JP4322539B2 - 光学系の制御方法および制御装置 - Google Patents
光学系の制御方法および制御装置 Download PDFInfo
- Publication number
- JP4322539B2 JP4322539B2 JP2003107678A JP2003107678A JP4322539B2 JP 4322539 B2 JP4322539 B2 JP 4322539B2 JP 2003107678 A JP2003107678 A JP 2003107678A JP 2003107678 A JP2003107678 A JP 2003107678A JP 4322539 B2 JP4322539 B2 JP 4322539B2
- Authority
- JP
- Japan
- Prior art keywords
- focus
- distance
- optical system
- control
- sensitivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lenses (AREA)
- Automatic Focus Adjustment (AREA)
Description
【発明の属する技術分野】
本発明は、拡大鏡などの光学系の焦点調節をする制御方法および制御装置に関するものである。
【0002】
【従来の技術】
弱視者の視覚補助用に自動焦点機能を備えた拡大鏡が特開2002−311340号公報に開示されている。この拡大鏡は、自動焦点機能(オートフォーカス機能)を有する単眼式の拡大鏡であり、眼鏡(眼鏡フレーム)に取付けて使用する。
【0003】
【特許文献1】
特開2002−311340号公報
【0004】
【発明が解決しようとする課題】
この拡大鏡は弱視者の視覚を補助するための装置であり、オートフォーカス機能により内蔵された光学系の焦点を遠距離から近距離の広い範囲で調整可能とし、良好な視野が得られるようにしている。すなわち、内蔵されたオートフォーカス機能はフォトセンサーや超音波センサを使用した距離測定機能により対象物までの距離(焦点距離)を得て、その位置に焦点が合うように光学系のレンズを移動させる。したがって、拡大鏡を装着したユーザは見たい方向に眼を向けるだけで、遠方から近傍まで、焦点の合った拡大画像を見ることができる。
【0005】
良好な視覚を得るため、オートフォーカス機能は、視度(ディオプターあるいはジオプタ(D)、対象物までの焦点距離の逆数)がある一定の範囲だけ変化したと判断すると、レンズを移動して自動的に焦点を調整する。例えば、0.5Dの視度変化があったとき、すなわち、焦点距離の逆数が0.5m-1だけ変化したときに光学系の焦点を自動調整しようとすると図9のようになる。遠距離では、例えば10mに焦点が合っていれば、視度変化が±0.5Dに相当する焦点距離の変化は6.67m〜20mの範囲であり、この範囲内では光学系の焦点を調整せず、この範囲から外れたときに光学系の焦点を自動調整する。近距離では、0.5Dの範囲は非常に狭くなり、例えば、0.2mに焦点が合っていれば、±0.5Dに相当する焦点距離の変化は、0.198m〜0.202mであり、この範囲を超えると、光学系の焦点を調整する。したがって、近距離においては、焦点距離が僅か±2cm(±0.02m)変化しただけで、光学系の焦点調整を行わないと良好な視覚(視力)が得られないことになる。このように、一定の視度変化により光学系の焦点を自動調整する制御方法では、視度変化に対する感度を一定に保持し、遠距離から近距離に渡り良好な視覚を得ようとすると、近距離を見る際に光学系の焦点を短い焦点距離の変動で自動調整することになり、近距離においては測定距離の微小な変化に対して焦点調整を頻繁に行う必要がある。
【0006】
オートフォーカス機能を装着することにより、拡大鏡の焦点距離を対象物が遠方にいるときから、対象物が近傍にいるときまでスムーズに調整することができる。したがって、遠方から近傍まで見る位置を動かすことにより焦点の合った拡大像が得られるので、視力の弱いユーザにおいても遠方から近傍まで良好な視野を得ることができる。しかしながら、オートフォーカス機能を搭載していても、近傍をみるときに強い疲労感を得ることがある。その要因は、たとえば、ユーザが机の上のノートに文字を書いている場合に、ノートの紙面上に焦点を合わせたいにもかかわらず、ノートとユーザの眼の間に位置する鉛筆や手などに焦点が合ってしまうことが要因であろうと考えられている。
【0007】
すなわち、ノートよりもっと目に近い位置にある他の物体にオートフォーカスの焦点があってしまうので、拡大鏡を介して得られる像がぼけ、拡大鏡を動かさないとして、再びノートに焦点を合わせることができない。手やノートを動かしたり、視線を動かす度に同様のことが起きる。そして、上述したように、近距離においては、視度変化が一定であるとすると僅かな距離変化に対しても、光学系は焦点調整動作を行うので、焦点は容易に変動してしまい、ユーザが疲労感を覚えてしまうことに繋がる。
【0008】
そこで、本発明では、ユーザが近距離を見るときも疲れずに、遠方から近傍まで快適な視野が得られるように光学系を制御する方法および制御装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記の拡大鏡は、眼鏡に付けたり、ヘッドマウントにしたりしてユーザの身体に装着して使用する。したがって、顔や体の向きを変えることにより拡大鏡の向きを変えてユーザが見たいもの、すなわち、対象物に対して光学系の対物レンズを向けて使用する。また、自動焦点調整機能は、理想的には対物レンズの軸上にある物体(対象物)との距離を測定し、その測定された距離(測定距離あるいは測距)を目標として光学系の焦点を自動調整する。
【0010】
しかしながら、拡大鏡によって得られる視野は、ある程度の範囲で有効であり、対物レンズの軸上の対象物とユーザの視点、視線、または注視点とが一致しているとは限らない。また、対象物との距離を測定する測定機構により得られる測定距離が、対物レンズの軸上の対象物に限定されるとも限らない。したがって、ユーザの視点が置かれた対象物と、測定距離の対象となった測距対象物とが異なり、対象物と測距対象物との距離の差が自動焦点調整機能の視度変化を超えると、上記で説明したような問題が発生すると考えられる。そのような事態が発生すると、ユーザは良好な視野が得られるように、拡大鏡の向きや位置を動かして焦点を合わせる作業が必要になる。また、筆記具などに焦点が合わないように、拡大鏡の向きをかえて不自然な姿勢で、ノートなどの被写体を見ないといけない場合も考えられる。
【0011】
さらに、プレゼンテーションあるいは講義を受けるときは、遠方のスクリーンや黒板と、手元の書類や机とを見る動作を繰り返すことになるが、拡大鏡を手元に動かしたときに近距離の焦点が定まりにくいので、遠方に対して近傍の視野が得られ難いという問題も発生する。ユーザの視点を完全にトレースし、それにあわせて、完全に雑音が入らないように自動的にかつ迅速に焦点を制御できる制御機構を設ければ、この問題を解決することも可能である。しかしながら、そのような制御機構は高価となり経済的でなく、ユーザが無理なく装着できるように小型化および軽量化することも難しい。
【0012】
そこで、本発明においては、近距離を見る際に、対象物までの微小な距離の変化により頻繁に焦点を自動調節するのではなく、逆に自動調整の感度、すなわち、自動調節する指標となる視度変化あるいは測定距離の逆数に対する感度をむしろ下げる制御方法を提供する。すなわち、本発明の光学系の制御方法は、視覚を補助する焦点可変型の光学系と、光学系の焦点を自動調節する焦点制御機構とを有する装置の制御方法であって、光学系の焦点を自動調節する対象物との距離が短いと判断すると、光学系の焦点調節の動きを抑制するように焦点制御機構の自動調節の感度を下げる焦点制御工程を有する。したがって、本発明の焦点制御工程では、光学系の焦点を自動調節する対象物との距離が短いと判断すると対象物までの距離の変動に対して自動調節の頻度を下げ、頻繁に、あるいはユーザの意図に反して焦点が変動することを防止する。
【0013】
また、本発明においては、視覚を補助する焦点可変型の光学系の焦点を自動調節する焦点制御手段と、光学系の焦点を自動調節する対象物との距離が短いとの判断により、光学系の動きを抑制するように焦点制御手段の自動調節の感度を下げる感度制御手段とを有する制御装置を提供する。この制御装置は、光学系の焦点を自動調節する対象物との距離が短いと判断すると対象物までの距離の変動に対して自動調節の頻度を下げることができる。したがって、この制御装置と、この制御装置により制御される焦点可変型の光学系とを有する光学装置により、近距離を見る場合でも、疲労感を感じずに良好な視覚を得ることができる光学装置を提供できる。
【0014】
本発明の制御方法は、視覚を補助する焦点可変型の光学系の焦点を自動調節する焦点制御機構を有する装置を制御するプログラムであって、光学系の焦点を自動調節する対象物までの距離が短いと判断すると、光学系の動きを抑制するように焦点制御機構の自動調節の感度を下げて、対象物までの距離の変動に対して焦点を自動調節する頻度を下げる焦点制御工程を実行させる命令を有するプログラムあるいはプログラム製品として提供することができ、制御装置がCPUなどのプログラムで稼動する制御機構を備えている場合は、ROMなどの記録媒体に記憶して提供することにより、本発明の制御装置として機能させることができる。
【0015】
光学系の焦点を自動調整する対象物との距離が短いと判断する方法は、いくつか考えられる。たとえば、近くを見るときは光学系を下に向けるので、光学系の向いた角度である程度判断できる可能性がある。また、近くを見るときは視点が下を向くので、視点を完全にトレースしなくても、ユーザの眼球の動きをラフにトレースするだけでも判断できる可能性がある。しかしながら、下を覗き込むなどの例外もあり、姿勢や眼球の動きをラフにトレースするだけで距離を判断するのでは、日常のさまざまな状況に合わせて距離を的確に判断できない可能性がある。
【0016】
したがって、焦点を自動調節するために定期的に距離が測定されるので、その測定された距離が短いときに自動調整の感度を下げることが好ましい。すなわち、焦点制御工程は、対象物と予想される物との測定距離を得る測定工程と、測定された距離が短いときに自動調整の感度を下げる感度制御工程(近距離モード)とを備えることが望ましい。また、焦点制御手段は、対象物と予想される物までの測定距離を得る測定手段と、測定された距離が短いときに自動調整の感度を下げる感度制御手段とを備えていることが望ましい。これにより、適切に、かつ確実に近距離においてもユーザを疲れさせない良好な視力が得られる光学装置を提供できる。
【0017】
感度制御工程あるいは手段は、測定距離が設定値より短いときに、選択され、そのときに、予め設定された目標距離に対して光学系の焦点を自動調節するようにできる。目標距離は、感度制御工程あるいは手段の使用の要否を選択する際に設定することができる。また、感度制御工程あるいは手段の使用を選択しなければ、近距離における自動焦点制御の感度を維持することができ、近距離においても視点が頻繁に移動する作業に適した制御方法および制御装置を提供できる。
【0018】
また、焦点を制御する際に、光学系の焦点を自動調節するタイミングを測定距離に基づく視度変化により判断する場合は、感度制御する際に、自動調整を行う視度変化の目標値を測定距離により変えるようにしても良い。目標値は、測定距離の関数で与えることが可能であり、測定距離に対してほぼ連続的に目標値を変えたり、測定距離によって数段階に目標値を変えたりすることができる。
【0019】
さらに、本発明の光学系の制御方法および制御装置においては、感度制御する際に、測定距離が一定時間変動しないときに視度変化の目標値を大きくすることにより、読書や文書作成などの近距離で視点の動きが少ない作業に適した感度となるように光学装置を制御できる。
【0020】
【発明の実施の形態】
図1に、本発明の光学装置1を示してある。この光学装置1は、眼鏡2のフレーム3に搭載されてユーザ9の眼の近傍に装着される光学ユニット10と、光学ユニット10とケーブル6で接続されたインターフェイスユニット5とを備えている。光学ユニット10は、眼鏡2と一体になり、その前方に保護カバー4が取付けられており、ユーザ9は眼鏡2を装着して使用するのと同じ感覚で本例の光学装置1を使用できる。
【0021】
図2に、本例の光学装置1の概略構成を示してある、光学ユニット10には、対物レンズ21をモータ22により移動して焦点を調整できる焦点可変型の光学系20と、この光学系20の焦点を対物レンズ21がターゲットする物(対象物、以下ターゲット)との距離により自動調節する制御ユニット30と、ターゲットまでの測定距離を得るために赤外線を出力するLED41と、ターゲットで反射して赤外線を捉えて測距用のデータを取得するセンサ42とが内蔵されている。一方、インターフェイスユニット5には、光学ユニット10に内蔵された自動焦点用の機構や、制御ユニット30を駆動するための電力を供給するバッテリ51と、光学ユニット1を適切に用いるために幾つかの設定を行うスイッチングユニット52とを備えている。光学ユニット10をサイズダウンするために制御ユニット30をインターフェイスユニット5に収納することも可能である。
【0022】
図3および図4を参照して光学ユニット10について説明する。光学ユニット10は、眼鏡2のフレーム3に取付けられたレンズ3aとほぼ同じサイズの全体がほぼ四角箱形のハウジング11を有し、このハウジング11の中に、光学系20および制御ユニット30が収納されている。図3に示すように、ハウジング11の表面11aは、光学系20の対物レンズ21に通じる入射窓12と、測定センサ42に通じる窓13と、赤外線LED41の射出窓14が形成されている。また、図4に示すように、ハウジング11の裏面側11bには、ハウジング11からユーザ9の眼の方向に向ってアイピース15が突き出ており、そのアイピース15に光学系20の接眼レンズ28が収納されている。また、アイピース15の周囲に光学ユニット10を眼鏡2のフレーム3に取付けるためのドッキングインターフェイス(取付け孔)17が設けられている。
【0023】
図5に、光学ユニット10を水平に切った断面を示してある。また、図6に、光学ユニット10のハウジング11の裏面11bを外した状態を示してある。ハウジング11の表面11aに設けられた入射窓12から入力した外光8は、ミラー24aにより反射されて光学系20に入る。さらに、外光8は、対物レンズ21を通過し、ミラー24bおよび24cにより立体的に向きが変えられ、アイピース15の接眼レンズ28を通り、ユーザ9の眼に入力される。対物レンズ21は、モータ22と連結機構23を介して繋がっており、モータ22を制御ユニット30から駆動することにより光学系20の焦点距離を変えることができる。
【0024】
図2に戻って、制御ユニット30の概略構成について説明する。この制御ユニット30は、測距センサ42からのデータに基づきターゲットまでの距離(測定距離)を演算する測定回路31と、測定距離φ1に基づきモータ駆動回路25を介して光学系20の焦点距離を自動調整する焦点制御ユニットとして機能するマイクロコンピュータ32と、マイクロコンピュータ32のプログラム34および設定値35などが記憶されたメモリ33とを備えている。マイクロコンピュータ32は、光学系20の焦点を自動調節するタイミングを測定距離φ1に基づく視度変化により判断するサンプリング機能54と、測定距離φ1が短いときに自動調整の感度を下げて近距離モードにする感度制御機構55と、それらからの指示に基づいて焦点を自動調整する値を算出して光学系20に自動調整の指示を出す焦点制御機構56として機能する。
【0025】
さらに、インターフェイスユニット5のスイッチングユニット52の指示により感度制御機構55を使用するか否かを設定する近距離モード選択機能57と、近距離モードにおいて焦点を固定する場合は、その焦点距離(目標距離)をスイッチングユニット52の指示により設定する距離設定機能58とを備えている。近距離モードの選択と、近距離モードにおける目標距離は、設定値35としてメモリ33に記憶される。
【0026】
感度制御機構55は、幾つかの方法により近距離モードに移行することが可能であり、移行する方法はユーザがインターフェイスユニット5により選択することができる。
【0027】
第1の方法は、測定距離φ1が設定値φsより短いときに自動調整の感度を下げて近距離モードに移行する方法である。さらに、この第1の移行方法において、近距離モードに移行したときに焦点距離を固定する固定焦点モードにする方法と、近距離モードに移行したときに視度変化の設定値を大きくして自動焦点の感度を下げる重み係数変化モードにする方法とがある。
【0028】
固定焦点モードにおいては、サンプリング機能54がマスクされる。さらに、重み係数を固定にするか、測定距離φ1の関数とする選択も可能である。固定焦点モードは重み係数を無限大にした場合に相当する。
【0029】
また、第2の方法としては、自動的に焦点距離を制御する視度変化の量を測定距離φ1の関数として与え、サンプリング機能54が出力するタイミングを連続的に変化させることが可能である。ユーザに違和感のない適当な関数が設定できれば、遠距離から近距離において焦点制御条件に断続性のないシームレスな視野環境を提供できる。
【0030】
第3の方法としては、測定距離φ1が設定値φsより短く、サンプリング機能54において、一定時間、有意な視度変化がなかったときに、近距離モードに移行することが可能である。この方法であると、ユーザの作業環境を考慮したモード移行が行える。
【0031】
図7に固定焦点モードの制御の一例をフローチャートで示してある。図7に示した方法では、一定の視度変化があると焦点を自動調整する通常のモードとされる(以下、基本モードA)と、近距離を見る状態になると、焦点を固定する近距離モードBとが自動的に切り替わる。ステップ61で、測定回路31により距離φ1が得られる。ステップ62で、その測距距離φ1が設定値φs、この例では50cm以上の遠距離であれば、ステップ63において、光学系20は、焦点制御機構56により基本モードA(通常モード)でフォーカス駆動される。
【0032】
一方、ステップ62で、測定距離φ1が50cm未満の近距離であれば、ステップ64において近距離モードの要否を選択できる。このステップ64において、例えば、インターフェイスユニット5のスイッチングユニット52に含まれる焦点固定ボタンを、押すことにより近距離モード選択機能57がアクティブとなり、近距離モードに移行できる状態となる。同時に、本例では距離設定機能58もアクティブとなり、ステップ65において、そのときの測定距離φ1が近距離固定値(目標距離)φcとしてメモリ33に設定される。それと共に、ステップ66で、焦点制御機構56により光学系20は、その近距離固定値にフォーカス駆動される。一方、ステップ64において、近距離モードが必要ないと判断されれば、測定距離φ1に関係なく基本モードAで光学系20は制御される。
【0033】
一旦、近距離モードBが必要であると設定されると、その後は、測定距離φ1が設定値φs以下になると近距離モードBに移行し、測定距離φ1が設定値φsを超えると基本モードAに移行するという制御が行われる。すなわち、ステップ67で得られた測定距離φ1がステップ68で50cmより大きいと判断されると、焦点制御機構56はステップ69で測定距離φ1に応じた焦点制御を行う(基本モードA)。一方、ステップ68で、測距距離φ1が50cm以下の近距離であると判断されると、ステップ70で感度制御機構55により測定距離は予め設定された近距離固定値(目標距離)φcに固定され、焦点制御機構56は近距離固定値φcにより、ステップ71で光学系20をフォーカス制御する(近距離モードB)。これにより、ユーザ9は、光学ユニット10を介して、近距離では、測距センサがターゲットとして近距離内の何を捉えようが、ステップ65で設定された近距離固定値φcに焦点があった良好な視覚を得ることができる。
【0034】
この例では、希望の50cm以下の近距離を目視して、焦点固定ボタンを押すと、その距離が記憶され、同時にピッという確認音が鳴り、近距離モードが使用可能となる。近距離モードが必要なくなったときは、再び固定焦点ボタンを押すと、近距離固定値φcがリセットされ、ピッピッという確認音が鳴る。したがって、希望固定距離を変えたい場合は、新しい希望距離を目視し、再び焦点固定ボタンを押すことで、簡単に設定を変えることができる。
【0035】
近距離モードBに移行する必要がなくなったときは、インターフェイスユニット5の電源スイッチを一旦オフにすることで設定を解除しても良い。また、設定を解除するためのスイッチを別途設けておいても良い。この制御方法を採用した光学装置1では、ユーザ9は、姿勢を変えずに、光学ユニット10により、ユーザが見たい近距離の被写体に簡単にすばやく焦点を設定することができ、その後は、近距離を見たいときは自動的にその距離に焦点が合う。このため、その都度、適当な焦点が得られる角度あるいは位置に光学ユニット10を動かすという煩わしさを伴わず、近距離の明確な視野を得ることができる。
【0036】
したがって、遠距離から近距離を繰り返し見るような作業、例えば、講習会やプレゼンテーションにおいて疲労感を感じずに光学装置1を使用できる。また、手や、ペンなどが測距センサ42の視野に入っても焦点が動かないので、読書や、筆記作業も快適に行うことができる。さらに、手術に光学装置1を使用するときも、手術道具や自他の手の動きに惑わされることなく所望の位置に光学装置1の焦点を合わせておくことができるなど、本発明の光学装置1の利用範囲は広い。
【0037】
さらに、近距離モードBの要否を電源スイッチで設定することも可能である。すなわち、ステップ61で電源スイッチを入れたときに測定された距離が近距離であるときは、ステップ64で近距離モードが要求されると判断し、その測定距離をステップ65で近距離固定値φcとして設定するようにしても良い。この場合は、遠距離、例えば50cmを超えるターゲットを目視して電源をオンすると、基本モードAだけが有効になり、近距離、例えば50cm以下を目視して電源をオンすると近距離モードBも有効になる。
【0038】
図8に重み係数Gを測定距離により変える制御方法をフローチャートにより示してある。この方法は、使用者9が、近距離、例えば50cm以下を目視し、かつある一定時間目視距離を変えなかったとき、以下の重み係数Gを加えた式(1)を使用し、焦点合わせを行うタイミングを制御する。すなわち、近距離では視度変化あるいは自動焦点制御においては視度変化として用いられる測定距離φ1の逆数に対する自動焦点の制御を行う感度を低く、鈍くなるようにしている。
【0039】
1/Δφ1=0.05×G(φ1) (G≧1)・・・(1)
1/Δφ1は視度変化であり、焦点制御機構56において直前の焦点合わせに用いられた測定距離をφ1´とすると以下の式(2)で表される。
【0040】
1/Δφ1=|1/φ1´−1/φ1| ・・・(2)
すなわち、式(1)は、測定距離φ1の逆数を視度変化(1/Δφ1)として使用し、その視度変化が目標値になると自動的に焦点を調整することを示している。基本モードAでは重み係数Gを1として視度変化が0.05以上になったときに自動的に光学系20の焦点を調整する。
【0041】
一方、測定距離φ1が設定値φs以下の近距離モードBになると、重み係数Gを例えば3にセットする。これにより、近距離モードBでは、視度変化の目標値が基本モードAの3倍となり、自動焦点調節の感度が低下する。重み係数Gを無限大にセットすれば、上記と同じ固定焦点モードになる。また、重み係数Gを測定距離φ1の連続的な関数として定義すれば、近距離モードBと基本モードAとは境界なくシームレスに移行する。
【0042】
さらに、図8に示した制御方法では、近距離において、一定時間、視度が変化しなかったときに近距離モードBに移行するようにしている。これにより、使用者9が新聞や本を読む作業を開始すると近距離モードBに移行し、さらに、近距離モードBにおいてもある程度の焦点調節が行われる。したがって、字を常に追い焦点面が数cmだが頻繁に変わる状況において有用である。
【0043】
先ず、光学装置10のスイッチ28を入れた直後の、ステップ81では、重み係数Gは1にセットされる。次に、ステップ82で感度制御機構55は、マイクロコンピュータ32内のタイマーをリセットし、ステップ83でカウントダウンを開始する。ステップ84で、測距センサ42および測距回路31により距離φ1を測定する。測定距離φ1が、50cmを超えていれば遠距離用の基本モードAと判断し、重み係数Gを1にリセットし、ステップ87で光学系20をフォーカス駆動し焦点をあわせる。そして、ステップ82へ戻り、タイマーをリセットする。
【0044】
一方、ステップ85で、測定距離φ1が50cm以下の場合には、ステップ89で測距距離φ1がメモリ33に保存され、ステップ90では、測定距離φ1に基づいて光学系20はフォーカス駆動される。ステップ91でカウントしていたタイマーがタイムアップにならなければ、ステップ84へ戻り、距離測定と自動焦点調整とを繰り返し行う。この間、重み係数Gは変わらないので、サンプリング機構54においては、測定距離φ1が近距離になった当初は重み係数Gが1で焦点を調節するタイミングが得られ、以下のように所定の時間が経過した後は、重み係数Gは3となって感度が低下した状態で焦点を調節するタイミングが得られる。
【0045】
ステップ91で、測定距離φ1が近距離の状態で所定の時間が経過すると、ステップ92で、現在の測距距離φ1と、過去の測距距離を比較する。ステップ93で、測定距離φ1の差が有意であれば、ステップ94で感度制御機構55は、重み係数Gを大きくして、自動焦点調整の感度を低下させる。これにより、以降は、近距離モードBでステップ90においてはフォーカス駆動される。一方、ステップ93で、測定距離φ1が近距離であっても、測定時間中の変動が大きく、その差が有意であると判断されるとステップ94はスキップされ、重み係数Gは変わらない。
【0046】
近距離モードBに以降して、重み係数Gが3になると、基本モードAでは、測定距離φ1の中心距離20cmのとき、わずか±2cmの測定距離の変化があるだけで、レンズ21が移動(焦点調整)していたものが、中心距離が20cmのとき、測定距離φ1が約±6cmの変化に対してはレンズ21が移動せず、それ以上の測定距離φ1の変化があったときだけ焦点調整をする。したがって、ユーザ9の目的の被写体(ターゲット)の焦点面が変わらない状況においては、その目的面に常に焦点を固定できる。例えば、机の上に置いたノートを目的面とすると、ユーザ9とノート(目的面)の間に見え隠れする、筆記具やユーザ9の手を、目的面(焦点を調整するポイント)として認識せずに済む。このため、ユーザ9は、頻繁にピントが変わることなく、見たいもの(ここではノート)にピントが合う。一方、遠方の黒板を見た場合には、重み係数Gが1にリセットされて基本モードAに移行し、黒板にピントが合うようにフォーカシングされる。
【0047】
重み係数Gは、ユーザ9の視力、使用環境、被写体などを考慮し、最適になるように定めることができる。したがって、使用環境が変わる場合には、ユーザ9は、この近距離モードに移行しないようにセットしても良いし、重み係数Gを異なる値に設定しても良い。重み係数G=1を測定距離φ1に対して一定とすれば、実質的には近距離モードには移行しない。
【0048】
また、近距離モードに移行する際に、タイマーを用いる方法であれば、使用者9が手元の本などの字を常に追い焦点面が数cmだが頻繁に変わる状況では、近距離モードに移行せず瞬時にかつ正確な焦点合わせを行わせることができる。一方、使用者9が、机の上で書き物をするような、目的焦点面が変わらない状況においては、重み係数Gを変えることにより、その目的面に常に焦点を固定できる。その一方で、重み係数Gを変える方法であれば、近距離モードにおいても適度な間隔で自動的に焦点は調整される。したがって、動きは遅いが焦点が変わるような作業には好適である。
【0049】
なお、本例では、弱視者用の拡大鏡として利用されるのに適した単眼の光学装置1を例に説明しているが、手術用など他の用途の光学装置においても本発明は適用できる。また、本発明は、複眼用の光学装置においても適用できる。さらに、本発明の自動焦点の制御方法は、マイクロコンピュータ32を制御するプログラム34あるいはファームウェアとして提供することが可能であり、光学ユニット10のハードウェア資源を特に変えずに、プログラム34を更新することにより本発明を適用することができる。したがって、適当なROMなどの適当な記録媒体に、上記のような処理を実行可能な本発明にかかるプログラムまたはプログラム製品を記録して提供することにより本発明の制御方法を適用した光学装置を得ることが可能であり、極めて低コストで本発明を実施できる。本発明に係るプログラムは、インターネットなどのコンピュータネットワークを介して提供することも可能である。
【0050】
このように、本発明においては、近距離を見る際に、焦点を自動調節する機構の感度を一定に保って、ターゲットまでの距離の変動に対して頻繁に焦点を自動調整するのではなく、逆に感度を下げて、ターゲットまでの距離の変動に対して頻繁には自動調整しない制御方法を提供することで、高額で巨大化するハードウェアを導入してユーザ9の視点(注視点)を完全にトレースしなくても、近距離においてユーザが十分に満足しえる視野環境を提供できる。このため、低コストで軽量な光学装置により、近距離においても、ユーザ9に疲労感を与えずに常に良好な視覚を与えることが可能となる。
【0051】
【発明の効果】
以上に説明したように、本発明の制御装置および光学装置は、近距離を見る際に、対象物までの距離の変動に対して頻繁に焦点を自動調節するのではなく、逆に、光学系の焦点を自動調節する対象物との距離が短いと判断すると自動調節の感度を下げて、対象物までの距離の変動に対して頻繁には自動調整を行わない焦点制御工程を設けることにより、近距離においてもユーザに疲労感を与えずに、常に良好な視野を確保可能な光学装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る光学装置を装着した状態を示す図である。
【図2】光学装置の概略構成を示す図である。
【図3】光学ユニットを正面から見た斜視図である。
【図4】光学ユニットを背面から見た斜視図である。
【図5】光学ユニットの構成を示す断面図である。
【図6】光学ユニットの背面のハウジングを外した状態を示す模式図である。
【図7】近距離モードにおいて焦点を固定する制御方法を示すフローチャートである。
【図8】近距離モードにおいて重み係数を変える制御方法を示すフローチャートである。
【図9】視度変化により焦点を自動調整する様子を説明するための表である。
【符号の説明】
1 光学装置
9 ユーザ(装着者)
10 光学ユニット
11 ハウジング
20 光学系
21 対物レンズ
28 接眼レンズ
30 制御ユニット
Claims (18)
- 視覚を補助する焦点可変型の光学系と、前記光学系の焦点を自動調節する焦点制御機構とを有する装置の制御方法であって、
前記光学系の焦点を自動調節する対象物との距離が短いと判断すると、前記光学系の焦点調節の動きを抑制するように前記焦点制御機構の自動調節の感度を下げる焦点制御工程を有する制御方法。 - 請求項1において、前記焦点制御工程は、前記対象物と予想される物までの測定距離を得る測定工程と、測定された距離が設定値より短いときに前記焦点制御機構の自動調節の感度を下げる感度制御工程とを備えている、制御方法。
- 請求項2において、前記感度制御工程では、前記焦点制御機構により、予め設定された目標距離に前記光学系の焦点を調節する、制御方法。
- 請求項3において、前記感度制御工程の使用の要否を選択する工程と、
前記目標距離を設定する工程とをさらに有する、制御方法。 - 請求項2において、前記焦点制御機構は、前記光学系の焦点を自動調節するタイミングを前記測定距離に基づく視度変化により判断し、
前記感度制御工程では、前記自動調節を行う前記視度変化の目標値を前記測定距離により変える、制御方法。 - 請求項5において、前記感度制御工程では、前記測定距離が一定時間変動しないときに前記視度変化の目標値を大きくする、制御方法。
- 請求項1において、前記焦点制御工程では、前記対象物までの距離の変動に対して前記焦点制御機構の自動調節の頻度を下げる、制御方法。
- 視覚を補助する焦点可変型の光学系の焦点を自動調節する焦点制御手段と、
前記光学系の焦点を自動調節する対象物との距離が短いとの判断により、前記光学系の動きを抑制するように前記焦点制御手段の自動調節の感度を下げる感度制御手段とを有する制御装置。 - 請求項8において、前記対象物と予想される物までの測定距離を得る測定手段をさらに有し、
前記感度制御手段は、測定された距離が設定値より短いときに前記焦点制御手段の自動調節の感度を下げる、制御装置。 - 請求項9において、前記感度制御手段は、前記焦点制御手段により、予め設定された目標距離に前記光学系の焦点を調節する、制御装置。
- 請求項10において、前記感度制御手段の使用の要否を選択する手段と、
前記目標距離を設定する手段とを有する制御装置。 - 請求項11において、前記光学系の焦点を自動調節するタイミングを前記測定距離に基づく視度変化により判断する手段を有し、
前記感度制御手段は、前記自動調節を行う前記視度変化の目標値を測定距離により変える制御装置。 - 請求項11において、前記光学系の焦点を自動調節するタイミングを前記測定距離に基づく視度変化により判断する手段を有し、
前記感度制御手段は、前記測定距離が設定値以下のときに前記自動調節を行う前記視度変化の目標値を大きくする制御装置。 - 請求項13において、前記感度制御手段は、前記測定距離が一定時間変動しないときに前記視度変化の目標値を大きくする制御装置。
- 請求項8において、前記感度制御手段は、前記対象物までの距離の変動に対して自動調節の頻度を下げる、制御装置。
- 請求項8ないし15のいずれかに記載の制御装置と、この制御装置により制御される焦点可変型の光学系とを有する光学装置。
- 視覚を補助する焦点可変型の光学系の焦点を自動調節する焦点制御機構を有する装置を制御するプログラムであって、
前記光学系の焦点を自動調節する対象物との距離が短いと判断すると、前記光学系の動きを抑制するように前記焦点制御機構の自動調節の感度を下げる焦点制御工程を実行させる命令を有するプログラム。 - 請求項17において、前記焦点制御工程では、前記対象物までの距離の変動に対して前記焦点制御機構の自動調節の頻度を下げる、プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107678A JP4322539B2 (ja) | 2003-04-11 | 2003-04-11 | 光学系の制御方法および制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003107678A JP4322539B2 (ja) | 2003-04-11 | 2003-04-11 | 光学系の制御方法および制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004317555A JP2004317555A (ja) | 2004-11-11 |
JP4322539B2 true JP4322539B2 (ja) | 2009-09-02 |
Family
ID=33469445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003107678A Expired - Fee Related JP4322539B2 (ja) | 2003-04-11 | 2003-04-11 | 光学系の制御方法および制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4322539B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4591120B2 (ja) * | 2005-03-07 | 2010-12-01 | カシオ計算機株式会社 | 撮像装置、オートフォーカス制御方法、及びオートフォーカス制御プログラム |
JP2018105974A (ja) * | 2016-12-26 | 2018-07-05 | ソニー株式会社 | 手術用ルーペ |
-
2003
- 2003-04-11 JP JP2003107678A patent/JP4322539B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004317555A (ja) | 2004-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220339055A1 (en) | Vision training device | |
JP4155343B2 (ja) | 二つの光景からの光を観察者の眼へ代替的に、あるいは同時に導くための光学系 | |
US9465237B2 (en) | Automatic focus prescription lens eyeglasses | |
JP6461425B2 (ja) | 映像投影機能付き眼鏡 | |
CN103499885B (zh) | 成像装置和方法 | |
JP6048673B2 (ja) | 多焦点レンズを有するビューア、および、ビューアの焦点距離変更方法 | |
US20050174470A1 (en) | Head-mounted camera | |
WO2004061519A1 (ja) | ヘッドマウントディスプレイ | |
WO2008081973A1 (ja) | ヘッドマウントディスプレイ | |
CN108700745A (zh) | 一种位置调整方法及终端 | |
JP2013174708A (ja) | ヘッドマウントディスプレイ、輝度調整方法、及び制御プログラム | |
JP4322539B2 (ja) | 光学系の制御方法および制御装置 | |
JP2004101197A (ja) | 携帯型位置情報伝達装置及びナビゲーション方法 | |
JP3843951B2 (ja) | 画像表示装置 | |
KR100846355B1 (ko) | 두부 장착식 디스플레이 장치의 시력 보조 방법 및 그 두부장착식 디스플레이 장치 | |
JPH11161188A (ja) | 頭部装着型表示装置 | |
JP2005286927A (ja) | 透過式頭部搭載表示装置 | |
KR20170095885A (ko) | 사용자에게로 감각 출력 디바이스의 감각 출력 모드를 적응시키는 방법 | |
US6972903B2 (en) | Visual aid | |
US11662574B2 (en) | Determining gaze depth using eye tracking functions | |
WO2022209159A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP4747575B2 (ja) | 情報表示装置 | |
JP4379438B2 (ja) | 画像表示装置 | |
WO2006057227A1 (ja) | 映像表示装置 | |
JPH09243956A (ja) | 頭部装着型表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090603 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150612 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |