JP2010031373A - Multi-layered sintered slide member - Google Patents

Multi-layered sintered slide member Download PDF

Info

Publication number
JP2010031373A
JP2010031373A JP2009177126A JP2009177126A JP2010031373A JP 2010031373 A JP2010031373 A JP 2010031373A JP 2009177126 A JP2009177126 A JP 2009177126A JP 2009177126 A JP2009177126 A JP 2009177126A JP 2010031373 A JP2010031373 A JP 2010031373A
Authority
JP
Japan
Prior art keywords
weight
component
sliding member
alloy layer
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177126A
Other languages
Japanese (ja)
Other versions
JP5544777B2 (en
Inventor
Takayuki Yuasa
孝之 湯浅
Masaya Yorifuji
雅也 依藤
Tomoyuki Yamane
与幸 山根
Masaya Nishimura
真哉 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Japan Ltd
Oiles Industry Co Ltd
Original Assignee
Caterpillar Japan Ltd
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2008/002050 external-priority patent/WO2009016840A1/en
Application filed by Caterpillar Japan Ltd, Oiles Industry Co Ltd filed Critical Caterpillar Japan Ltd
Priority to JP2009177126A priority Critical patent/JP5544777B2/en
Publication of JP2010031373A publication Critical patent/JP2010031373A/en
Application granted granted Critical
Publication of JP5544777B2 publication Critical patent/JP5544777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-layered sintered slide member excellent in fatigue durability, load withstanding characteristics, and frictional wear characteristics even in applications where a high facial pressure over the allowable facial pressure is applied. <P>SOLUTION: The multi-layered sintered slide member is composed of a backing metal and a porous sintered layer integrally diffusion-bonded to the backing metal and including 3-10 wt.% Sn, 10-30 wt.% Ni, 0.5-4 wt.% P, 30-50 wt.% Fe, 1-10 wt.% of high-speed tool steel component, 1-5 wt.% of graphite, and 20-55 wt.% copper. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、とくに高荷重、低速度条件下で使用されて好適な複層焼結摺動部材に関し、詳しくは、裏金と該裏金に一体に接合された多孔質焼結合金層とからなる複層焼結摺動部材に関する。   The present invention relates to a multilayer sintered sliding member that is particularly suitable for use under high load and low speed conditions. More specifically, the present invention relates to a multilayer sintered alloy layer integrally joined to a back metal and the back metal. The present invention relates to a layer sintered sliding member.

従来、複層からなる焼結摺動部材としては、薄鋼板の表面に多孔質焼結合金層を一体に接合し、該焼結合金層を内側にして円筒状に捲回した、所謂巻きブッシュ軸受、又は鋼製パイプの内面に接着剤を介して多孔質焼結合金層を一体に接合した円筒状摺動部材がある。しかしながら、前者の巻きブッシュ軸受においては、円筒状に曲げ加工する際に焼結合金層に大きな圧縮応力が加わり、薄鋼板と焼結合金層との間の接合強度の低下や不均一をきたす虞があり、また曲げ加工による方法では焼結合金層の肉厚を大きくとることができず、自ずから摺動部材としての使用範囲が限定されるという問題を含んでいる。また、後者の円筒状摺動部材においては、鋼製パイプの内面と多孔質焼結合金層との間に強固な接合強度が得られ難いという問題がある。   Conventionally, as a sintered sliding member composed of multiple layers, a so-called wound bush is obtained by integrally bonding a porous sintered alloy layer to the surface of a thin steel plate and winding the sintered alloy layer inside in a cylindrical shape. There is a cylindrical sliding member in which a porous sintered alloy layer is integrally joined to an inner surface of a bearing or a steel pipe via an adhesive. However, in the former wound bush bearing, when the cylindrical alloy is bent, a large compressive stress is applied to the sintered alloy layer, which may cause a decrease in bonding strength between the thin steel plate and the sintered alloy layer or unevenness. In addition, the bending method cannot increase the thickness of the sintered alloy layer, which naturally involves a problem that the range of use as a sliding member is limited. Further, the latter cylindrical sliding member has a problem that it is difficult to obtain a strong bonding strength between the inner surface of the steel pipe and the porous sintered alloy layer.

上記実情に鑑み本出願人は、鋼製パイプからなる裏金の内面に、銅(Cu)を主成分とし、これに一定量の錫(Sn)、ニッケル(Ni)、燐(P)及び黒鉛(C)からなる多孔質焼結合金層を一体に接合した複層焼結摺動部材、及びこれにさらに一定量の鉄(Fe)を加えてなる多孔質焼結合金層を一体に接合した複層焼結摺動部材(特許文献1所載)を、また鋼板からなる裏金の表面に上記と同様の多孔質焼結合金層を一体に接合した複層焼結摺動部材(特許文献2所載)を提案した。   In view of the above circumstances, the present applicant has copper (Cu) as a main component on the inner surface of a back metal made of steel pipe, and a certain amount of tin (Sn), nickel (Ni), phosphorus (P) and graphite ( C) a multilayer sintered sliding member integrally joined with a porous sintered alloy layer, and a porous sintered alloy layer further joined with a certain amount of iron (Fe). A multilayer sintered sliding member (Patent Document 1) and a multilayer sintered sliding member (Patent Document 2) in which a porous sintered alloy layer similar to the above is integrally bonded to the surface of a back plate made of a steel plate. Proposed).

特公昭59−39481号公報Japanese Patent Publication No.59-39481 特公平7−91569号公報Japanese Patent Publication No. 7-91569

上記特許文献1及び特許文献2に記載された複層焼結摺動部材においては、とくに成分中のNi成分が焼結時に鋼裏金の表面に拡散してその界面を合金化し、多孔質焼結合金層の鋼裏金との接合強度を増大させ、さらに成分中のPと一部合金化してNi−P合金を形成し、銅合金とぬれ性の良いNi−P合金が焼結合金層と鋼裏金との界面に介在して、界面にNiの拡散による合金化と相俟って焼結合金層を鋼裏金に強固に接合させるものである。そして、多孔質焼結合金層と鋼裏金とが強固に接合されていることから、荷重特性が大幅に向上され、焼結合金層の摩擦摩耗特性と相俟って焼結摺動部材の適用範囲を拡大するものであり、従来の焼結摺動部材ではなし得なかった高荷重(高面圧)用途への適用を可能とするものであった。   In the multilayer sintered sliding member described in Patent Document 1 and Patent Document 2 above, Ni component in the component diffuses to the surface of the steel back metal during sintering, and the interface is alloyed, so The bonding strength of the gold layer with the steel back metal is increased, and a Ni-P alloy is formed by partially alloying with P in the component, and the copper alloy and the Ni-P alloy having good wettability are combined with the sintered alloy layer and the steel. The sintered alloy layer is firmly bonded to the steel back metal in combination with the alloying by diffusion of Ni at the interface with the back metal. And since the porous sintered alloy layer and the steel back metal are firmly joined, the load characteristics are greatly improved, and in combination with the frictional wear characteristics of the sintered alloy layer, the sintered sliding member can be applied. This expands the range and enables application to high loads (high surface pressure) that could not be achieved with conventional sintered sliding members.

しかしながら、上記複層焼結摺動部材の許容面圧は49MPa(500kgf/cm)前後であり、それ以上の高面圧が作用する用途、例えば、射出成形機のトグルブッシュや油圧ショベルなどの建設機械における関節部軸受では、多孔質焼結合金層の耐疲労性及び耐摩耗性などの観点から更なる向上が求められる。 However, the permissible surface pressure of the multilayer sintered sliding member is about 49 MPa (500 kgf / cm 2 ), and applications where a higher surface pressure is applied, such as a toggle bush of an injection molding machine or a hydraulic excavator. For joint bearings in construction machines, further improvements are required from the viewpoint of fatigue resistance and wear resistance of the porous sintered alloy layer.

本発明者は、上記複層焼結摺動部材の耐荷重特性及び摩擦摩耗特性の更なる向上を図るべく鋭意検討を重ねた結果、上記多孔質焼結合金層に、さらに所定量の高速度工具鋼成分を含有することにより、多孔質焼結合金層の疲労耐久性を向上させるとともに、耐荷重特性及び摩擦摩耗特性を向上させ、前記高荷重(高面圧)用途への適用が可能であるとの知見を得た。   As a result of intensive studies to further improve the load bearing characteristics and frictional wear characteristics of the multilayer sintered sliding member, the present inventors have further added a predetermined amount of high speed to the porous sintered alloy layer. By containing the tool steel component, the fatigue durability of the porous sintered alloy layer can be improved, the load bearing characteristics and the friction and wear characteristics can be improved, and it can be applied to the high load (high surface pressure) applications. The knowledge that there is.

本発明は上記知見に基づき完成されたものであり、その目的とするところは、上記許容面圧を超える高面圧が作用する用途においても、疲労耐久性、耐荷重特性及び摩擦摩耗特性に優れた複層焼結摺動部材を提供することにある。   The present invention has been completed on the basis of the above knowledge, and the purpose thereof is excellent in fatigue durability, load bearing characteristics and friction and wear characteristics even in applications where high surface pressure exceeding the allowable surface pressure acts. Another object of the present invention is to provide a multilayer sintered sliding member.

本発明の複層焼結摺動部材は、錫成分3〜10重量%と、ニッケル成分10〜30重量%と、燐成分0.5〜4重量%と、鉄成分30〜50重量%と、高速度工具鋼成分1〜10重量%と、黒鉛成分1〜5重量%と、銅成分20〜55重量%とを含む多孔質焼結合金層が裏金に一体に拡散接合されていることを特徴とする。   The multilayer sintered sliding member of the present invention has a tin component of 3 to 10% by weight, a nickel component of 10 to 30% by weight, a phosphorus component of 0.5 to 4% by weight, an iron component of 30 to 50% by weight, A porous sintered alloy layer containing 1 to 10% by weight of a high-speed tool steel component, 1 to 5% by weight of a graphite component, and 20 to 55% by weight of a copper component is integrally diffusion bonded to the back metal. And

本発明の複層焼結摺動部材によれば、Ni成分が焼結時に裏金の表面に拡散してその界面を合金化し、さらに成分中のP成分と一部液相を形成してCu−Ni−Sn合金とぬれ性のよいNi−P合金(NiP)を生成し、このNiPが裏金と多孔質焼結合金層との界面に介在して、界面においてNi成分の拡散による合金化と相俟って多孔質焼結合金層を裏金に強固に接合一体化させる。また、焼結時に生成された硬質の金属間化合物であるNiPがCu−Ni−Sn合金相の粒界に介在し、さらにそれ自体微細な金属間化合物、主に炭化物からなる硬質の高速度工具鋼成分がCu−Ni−Sn合金相とαFe相の粒界に分散含有されているので多孔質焼結合金層の疲労耐久性、耐荷重性及び摩擦摩耗特性が大幅に向上される。 According to the multilayer sintered sliding member of the present invention, the Ni component diffuses to the surface of the back metal during sintering to alloy its interface, and further forms a partial liquid phase with the P component in the component to form Cu- generates a Ni-Sn alloy and wettability good Ni-P alloy (Ni 3 P), the Ni 3 P is interposed at the interface between the backing plate and the porous sintered alloy layer, by diffusion of the Ni component at the interface Combined with alloying, the porous sintered alloy layer is firmly joined and integrated with the back metal. In addition, Ni 3 P, which is a hard intermetallic compound produced during sintering, intervenes in the grain boundary of the Cu—Ni—Sn alloy phase, and is itself a fine high intermetallic compound, mainly composed of carbide. Since the speed tool steel component is dispersed and contained in the grain boundaries of the Cu—Ni—Sn alloy phase and the αFe phase, the fatigue durability, load resistance and frictional wear characteristics of the porous sintered alloy layer are greatly improved.

本発明の複層焼結摺動部材において、裏金に一体に拡散接合された多孔質焼結合金層には、潤滑油が5〜20容量%の割合で含有されているとよい。潤滑油としては、エンジン油、ギア油などの鉱油、エステル油などの合成油が用途に応じて適宜選択される。   In the multilayer sintered sliding member of the present invention, the porous sintered alloy layer integrally diffusion bonded to the back metal preferably contains 5 to 20% by volume of lubricating oil. As the lubricating oil, mineral oil such as engine oil and gear oil, and synthetic oil such as ester oil are appropriately selected according to the use.

この潤滑油は、多孔質焼結合金層に分散含有された黒鉛成分自体の潤滑性と相俟って摩擦摩耗特性を向上させることができる。   This lubricating oil can improve the friction and wear characteristics in combination with the lubricity of the graphite component itself dispersedly contained in the porous sintered alloy layer.

本発明の複層焼結摺動部材において、高速度工具鋼成分は、好ましくはタングステン(W)系高速度工具鋼又はモリブデン(Mo)系高速度工具鋼が使用され、とくにMo系高速度工具鋼が好適に使用される。   In the multilayer sintered sliding member of the present invention, the high-speed tool steel component is preferably tungsten (W) -based high-speed tool steel or molybdenum (Mo) -based high-speed tool steel. Steel is preferably used.

本発明の複層焼結摺動部材において、裏金は、鉄鋼製パイプ又は平板状の鋼板からなっているとよく、該多孔質焼結合金層は鉄鋼製パイプの円筒状の内面又は板、ブロック等の平板状の鋼板の平坦な表面に一体に拡散接合されているとよい。   In the multilayer sintered sliding member of the present invention, the backing metal is preferably made of a steel pipe or a flat steel plate, and the porous sintered alloy layer is a cylindrical inner surface or plate of the steel pipe, block It is good that it is diffusion-bonded integrally to the flat surface of a flat plate-like steel plate.

円筒状の内面に多孔質焼結合金層を一体に拡散接合した複層焼結摺動部材は円筒軸受として、また平坦な表面に多孔質焼結合金層を一体に拡散接合した複層焼結摺動部材は、そのままの形態で、摺動板、すべり板として又は多孔質焼結合金層を内側にして円筒状に捲回した形態で、所謂巻きブッシュとして、さらにはブロックの平坦な表面に多孔質焼結合金層を一体に拡散接合させた複層焼結摺動部材は、治工具を構成する部品として適用される。   Multi-layer sintered sliding members with a porous sintered alloy layer integrally diffusion-bonded on a cylindrical inner surface are cylindrical bearings, and multi-layer sintered with a porous sintered alloy layer integrally diffusion-bonded on a flat surface The sliding member can be used as it is, in the form of a sliding plate, a sliding plate or a cylindrical wound with a porous sintered alloy layer inside, as a so-called wound bush, or even on the flat surface of the block. A multilayer sintered sliding member in which a porous sintered alloy layer is integrally diffusion-bonded is applied as a component constituting a jig.

本発明によれば、Sn成分3〜10重量%と、Ni成分10〜30重量%と、P成分0.5〜4重量%と、Fe成分30〜50重量%と、高速度工具鋼成分1〜10重量%、黒鉛成分1〜5重量%とCu成分20〜55重量%とを含む多孔質銅系焼結体が裏金に一体に拡散接合されてなる複層焼結摺動部材であって、焼結時に生成された硬質の金属間化合物であるNiPがCu−Ni−Sn合金相の粒界に介在し、さらにそれ自体微細な金属間化合物、主に炭化物からなる硬質の高速度工具鋼成分がCu−Ni−Sn合金相とαFe相の粒界に分散含有されているので多孔質焼結合金層の疲労耐久性、耐荷重性及び摩擦摩耗特性が大幅に向上されており、高面圧が作用する用途への適用を可能とした複層焼結摺動部材を提供することができる。 According to the present invention, Sn component 3 to 10% by weight, Ni component 10 to 30% by weight, P component 0.5 to 4% by weight, Fe component 30 to 50% by weight, high speed tool steel component 1 A multilayer sintered sliding member in which a porous copper-based sintered body containing 10 to 10% by weight, graphite component 1 to 5% by weight and Cu component 20 to 55% by weight is integrally diffusion bonded to a back metal. Ni 3 P, which is a hard intermetallic compound produced during sintering, intervenes in the grain boundary of the Cu—Ni—Sn alloy phase, and is itself a fine high intermetallic compound, mainly composed of carbide. Since the tool steel component is dispersed and contained in the grain boundaries of the Cu-Ni-Sn alloy phase and the αFe phase, the fatigue durability, load resistance and frictional wear characteristics of the porous sintered alloy layer are greatly improved. It is possible to provide a multilayer sintered sliding member that can be applied to applications where high surface pressure acts. The

以下、本発明の複層焼結摺動部材について詳細に説明する。   Hereinafter, the multilayer sintered sliding member of the present invention will be described in detail.

本発明の好ましい例の複層焼結摺動部材では、Sn成分3〜10重量%と、Ni成分10〜30重量%と、P成分0.5〜4重量%と、Fe成分30〜50重量%と、高速度工具鋼成分1〜10重量%と、黒鉛成分1〜5重量%と、Cu成分20〜55重量%とを含む多孔質焼結合金層が裏金に一体に拡散接合されている。   In the multilayer sintered sliding member of a preferred example of the present invention, the Sn component is 3 to 10 wt%, the Ni component is 10 to 30 wt%, the P component is 0.5 to 4 wt%, and the Fe component is 30 to 50 wt%. %, A high-speed tool steel component 1 to 10% by weight, a graphite component 1 to 5% by weight, and a Cu component 20 to 55% by weight are integrally diffusion bonded to the back metal. .

斯かる複層焼結摺動部材において、多孔質焼結合金層を形成するCu成分は、多孔質焼結合金層の地の強度、靱性、機械的強度及び耐摩耗性の向上に寄与する。Sn成分は、焼結過程における232℃の温度から液相を生じ、Cu成分及び後述するNi成分と合金化してCu−Ni−Sn合金を形成し、多孔質焼結合金層の地の強度、靭性、機械的強度及び耐摩耗性の向上に寄与する。Sn成分は、その配合量が3重量%未満では上述した効果を充分発揮しなく、また10重量%を超えて配合すると焼結性に悪影響を及ぼす。したがって、Sn成分の配合量は3〜10重量%、就中5〜8重量%が適当である。   In such a multilayer sintered sliding member, the Cu component forming the porous sintered alloy layer contributes to the improvement of the strength, toughness, mechanical strength and wear resistance of the porous sintered alloy layer. The Sn component generates a liquid phase from a temperature of 232 ° C. in the sintering process, and is alloyed with the Cu component and the Ni component described later to form a Cu—Ni—Sn alloy, and the strength of the porous sintered alloy layer is reduced. Contributes to improved toughness, mechanical strength and wear resistance. If the amount of Sn component is less than 3% by weight, the above-described effects are not sufficiently exhibited, and if it exceeds 10% by weight, the sinterability is adversely affected. Therefore, the blending amount of the Sn component is 3 to 10% by weight, especially 5 to 8% by weight.

Ni成分は、焼結時に後述するP成分と一部液相を形成し、かつ前記Cu−Ni−Sn合金とぬれ性の良いNi−P合金(NiP)を生成し、Cu−Ni−Sn合金相の多孔質焼結合金層と裏金との界面に介在して、界面においてNi成分の拡散による合金化と相俟って多孔質焼結合金層を裏金に強固に接合一体化させる作用をなす。また、焼結時に生成されたNiPの金属間化合物は硬質であり、これがCu−Ni−Sn合金相の粒界に介在することにより多孔質焼結合金層に耐摩耗性の向上をもたらす。Ni成分の配合量が10重量%未満では上述した効果が得られず、また30重量%を超えて配合しても上述した効果に顕著な差が現れないため、その配合量の上限は30重量%である。したがって、Ni成分の配合量は10〜30重量%、就中10〜20重量%が適当である。 The Ni component forms part of a liquid phase with the P component described later during sintering, and forms a Ni-P alloy (Ni 3 P) with good wettability with the Cu-Ni-Sn alloy. Intervening at the interface between the porous sintered alloy layer of Sn alloy phase and the back metal, and combining the alloy by diffusion of Ni component at the interface to firmly bond and integrate the porous sintered alloy layer to the back metal Make. In addition, the Ni 3 P intermetallic compound produced during sintering is hard, and this intervenes at the grain boundary of the Cu—Ni—Sn alloy phase, thereby improving the wear resistance of the porous sintered alloy layer. . If the blending amount of the Ni component is less than 10% by weight, the above-mentioned effect cannot be obtained, and even if blending exceeding 30% by weight, a remarkable difference does not appear in the above-mentioned effect, so the upper limit of the blending amount is 30% by weight. %. Therefore, the blending amount of the Ni component is suitably 10 to 30% by weight, especially 10 to 20% by weight.

P成分は、Cu成分と、また成分中のNi成分と一部合金化して多孔質焼結合金層の地の強度を高めると共に耐摩耗性の向上に寄与する。P成分は還元力が強いため、裏金の表面をその還元作用により清浄化し、前述したNi成分の裏金表面への拡散による合金化を助長する効果がある。なお、Ni−P合金の効果については前述したとおりである。P成分はその配合量が0.5重量%未満では上述した効果を充分発揮しなく、また4重量%を超えて配合するNi−P合金の発生量が多くなり却って耐摩耗性を低下させる虞がある。したがって、P成分は0.5〜4重量%、就中0.5〜2重量%が適当である。P成分としては、P−Cu合金、例えばCu−15%P合金の形態で配合されるのがよい。   The P component is partly alloyed with the Cu component and the Ni component in the component to increase the strength of the ground of the porous sintered alloy layer and contribute to the improvement of wear resistance. Since the P component has a strong reducing power, it has the effect of cleaning the surface of the back metal by its reducing action and promoting the alloying by the diffusion of the Ni component to the back metal surface. The effects of the Ni-P alloy are as described above. If the blending amount of the P component is less than 0.5% by weight, the above-described effect is not sufficiently exhibited, and the amount of Ni-P alloy blended by exceeding 4% by weight is increased, which may reduce the wear resistance. There is. Therefore, the P component is suitably 0.5 to 4% by weight, especially 0.5 to 2% by weight. As a P component, it is good to mix | blend with the form of a P-Cu alloy, for example, Cu-15% P alloy.

Fe成分は、Cu成分と固溶しないが合金組織中に分散して、とくに地の強度を高める効果を発揮するとともに焼結時にCu成分の一部がFe成分に拡散する際、焼結体の多孔性を増大させる効果を発揮する。一般にFe成分はP成分の存在下において、P成分と合金化して硬いFe−P合金を析出する傾向を示すが、本発明においてはFe−Pの合金化の温度よりも低い温度でNi−Pが合金化するので、Ni−P合金化によりFe−Pの合金化を抑制する作用を発揮するため、50重量%までの比較的多量のFe成分の含有が可能となる。Fe成分はその配合量が30重量%未満では上記した効果を充分発揮しなく、また50重量%を超えて配合するとFe−P合金を析出する虞がある。したがって、Fe成分は30〜50重量%、就中35〜45重量%が適当である。   Although the Fe component does not dissolve in the Cu component, it is dispersed in the alloy structure. In particular, the Fe component exhibits the effect of increasing the strength of the ground, and when a part of the Cu component diffuses into the Fe component during sintering, Demonstrates the effect of increasing porosity. In general, the Fe component tends to be alloyed with the P component to precipitate a hard Fe-P alloy in the presence of the P component. In the present invention, the Ni-P is used at a temperature lower than the alloying temperature of Fe-P. Is alloyed, so that the effect of suppressing the alloying of Fe—P by the Ni—P alloying is exhibited, so that a relatively large amount of Fe component up to 50% by weight can be contained. If the blending amount of the Fe component is less than 30% by weight, the above-described effects are not sufficiently exhibited. If the blending amount exceeds 50% by weight, the Fe—P alloy may be precipitated. Therefore, the Fe component is suitably 30 to 50% by weight, especially 35 to 45% by weight.

高速度工具鋼(SKH)成分は、それ自体に微細な金属間化合物や炭化物が存在するので、これが焼結組織中に分散して硬質相としての役割を果たすとともに焼結時に高速度工具鋼成分からの合金元素が拡散して地の強化をもたらし(所謂分散強化)、銅系焼結体の耐摩耗性を向上させる。高速度工具鋼成分はその配合量が1重量%未満では、上記効果を発揮しなく、また10重量%を超えて配合すると硬質相の分散する量が多くなり、却って耐摩耗性の低下を来たす。したがって、高速度工具鋼の配合量は、1〜10重量%、就中2〜3重量%が適当である。高速度工具鋼成分は、日本工業規格(JIS)のG4403に規定されている高速度工具鋼材の粉末であり、とくにMo系のSKH40、SKH50ないしSKH59の高速度工具鋼材、すなわちSKH40−C:1.23〜1.33%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:4.70〜5.30%、W:5.70〜6.70%、V:2.70〜3.20%、Co:8.00〜8.88%及びFe:残部、SKH50−C:0.77〜0.87%、Si:0.70%以下、Mn:0.45%以下、P:0.030%以下、S:0.030%以下、Cr:3.50〜4.50%、Mo:8.00〜9.00%、W:1.40〜2.00%、V:1.00〜1.40%及びFe:残部、SKH51−C:0.80〜0.88%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:4.70〜5.20%、W:5.90〜6.70%、V:1.70〜2.10%及びFe:残部、SKH52−C:1.00〜1.10%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:5.50〜6.50%、W:5.90〜6.70%、V:2.30〜2.60%及びFe:残部、SKH53−C:1.15〜1.25%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:4.70〜5.20%、W:5.90〜6.70%、V:2.70〜3.20%及びFe:残部、SKH54−C:1.25〜1.40%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:4.20〜5.00%、W:5.20〜6.00%、V:3.70〜4.20%及びFe:残部、SKH55−C:0.87〜0.95%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:4.70〜5.20%、W:5.90〜6.70%、V:1.70〜2.10%、Co:4.50〜5.00%及びFe:残部、SKH56−C:0.85〜0.95%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:4.70〜5.20%、W:5.90〜6.70%、V:1.70〜2.10%、Co:7.00〜9.00%及びFe:残部、SKH57−C:1.20〜1.35%、Si:0.45%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.80〜4.50%、Mo:3.20〜3.90%、W:9.00〜10.00%、V:3.00〜3.50%、Co:9.50〜10.50%及びFe:残部、SKH58−C:0.95〜1.05%、Si:0.70%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.50〜4.50%、Mo:8.20〜9.20%、W:1.50〜2.10%、V:1.70〜2.20%及びFe:残部、SKH59−C:1.05〜1.15%、Si:0.70%以下、Mn:0.40%以下、P:0.030%以下、S:0.030%以下、Cr:3.50〜4.50%、Mo:9.00〜10.00%、W:1.20〜1.90%、V:0.90〜1.30%、Co:7.50〜8.50%及びFe:残部の粉末が推奨される。   The high-speed tool steel (SKH) component itself contains fine intermetallic compounds and carbides, which are dispersed in the sintered structure and play a role as a hard phase. The alloying element from the steel diffuses to strengthen the ground (so-called dispersion strengthening) and improve the wear resistance of the copper-based sintered body. If the blending amount of the high-speed tool steel component is less than 1% by weight, the above effect is not exhibited. If the blending amount exceeds 10% by weight, the amount of the hard phase dispersed increases, and the wear resistance decreases. . Accordingly, the blending amount of the high-speed tool steel is suitably 1 to 10% by weight, especially 2 to 3% by weight. The high-speed tool steel component is a powder of a high-speed tool steel material specified in Japanese Industrial Standard (JIS) G4403. .23 to 1.33%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.80 to 4.50% , Mo: 4.70-5.30%, W: 5.70-6.70%, V: 2.70-3.20%, Co: 8.00-8.88% and Fe: balance, SKH50 -C: 0.77 to 0.87%, Si: 0.70% or less, Mn: 0.45% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.50 4.50%, Mo: 8.00 to 9.00%, W: 1.40 to 2.00%, V: 1 00 to 1.40% and Fe: balance, SKH51-C: 0.80 to 0.88%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.80 to 4.50%, Mo: 4.70 to 5.20%, W: 5.90 to 6.70%, V: 1.70 to 2.10% and Fe: remainder, SKH52-C: 1.00-1.10%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr : 3.80 to 4.50%, Mo: 5.50 to 6.50%, W: 5.90 to 6.70%, V: 2.30 to 2.60% and Fe: remainder, SKH53-C : 1.15 to 1.25%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3. 0 to 4.50%, Mo: 4.70 to 5.20%, W: 5.90 to 6.70%, V: 2.70 to 3.20% and Fe: remainder, SKH54-C: 1. 25 to 1.40%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.80 to 4.50%, Mo: 4.20-5.00%, W: 5.20-6.00%, V: 3.70-4.20% and Fe: balance, SKH55-C: 0.87-0.95%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.80 to 4.50%, Mo: 4.70 to 5 20%, W: 5.90-6.70%, V: 1.70-2.10%, Co: 4.50-5.00% and Fe: balance, SKH56-C: 0.85-0 .9 5%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.80 to 4.50%, Mo: 4. 70-5.20%, W: 5.90-6.70%, V: 1.70-2.10%, Co: 7.00-9.00% and Fe: balance, SKH57-C: 1. 20 to 1.35%, Si: 0.45% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.80 to 4.50%, Mo: 3.20 to 3.90%, W: 9.00 to 10.00%, V: 3.00 to 3.50%, Co: 9.50 to 10.50%, Fe: remainder, SKH58- C: 0.95 to 1.05%, Si: 0.70% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.50-4 .50%, Mo: 8.20-9.20%, W: 1.50-2.10%, V: 1.70-2.20% and Fe: balance, SKH59-C: 1.05-1 .15%, Si: 0.70% or less, Mn: 0.40% or less, P: 0.030% or less, S: 0.030% or less, Cr: 3.50 to 4.50%, Mo: 9 0.01 to 10.00%, W: 1.20 to 1.90%, V: 0.90 to 1.30%, Co: 7.50 to 8.50% and Fe: balance powder is recommended. .

黒鉛成分は、焼結合金組織中に分散含有されて固体潤滑作用をなすものである。配合量が1重量%未満では固体潤滑作用を期待できず、また5重量%を超えて配合すると焼結合金層の強度を低下させる。したがって、黒鉛成分の配合量は、1〜5重量%、就中2〜3重量%が適当である。   The graphite component is dispersed and contained in the sintered alloy structure to form a solid lubricating action. If the blending amount is less than 1% by weight, a solid lubricating action cannot be expected, and if it exceeds 5% by weight, the strength of the sintered alloy layer is lowered. Therefore, the blending amount of the graphite component is suitably 1 to 5% by weight, especially 2 to 3% by weight.

つぎに、上記成分組成からなる焼結合金層を裏金に一体に接合して複層とした複層焼結摺動部材の製造方法について説明する。   Next, a method for producing a multilayer sintered sliding member in which a sintered alloy layer having the above composition is integrally joined to a back metal to form a multilayer will be described.

この複層焼結摺動部材を形成する裏金としては、一般構造用炭素鋼鋼管(JIS−G−3444)若しくは機械構造用炭素鋼鋼管(JIS−G−3445)からなる鋼製パイプ、又は一般構造用圧延鋼材(JISG3101)若しくは機械構造用炭素鋼鋼材(JIS−G−4051)からなる鋼板が使用される。   As a back metal forming this multilayer sintered sliding member, a steel pipe made of carbon steel pipe for general structure (JIS-G-3444) or carbon steel pipe for mechanical structure (JIS-G-3445), or general A steel plate made of structural rolled steel (JISG3101) or carbon steel for mechanical structure (JIS-G-4051) is used.

以下、各裏金を使用した複層焼結摺動部材の製造方法について説明する。   Hereinafter, the manufacturing method of the multilayer sintered sliding member which uses each back metal is demonstrated.

<裏金に鋼製パイプを使用した複層焼結摺動部材の製造方法>
Cu粉末20〜55重量%に対し、Sn粉末3〜10重量%と、Ni粉末10〜30重量%と、P−Cu合金(Cu−15%P)粉末のP成分0.5〜4重量%と、Fe粉末30〜50重量%と高速度工具鋼粉末1〜10重量%と、黒鉛粉末1〜5重量%とをV型ミキサーで混合して混合粉末を作製する。
<Manufacturing method of multilayer sintered sliding member using steel pipe for backing metal>
Sn powder 3 to 10% by weight, Ni powder 10 to 30% by weight, P component of P-Cu alloy (Cu-15% P) powder 0.5 to 4% by weight with respect to Cu powder 20 to 55% by weight Then, 30-50% by weight of Fe powder, 1-10% by weight of high-speed tool steel powder, and 1-5% by weight of graphite powder are mixed with a V-type mixer to produce a mixed powder.

この混合粉末を所要の金型内で2〜7トン/cm(196〜686MPa)の範囲の圧力下で加圧し、該混合粉末からなる円筒状の成形圧粉体を作製する。この成形圧粉体を鋼製パイプの内面に圧入嵌合したのち、中性もしくは還元性雰囲気に調整した加熱炉内に置き、900〜1000℃の温度で60〜90分間焼結し、該成形圧粉体の焼結と同時に該成形圧粉体の鋼製パイプの内面への拡散接合を行わせ、鋼製パイプの内面に焼結合金層を一体に拡散接合した複層焼結摺動部材を作製する。 This mixed powder is pressed under a pressure in the range of 2 to 7 ton / cm 2 (196 to 686 MPa) in a required mold to produce a cylindrical molded green compact made of the mixed powder. After this molded green compact is press-fitted onto the inner surface of a steel pipe, it is placed in a heating furnace adjusted to a neutral or reducing atmosphere and sintered at a temperature of 900 to 1000 ° C. for 60 to 90 minutes. Simultaneously with the sintering of the green compact, the molded green compact is diffusion bonded to the inner surface of the steel pipe, and the sintered alloy layer is integrally diffusion bonded to the inner surface of the steel pipe. Is made.

この製造方法において、焼結時における成形圧粉体の膨張量(外径側)が鋼製パイプの膨張量より小さい場合は、成形圧粉体の内面にセラミックス粉末を充填して成形圧粉体の内径側への膨張量を拘束し、これを外径側に向かわせ、さらに焼結後の冷却時における成形圧粉体の内径側への収縮量を拘束し、これを外径側に向かわせることにより、鋼製パイプと成形圧粉体との間に強固な接合を得ることができる。   In this manufacturing method, when the expansion amount (outer diameter side) of the green compact during sintering is smaller than the expansion amount of the steel pipe, the inner surface of the green compact is filled with ceramic powder to form the green compact. The amount of expansion to the inner diameter side of the molded body is constrained and directed toward the outer diameter side, and further, the amount of shrinkage of the green compact on the inner diameter side during cooling after sintering is constrained, and this is directed toward the outer diameter side. By doing so, it is possible to obtain a strong joint between the steel pipe and the green compact.

このようにして作製された複層焼結摺動部材に機械加工を施して所望の円筒軸受を作製したのち、含油処理を施すことにより、該多孔質焼結合金層に潤滑油が5〜20容量%の割合で含有される。   The multilayer sintered sliding member thus produced is machined to produce a desired cylindrical bearing and then subjected to an oil impregnation treatment, whereby lubricating oil is added to the porous sintered alloy layer in an amount of 5 to 20. It is contained at a rate of volume%.

<裏金に鋼板を使用した複層焼結摺動部材の製造方法>
裏金に鋼板を使用する場合は、その製造方法として粉末圧延法を利用することが好ましく、この粉末圧延法を利用した製造方法について説明する。上記した複層焼結摺動部材の製造方法における混合粉末と同様の混合粉末を作製し、該混合粉末に、粉末結合剤を添加し、均一に混合して湿潤性を有する原料粉末を作製する。粉末結合剤としては、ヒドロキシプロピルセルロース(HPC)が好ましく使用される。
<Manufacturing method of multilayer sintered sliding member using steel plate for backing metal>
When using a steel plate for the back metal, it is preferable to use a powder rolling method as a manufacturing method thereof, and a manufacturing method using this powder rolling method will be described. A mixed powder similar to the mixed powder in the manufacturing method of the multilayer sintered sliding member described above is prepared, and a powder binder is added to the mixed powder and mixed uniformly to prepare a raw material powder having wettability. . As the powder binder, hydroxypropylcellulose (HPC) is preferably used.

該原料粉末を双ロールを持つ横型圧延ロールに供給し、成形圧粉体からなる圧延シートを作製する。   The raw material powder is supplied to a horizontal rolling roll having twin rolls, and a rolled sheet made of a green compact is produced.

該圧延シートを前記裏金上に重ね合わせたのち、これを中性又は還元性雰囲気に調整した焼結炉内で900〜1000℃の温度で、かつ0.1〜5.0kgf/cm(0.0098〜0.49MPa)の圧力下で60〜90分間焼結し、圧延シートの焼結と同時に裏金への焼結合金層の拡散接合を行わしめ、該焼結合金層と裏金とが拡散接合により一体化された複層焼結摺動部材を作製する。 After the rolled sheet is superposed on the backing metal, the rolled sheet is placed in a sintering furnace adjusted to a neutral or reducing atmosphere at a temperature of 900 to 1000 ° C. and 0.1 to 5.0 kgf / cm 2 (0 .0.0 to 0.49 MPa) for 60 to 90 minutes, and simultaneously sintering the rolled sheet, diffusion bonding of the sintered alloy layer to the back metal is performed, and the sintered alloy layer and the back metal are diffused. A multilayer sintered sliding member integrated by bonding is produced.

このようにして作製された複層焼結摺動部材に機械加工を施して所望の摺動板又はすべり板を作製したのち、含油処理を施すことにより、該多孔質焼結合金層に潤滑油が5〜20容量%の割合で含有される。   The multilayer sintered sliding member thus produced is machined to produce a desired sliding plate or sliding plate, and then subjected to oil impregnation, whereby the porous sintered alloy layer is lubricated with lubricating oil. Is contained in a proportion of 5 to 20% by volume.

上記した製造方法において、焼結過程における232℃の温度で成分中のSn成分の液相が生成され、更に875℃付近の温度からNi−P合金(NiP)を主体とする液相が生成されて焼結が進行する、所謂液相焼結である。これらの製造方法で作製された複層焼結摺動部材の多孔質焼結合金層のCu−Ni−Sn合金の粒界に硬質のNiPが介在され、かつそれ自体微細な金属間化合物や炭化物を含む硬質の高速度工具鋼成分がCu−Ni−Sn合金相とαFe相の粒界に分散含有されているので、多孔質焼結合金層の疲労耐久性、耐荷重特性及び摩擦摩耗特性が大幅に向上され、結果として高面圧が作用する用途への適用が可能となる。 In the manufacturing method described above, a liquid phase of the Sn component in the component is generated at a temperature of 232 ° C. in the sintering process, and a liquid phase mainly composed of Ni—P alloy (Ni 3 P) is generated from a temperature near 875 ° C. This is so-called liquid phase sintering in which the sintering proceeds. Hard Ni 3 P intervenes in the grain boundary of the Cu—Ni—Sn alloy of the porous sintered alloy layer of the multilayer sintered sliding member produced by these production methods, and is itself a fine intermetallic compound And hard carbide high-speed tool steel components are dispersed and contained in the grain boundaries of the Cu-Ni-Sn alloy phase and the αFe phase, so the fatigue durability, load bearing characteristics and frictional wear of the porous sintered alloy layer The characteristics are greatly improved, and as a result, it can be applied to applications where high surface pressure acts.

以下、実施例により本発明を詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されないのである。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example at all unless the summary is exceeded.

実施例1〜5及び比較例1〜2は、複層焼結摺動部材を円筒状の形態の摺動部材(円筒軸受)に適用した例である。   Examples 1 to 5 and Comparative Examples 1 and 2 are examples in which the multilayer sintered sliding member is applied to a cylindrical sliding member (cylindrical bearing).

実施例1〜5
内径33.6mm、外径45mm、長さ20mmの寸法を有する一般構造用炭素鋼鋼管(STK400)からなる鋼製パイプを準備した。
Examples 1-5
A steel pipe made of a general structural carbon steel pipe (STK400) having an inner diameter of 33.6 mm, an outer diameter of 45 mm, and a length of 20 mm was prepared.

250メッシュの篩を通過するアトマイズSn粉末5重量%と、250メッシュの篩を通過する還元Ni粉末15重量%と、120メッシュの篩を通過する搗砕P−Cu合金(P15%)粉末7重量%と、240メッシュの篩を通過する還元Fe粉末30〜45重量%と、200メッシュの篩を通過する水アトマイズ高速度工具鋼粉末2〜3重量%、48メッシュの篩を通過し250メッシュの篩を通過しない天然黒鉛粉末2重量%と、残部が150メッシュの篩を通過する電解Cu粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(Sn:5重量%、Ni:15重量%、P:1.05重量%、Fe:30〜45重量%、高速度工具鋼:2〜3重量%、天然黒鉛:2重量%、Cu:残部)。   5% by weight of atomized Sn powder passing through a 250 mesh screen, 15% by weight of reduced Ni powder passing through a 250 mesh screen, and 7% of ground P-Cu alloy (P15%) powder passing through a 120 mesh screen %, Reduced Fe powder 30-45% by weight passing through a 240 mesh sieve, water atomized high speed tool steel powder 2-3% by weight passing through a 200 mesh sieve, passing through a 48 mesh sieve and 250 mesh 2 wt% of natural graphite powder that does not pass through the sieve and electrolytic Cu powder that passes through the sieve having the remaining 150 mesh are put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder (Sn: 5 wt%, Ni: 15 wt%, P: 1.05 wt%, Fe: 30-45 wt%, high speed tool steel: 2-3 wt%, natural graphite: 2 wt%, Cu: balance).

該混合粉末を円筒状の中空部を備えた金型の中空部に装填し、成形圧力5トン/cm(490MPa)で成形して内径27.4mm、外径33.6mm、長さ20mmであって、密度が6.6〜6.8g/cmを有する円筒状の成形圧粉体を作製した。 The mixed powder is loaded into a hollow part of a mold having a cylindrical hollow part, molded at a molding pressure of 5 ton / cm 2 (490 MPa), and has an inner diameter of 27.4 mm, an outer diameter of 33.6 mm, and a length of 20 mm. Thus, a cylindrical green compact having a density of 6.6 to 6.8 g / cm 3 was produced.

成形圧粉体を該鋼製パイプの内面にその軸方向から圧入嵌合した後、該成形圧粉体の内面にセラミックス粉末(Al:83重量%とSiO:17重量%の混合物)を充填し、これをアンモニア分解ガス雰囲気に調整した焼結炉において、960℃の温度で85分間焼結し、該成形圧粉体の焼結と同時に鋼製パイプの内面との拡散接合を行わしめ、焼結合金体と鋼製パイプとを接合一体化した。 After pressing the green compact into the inner surface of the steel pipe from the axial direction, ceramic powder (a mixture of Al 2 O 3 : 83 wt% and SiO 2 : 17 wt% is formed on the inner surface of the green compact. In a sintering furnace adjusted to an ammonia decomposition gas atmosphere, sintering is performed at a temperature of 960 ° C. for 85 minutes, and simultaneously with the sintering of the green compact, diffusion bonding with the inner surface of the steel pipe is performed. The sintered alloy body and the steel pipe were joined and integrated.

ついで、これに機械加工を施して内径30mm、外径45mm、長さ20mmの複層焼結摺動部材を得た。この複層焼結摺動部材の多孔質焼結合金層の密度は6.8〜7.0g/cmであった。この複層焼結摺動部材に含油処理を施したところ、該多孔質焼結合金層への含油率は13〜15容量%であった。 Next, this was machined to obtain a multilayer sintered sliding member having an inner diameter of 30 mm, an outer diameter of 45 mm, and a length of 20 mm. The density of the porous sintered alloy layer of this multilayer sintered sliding member was 6.8 to 7.0 g / cm 3 . When this multilayered sintered sliding member was subjected to oil impregnation treatment, the oil content in the porous sintered alloy layer was 13 to 15% by volume.

比較例1
上記実施例と同様の内径33.6mm、外径45mm、長さ20mmの寸法を有する一般構造用炭素鋼管からなる鋼製パイプを準備した。
Comparative Example 1
A steel pipe made of a general structural carbon steel pipe having an inner diameter of 33.6 mm, an outer diameter of 45 mm, and a length of 20 mm, similar to that in the above example, was prepared.

250メッシュの篩を通過するアトマイズSn粉末8重量%と、250メッシュの篩を通過する還元Ni粉末28重量%と、120メッシュの篩を通過する搗砕P−Cu合金(P15%)粉末7重量%と、150メッシュの篩を通過する天然黒鉛粉末5重量%と、残部が150メッシュの篩を通過する電解Cu粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(Sn:8重量%、Ni:28重量%、P:1.05重量%、天然黒鉛:5重量%、Cu:残部)。   8% by weight of atomized Sn powder passing through a 250 mesh screen, 28% by weight of reduced Ni powder passing through a 250 mesh screen, and 7% of ground P-Cu alloy (P15%) powder passing through a 120 mesh screen %, 5% by weight of natural graphite powder passing through a 150 mesh sieve and electrolytic Cu powder passing through a 150 mesh sieve in a V-type mixer, and mixed for 30 minutes to obtain a mixed powder ( Sn: 8% by weight, Ni: 28% by weight, P: 1.05% by weight, natural graphite: 5% by weight, Cu: balance).

該混合粉末を円筒状の中空部を備えた金型の中空部に装填し、成形圧力5トン/cm(490MPa)で成形して内径27.4mm、外径33.6mm、長さ20mmであって、密度が5.8g/cmを有する円筒状の成形圧粉体を作製した。 The mixed powder is loaded into a hollow part of a mold having a cylindrical hollow part, molded at a molding pressure of 5 ton / cm 2 (490 MPa), and has an inner diameter of 27.4 mm, an outer diameter of 33.6 mm, and a length of 20 mm. A cylindrical green compact having a density of 5.8 g / cm 3 was produced.

成形圧粉体を該鋼製パイプの内面にその軸方向から圧入嵌合した後、該成形圧粉体の内面にセラミックス粉末(実施例と同じ)を充填し、これをアンモニア分解ガス雰囲気に調整した焼結炉において、960℃の温度で60分間焼結し、該成形圧粉体の焼結と同時に鋼製パイプの内面との拡散接合を行わしめ、焼結合金体と鋼製パイプとを接合一体化した。   After the green compact has been press-fitted into the inner surface of the steel pipe from the axial direction, the inner surface of the green compact is filled with ceramic powder (same as in the example) and adjusted to an ammonia decomposition gas atmosphere. In the sintering furnace, sintering was performed at a temperature of 960 ° C. for 60 minutes, and simultaneously with the sintering of the green compact, diffusion bonding with the inner surface of the steel pipe was performed, and the sintered alloy body and the steel pipe were Bonded and integrated.

ついで、これに機械加工を施して内径30mm、外径45mm、長さ20mmの複層焼結摺動部材を得た。この複層焼結摺動部材の多孔質焼結合金層の密度は6.0g/cmであった。この複層焼結摺動部材に含油処理を施したところ、該多孔質焼結合金層への含油率は15容量%であった。 Next, this was machined to obtain a multilayer sintered sliding member having an inner diameter of 30 mm, an outer diameter of 45 mm, and a length of 20 mm. The density of the porous sintered alloy layer of this multilayer sintered sliding member was 6.0 g / cm 3 . When this multilayered sintered sliding member was subjected to oil impregnation treatment, the oil content in the porous sintered alloy layer was 15% by volume.

比較例2
上記実施例と同様の内径33.6mm、外径45mm、長さ20mmの寸法を有する一般構造用炭素鋼鋼管からなる鋼製パイプを準備した。
Comparative Example 2
A steel pipe made of a general structural carbon steel pipe having an inner diameter of 33.6 mm, an outer diameter of 45 mm, and a length of 20 mm was prepared.

250メッシュの篩を通過するアトマイズSn粉末8重量%と、150メッシュの篩を通過する還元Ni粉末28重量%と、120メッシュの篩を通過する搗砕P−Cu合金(P15%)粉末7重量%と、150メッシュの篩を通過する天然黒鉛粉末5重量%と、残部が150メッシュの篩を通過する電解Cu粉末とをV型ミキサーに投入し、10分間混合して混合粉末を得た(Sn:8重量%、Ni:28重量%、P:1.05重量%、天然黒鉛:5重量%、Cu:残部)。   8% by weight of atomized Sn powder passing through a 250 mesh screen, 28% by weight of reduced Ni powder passing through a 150 mesh screen, and 7% of ground P-Cu alloy (P15%) powder passing through a 120 mesh screen %, 5% by weight of natural graphite powder passing through a 150 mesh sieve and electrolytic Cu powder passing through a 150 mesh sieve in a V-type mixer, and mixed for 10 minutes to obtain a mixed powder ( Sn: 8% by weight, Ni: 28% by weight, P: 1.05% by weight, natural graphite: 5% by weight, Cu: balance).

この混合粉末60重量%に対し、100メッシュの篩を通過する還元Fe粉末を40重量%混合し、V型ミキサーで10分間混合して混合粉末を得た(Sn:4.8重量%、Ni:16.8重量%、P:0.63重量%、Fe:40重量%、天然黒鉛:3重量%、Cu:残部)。   40% by weight of reduced Fe powder passing through a 100 mesh sieve was mixed with 60% by weight of the mixed powder, and mixed for 10 minutes with a V-type mixer to obtain a mixed powder (Sn: 4.8% by weight, Ni : 16.8% by weight, P: 0.63% by weight, Fe: 40% by weight, natural graphite: 3% by weight, Cu: balance).

該混合粉末を円筒状の中空部を備えた金型の中空部に装填し、成形圧力5トン/cm(490MPa)で成形して内径27.4mm、外径33.6mm、長さ20mmであって、密度が6.0g/cmを有する円筒状の成形圧粉体を作製した。 The mixed powder is loaded into a hollow part of a mold having a cylindrical hollow part, molded at a molding pressure of 5 ton / cm 2 (490 MPa), and has an inner diameter of 27.4 mm, an outer diameter of 33.6 mm, and a length of 20 mm. Thus, a cylindrical green compact having a density of 6.0 g / cm 3 was produced.

以下、比較例1と同様の方法で内径30mm、外径45mm、長さ20mmの複層焼結摺動部材を得た。この複層焼結摺動部材の多孔質焼結合金層の密度は6.4g/cmであった。この複層焼結摺動部材に含油処理を施したところ、該多孔質焼結合金層への含油率は14容量%であった。 Thereafter, a multilayer sintered sliding member having an inner diameter of 30 mm, an outer diameter of 45 mm, and a length of 20 mm was obtained in the same manner as in Comparative Example 1. The density of the porous sintered alloy layer of this multilayer sintered sliding member was 6.4 g / cm 3 . When this multilayered sintered sliding member was subjected to oil impregnation treatment, the oil content in the porous sintered alloy layer was 14% by volume.

次に、上記実施例1〜5及び比較例1〜2で得た複層焼結摺動部材について、表1に示す試験条件で摩擦摩耗特性を、また表2に示す試験条件で疲労耐久性を試験した。   Next, with respect to the multilayer sintered sliding members obtained in Examples 1 to 5 and Comparative Examples 1 and 2, the friction and wear characteristics were tested under the test conditions shown in Table 1, and the fatigue durability was tested under the test conditions shown in Table 2. Was tested.

(表1)
(摩擦摩耗試験条件)
負荷面圧 100MPa(1020kgf/cm
摺動速度 7.83×10-3m/sec(0.47m/min)
揺動角度 90°
耐久時間 100時間
相手軸材 高周波焼入れしたクロムモリブデン鋼(SMC440)
運動形態 相手軸連続ラジアルジャーナル揺動運動
潤滑条件 試験開始前にグリース塗付
(Table 1)
(Friction and wear test conditions)
Load surface pressure 100 MPa (1020 kgf / cm 2 )
Sliding speed 7.83 × 10 −3 m / sec (0.47 m / min)
Swing angle 90 °
Endurance time 100 hours Mating shaft material Induction-hardened chromium molybdenum steel (SMC440)
Motion form Swing motion of the opposite shaft continuous radial journal Lubrication condition Grease before starting the test

(表2)
(耐疲労性試験条件)
円筒軸受(複層焼結摺動部材)寸法 内径30mm、外径45mm、長さ
20mm(受圧面積6cm
最大荷重 88MPa(898kgf/cm
最小荷重 0.2MPa(2kgf/cm
荷重サイクル 20Hz
試験方法 円筒軸受(受圧面積6cm)に1秒間に最大荷重と最小荷重を交互に20 回負荷し、摺動面となる焼結合金層に亀裂が生じるまでのサイクル数(最大1000万サイクル)で評価した。
(Table 2)
(Fatigue resistance test conditions)
Dimensions of cylindrical bearing (multi-layer sintered sliding member) Inner diameter 30mm, outer diameter 45mm, length
20 mm (pressure receiving area 6 cm 2 )
Maximum load 88MPa (898kgf / cm 2)
Minimum load 0.2 MPa (2 kgf / cm 2 )
Load cycle 20Hz
Test method Cylindrical bearing (pressure-receiving area 6cm 2 ) 20 cycles of maximum load and minimum load alternately per second, and the number of cycles until cracks occur in the sintered alloy layer that becomes the sliding surface (maximum 10 million cycles) It was evaluated with.

実施例及び比較例の複層焼結摺動部材の成分組成、摩擦摩耗特性及び耐疲労性の試験結果を表3及び表4に示す。   Tables 3 and 4 show the test results of the component composition, friction wear characteristics, and fatigue resistance of the multilayer sintered sliding members of Examples and Comparative Examples.

Figure 2010031373
Figure 2010031373

Figure 2010031373
Figure 2010031373

表4中、比較例1及び2の複層焼結摺動部材は、摩擦摩耗試験において試験時間が40時間を超えた時点で摩擦係数が急激に上昇したため、その時点で試験を中止した。摩耗量は試験時間40時間での摩耗量を示した。   In Table 4, since the friction coefficient of the multilayered sintered sliding members of Comparative Examples 1 and 2 increased rapidly when the test time exceeded 40 hours in the frictional wear test, the test was stopped at that time. The amount of wear indicates the amount of wear at a test time of 40 hours.

以上の試験結果から、実施例1〜5の複層焼結摺動部材は、高負荷条件(100MPa)においても摩擦係数が低く安定した摺動を示し、摩耗量も22〜28μmと少なく優れた摩擦摩耗特性を示した。一方、比較例1及び2の複層焼結摺動部材は、高負荷条件においては試験時間100時間を達成できず試験を中止した。また、疲労耐久性の試験においては、実施例1〜5の複層焼結摺動部材は、比較例1及び2の複層焼結摺動部材の100倍の疲労耐久性を示した。   From the above test results, the multilayer sintered sliding members of Examples 1 to 5 showed a stable sliding with a low coefficient of friction even under high load conditions (100 MPa), and the wear amount was as small as 22 to 28 μm. The friction and wear characteristics are shown. On the other hand, the multilayer sintered sliding member of Comparative Examples 1 and 2 could not achieve the test time of 100 hours under the high load condition, and the test was stopped. Moreover, in the fatigue durability test, the multilayer sintered sliding members of Examples 1 to 5 exhibited 100 times the fatigue durability of the multilayer sintered sliding members of Comparative Examples 1 and 2.

以上のように、実施例からなる複層焼結摺動部材は、従来の複層焼結摺動部材の許容面圧である49MPaを遥かに超えた荷重条件においても優れた摩擦摩耗特性を及び耐疲労性を有しており、高面圧が作用する用途、例えば射出成形機のトグルブッシュ、油圧ショベル等の建設機械の関節部軸受への適用を可能とするものである。   As described above, the multilayer sintered sliding member according to the example has excellent friction and wear characteristics even under load conditions far exceeding 49 MPa, which is an allowable surface pressure of the conventional multilayer sintered sliding member. It has fatigue resistance and can be applied to applications where high surface pressure acts, for example, a joint bearing of a construction machine such as a toggle bush of an injection molding machine or a hydraulic excavator.

次に、複層焼結摺動部材を平板状の形態の摺動板に適用した実施例について説明する。   Next, an embodiment in which the multilayer sintered sliding member is applied to a flat plate-like sliding plate will be described.

実施例6〜7及び比較例3、平板状の複層焼結摺動部材についての例である。   It is an example about Examples 6-7 and the comparative example 3, a flat multilayer sintered sliding member.

実施例6〜7
幅170mm、長さ600mm、厚さ5mmの寸法を有する、一般構造用圧延鋼材(SS400)からなる鋼板を準備した。
Examples 6-7
A steel plate made of general structural rolled steel (SS400) having a width of 170 mm, a length of 600 mm, and a thickness of 5 mm was prepared.

混合粉末として、前記実施例1及び実施例4と同様の混合粉末を作製した。該混合粉末に対し、それぞれ5重量%HPC水溶液(HPC100g、エチルアルコール120ml及び水1780ml)を0.3重量%添加し、5分間V型ミキサーで均一に混合し、これを原料粉末とした。   As the mixed powder, the same mixed powder as in Example 1 and Example 4 was prepared. 0.3 wt% of 5 wt% aqueous HPC solution (100 g of HPC, 120 ml of ethyl alcohol and 1780 ml of water) was added to each of the mixed powders and mixed uniformly with a V-type mixer for 5 minutes to obtain a raw material powder.

該原料粉末を双ロールを持つ横型圧延ロールにロール間隔0.3mm、ロール速度0.3m/minの条件下で通し、密度6.8g/cm、厚さ2mmの圧延シート(成形圧粉体)を作製した。これを幅170mm、長さ600mmの寸法に切断し、これを鋼板上に重ね合わせたのち、アンモニア分解ガス雰囲気に調整された焼結炉において、圧力0.7kgf/cm(0.069MPa)をかけながら、960℃の温度で85分間焼結し、圧延シートの焼結と同時に鋼板との拡散接合を行わしめ、焼結合金層と鋼板とが拡散接合された複層摺動部材を作製した。 The raw material powder is passed through a horizontal rolling roll having twin rolls under conditions of a roll interval of 0.3 mm and a roll speed of 0.3 m / min, and a density 6.8 g / cm 3 and a thickness of 2 mm rolled sheet (molded green compact) ) Was produced. This was cut to a width of 170 mm and a length of 600 mm, and this was overlaid on a steel plate, and then in a sintering furnace adjusted to an ammonia decomposition gas atmosphere, a pressure of 0.7 kgf / cm 2 (0.069 MPa) was applied. While being applied, sintering was performed at a temperature of 960 ° C. for 85 minutes. Simultaneously with the sintering of the rolled sheet, diffusion bonding with the steel plate was performed, and a multilayer sliding member in which the sintered alloy layer and the steel plate were diffusion bonded was produced. .

これに機械加工を施し、一辺35mm、厚さ6.5mmの複層焼結摺動部材を得た。この複層焼結摺動部材の多孔質焼結合金層の密度は6.9g/cmであった。この複層焼結摺動部材に含油処理を施したところ、多孔質焼結合金層への含油率は15容量%であった。 This was machined to obtain a multilayer sintered sliding member having a side of 35 mm and a thickness of 6.5 mm. The density of the porous sintered alloy layer of this multilayer sintered sliding member was 6.9 g / cm 3 . When this multilayered sintered sliding member was subjected to oil impregnation treatment, the oil content of the porous sintered alloy layer was 15% by volume.

比較例3
上記実施例6〜7と同様の幅170mm、長さ600mm、厚さ5mmの寸法を有する、一般構造用圧延鋼材からなる鋼板を準備した。
Comparative Example 3
A steel plate made of rolled steel for general structure having the same dimensions of 170 mm in width, 600 mm in length and 5 mm in thickness as in Examples 6 to 7 was prepared.

250メッシュの篩を通過する噴霧Sn粉末5重量%と、150メッシュの篩を通過する還元Ni粉末20重量%と、120メッシュの篩を通過する搗砕P−Cu合金(P15%)粉末7重量%と、300メッシュの篩を通過する還元Fe粉末32重量%と、48メッシュの篩を通過し250メッシュの篩を通過しない天然黒鉛粉末5重量%と、残部が150メッシュの篩を通過する電解Cu粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(Sn:5重量%、Ni:20重量%、P:1.05重量%、Fe:32重量%、天然黒鉛:5重量%、Cu:残部)。   5% by weight of sprayed Sn powder passing through a 250 mesh screen, 20% by weight of reduced Ni powder passing through a 150 mesh screen, and 7% of ground P-Cu alloy (P15%) powder passing through a 120 mesh screen %, 32% by weight of reduced Fe powder passing through a 300 mesh screen, 5% by weight of natural graphite powder passing through a 48 mesh screen and not passing through a 250 mesh screen, and the remainder passing through a 150 mesh screen Cu powder was put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder (Sn: 5 wt%, Ni: 20 wt%, P: 1.05 wt%, Fe: 32 wt%, natural graphite) : 5% by weight, Cu: balance).

この混合粉末に対し、5重量%HPC水溶液(実施例と同じ)を0.3重量%添加し、5分間V型ミキサーで均一に混合し、これを原料粉末とした。   To this mixed powder, 0.3% by weight of a 5% by weight HPC aqueous solution (same as in the example) was added and mixed uniformly with a V-type mixer for 5 minutes to obtain a raw material powder.

該原料粉末を双ロールを持つ横型圧延ロールにロール間隔0.3mm、ロール速度0.3m/minの条件下で通し、密度5.90g/cm、厚さ2mmの圧延シート(成形圧粉体)を作製した。これを幅170mm、長さ600mmの寸法に切断し、これを前記鋼板上に重ね合わせた。 The raw material powder is passed through a horizontal rolling roll having twin rolls under conditions of a roll interval of 0.3 mm and a roll speed of 0.3 m / min, and a rolled sheet (molded green compact) having a density of 5.90 g / cm 3 and a thickness of 2 mm. ) Was produced. This was cut into dimensions of 170 mm in width and 600 mm in length, and this was overlaid on the steel plate.

ついで、アンモニア分解ガス雰囲気に調整した焼結炉において、圧力0.7kgf/cm(0.069MPa)をかけながら、940℃の温度で40分間焼結し、圧延シートの焼結と同時に鋼板との拡散接合を行わしめ、焼結合金層と鋼板とが接合一体化された複層焼結摺動部材を作製した。 Next, in a sintering furnace adjusted to an ammonia decomposition gas atmosphere, while applying a pressure of 0.7 kgf / cm 2 (0.069 MPa), sintering was performed at a temperature of 940 ° C. for 40 minutes. Thus, a multi-layer sintered sliding member in which the sintered alloy layer and the steel plate were joined and integrated was produced.

これに機械加工を施し、一辺35mm、厚さ6.5mmの複層焼結摺動部材を得た。この複層焼結摺動部材の多孔質焼結合金層の密度は6.0g/cmであった。この複層焼結摺動部材に含油処理を施したところ、多孔質焼結合金層への含油率は26容量%であった。 This was machined to obtain a multilayer sintered sliding member having a side of 35 mm and a thickness of 6.5 mm. The density of the porous sintered alloy layer of this multilayer sintered sliding member was 6.0 g / cm 3 . When this multilayered sintered sliding member was subjected to oil impregnation treatment, the oil content in the porous sintered alloy layer was 26% by volume.

次に、上記実施例6〜7及び比較例3で得た複層焼結摺動部材について、表5に示す試験条件で摩擦摩耗特性を試験した。   Next, the frictional wear characteristics of the multilayer sintered sliding members obtained in Examples 6 to 7 and Comparative Example 3 were tested under the test conditions shown in Table 5.

(表5)
(摩擦摩耗試験条件)
負荷面圧 100MPa(1020kgf/cm
摺動速度 0.12m/sec(7m/min)
ストローク 80mm
往復回数 100,000回
相手材 ねずみ鋳鉄(FC250)板
潤滑条件 試験開始前にグリース塗付
(Table 5)
(Friction and wear test conditions)
Load surface pressure 100 MPa (1020 kgf / cm 2 )
Sliding speed 0.12m / sec (7m / min)
Stroke 80mm
Number of reciprocations 100,000 times Mating material Gray cast iron (FC250) plate Lubrication condition Grease before starting the test

実施例6〜7及び比較例3の複層焼結摺動部材の成分組成、摩擦摩耗特性の試験結果を表6に示す。   Table 6 shows the test results of the component compositions and frictional wear characteristics of the multilayer sintered sliding members of Examples 6 to 7 and Comparative Example 3.

Figure 2010031373
Figure 2010031373

表6中、比較例3の複層焼結摺動部材は、試験時間が30時間を超えた時点で摩擦係数が急激に上昇したため、その時点で試験を中止した。摩耗量は試験時間30時間での摩耗量を示した。   In Table 6, since the friction coefficient of the multilayer sintered sliding member of Comparative Example 3 rapidly increased when the test time exceeded 30 hours, the test was stopped at that time. The amount of wear indicates the amount of wear at a test time of 30 hours.

以上の試験結果から、実施例6〜7の複層焼結摺動部材は、高負荷条件(100MPa)においても摩擦係数が低く安定した摺動を示し、摩耗量も35μm以下と少なく優れた摩擦摩耗特性を示した。一方、比較例3の複層焼結摺動部材は、高負荷条件においては試験時間100時間を達成できず試験を中止した。   From the above test results, the multilayer sintered sliding members of Examples 6 to 7 showed stable sliding with a low coefficient of friction even under high load conditions (100 MPa), and the friction amount was as small as 35 μm or less. The wear characteristics are shown. On the other hand, the multilayer sintered sliding member of Comparative Example 3 was not able to achieve a test time of 100 hours under high load conditions, and the test was stopped.

以上のように、本発明の複層焼結摺動部材は、裏金に一体に接合された多孔質焼結合金層を形成するNi成分が焼結時に裏金の表面に拡散してその界面を合金化し、さらに成分中のP成分と一部液相を形成してCu−Ni−Sn合金と親和性のよいNi−P合金(NiP)を生成し、このNiPが裏金と多孔質焼結合金層との界面に介在して、界面においてNi成分の拡散による合金化と相俟って多孔質焼結合金層を裏金に強固に接合一体化させるとともに、焼結時に生成された硬質の金属間化合物であるNiPがCu−Ni−Sn合金相の粒界に介在し、さらにそれ自体微細な金属間化合物、主に炭化物からなる硬質の高速度工具鋼成分がCu−Ni−Sn合金相とαFe相の粒界に分散含有されているので多孔質焼結合金層の疲労耐久性、耐荷重性及び摩擦摩耗特性が大幅に向上され、高面圧が作用する用途への適用が可能となる。 As described above, in the multilayer sintered sliding member of the present invention, the Ni component forming the porous sintered alloy layer integrally bonded to the back metal diffuses to the surface of the back metal during sintering, and the interface is alloyed. However, to generate a further forming a P component and some liquid phase in the component Cu-Ni-Sn alloy affinity good Ni-P alloy (Ni 3 P), the Ni 3 P is back metal and a porous The porous sintered alloy layer is firmly bonded and integrated with the back metal in combination with the alloying by diffusion of Ni component at the interface, and the hard material generated at the time of sintering. Ni 3 P, which is an intermetallic compound, is intervened in the grain boundary of the Cu—Ni—Sn alloy phase, and the hard high-speed tool steel component composed of fine intermetallic compounds, mainly carbides, is Cu—Ni—. Since it is dispersed and contained in the grain boundaries of the Sn alloy phase and the αFe phase, the porous sintered alloy layer Labor durability, load carrying capacity and friction and wear characteristics are greatly improved, high surface pressure is can be applied to applications that act.

Claims (5)

錫成分3〜10重量%と、ニッケル成分10〜30重量%と、燐成分0.5〜4重量%と、鉄成分30〜50重量%と、高速度工具鋼成分1〜10重量%と、黒鉛成分1〜5重量%と、銅成分20〜55重量%とを含む多孔質焼結合金層が裏金に一体に接合されていることを特徴とする複層焼結摺動部材。   3 to 10% by weight of tin component, 10 to 30% by weight of nickel component, 0.5 to 4% by weight of phosphorus component, 30 to 50% by weight of iron component, 1 to 10% by weight of high-speed tool steel component, A multilayer sintered sliding member characterized in that a porous sintered alloy layer containing 1 to 5% by weight of a graphite component and 20 to 55% by weight of a copper component is integrally joined to a back metal. 多孔質焼結合金層には、潤滑油が5〜20容量%の割合で含有されている請求項1に記載の複層焼結摺動部材。   The multilayer sintered sliding member according to claim 1, wherein the porous sintered alloy layer contains 5 to 20% by volume of lubricating oil. 高速度工具鋼成分は、モリブデン系高速度工具鋼及びタングステン系高速度工具鋼のいずれかから選択されたものである請求項1又は2に記載の複層焼結摺動部材。   The multilayer sintered sliding member according to claim 1 or 2, wherein the high-speed tool steel component is selected from one of molybdenum-based high-speed tool steel and tungsten-based high-speed tool steel. 裏金は、鋼製パイプからなり、該多孔質焼結合金層は該鋼製パイプの内面に一体に接合されている請求項1から3のいずれか一項に記載の複層焼結摺動部材。   The multilayer sintered sliding member according to any one of claims 1 to 3, wherein the back metal is made of a steel pipe, and the porous sintered alloy layer is integrally joined to the inner surface of the steel pipe. . 裏金は、鋼板からなり、該多孔質焼結合金層は該鋼板の表面に一体に接合されている請求項1から3のいずれか一項に記載の複層焼結摺動部材。   The multilayer sintered sliding member according to any one of claims 1 to 3, wherein the backing metal is made of a steel plate, and the porous sintered alloy layer is integrally bonded to the surface of the steel plate.
JP2009177126A 2008-07-30 2009-07-29 Manufacturing method of multilayer sintered sliding member Active JP5544777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177126A JP5544777B2 (en) 2008-07-30 2009-07-29 Manufacturing method of multilayer sintered sliding member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/002050 WO2009016840A1 (en) 2007-07-31 2008-07-30 Multi-layered sintered slide member
WOPCT/JP2008/002050 2008-07-30
JP2009177126A JP5544777B2 (en) 2008-07-30 2009-07-29 Manufacturing method of multilayer sintered sliding member

Publications (2)

Publication Number Publication Date
JP2010031373A true JP2010031373A (en) 2010-02-12
JP5544777B2 JP5544777B2 (en) 2014-07-09

Family

ID=41736181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177126A Active JP5544777B2 (en) 2008-07-30 2009-07-29 Manufacturing method of multilayer sintered sliding member

Country Status (1)

Country Link
JP (1) JP5544777B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153474A1 (en) * 2011-05-10 2012-11-15 オイレス工業株式会社 Scroll compressor
JP2014505208A (en) * 2010-11-29 2014-02-27 ヒュンダイ スチール カンパニー Sintered bearing and manufacturing method thereof
EP2918693A1 (en) * 2012-02-29 2015-09-16 Diamet Corporation Sintered alloy superior in wear resistance
JP2016216756A (en) * 2015-05-14 2016-12-22 大同メタル工業株式会社 Slide member
JP2016216755A (en) * 2015-05-14 2016-12-22 大同メタル工業株式会社 Slide member
JP2017014571A (en) * 2015-06-30 2017-01-19 大同メタル工業株式会社 Sliding member
JP2017066491A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Powder for powder metallurgy, green compact and method for producing sintered component
JP2020159461A (en) * 2019-03-26 2020-10-01 株式会社タンガロイ Friction material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101603A (en) * 1980-12-16 1982-06-24 Oiles Ind Co Ltd Sintered sliding component comprising plural layers and preparation thereof
JPS644406A (en) * 1987-06-26 1989-01-09 Oiles Industry Co Ltd Production of sintered sliding member consisting of double layers
JPH01108304A (en) * 1987-10-19 1989-04-25 Oiles Ind Co Ltd Production of sintered sliding member consisting of double layers
JPH03232905A (en) * 1990-02-07 1991-10-16 Oiles Ind Co Ltd Multi-ply sintered sliding member
JPH0586404A (en) * 1991-09-27 1993-04-06 Oiles Ind Co Ltd Production of sintered sliding member
JPH08109450A (en) * 1994-10-12 1996-04-30 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy for oilless bearing
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
WO2006080554A1 (en) * 2005-01-31 2006-08-03 Komatsu Ltd. Sintered material, iron-based sintered sliding material and process for producing the same, sliding member and process for producing the same, and connecting apparatus
WO2007086621A1 (en) * 2006-01-30 2007-08-02 Komatsu Ltd. Iron-based sinter multilayer wound bush, method for manufacturing the same, and operating machine connecting apparatus
JP5266682B2 (en) * 2007-07-31 2013-08-21 キャタピラージャパン株式会社 Multi-layer sintered sliding member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101603A (en) * 1980-12-16 1982-06-24 Oiles Ind Co Ltd Sintered sliding component comprising plural layers and preparation thereof
JPS644406A (en) * 1987-06-26 1989-01-09 Oiles Industry Co Ltd Production of sintered sliding member consisting of double layers
JPH01108304A (en) * 1987-10-19 1989-04-25 Oiles Ind Co Ltd Production of sintered sliding member consisting of double layers
JPH03232905A (en) * 1990-02-07 1991-10-16 Oiles Ind Co Ltd Multi-ply sintered sliding member
JPH0586404A (en) * 1991-09-27 1993-04-06 Oiles Ind Co Ltd Production of sintered sliding member
JPH08109450A (en) * 1994-10-12 1996-04-30 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy for oilless bearing
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
WO2006080554A1 (en) * 2005-01-31 2006-08-03 Komatsu Ltd. Sintered material, iron-based sintered sliding material and process for producing the same, sliding member and process for producing the same, and connecting apparatus
WO2007086621A1 (en) * 2006-01-30 2007-08-02 Komatsu Ltd. Iron-based sinter multilayer wound bush, method for manufacturing the same, and operating machine connecting apparatus
JP5266682B2 (en) * 2007-07-31 2013-08-21 キャタピラージャパン株式会社 Multi-layer sintered sliding member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505208A (en) * 2010-11-29 2014-02-27 ヒュンダイ スチール カンパニー Sintered bearing and manufacturing method thereof
WO2012153474A1 (en) * 2011-05-10 2012-11-15 オイレス工業株式会社 Scroll compressor
JP2012237211A (en) * 2011-05-10 2012-12-06 Oiles Corp Scroll compressor
EP2918693A1 (en) * 2012-02-29 2015-09-16 Diamet Corporation Sintered alloy superior in wear resistance
EP2821514A4 (en) * 2012-02-29 2015-09-23 Diamet Corp Sintered alloy having excellent abrasion resistance
US9663844B2 (en) 2012-02-29 2017-05-30 Diamet Corporation Sintered alloy superior in wear resistance
JP2016216756A (en) * 2015-05-14 2016-12-22 大同メタル工業株式会社 Slide member
JP2016216755A (en) * 2015-05-14 2016-12-22 大同メタル工業株式会社 Slide member
JP2017014571A (en) * 2015-06-30 2017-01-19 大同メタル工業株式会社 Sliding member
JP2017066491A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Powder for powder metallurgy, green compact and method for producing sintered component
JP2020159461A (en) * 2019-03-26 2020-10-01 株式会社タンガロイ Friction material

Also Published As

Publication number Publication date
JP5544777B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5266682B2 (en) Multi-layer sintered sliding member
JP5544777B2 (en) Manufacturing method of multilayer sintered sliding member
JP3859344B2 (en) Sliding material, sliding member and method of manufacturing the sliding member
JP4675563B2 (en) Bearing and manufacturing method thereof
KR100187616B1 (en) Sintered friction material composite copper alloy powder used therefor and manufacturing method thereof
JP4842283B2 (en) Iron-based sintered multi-layer wound bush, manufacturing method thereof and work machine coupling device
JP5525986B2 (en) Sintered valve guide and manufacturing method thereof
KR100816978B1 (en) Sintered material and parts using the same material
KR100813484B1 (en) Hybrid material and method for manufacturing same
JP4823183B2 (en) Copper-based sintered sliding material and sintered sliding member using the same
JP4545162B2 (en) Composite sintered sliding member and manufacturing method thereof
CN109692951B (en) Method for manufacturing powder metallurgy self-lubricating bearing
JP4234865B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JPH07188712A (en) Sliding material excellent in corrosion resistance and wear resistance and its production
JPH11269508A (en) Plural-layer sintered sliding member and its manufacture
JP2001295915A (en) Sintered sprocket for silent chain and method of manufacturing the same
JP2003342700A (en) Sintered sliding material, sintered sliding member, and production method thereof
JPH07166278A (en) Coppery sliding material and production thereof
KR100286246B1 (en) Side Bearing and Manufacturing Method Thereof
JPH05156388A (en) Double-layered sintered sliding member and its manufacture
KR101594207B1 (en) Bearing material
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP3325034B2 (en) Sintered sliding member comprising multiple layers and method for producing the same
JP3332393B2 (en) Sintered sliding member and manufacturing method thereof
JP3397332B2 (en) Sintered sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250