物は単独で金属組織中に存在する。一方、被削性指数(図18(c))は酸化物量の増加に従って減少する。しかし、同時に圧環強さ(図18(d))も減少し、摩耗量が増加する。従って、図18(b)〜(d)から、被削性指数が35以下、圧環強さが500MPa以上、摩耗量が60μm以下の範囲を求めると、鉄粉末中の酸化物量は約0.5〜1.5質量%となる。   According to FIGS. 17 and 18 (a), the amount of oxide in the iron powder hardly affects the formation of other phases such as an iron-phosphorus-carbon compound phase and a copper-tin alloy phase, and the oxide is independent. It exists in the metal structure. On the other hand, the machinability index (FIG. 18C) decreases as the amount of oxide increases. However, at the same time, the crushing strength (FIG. 18 (d)) also decreases and the amount of wear increases. Therefore, from FIGS. 18B to 18D, when the machinability index is 35 or less, the crushing strength is 500 MPa or more, and the wear amount is 60 μm or less, the amount of oxide in the iron powder is about 0.5. It becomes -1.5 mass%.

試料4、10及び試料43〜49について、アトマイズ鉄粉末の配合量と全体組成中の各相の割合との関係を図19に、アトマイズ鉄粉末の配合量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図20に示す。   For Samples 4 and 10 and Samples 43 to 49, the relationship between the amount of atomized iron powder blended and the proportion of each phase in the overall composition is shown in FIG. 19. The amount of atomized iron powder blended and the thickness of the iron-phosphorus-carbon compound phase FIG. 20 shows the relationship between the thickness and material properties (amount of wear, machinability index, and crushing strength).

図19及び図20(a)においても、アトマイズ鉄粉末の配合量による他の相の形成に対する影響は見られない。図20(b)〜(d)によれば、材料特性に対しては僅かに影響を与え、アトマイズ鉄粉末の添加量が増加するに従って圧環強さが増加し、アトマイズ鉄粉のみを用いた場合に最も強度が高くなる。また、被削性指数は、アトマイズ鉄粉末の添加量が少ないものほど減少し、特にアトマイズ鉄粉末の添加量が30質量%以下において被削性向上の効果が顕著である。ミルスケール還元鉄粉末を使用した場合は、被削性指数は、アトマイズ鉄粉末使用の場合と同等で、鉱石還元鉄粉末使用の場合に比べて高く、圧環強さは、アトマイズ鉄粉末使用の場合よりも若干低下している。従って、焼結バルブガイドとして強度を重視する場合には、アトマイズ鉄粉末の使用が推奨され、被削性を重視する場合には、鉱石還元鉄粉末の使用が推奨される。また、鉱石還元鉄粉末にアトマイズ鉄粉末を混合して用いる場合、アトマイズ鉄粉末の混合割合は、被削性向上の効果が顕著となる30質量%程度以下が適切と言える。   Also in FIG.19 and FIG.20 (a), the influence with respect to formation of the other phase by the compounding quantity of atomized iron powder is not seen. According to FIGS. 20 (b) to (d), the material properties are slightly affected, and the crushing strength increases as the added amount of atomized iron powder increases, and only the atomized iron powder is used. The highest strength. Further, the machinability index decreases as the amount of atomized iron powder added decreases, and the effect of improving the machinability is particularly remarkable when the amount of atomized iron powder added is 30% by mass or less. When mill scale reduced iron powder is used, the machinability index is the same as when atomized iron powder is used, which is higher than when using ore reduced iron powder, and the crushing strength is when using atomized iron powder. It is slightly lower than. Therefore, the use of atomized iron powder is recommended when emphasizing strength as a sintered valve guide, and the use of ore reduced iron powder is recommended when emphasizing machinability. Moreover, when mixing and using atomized iron powder with ore reduced iron powder, it can be said that the mixing ratio of atomized iron powder is about 30 mass% or less from which the effect of a machinability improvement becomes remarkable.

(試料50〜66)
各試料における混合粉末の配合を示す表10に従って、被削性を改善する成分として硫化マンガン粉末0.2〜2.0質量%(試料50〜55、試料62〜66)、珪酸マグネシウム粉末0.2〜2.0質量%(試料56〜61、試料62〜66)を配合したこと以外は試料4と同様の操作を繰り返して混合粉末の調製、圧粉体の成形、焼結、冷却を行い、試料50〜66の焼結体を得た。尚、各試料における混合粉末全体の成分組成は表11に示す。
(Samples 50-66)
According to Table 10 showing the blended powder composition of each sample, manganese sulfide powder 0.2 to 2.0 mass% (samples 50 to 55, samples 62 to 66), magnesium silicate powder 0. Except for blending 2 to 2.0 mass% (Samples 56 to 61, Samples 62 to 66), the same operation as Sample 4 was repeated to prepare a mixed powder, mold a green compact, sinter, and cool. The sintered bodies of Samples 50 to 66 were obtained. The component composition of the entire mixed powder in each sample is shown in Table 11.

試料50〜66の焼結体について、試料1〜27と同様に、組織断面観察による焼結体の金属組織断面中の各相の割合の決定、摩耗試験、被削性試験及び圧環試験を行った。これらの結果を表12に示す。
For the sintered bodies of Samples 50 to 66, similarly to Samples 1 to 27, determination of the proportion of each phase in the metal structure cross section of the sintered body by observation of the structure cross section, wear test, machinability test, and pressure ring test are performed. It was. These results are shown in Table 12.


試料4、10及び試料50〜66について、混合粉末中の被削性改善粉末の添加と全体組成中の各相の割合との関係を図21に、混合粉末中の被削性改善粉末の添加量と鉄−リン−炭素化合物相の厚さ及び材料特性(摩耗量、被削性指数及び圧環強さ)との関係を図22に示す。

For Samples 4 and 10 and Samples 50 to 66, the relationship between the addition of the machinability improving powder in the mixed powder and the ratio of each phase in the overall composition is shown in FIG. 21, and the addition of the machinability improving powder in the mixed powder. The relationship between the amount, the thickness of the iron-phosphorus-carbon compound phase, and the material properties (wear amount, machinability index, and crushing strength) is shown in FIG.

図21(c)及び図22(c)によれば、混合粉末中の被削性改善粉末の増加に従って、遊離黒鉛相の割合が徐々に増加し、被削性指数も徐々に減少する。しかし、被削性改善粉末の効果は比較的穏やかであり、しかも、添加量が増えるに従って圧環強さは逆に徐々に低下し、添加量が1.6質量%を越えると焼結阻害(拡散抑制)による基地の脆化によって摩耗量が急激に増加するので、被削性改善粉末のみによる被削性の劇的な改善は難しい。従って、前述の鉄−リン−炭素化合物相の割合及び厚さや遊離黒鉛相の割合等による被削性への影響を最適化することが重要であり、その際に圧環強さ及び耐摩耗性とのバランスを考慮して組成及び製造条件を決定する必要がある。   According to FIG. 21 (c) and FIG. 22 (c), as the machinability improving powder in the mixed powder increases, the ratio of the free graphite phase gradually increases and the machinability index also gradually decreases. However, the effect of the machinability improving powder is relatively mild, and the crushing strength gradually decreases as the amount added increases. If the amount exceeds 1.6% by mass, sintering inhibition (diffusion) occurs. Since the amount of wear increases rapidly due to the embrittlement of the base due to (suppression), it is difficult to dramatically improve the machinability using only the machinability improving powder. Therefore, it is important to optimize the influence on the machinability by the ratio and thickness of the iron-phosphorus-carbon compound phase and the ratio of the free graphite phase, and in that case, the crushing strength and the wear resistance Therefore, it is necessary to determine the composition and manufacturing conditions in consideration of the balance of the above.

本願発明における焼結バルブガイドの金属組織断面を表した模式図である。It is the schematic diagram showing the metal structure cross section of the sintering valve guide in this invention. 鉄−リン−炭素化合物相の割合が多い焼結バルブガイドの金属組織断面を表した模式図である。It is the schematic diagram showing the metal structure cross section of the sintering valve guide with many ratios of an iron-phosphorus-carbon compound phase. 全体組成中のリン量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Relationship between the amount of phosphorus in the overall composition and the proportion of iron-phosphorus-carbon compound phase (a), the proportion of copper-tin alloy phase (b), the amount of free graphite phase (c), the proportion of ferrite phase (d) It is a graph which shows. 全体組成中のリン量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the amount of phosphorus in the whole composition, the thickness (a) of the iron-phosphorus-carbon compound phase, the wear amount (b), the machinability index (c), and the crushing strength (d). 全体組成中の錫量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Relationship between the amount of tin in the overall composition and the proportion of iron-phosphorus-carbon compound phase (a), the proportion of copper-tin alloy phase (b), the amount of free graphite phase (c), and the proportion of ferrite phase (d) It is a graph which shows. 全体組成中の錫量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the amount of tin in the whole composition, the thickness (a) of the iron-phosphorus-carbon compound phase, the wear amount (b), the machinability index (c), and the crushing strength (d). 全体組成中の銅量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Relationship between the amount of copper in the overall composition and the proportion of iron-phosphorus-carbon compound phase (a), the proportion of copper-tin alloy phase (b), the amount of free graphite phase (c), and the proportion of ferrite phase (d) It is a graph which shows. 全体組成中の銅量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the amount of copper in a whole composition, the thickness (a) of an iron-phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). 全体組成中の炭素量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Relationship between the amount of carbon in the total composition and the proportion of iron-phosphorus-carbon compound phase (a), the proportion of copper-tin alloy phase (b), the amount of free graphite phase (c), and the proportion of ferrite phase (d) It is a graph which shows. 全体組成中の炭素量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the amount of carbon in a whole composition, the thickness (a) of an iron-phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). 焼結温度と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Graph showing the relationship between the sintering temperature and the ratio of iron-phosphorus-carbon compound phase (a), the ratio of copper-tin alloy phase (b), the amount of free graphite phase (c), and the ratio of ferrite phase (d) It is. 焼結温度と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between sintering temperature and the thickness (a) of an iron- phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). 焼結時間と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Graph showing the relationship between the sintering time and the ratio of iron-phosphorus-carbon compound phase (a), the ratio of copper-tin alloy phase (b), the amount of free graphite phase (c), and the ratio of ferrite phase (d) It is. 焼結時間と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between sintering time and the thickness (a), wear amount (b), machinability index (c), and crushing strength (d) of an iron-phosphorus-carbon compound phase. 冷却速度と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。A graph showing the relationship between the cooling rate and the ratio of iron-phosphorus-carbon compound phase (a), the ratio of copper-tin alloy phase (b), the amount of free graphite phase (c), and the ratio of ferrite phase (d). is there. 冷却速度と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between a cooling rate, the thickness (a) of an iron-phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). 鉄粉末中の酸化物量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。Relationship between the amount of oxide in the iron powder and the proportion of iron-phosphorus-carbon compound phase (a), the proportion of copper-tin alloy phase (b), the amount of free graphite phase (c), the proportion of ferrite phase (d) It is a graph which shows. 鉄粉末中の酸化物量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the oxide amount in iron powder, the thickness (a) of an iron- phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). アトマイズ鉄粉末の量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。The relationship between the amount of atomized iron powder and the proportion of iron-phosphorus-carbon compound phase (a), the proportion of copper-tin alloy phase (b), the amount of free graphite phase (c), the proportion of ferrite phase (d) It is a graph to show. アトマイズ鉄粉末の量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the quantity of atomized iron powder, the thickness (a) of an iron-phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). 被削性改善粉末の量と鉄−リン−炭素化合物相の割合(a)、銅−錫合金相の割合(b)、遊離黒鉛相の量(c)、フェライト相の割合(d)との関係を示すグラフである。The amount of machinability improving powder and the ratio of iron-phosphorus-carbon compound phase (a), the ratio of copper-tin alloy phase (b), the amount of free graphite phase (c), and the ratio of ferrite phase (d) It is a graph which shows a relationship. 被削性改善粉末の量と鉄−リン−炭素化合物相の厚さ(a)、摩耗量(b)、被削性指数(c)、圧環強さ(d)との関係を示すグラフである。It is a graph which shows the relationship between the quantity of machinability improvement powder, the thickness (a) of an iron-phosphorus-carbon compound phase, the amount of wear (b), the machinability index (c), and the crushing strength (d). .

Claims (16)

全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、及び、鉄:残部からなる焼結合金で形成され、
前記焼結合金は、パーライト相、鉄−リン−炭素化合物相及び銅−錫合金相を有する基地と、気孔と、黒鉛相とからなる金属組織を有し、前記黒鉛相は質量比で焼結合金の1.2〜1.7%の割合で分散し、
前記焼結合金の金属組織断面において、前記パーライト相が前記基地に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを特徴とする焼結バルブガイド。
The total composition is by mass: copper: 3.5-5%, tin: 0.3-0.6%, phosphorus: 0.04-0.15%, carbon: 1.5-2.5%, and , Iron: formed of a sintered alloy consisting of the balance,
The sintered alloy has a metal structure composed of a matrix having a pearlite phase, an iron-phosphorus-carbon compound phase, and a copper-tin alloy phase, pores, and a graphite phase, and the graphite phase is bonded by mass ratio. Dispersed at a rate of 1.2-1.7% of gold,
In the metal structure cross section of the sintered alloy, the ratio of the pearlite phase to the matrix is 90% or more in area ratio, and the ratio of the iron-phosphorus-carbon compound phase to the metal structure cross section is 0.00. 1 to 3%, the proportion of the copper-tin alloy phase in the cross section of the metal structure is 1 to 3% by area ratio, and the iron-phosphorus-carbon compound phase has a thickness of 15 μm or more in the iron- A sintered valve guide characterized in that the proportion of the phosphorus-carbon compound phase is 10% or less in terms of area ratio.
全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、金属酸化物:0.46〜1.41%、及び、鉄:残部からなる焼結合金で形成され、
前記焼結合金は、パーライト相、鉄−リン−炭素化合物相、銅−錫合金相及び金属酸化物相を有する基地と、気孔と、黒鉛相とからなる金属組織を有し、前記黒鉛相は質量比で焼結合金の1.2〜1.7%の割合で分散し、
前記焼結合金の金属組織断面において、前記パーライト相が前記基地に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを特徴とする焼結バルブガイド。
Total composition is mass ratio, copper: 3.5-5%, tin: 0.3-0.6%, phosphorus: 0.04-0.15%, carbon: 1.5-2.5%, metal Oxide: 0.46 to 1.41%, and iron: formed of a sintered alloy consisting of the balance,
The sintered alloy has a metal structure composed of a matrix having a pearlite phase, an iron-phosphorus-carbon compound phase, a copper-tin alloy phase and a metal oxide phase, pores, and a graphite phase, Dispersed in a mass ratio of 1.2 to 1.7% of the sintered alloy,
In the metal structure cross section of the sintered alloy, the ratio of the pearlite phase to the matrix is 90% or more in area ratio, and the ratio of the iron-phosphorus-carbon compound phase to the metal structure cross section is 0.00. 1 to 3%, and the proportion of the copper-tin alloy phase in the metal structure cross section is 1 to 3% in terms of area ratio. In the iron-phosphorus-carbon compound phase, the portion having a thickness of 15 μm or more is the iron- A sintered valve guide characterized in that the proportion of the phosphorus-carbon compound phase is 10% or less in terms of area ratio.
全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、硫化マンガン及び珪酸マグネシウム鉱物から少なくとも1種選択される固体潤滑剤:1.6%以下、及び、鉄:残部からなる焼結合金で形成され、
前記焼結合金は、パーライト相、鉄−リン−炭素化合物相及び銅−錫合金相を有する基地と、気孔と、黒鉛相と、前記気孔中又は粉末粒界に分散する前記固体潤滑剤からなる金属組織を有し、
前記焼結合金の金属組織断面において、前記パーライト相が金属組織断面に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記黒鉛相は面積比で金属組織断面の0.8〜3.2%の割合で前記気孔中に分散し、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを特徴とする焼結バルブガイド。
Total composition is mass ratio, copper: 3.5-5%, tin: 0.3-0.6%, phosphorus: 0.04-0.15%, carbon: 1.5-2.5%, sulfide Solid lubricant selected from at least one of manganese and magnesium silicate minerals: 1.6% or less, and iron: formed of a sintered alloy consisting of the balance,
The sintered alloy comprises a matrix having a pearlite phase, an iron-phosphorus-carbon compound phase, and a copper-tin alloy phase, pores, a graphite phase, and the solid lubricant dispersed in the pores or at the powder grain boundaries. Has a metallographic structure,
In the metal structure section of the sintered alloy, the ratio of the pearlite phase to the metal structure section is 90% or more by area ratio, and the ratio of the iron-phosphorus-carbon compound phase to the metal structure section is 0 by area ratio. The proportion of the copper-tin alloy phase in the metal structure section is 1 to 3% by area ratio, and the graphite phase is 0.8 to 3.2% of the metal structure section by area ratio. The ratio of the portion of the iron-phosphorus-carbon compound phase in which the thickness is 15 μm or more occupies the iron-phosphorus-carbon compound phase is 10% or less in terms of area ratio. Sintered valve guide.
全体組成が質量比で、銅:3.5〜5%、錫:0.3〜0.6%、リン:0.04〜0.15%、炭素:1.5〜2.5%、金属酸化物:0.46〜1.41%、硫化マンガン及び珪酸マグネシウム鉱物から少なくとも1種選択される固体潤滑剤:1.6%以下、及び、鉄:残部からなる焼結合金で形成され、
前記焼結合金は、パーライト相、鉄−リン−炭素化合物相、銅−錫合金相及び金属酸化物相を有する基地と、気孔と、黒鉛相と、前記気孔中又は粉末粒界に分散する前記固体潤滑剤からなる金属組織を有し、
前記焼結合金の金属組織断面において、前記パーライト相が金属組織断面に占める割合は面積比で90%以上であり、前記鉄−リン−炭素化合物相が金属組織断面に占める割合が面積比で0.1〜3%であり、銅−錫合金相が金属組織断面に占める割合が面積比で1〜3%であり、前記黒鉛相は面積比で金属組織断面の0.8〜3.2%の割合で前記気孔中に分散し、前記鉄−リン−炭素化合物相において厚さが15μm以上の部分が前記鉄−リン−炭素化合物相を占める割合が面積比で10%以下であることを特徴とする焼結バルブガイド。
Total composition is mass ratio, copper: 3.5-5%, tin: 0.3-0.6%, phosphorus: 0.04-0.15%, carbon: 1.5-2.5%, metal Oxide: 0.46 to 1.41%, solid lubricant selected from at least one selected from manganese sulfide and magnesium silicate mineral: 1.6% or less, and iron: formed of a sintered alloy consisting of the balance,
The sintered alloy includes a matrix having a pearlite phase, an iron-phosphorus-carbon compound phase, a copper-tin alloy phase, and a metal oxide phase, pores, a graphite phase, and the pores dispersed in the pores or powder grain boundaries. It has a metal structure consisting of a solid lubricant,
In the metal structure section of the sintered alloy, the ratio of the pearlite phase to the metal structure section is 90% or more by area ratio, and the ratio of the iron-phosphorus-carbon compound phase to the metal structure section is 0 by area ratio. The proportion of the copper-tin alloy phase in the metal structure cross section is 1 to 3% by area ratio, and the graphite phase is 0.8 to 3.2% of the metal structure cross section by area ratio. The ratio of the portion of the iron-phosphorus-carbon compound phase in which the thickness is 15 μm or more occupies the iron-phosphorus-carbon compound phase is 10% or less in terms of area ratio. Sintered valve guide.
前記金属酸化物は、アルミニウム、珪素、マグネシウム、鉄、カルシウム及びチタンからなる群の少なくとも1種の金属の酸化物であることを特徴とする請求項2又は4記載の焼結バルブガイド。   The sintered valve guide according to claim 2 or 4, wherein the metal oxide is an oxide of at least one metal selected from the group consisting of aluminum, silicon, magnesium, iron, calcium, and titanium. 前記鉄−リン−炭素化合物相は、金属組織断面において、厚さが5μm以上15μm未満の部分が面積比で10〜40%であり、残りの鉄−リン−炭素化合物相は厚さが5μm未満であることを特徴とする請求項1〜5のいずれかに記載の焼結バルブガイド。   In the iron-phosphorus-carbon compound phase, in the metal structure cross section, a portion having a thickness of 5 μm or more and less than 15 μm is 10 to 40% in area ratio, and the remaining iron-phosphorus-carbon compound phase is less than 5 μm in thickness. The sintered valve guide according to any one of claims 1 to 5, wherein リン含有量が15〜21質量%で残部がFe及び不可避不純物からなる鉄−リン合金粉末、錫含有量が8〜11質量%で残部が銅及び不可避不純物からなる銅−錫合金粉末及び黒鉛粉末を鉄粉末に添加して、鉄−リン合金粉末:0.27〜0.7質量%、銅−錫合金粉末:3.93〜5.44質量%、黒鉛粉末:1.7〜2.7質量%及び残部が鉄粉末からなる混合粉末を調製する工程と、
成形型の円管状のキャビティに前記混合粉末を充填し加圧圧縮して、該混合粉末を円管状の圧粉体に成形する工程と、
前記圧粉体を、非酸化性雰囲気中で、加熱温度950〜1050℃で焼結する工程とを有することを特徴とする焼結バルブガイドの製造方法。
Iron-phosphorus alloy powder having a phosphorus content of 15 to 21% by mass and the balance being Fe and unavoidable impurities, copper-tin alloy powder and graphite powder having a tin content of 8 to 11% by mass and the balance being copper and unavoidable impurities Is added to the iron powder, iron-phosphorus alloy powder: 0.27 to 0.7 mass%, copper-tin alloy powder: 3.93 to 5.44 mass%, graphite powder: 1.7 to 2.7 A step of preparing a mixed powder composed of iron powder by mass% and the balance,
Filling the powder mixture into a tubular cavity of a mold and pressurizing and compressing the mixed powder into a powder compact in a tubular shape; and
And sintering the green compact at a heating temperature of 950 to 1050 ° C. in a non-oxidizing atmosphere.
前記鉄粉末は、金属酸化物を0.5〜1.5質量%含んでいる鉱石還元鉄粉末であることを特徴とする請求項7に記載の焼結バルブガイドの製造方法。   The method for manufacturing a sintered valve guide according to claim 7, wherein the iron powder is ore reduced iron powder containing 0.5 to 1.5 mass% of a metal oxide. 前記鉄粉末は、アトマイズ鉄粉末を10〜30質量%含んだ鉱石還元鉄粉末とアトマイズ鉄粉末との混合粉末であることを特徴とする請求項7に記載の焼結バルブガイドの製造方法。   The method for producing a sintered valve guide according to claim 7, wherein the iron powder is a mixed powder of ore reduced iron powder and atomized iron powder containing 10 to 30% by mass of atomized iron powder. 前記鉄粉末は、最大粒径が104〜200μmであることを特徴とする請求項7〜9のいずれかに記載の焼結バルブガイドの製造方法。   The method for producing a sintered valve guide according to any one of claims 7 to 9, wherein the iron powder has a maximum particle size of 104 to 200 µm. 前記鉄−リン合金粉末は、最大粒径が61〜104μmであり、銅−錫合金粉末は、最大粒径が35〜61μmであることを特徴とする請求項7〜10のいずれかに記載の焼結バルブガイドの製造方法。   11. The iron-phosphorus alloy powder has a maximum particle size of 61 to 104 [mu] m, and the copper-tin alloy powder has a maximum particle size of 35 to 61 [mu] m. A method for manufacturing a sintered valve guide. 前記焼結工程において、焼結保持時間が15〜90分間であることを特徴とする請求項7〜11のいずれかに記載の焼結バルブガイドの製造方法。   The method for producing a sintered valve guide according to any one of claims 7 to 11, wherein in the sintering step, a sintering holding time is 15 to 90 minutes. 前記混合粉末の調製工程において、更に、硫化マンガン粉末及び珪酸マグネシウム鉱物粉末から選択される少なくとも1種の粉末を前記混合粉末の1.6質量%以下となるように添加することを特徴とする請求項7〜12のいずれかに記載の焼結バルブガイドの製造方法。   In the mixed powder preparation step, at least one powder selected from manganese sulfide powder and magnesium silicate mineral powder is further added so as to be 1.6% by mass or less of the mixed powder. Item 13. A method for producing a sintered valve guide according to any one of Items 7 to 12. 前記キャビティが1/5000〜1/1000の比率でテーパとなるように、前記ダイスの孔部及び前記コアロッドの外周のうち少なくとも一方の径面が傾斜を有することを特徴とする請求項7〜13のいずれかに記載の焼結バルブガイドの製造方法。   14. The surface of at least one of the hole portion of the die and the outer periphery of the core rod is inclined so that the cavity is tapered at a ratio of 1/5000 to 1/1000. The manufacturing method of the sintered valve guide in any one of. 更に、前記焼結工程により得られる焼結体をオイルに浸漬する工程を有することを特徴とする請求項7〜14のいずれかに記載の焼結バルブガイドの製造方法。   Furthermore, it has the process of immersing the sintered compact obtained by the said sintering process in oil, The manufacturing method of the sintered valve guide in any one of Claims 7-14 characterized by the above-mentioned. 前記焼結工程により得られる焼結体を8℃/分以上の冷却速度で冷却する工程を有することを特徴とする請求項7〜15のいずれかに記載の焼結バルブガイドの製造方法。   The method for producing a sintered valve guide according to any one of claims 7 to 15, further comprising a step of cooling the sintered body obtained by the sintering step at a cooling rate of 8 ° C / min or more.
JP2005205377A 2004-07-15 2005-07-14 Sintered valve guide and manufacturing method thereof Active JP4323467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205377A JP4323467B2 (en) 2004-07-15 2005-07-14 Sintered valve guide and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004209064 2004-07-15
JP2005205377A JP4323467B2 (en) 2004-07-15 2005-07-14 Sintered valve guide and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006052468A JP2006052468A (en) 2006-02-23
JP4323467B2 true JP4323467B2 (en) 2009-09-02

Family

ID=36030121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205377A Active JP4323467B2 (en) 2004-07-15 2005-07-14 Sintered valve guide and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4323467B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436463A2 (en) 2010-09-30 2012-04-04 Hitachi Powdered Metals Co., Ltd. Sintered materials for valve guides and production methods therefor
EP2444182A1 (en) 2010-09-30 2012-04-25 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
EP2474637A1 (en) 2010-09-30 2012-07-11 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100008812A1 (en) 2008-07-03 2010-01-14 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
JP5358131B2 (en) * 2008-07-03 2013-12-04 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
JP5208647B2 (en) 2008-09-29 2013-06-12 日立粉末冶金株式会社 Manufacturing method of sintered valve guide
JP2011094167A (en) * 2009-10-27 2011-05-12 Diamet:Kk Iron-copper based sintered sliding member, and method for producing the same
JP5525986B2 (en) * 2009-12-21 2014-06-18 日立粉末冶金株式会社 Sintered valve guide and manufacturing method thereof
JP6112473B2 (en) 2013-03-13 2017-04-12 日立化成株式会社 Iron-based sintered sliding member
JP6142987B2 (en) 2013-03-19 2017-06-07 日立化成株式会社 Iron-based sintered sliding member
WO2022230046A1 (en) * 2021-04-27 2022-11-03 Tpr株式会社 Sintered alloy valve guide, and method for manufacturing sintered alloy valve guide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436463A2 (en) 2010-09-30 2012-04-04 Hitachi Powdered Metals Co., Ltd. Sintered materials for valve guides and production methods therefor
EP2444182A1 (en) 2010-09-30 2012-04-25 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
EP2474637A1 (en) 2010-09-30 2012-07-11 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
US8617288B2 (en) 2010-09-30 2013-12-31 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
US8876935B2 (en) 2010-09-30 2014-11-04 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor

Also Published As

Publication number Publication date
JP2006052468A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4323467B2 (en) Sintered valve guide and manufacturing method thereof
EP1619263B1 (en) Sintered valve guide and manufacturing method thereof
TWI392747B (en) Iron powder for powder metallurgy and powder sintered body
JP5525986B2 (en) Sintered valve guide and manufacturing method thereof
JP5266682B2 (en) Multi-layer sintered sliding member
JP5481380B2 (en) Metallurgical powder composition and production method
JP6112473B2 (en) Iron-based sintered sliding member
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
JP2014181381A (en) Iron-based sintered sliding member and production method thereof
JP5783457B2 (en) Sintered valve guide material and manufacturing method thereof
JP7188434B2 (en) Sintered valve guide and its manufacturing method
JP2012092440A (en) Sintered valve guide material and its manufacturing method
JP2010031373A (en) Multi-layered sintered slide member
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
KR101717347B1 (en) Copper based sintered alloy with wear resistance
JP3827033B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3719630B2 (en) Wear-resistant sintered alloy and method for producing the same
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP6519955B2 (en) Iron-based sintered sliding member and method of manufacturing the same
JP3537126B2 (en) Free-cutting iron-based sintered alloy and method for producing the same
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP5783456B2 (en) Sintered valve guide material and manufacturing method thereof
JP6384687B2 (en) Manufacturing method of iron-based sintered sliding member
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350