JP4321540B2 - Object detection device - Google Patents

Object detection device Download PDF

Info

Publication number
JP4321540B2
JP4321540B2 JP2006095382A JP2006095382A JP4321540B2 JP 4321540 B2 JP4321540 B2 JP 4321540B2 JP 2006095382 A JP2006095382 A JP 2006095382A JP 2006095382 A JP2006095382 A JP 2006095382A JP 4321540 B2 JP4321540 B2 JP 4321540B2
Authority
JP
Japan
Prior art keywords
light
phase
charge
accumulation
accumulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006095382A
Other languages
Japanese (ja)
Other versions
JP2007271373A (en
Inventor
勇 高井
武男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006095382A priority Critical patent/JP4321540B2/en
Publication of JP2007271373A publication Critical patent/JP2007271373A/en
Application granted granted Critical
Publication of JP4321540B2 publication Critical patent/JP4321540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は物体検出装置に係り、特に、受光量に応じた信号を電荷として蓄積し、物体検出及び物体検出のための情報の出力の少なくとも一方を行う物体検出装置に関する。   The present invention relates to an object detection apparatus, and more particularly to an object detection apparatus that accumulates a signal corresponding to the amount of received light as an electric charge and performs at least one of object detection and information output for object detection.

従来より、検出範囲に光を照射し、検出範囲内に存在する物体で反射された光を2次元のイメージセンサで受光し、光を反射した物体との距離によって相違する受光光の位相を各画素毎に検出することで、物体との距離を演算・出力したり、検出範囲内の画像を距離レンジ毎に生成・出力することが可能な距離画像センサが知られている。この距離画像センサは、受光光の位相検出のために、光源を一定周期で一定時間発光させることを繰り返す強度変調を行うと共に、受光光を受光器で光電変換することによって得られる受光信号を電荷蓄積手段に電荷として蓄積することを、光源の発光タイミングに対する位相が互いに異なる複数種の期間について各々行い、各期間に蓄積された電荷量に基づいて受光光の位相を検出する構成となっている(例えば特許文献1を参照)。   Conventionally, the detection range is irradiated with light, the light reflected by an object existing within the detection range is received by a two-dimensional image sensor, and the phase of the received light varies depending on the distance from the reflected object. 2. Description of the Related Art A distance image sensor is known that can calculate and output a distance from an object by detecting each pixel and generate and output an image within a detection range for each distance range. In order to detect the phase of the received light, this distance image sensor performs intensity modulation by repeatedly causing the light source to emit light for a fixed period of time and charges the received light signal obtained by photoelectrically converting the received light with a light receiver. Accumulation as charge in the accumulation means is performed for each of a plurality of periods having different phases with respect to the light emission timing of the light source, and the phase of the received light is detected based on the amount of charge accumulated in each period. (For example, refer to Patent Document 1).

また特許文献2には、上記の距離画像センサにおいて、感光部で生成された電荷のうち信号電荷として使用されない残留電荷を廃棄することで、信号電荷への雑音成分の混入を抑制し、空間情報を高S/N比で検出することを可能とする技術が開示されている。
特開2004−45304号公報 特開2004−356594号公報
In Patent Document 2, in the distance image sensor described above, residual charges that are not used as signal charges out of the charges generated in the photosensitive portion are discarded, so that noise components are prevented from being mixed into the signal charges, and spatial information is obtained. Has been disclosed that makes it possible to detect a high S / N ratio.
JP 2004-45304 A JP 2004-356594 A

本願発明者等は、既存の距離画像センサを用いて物体との距離を計測させる実験を行った。その結果、特に検出対象の物体が距離画像センサから近接した位置に存在している場合に、物体との距離が計測不能となったり、計測精度が極端に低下することが明らかとなった。これは、検出対象の物体との距離が小さい場合、発光器から射出され検出対象の物体で反射されて受光器に入射される反射光の強度が過大となるために、イメージセンサの一部の受光セルで蓄積電荷量の飽和が生ずるためであると推察される。蓄積電荷量の飽和が生じた受光セルでは、受光強度と蓄積電荷量の関係が崩れる(受光強度に比して実際の蓄積電荷量が小さくなる)ので、蓄積電荷量から物体との距離を演算した場合の演算精度も低下することになる。   The inventors of the present application conducted an experiment for measuring a distance to an object using an existing distance image sensor. As a result, it has been clarified that the distance to the object cannot be measured or the measurement accuracy is extremely lowered particularly when the object to be detected is present at a position close to the distance image sensor. This is because when the distance to the object to be detected is small, the intensity of the reflected light that is emitted from the light emitter, reflected by the object to be detected, and incident on the light receiver becomes excessive. This is presumably because the stored charge amount is saturated in the light receiving cell. In the light receiving cell where the accumulated charge amount is saturated, the relationship between the received light intensity and the accumulated charge amount is broken (the actual accumulated charge amount is smaller than the received light intensity), so the distance from the object is calculated from the accumulated charge amount. In this case, the calculation accuracy is also lowered.

また、蓄積電荷量の飽和を防止するために、イメージセンサの感度を低下させたり、電荷蓄積手段の容量を増大させることも考えられる。しかし、物体からの反射光の強度は物体との距離が大きくなるに従って低下するので、イメージセンサの感度を低下させた場合には、比較的遠方に存在している物体の検出精度が低下するという問題が生じ、また電荷蓄積手段の容量を増大させた場合には、装置構成の複雑化、コストの増大を招くという問題が生ずる。   It is also conceivable to reduce the sensitivity of the image sensor or increase the capacity of the charge storage means in order to prevent saturation of the stored charge amount. However, the intensity of the reflected light from the object decreases as the distance to the object increases, so if the sensitivity of the image sensor is reduced, the detection accuracy of an object existing relatively far will be reduced. When a problem arises and the capacity of the charge storage means is increased, there arises a problem that the device configuration becomes complicated and the cost increases.

本発明は上記事実を考慮して成されたもので、物体からの反射光の強度に拘わらず物体を精度良く検出可能な物体検出装置を得ることが目的である。   The present invention has been made in consideration of the above facts, and an object of the present invention is to obtain an object detection apparatus that can accurately detect an object regardless of the intensity of reflected light from the object.

上記目的を達成するために請求項1記載の発明に係る物体検出装置は、発光強度を時間的に変化させながら発光する発光手段と、光の入射方向に交差する方向に沿って2次元に配列され、受光量に応じた受光信号を出力する複数の受光手段と、前記複数の受光手段の各々に対応して複数設けられた電荷蓄積手段と、前記受光手段から出力される受光信号を、前記発光手段の発光周期よりも短くかつ前記発光手段の発光タイミングに対する位相が一定の蓄積期間に、前記電荷蓄積手段へ電荷として所定回蓄積させることを、前記位相が互いに異なる複数種の蓄積期間について各々行わせ、前記電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行う検出手段と、前記位相の異なる蓄積期間に前記複数の電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させると共に、前記複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は前記特定位相での前記補正後の蓄積電荷量によって表される補正画像中に、第1の所定値以上の明度の領域が存在している場合に、前記特定位相の蓄積期間に前記電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させる制御手段と、を含んで構成されている。 In order to achieve the above object, an object detection apparatus according to a first aspect of the present invention is a two-dimensional array of light emitting means that emits light while changing the light emission intensity over time, and a direction that intersects the incident direction of light. by a plurality of light receiving means for outputting a light receiving signal corresponding to the amount of received light, a charge storage means provided in a plurality to correspond to each of the plurality of light receiving means, a light reception signal output from said light receiving means, wherein In the accumulation period that is shorter than the light emission period of the light emitting means and in which the phase with respect to the light emission timing of the light emitting means is constant, the charge accumulation means accumulates the charge as a predetermined number of times for each of a plurality of types of accumulation periods having different phases. Detecting means for performing at least one of object detection and information output for object detection on the basis of accumulated charge amounts for each of a plurality of types of phases in the charge storage means; and the phase Together is different from at least one of the luminous intensity and the charge storage times of said light emitting means when performing accumulation of charges to the plurality of charge storage means in a different storage period, accumulated charge at a particular phase in the plurality of charge storage means When a region having a lightness equal to or greater than a first predetermined value exists in the image represented by the amount or the corrected image represented by the accumulated charge amount after the correction in the specific phase, the specific phase Control means for reducing at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation when accumulating charges in the charge accumulating means during the accumulation period .

請求項1記載の発明では、発光手段が発光強度を時間的に変化させながら発光し、複数の受光手段は、光の入射方向に交差する方向に沿って2次元に配列され、受光量に応じた受光信号を出力する。なお受光手段は、発光手段から射出され物体で反射された光(反射光)を受光可能な位置・向きに配置される。また、請求項1記載の発明は、複数の受光手段の各々に対応して複数設けられた電荷蓄積手段を備えており、検出手段は、受光手段から出力される受光信号を、発光手段の発光周期よりも短くかつ発光手段の発光タイミングに対する位相が一定の蓄積期間に、電荷蓄積手段へ電荷として所定回蓄積させることを、前記位相が互いに異なる複数種の蓄積期間について各々行わせ、電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行う。 In the first aspect of the present invention, the light emitting means emits light while temporally changing the light emission intensity, and the plurality of light receiving means are arranged two-dimensionally along the direction intersecting the light incident direction, and according to the amount of light received. The received light signal is output. The light receiving means is arranged at a position / orientation where light (reflected light) emitted from the light emitting means and reflected by the object can be received. The invention according to claim 1 further comprises a plurality of charge storage means provided corresponding to each of the plurality of light receiving means, and the detection means outputs the light reception signal output from the light receiving means to the light emission of the light emitting means. The charge accumulating means causes the charge accumulating means to accumulate a predetermined number of times as charges in an accumulating period shorter than the cycle and having a constant phase with respect to the light emission timing, for each of a plurality of accumulation periods having different phases. At least one of object detection and information output for object detection is performed based on the accumulated charge amount for each of a plurality of types of phases.

発光手段から射出され物体で反射されて受光手段で受光される光の位相(発光手段の発光タイミングに対する位相)は、光を反射した物体との距離に応じて相違するので、上記のように、発光手段の発光周期よりも短くかつ発光手段の発光タイミングに対する位相が互いに異なる複数種の蓄積期間に、受光手段から出力される受光信号を電荷蓄積手段へ電荷として蓄積させることで、電荷蓄積手段における複数種の位相毎の蓄積電荷量が、受光した光の位相、すなわち光を反射した物体との距離に応じて相違することになる(例えば蓄積電荷量が最大となる位相や各位相での蓄積電荷量の比率等は、光を反射した物体との距離に応じて変化する)。これにより、複数種の位相毎の蓄積電荷量に基づいて、物体検出(例えば物体との距離の検出等)や物体検出のための情報(例えば複数種の位相毎の蓄積電荷量)の出力を行うことができる。   The phase of the light emitted from the light emitting means, reflected by the object, and received by the light receiving means (phase with respect to the light emission timing of the light emitting means) differs depending on the distance from the object that reflected the light. In the charge accumulation means, the light reception signals output from the light reception means are accumulated as charges in the charge accumulation means during a plurality of types of accumulation periods that are shorter than the light emission period of the light emission means and have different phases with respect to the light emission timing of the light emission means. The amount of accumulated charge for each of the multiple types of phases differs depending on the phase of the received light, that is, the distance from the object that reflected the light (for example, the phase where the accumulated charge amount is maximum or the accumulation at each phase) The ratio of the charge amount and the like vary depending on the distance from the object that reflects the light). Accordingly, output of object detection (for example, detection of distance from an object, etc.) and information for object detection (for example, accumulated charge amount for each of a plurality of types of phases) based on the accumulated charge amount for each of a plurality of types of phases. It can be carried out.

ところで、上記構成では受光手段が受光する光の強度が発光手段から射出された光を反射する物体との距離によって大きく変化するので、例えば物体との距離が小さい場合は受光手段が受光する光の強度が過大となり、電荷蓄積手段で蓄積電荷の飽和が生ずる恐れがある。また、これを回避するために発光手段における発光強度を低下させると、物体との距離が大きい場合に受光手段が受光する光の強度が過小となり、これに伴って電荷蓄積手段における蓄積電荷量も過小となることで物体の検出精度が低下するという問題がある。   By the way, in the above configuration, the intensity of the light received by the light receiving unit varies greatly depending on the distance from the object that reflects the light emitted from the light emitting unit. For example, when the distance from the object is small, the light received by the light receiving unit There is a possibility that the strength becomes excessive and the charge accumulation means saturates the accumulated charge. Further, if the light emission intensity in the light emitting means is reduced to avoid this, the intensity of light received by the light receiving means when the distance to the object is large becomes too small. There is a problem that the detection accuracy of the object is lowered due to being too small.

また、受光手段が受光する光の強度は、発光手段から射出された光を反射する物体との距離以外に、前記物体の光反射率によっても大きく変化し、発光手段の発光タイミングとの位相差(すなわち検出対象の物体の距離レンジ)に応じて発光手段の発光強度や電荷蓄積回数を一律に制御したとしても、発光手段から射出された光を反射する物体の光反射率によっては、電荷蓄積手段で蓄積電荷の飽和が生じたり、逆に蓄積電荷量が過小となる可能性がある。In addition, the intensity of the light received by the light receiving means varies greatly depending on the light reflectance of the object in addition to the distance from the object reflecting the light emitted from the light emitting means, and the phase difference from the light emission timing of the light emitting means. Even if the emission intensity of the light emitting means and the number of charge accumulations are uniformly controlled according to the distance range of the object to be detected, depending on the light reflectance of the object that reflects the light emitted from the light emitting means, the charge accumulation There is a possibility that the accumulated charge is saturated by the means, or the accumulated charge amount becomes excessively small.

これに対して請求項1記載の発明は、上記のように複数種の位相毎に電荷蓄積手段へ電荷を蓄積させる構成は、受光手段で受光される光の位相が物体との距離に応じて相違していることに基づくものであり、各位相での電荷蓄積が異なる距離レンジに存在する物体を検出対象としていることに着目し、制御手段により、位相の異なる蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させると共に、複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は特定位相での補正後の蓄積電荷量によって表される補正画像中に、第1の所定値以上の明度の領域が存在している場合に、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させている。On the other hand, according to the first aspect of the present invention, in the configuration in which charges are accumulated in the charge accumulating means for each of a plurality of types of phases as described above, the phase of the light received by the light receiving means depends on the distance from the object. Focusing on the fact that the charge accumulation in each phase is the object to be detected based on the difference, the control means applies the charge accumulation means to the charge accumulation means during the accumulation periods with different phases. At least one of the light emission intensity of the light emitting means and the number of charge accumulations during charge accumulation is made different, and an image represented by the accumulated charge amount in a specific phase in a plurality of charge storage means or after correction in a specific phase Light emitting means for accumulating charges in the charge accumulating means during the accumulation period of the specific phase when the correction image represented by the accumulated charge amount includes a lightness area equal to or greater than the first predetermined value. Light emission And reducing at least one of the degrees and the charge storage times.

これにより、個々の位相の蓄積期間に電荷蓄積手段へ電荷を蓄積する場合の発光手段の発光強度(に応じて変化する受光手段の受光強度)及び電荷蓄積回数の少なくとも一方を、個々の位相の電荷蓄積で検出対象とする物体の距離レンジに応じて最適化することが可能となり、個々の位相での電荷蓄積において、検出対象の物体の距離レンジによって蓄積電荷の飽和が生じたり蓄積電荷量が過小となることを防止することが可能となる。また、特定位相での電荷蓄積における検出対象の距離レンジ内に、光反射率が高い高反射率物体が存在しているために、複数の受光手段のうち高反射率物体で反射された光を受光する一部の受光手段における受光強度が過大となり、対応する電荷蓄積手段で蓄積電荷の飽和が生ずるか、飽和に近い状態になった場合にも、この状態が前記特定位相の画像又は補正画像中に存在している第1の所定値以上の明度の領域として検知され、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方が減少される。Accordingly, at least one of the light emission intensity of the light emitting means (the light receiving intensity of the light receiving means that changes according to the light intensity) and the number of charge accumulations when the charge is accumulated in the charge accumulating means during the accumulation period of each phase is determined. It is possible to optimize according to the distance range of the object to be detected by charge accumulation, and in charge accumulation in each phase, the accumulated charge is saturated or the accumulated charge amount is different depending on the distance range of the object to be detected. It is possible to prevent the occurrence of being too small. In addition, since there is a highly reflective object with high light reflectance within the distance range of the detection target in charge accumulation at a specific phase, light reflected by the highly reflective object among the plurality of light receiving means Even when the received light intensity at a part of the light receiving means that receives light becomes excessive and the corresponding charge storage means is saturated or close to saturation, this state is the image of the specific phase or the corrected image. At least one of the emission intensity of the light emitting means and the number of charge accumulations when the charge is accumulated in the charge accumulating means during the accumulation period of the specific phase. Is reduced.

なお、請求項1記載の発明では、制御手段が上記の制御を行うことに伴い、蓄積電荷量が最大となる位相や各位相での蓄積電荷量の比率等は、物体との距離との相関が見掛け上崩れることになるが、発光手段の発光強度や電荷蓄積回数は制御手段が制御するので既知であり、各位相での蓄積電荷量を上記の発光強度や電荷蓄積回数に応じて補正した後の値を複数種の位相毎の蓄積電荷量として用いることで、蓄積電荷の飽和が生じたり蓄積電荷量が過小となることを防止できることとの相乗効果により、物体検出の精度を向上させることができる。従って、請求項1記載の発明によれば、物体からの反射光の強度に拘わらず物体を精度良く検出することが可能となり、検出対象の距離レンジ内に高反射率物体が存在している場合にも、発光手段の発光強度及び電荷蓄積回数の少なくとも一方を最適化することができる。According to the first aspect of the present invention, the phase at which the accumulated charge amount becomes maximum, the ratio of the accumulated charge amount at each phase, and the like correlate with the distance to the object as the control unit performs the above control. However, the light emission intensity of the light emitting means and the number of charge accumulations are known because the control means controls, and the accumulated charge amount in each phase is corrected according to the above light emission intensity and the number of charge accumulations. By using the later value as the amount of accumulated charge for each of multiple types of phases, the accuracy of object detection can be improved due to the synergistic effect of preventing the accumulated charge from being saturated or the amount of accumulated charge from becoming too small. Can do. Therefore, according to the first aspect of the present invention, it is possible to accurately detect an object regardless of the intensity of reflected light from the object, and when a highly reflective object exists within the distance range of the detection target. In addition, at least one of the light emission intensity of the light emitting means and the number of charge accumulations can be optimized.

なお、請求項1記載の発明において、後述する請求項3又は請求項4に記載の蓄積電荷量を補正を行う場合には、上記の「第1の所定値以上の明度の領域」を、複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像(元の画像)上での明度が第1の所定値以上で、かつ、特定位相での補正後の蓄積電荷量によって表される補正画像上での明度の低下量が第3の所定値以下の領域とすることが好ましい。元の画像中の高明度の領域が、補正画像上では明度が大幅に低下する場合、当該領域は環境光を原因として元の画像上で高明度になっていると推定できる。一方、元の画像中の高明度の領域が補正画像上でも明度があまり低下しない場合、当該領域は高反射率物体に対応する領域である可能性が高い。従って、上記のように複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像上での明度が第1の所定値以上で、かつ、特定位相での補正後の蓄積電荷量によって表される補正画像上での明度の低下量が第3の所定値以下の領域が存在している場合に、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させることで、検出対象の距離レンジ内に高反射率物体が存在している場合にも、発光手段の発光強度及び電荷蓄積回数の少なくとも一方をより精度良く最適化することができる。In the first aspect of the present invention, when correcting the accumulated charge amount according to the third or fourth aspect described later, a plurality of the above-mentioned “regions having a brightness not less than the first predetermined value” are included. The lightness on the image (original image) represented by the amount of accumulated charge in the specific phase in the charge storage means is greater than or equal to the first predetermined value and is represented by the amount of accumulated charge after correction in the specific phase. It is preferable that the brightness reduction amount on the corrected image be an area having a third predetermined value or less. If a high brightness area in the original image has a significant decrease in brightness on the corrected image, it can be estimated that the area has a high brightness on the original image due to ambient light. On the other hand, when a high brightness area in the original image does not decrease much in the corrected image, the area is likely to be an area corresponding to a high reflectance object. Therefore, as described above, the lightness on the image represented by the accumulated charge amount in the specific phase in the plurality of charge accumulation means is equal to or higher than the first predetermined value, and the accumulated charge amount after correction in the specific phase. When there is a region where the amount of decrease in lightness on the corrected image shown is equal to or smaller than the third predetermined value, the light emitting means when the charge is accumulated in the charge accumulation means during the accumulation period of the specific phase By reducing at least one of the emission intensity and the number of charge accumulations, even when there is a highly reflective object within the distance range of the detection target, at least one of the emission intensity and the number of charge accumulations of the light emitting means is more accurate. It can be optimized well.

また、請求項2記載の発明に係る物体検出装置は、発光強度を時間的に変化させながら発光する発光手段と、光の入射方向に交差する方向に沿って2次元に配列され、受光量に応じた受光信号を出力する複数の受光手段と、前記複数の受光手段の各々に対応して複数設けられた電荷蓄積手段と、前記受光手段から出力される受光信号を、前記発光手段の発光周期よりも短くかつ前記発光手段の発光タイミングに対する位相が一定の蓄積期間に、前記電荷蓄積手段へ電荷として所定回蓄積させることを、前記位相が互いに異なる複数種の蓄積期間について各々行わせ、前記電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行う検出手段と、前記位相の異なる蓄積期間に前記電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させると共に、前記複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は前記特定位相での前記補正後の蓄積電荷量によって表される補正画像中に、第2の所定値以上の明度の領域が存在していない場合に、前記特定位相の蓄積期間に前記電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を増加させる制御手段と、を含んで構成されている。The object detection apparatus according to claim 2 is arranged two-dimensionally along the direction intersecting the light incident direction, with the light emitting means for emitting light while changing the light emission intensity over time, and the amount of received light A plurality of light receiving means for outputting a corresponding light receiving signal, a plurality of charge accumulating means corresponding to each of the plurality of light receiving means, and a light receiving signal output from the light receiving means as a light emission period of the light emitting means. Shorter than that and the phase with respect to the light emission timing of the light emitting means is constant, the charge accumulation means accumulates the charge as a predetermined number of times for each of a plurality of types of accumulation periods with different phases, and the charge Detecting means for performing at least one of object detection and information output for object detection based on the accumulated charge amount for each of a plurality of types of phases in the storage means; An image represented by the amount of accumulated charges in a specific phase in the plurality of charge storage units, while differentiating at least one of the light emission intensity and the number of times of charge storage of the light emitting units when storing the charges in the charge storage unit Alternatively, the charge accumulation is performed during the accumulation period of the specific phase when there is no region having a brightness of a second predetermined value or more in the corrected image represented by the accumulated charge amount after the correction at the specific phase. Control means for increasing at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation when the charge is accumulated in the means.

請求項2記載の発明は、請求項1記載の発明と同様の構成の発光手段、複数の受光手段、電荷蓄積手段及び検出手段を備えている。そして、請求項2記載の発明に係る制御手段は、位相の異なる蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させると共に、複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は特定位相での補正後の蓄積電荷量によって表される補正画像中に、第2の所定値以上の明度の領域が存在していない場合に、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を増加させる。なお、請求項2記載の発明における第2の所定値としては、請求項1の記載の発明における第1の所定値よりも大幅に小さい値、例えば距離検出等の後処理が可能な最小明度に相当する値等を用いることができる。 The invention described in claim 2 includes light emitting means, a plurality of light receiving means, charge storage means, and detection means having the same configuration as that of the invention described in claim 1. The control means according to the invention described in claim 2 is configured to make at least one of the emission intensity and the number of charge accumulations of the light emitting means different from each other during the accumulation of charges in the charge accumulation means during accumulation periods having different phases. In the image represented by the accumulated charge amount at the specific phase or the corrected image represented by the accumulated charge amount after the correction at the specific phase in the charge storage means, there is a region having a lightness greater than or equal to the second predetermined value. If not, at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation during charge accumulation in the charge accumulation means during the accumulation period of the specific phase is increased. The second predetermined value in the invention described in claim 2 is a value that is significantly smaller than the first predetermined value in the invention described in claim 1, for example, the minimum brightness that enables post-processing such as distance detection. Corresponding values can be used.

これにより、特定位相での電荷蓄積における検出対象の距離レンジ内に、光反射率が低い低反射率物体が存在しているために、複数の受光手段のうち低反射率物体で反射された光を受光する一部の受光手段における受光強度が過小となり、対応する電荷蓄積手段における蓄積電荷量も過小となった場合にも、この状態が前記特定位相の画像又は補正画像中に第2の所定値以上の明度の領域さえも存在していない状態として検知され、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方が増加される。従って、請求項2記載の発明によれば、物体からの反射光の強度に拘わらず物体を精度良く検出することが可能となり、検出対象の距離レンジ内に低反射率物体が存在している場合にも、発光手段の発光強度及び電荷蓄積回数の少なくとも一方を最適化することができる。As a result, since there is a low-reflectance object with low light reflectivity within the distance range of the detection target in charge accumulation at a specific phase, light reflected by the low-reflectance object among the plurality of light receiving means Even when the received light intensity in a part of the light receiving means that receives light is too low and the amount of stored charge in the corresponding charge storage means is too low, this state is also included in the second predetermined image in the image of the specific phase or the corrected image. Even when the region of lightness exceeding the value is not present, it is detected that at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation when the charge is accumulated in the charge accumulating means during the accumulation period of the specific phase is increased. The Therefore, according to the second aspect of the present invention, it is possible to accurately detect an object regardless of the intensity of reflected light from the object, and when a low-reflectance object exists within the distance range of the detection target. In addition, at least one of the light emission intensity of the light emitting means and the number of charge accumulations can be optimized.

ところで、請求項1又は請求項2記載の発明に係る物体検出装置は、検出範囲内が太陽光等の強い環境光で照明されている場合に、本来の反射光(光源から射出され物体で反射された光)を受光していない期間にも高強度の環境光が受光手段で受光され、これに伴って電荷蓄積手段に蓄積される電荷量に占める環境光に相当する電荷量の割合が高くなることで、正確な検出が困難になるという問題がある。上記を考慮すると、請求項1又は請求項2記載の発明において、検出手段は、例えば請求項3に記載したように、発光手段が発光を停止している状態で受光手段から出力される受光信号も、任意の位相の蓄積期間に電荷蓄積手段へ電荷として蓄積させ、複数種の位相毎の蓄積電荷量から発光手段が発光を停止している状態での蓄積電荷量を各々差し引くことで複数種の位相毎の蓄積電荷量を補正し、複数種の位相毎の補正後の蓄積電荷量に基づいて、物体検出及び物体検出のための情報の出力の少なくとも一方を行うように構成することが好ましい。これにより、受光手段が環境光を含む光を受光する環境であっても、環境光の影響を低減した正確な物体検出を行うことができる。By the way, the object detection device according to the first or second aspect of the present invention provides the original reflected light (emitted from the light source and reflected by the object) when the detection range is illuminated with strong ambient light such as sunlight. High intensity ambient light is received by the light receiving means even during a period when the light is not received, and accordingly, the proportion of the amount of charge corresponding to the ambient light in the amount of charge accumulated in the charge storage means is high. As a result, there is a problem that accurate detection becomes difficult. In consideration of the above, in the first or second aspect of the invention, the detecting means may be a light receiving signal output from the light receiving means in a state in which the light emitting means stops emitting light, as described in claim 3, for example. In addition, the charge accumulation means accumulates charges in the accumulation period of an arbitrary phase, and a plurality of types are obtained by subtracting the accumulated charge amounts in a state where the light emitting means stops light emission from the accumulated charge amounts for each of the plurality of phases. It is preferable that the accumulated charge amount for each phase is corrected and at least one of object detection and information output for object detection is performed based on the accumulated charge amount after correction for each of a plurality of types of phases. . Thereby, even in an environment where the light receiving means receives light including ambient light, accurate object detection with reduced influence of ambient light can be performed.

また、請求項1又は請求項2記載の発明では、異なる各位相での電荷蓄積が、異なる距離レンジに存在する物体を検出対象としており、特に蓄積期間が互いに重複していない位相での電荷蓄積では、同一の物体が重複して検出される可能性は非常に低い。これを考慮すると、請求項1又は請求項2記載の発明において、検出手段は、例えば請求項4に記載したように、第1の位相での蓄積電荷量から、第1の位相の蓄積期間と重複しない第2の位相での蓄積電荷量を差し引くことで第1の位相での蓄積電荷量を補正することを、各位相毎の蓄積電荷量に対して各々行い、複数種の位相毎の補正後の蓄積電荷量に基づいて、物体検出及び物体検出のための情報の出力の少なくとも一方を行うように構成してもよい。この場合も、受光手段が環境光を含む光を受光する環境において、環境光の影響を低減した正確な物体検出を行うことができると共に、請求項3記載の発明と比較して、発光手段が発光を停止している状態での電荷蓄積も不要となるので、処理速度を向上させる(物体検出の周期を短くする)ことができる。According to the first or second aspect of the present invention, charge accumulation at different phases is targeted for detection of objects existing in different distance ranges, and charge accumulation at phases where accumulation periods do not overlap each other. Then, it is very unlikely that the same object is detected repeatedly. In consideration of this, in the invention according to claim 1 or 2, the detection means, as described in claim 4, for example, from the accumulated charge amount in the first phase, to the accumulation period of the first phase Correction of the accumulated charge amount in the first phase by subtracting the accumulated charge amount in the second phase that does not overlap is performed for each accumulated charge amount in each phase, and correction for each of a plurality of types of phases is performed. It may be configured to perform at least one of object detection and information output for object detection based on the amount of accumulated charge later. Also in this case, in the environment where the light receiving means receives light including ambient light, it is possible to perform accurate object detection with reduced influence of the environmental light. Since charge accumulation in the state where light emission is stopped is not necessary, the processing speed can be improved (the object detection cycle can be shortened).

また、請求項1〜請求項4の何れかに記載の発明において、検出手段は、具体的には、例えば請求項5に記載したように、複数種の位相毎の蓄積電荷量又は複数種の位相毎の補正後の蓄積電荷量に基づき、物体検出として、発光手段から射出された光を反射した物体との距離の検出を行うように構成することができる。前述のように、電荷蓄積手段における複数種の位相毎の蓄積電荷量は、受光した光の位相、すなわち光を反射した物体との距離に応じて相違するので、複数種の位相毎の蓄積電荷量又は複数種の位相毎の補正後の蓄積電荷量から、光を反射した物体との距離を検出することができる。In addition, in the invention according to any one of claims 1 to 4, the detection means specifically includes, for example, as described in claim 5, the accumulated charge amount for each of a plurality of types or a plurality of types. Based on the accumulated charge amount after correction for each phase, the detection of the distance from the object reflecting the light emitted from the light emitting means can be performed as the object detection. As described above, the accumulated charge amount for each of the plurality of types of phases in the charge storage means differs depending on the phase of the received light, that is, the distance from the object that reflected the light. The distance from the object reflecting the light can be detected from the amount or the accumulated charge amount after correction for each of a plurality of types of phases.

また、請求項5記載の発明において、受光手段が複数設けられ、個々の受光手段が光の入射方向に交差する方向に沿って2次元に配列されていると共に、電荷蓄積手段が個々の受光手段に対応して複数設けられている場合、検出手段は、例えば請求項6に記載したように、個々の受光手段毎に物体との距離を演算すると共に、個々の受光手段のうち、対応する電荷蓄積手段における蓄積電荷量又は補正後の蓄積電荷量が蓄積電荷の飽和に相当する値を示している受光手段を、物体との距離の演算対象から除外するように構成してもよい。Further, in the invention according to claim 5, a plurality of light receiving means are provided, each light receiving means is two-dimensionally arranged along the direction intersecting the light incident direction, and the charge storage means is each light receiving means. For example, as described in claim 6, the detection means calculates the distance to the object for each individual light receiving means, and the corresponding charge among the individual light receiving means. The light receiving means in which the accumulated charge amount in the accumulation means or the accumulated charge amount after correction indicates a value corresponding to the saturation of the accumulated charge may be excluded from the calculation target of the distance to the object.

上記のように受光手段及び電荷蓄積手段が複数設けられている構成に本発明を適用し、位相の異なる蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させたとしても、物体との距離や後述する物体の光反射率、蓄積期間の位相によっては一部の電荷蓄積手段で蓄積電荷の飽和が生ずる可能性がある。これに対して請求項6記載の発明では、蓄積電荷の飽和が生じた電荷蓄積手段に対応する受光手段を物体との距離の演算対象から除外するので、精度の低い演算結果が出力されることを防止することができる。なお、演算対象から除外することに代えて、例えばアラームを鳴らす、演算結果を画像として表示する際に蓄積電荷の飽和が生じたことを明示する等、別の処理を行うようにしてもよい。As described above, the present invention is applied to a configuration in which a plurality of light receiving means and charge accumulating means are provided, and the light emission intensity and charge accumulation of the light emitting means when accumulating charges in the charge accumulating means during accumulation periods having different phases. Even if at least one of the numbers of times is made different, depending on the distance to the object, the light reflectivity of the object described later, and the phase of the accumulation period, the accumulated charge may be saturated in some charge accumulating means. On the other hand, in the invention described in claim 6, since the light receiving means corresponding to the charge accumulating means in which the accumulated charge is saturated is excluded from the calculation target of the distance to the object, a calculation result with low accuracy is output. Can be prevented. Instead of excluding the calculation target, another process may be performed such as, for example, sounding an alarm or clearly indicating that the accumulated charge is saturated when the calculation result is displayed as an image.

また請求項1〜請求項4の何れかに記載の発明において、受光手段が複数設けられ、個々の受光手段が光の入射方向に交差する方向に沿って2次元に配列されていると共に、電荷蓄積手段が個々の受光手段に対応して複数設けられている場合、検出手段は、具体的には、例えば請求項7に記載したように、物体検出のための情報として、複数の電荷蓄積手段における複数種の位相毎の蓄積電荷量又は複数種の位相毎の補正後の蓄積電荷量を、各位相毎に距離レンジの異なる画像として出力するように構成することができる。Further, in the invention according to any one of claims 1 to 4, a plurality of light receiving means are provided, and each light receiving means is arranged two-dimensionally along a direction intersecting the light incident direction, In the case where a plurality of storage means are provided corresponding to each light receiving means, the detection means specifically includes a plurality of charge storage means as information for object detection as described in claim 7, for example. The accumulated charge amount for each of a plurality of types of phases or the corrected accumulated charge amount for each of a plurality of phases can be output as an image having a different distance range for each phase.

前述のように、各位相での電荷蓄積量は、受光手段が受光した光の位相、すなわち光を反射した物体との距離に応じて相違するが、複数の受光手段が光の入射方向に交差する方向に沿って2次元に配列されている場合、個々の受光手段は、検出範囲内の互いに異なる箇所(異なる物体、或いは同一の物体の異なる箇所)で反射された光が各々入射されるので、複数種の位相毎の蓄積電荷量の大小関係も、個々の受光手段に入射される光を反射した箇所との距離に応じて、個々の受光手段毎に相違する。従って、複数種の位相毎の蓄積電荷量又は複数種の位相毎の補正後の蓄積電荷量を、蓄積電荷量に応じて輝度が変化する画像として各位相毎に可視化した場合、個々の画像は距離レンジが互いに異なる画像(個々の画像の距離レンジ内に存在している物体のみが個々の画像上に被写体として明示された画像:距離画像という)となるので、上記のように複数種の位相毎の蓄積電荷量又は複数種の位相毎の補正後の蓄積電荷量を出力することで、出力した蓄積電荷量又は補正後の蓄積電荷量を物体検出に利用することができる。As described above, the amount of charge accumulated in each phase differs depending on the phase of the light received by the light receiving means, that is, the distance from the object that reflected the light, but the plurality of light receiving means intersect the light incident direction. When the light receiving elements are arranged two-dimensionally along the direction of the light, each light receiving unit receives light reflected at different points in the detection range (different objects or different points of the same object). The magnitude relationship of the accumulated charge amount for each of the plurality of types of phases also differs for each light receiving unit depending on the distance from the location where the light incident on each light receiving unit is reflected. Therefore, when the accumulated charge amount for each of a plurality of phases or the accumulated charge amount after correction for each of a plurality of phases is visualized for each phase as an image in which the luminance changes according to the accumulated charge amount, each image is Since the images have different distance ranges (only the objects that exist within the distance ranges of the individual images are clearly shown as subjects on the individual images: distance images), multiple types of phases are used as described above. By outputting the accumulated charge amount for each phase or the corrected accumulated charge amount for each of a plurality of types of phases, the output accumulated charge amount or the accumulated charge amount after correction can be used for object detection.

また、請求項1〜請求項4の何れかに記載の発明において、制御手段は、例えば請求項8に記載したように、電荷の蓄積を行う蓄積期間の位相が、発光手段の発光タイミングとの位相差がより小さい位相になるに従って、発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させるように構成することができる。これにより、個々の位相の蓄積期間に電荷蓄積手段へ電荷を蓄積する場合の発光手段の発光強度(に応じて変化する受光手段の受光強度)及び電荷蓄積回数の少なくとも一方を、個々の位相の電荷蓄積で検出対象とする物体の距離レンジに応じて最適化することができる。Further, in the invention according to any one of claims 1 to 4, the control means, as described in claim 8, for example, the phase of the accumulation period during which charge is accumulated is the same as the light emission timing of the light emitting means. As the phase difference becomes smaller, at least one of the light emission intensity of the light emitting means and the number of charge accumulations can be reduced. Accordingly, at least one of the light emission intensity of the light emitting means (the light receiving intensity of the light receiving means that changes according to the light intensity) and the number of charge accumulations when the charge is accumulated in the charge accumulating means during the accumulation period of each phase is determined. It can be optimized according to the distance range of the object to be detected by charge accumulation.

以上説明したように本発明は、光の入射方向に交差する方向に沿って2次元に配列された複数の受光手段から出力される受光信号を、発光手段の発光周期よりも短くかつ発光手段の発光タイミングに対する位相が一定の蓄積期間に、複数の受光手段の各々に対応する複数の電荷蓄積手段へ電荷として所定回蓄積させることを、位相が互いに異なる複数種の蓄積期間について各々行わせ、電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行うと共に、位相の異なる蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させ、かつ、複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は特定位相での補正後の蓄積電荷量によって表される補正画像中に、第1の所定値以上の明度の領域が存在している場合に、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させるので、物体からの反射光の強度に拘わらず物体を精度良く検出することが可能となり、検出対象の距離レンジ内に高反射率物体が存在している場合にも、発光手段の発光強度及び電荷蓄積回数の少なくとも一方を最適化することができる、という優れた効果を有する。
また本発明は、光の入射方向に交差する方向に沿って2次元に配列された複数の受光手段から出力される受光信号を、発光手段の発光周期よりも短くかつ発光手段の発光タイミングに対する位相が一定の蓄積期間に、複数の受光手段の各々に対応する複数の電荷蓄積手段へ電荷として所定回蓄積させることを、位相が互いに異なる複数種の蓄積期間について各々行わせ、電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行うと共に、位相の異なる蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させ、かつ、複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は特定位相での補正後の蓄積電荷量によって表される補正画像中に、第2の所定値以上の明度の領域が存在していない場合に、特定位相の蓄積期間に電荷蓄積手段への電荷の蓄積を行う際の発光手段の発光強度及び電荷蓄積回数の少なくとも一方を増加させるので、物体からの反射光の強度に拘わらず物体を精度良く検出することが可能となり、検出対象の距離レンジ内に低反射率物体が存在している場合にも、発光手段の発光強度及び電荷蓄積回数の少なくとも一方を最適化することができる、という優れた効果を有する。
As described above, according to the present invention, the light receiving signals output from the plurality of light receiving means arranged two-dimensionally along the direction intersecting the light incident direction are shorter than the light emitting period of the light emitting means and the light emitting means. In the accumulation period where the phase with respect to the light emission timing is constant, the charge accumulation means corresponding to each of the plurality of light receiving means accumulates a predetermined number of times as charge for each of a plurality of types of accumulation periods having different phases. When at least one of object detection and output of information for object detection is performed based on accumulated charge amounts for each of a plurality of types of phases in the accumulation means, and charge is accumulated in the charge accumulation means during accumulation periods having different phases It is the difference of at least one of the luminous intensity and the charge storage times of the light emitting means and the image also represented by the amount of charges stored in the specific phase in the plurality of charge storage means In the corrected image represented by the amount of accumulated charge after correction in a specific phase, if there is a region with a brightness greater than or equal to the first predetermined value, the charge stored in the charge storage means during the accumulation period of the specific phase because it reduces at least one of the luminous intensity and the charge storage times of the light emitting means when performing accumulation, can accurately detect objects regardless of the intensity of the reflected light from the object and Do Ri, the detected distance range even when a high reflectance object is present within, it has an emission intensity and at least one of Ru can be optimized, that excellent effects of the charge accumulation times of the light emitting means.
In the present invention, the light reception signals output from the plurality of light receiving means arranged two-dimensionally along the direction intersecting the light incident direction are shorter than the light emission period of the light emitting means and the phase with respect to the light emission timing of the light emitting means. Is stored in a plurality of charge storage means corresponding to each of the plurality of light receiving means for a predetermined number of times for each of a plurality of types of storage periods having different phases. At least one of object detection and output of information for object detection is performed based on the accumulated charge amount for each phase of the seed, and the light emitting means for storing charge in the charge accumulation means during accumulation periods having different phases At least one of the emission intensity and the number of charges accumulated, and an image represented by the amount of accumulated charges in a specific phase in a plurality of charge storage means or in a specific phase When accumulating charges in the charge accumulating means during an accumulation period of a specific phase when there is no region having a lightness greater than or equal to the second predetermined value in the corrected image represented by the amount of accumulated charge immediately before Since at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation is increased, the object can be accurately detected regardless of the intensity of the reflected light from the object, and the low reflectance object within the distance range of the detection target Even in the case where there is, there is an excellent effect that at least one of the light emission intensity of the light emitting means and the number of charge accumulations can be optimized.

以下、図面を参照して本発明の実施形態の一例を詳細に説明する。図1には本実施形態に係る物体検出装置10が示されている。物体検出装置10は距離画像センサとして機能する装置であり、発光器12、受光器14及び制御部16から構成されている。発光器12は、LED等から成る光源と、該光源の発光を制御する制御回路を含んで構成されている。発光器12は受光器14を介して制御部16に接続されており、発光器12の制御回路は、受光器14を介して制御部16から入力される制御信号によって光源の発光が指示されると、図4(A)に示すように、光源を一定時間発光させることを一定周期で繰り返すことで、光源を断続的に発光させる。なお、発光器12は本発明に係る発光手段に対応している。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an object detection apparatus 10 according to the present embodiment. The object detection device 10 is a device that functions as a distance image sensor, and includes a light emitter 12, a light receiver 14, and a control unit 16. The light emitter 12 includes a light source composed of an LED or the like and a control circuit that controls light emission of the light source. The light emitter 12 is connected to the control unit 16 via the light receiver 14, and the control circuit of the light emitter 12 is instructed to emit the light source by a control signal input from the control unit 16 via the light receiver 14. Then, as shown in FIG. 4A, the light source is intermittently emitted by repeating the light emission of the light source for a certain period of time at a certain period. The light emitter 12 corresponds to the light emitting means according to the present invention.

発光器12の光源が発光されることで発光器12から射出された光(照射光)は、照射光の照射範囲内に存在する物体(例えば図1に示す検出物体18)で反射されて受光器14に入射される。受光器14は、CCDセンサやCMOSセンサから成り、受光した光を光電変換し受光量に応じたレベルの受光信号を出力するフォトダイオード20(図2を参照)を内蔵した複数個の受光セルが2次元に配列されて成る撮像素子を備えており、この撮像素子は、受光セルの配列方向が受光器14への光の入射方向に対して交差するように配置されている。撮像素子の個々の受光セルには、図2に示す信号処理回路24が各々接続されている。なお、この信号処理回路24は、撮像素子と別に設けられていてもよいし、撮像素子として機能する半導体チップ上に撮像素子と一体に形成されていてもよい。個々の受光セル(のフォトダイオード20)は本発明に係る受光手段に対応している。   Light (irradiation light) emitted from the light emitter 12 by the light source of the light emitter 12 being emitted is reflected and received by an object (for example, the detection object 18 shown in FIG. 1) existing within the irradiation range of the irradiation light. Is incident on the container 14. The light receiver 14 includes a CCD sensor or a CMOS sensor, and includes a plurality of light receiving cells each including a photodiode 20 (see FIG. 2) that photoelectrically converts received light and outputs a light receiving signal at a level corresponding to the amount of light received. An image pickup device arranged in two dimensions is provided, and this image pickup device is arranged so that the arrangement direction of the light receiving cells intersects the incident direction of the light to the light receiver 14. A signal processing circuit 24 shown in FIG. 2 is connected to each light receiving cell of the image sensor. Note that the signal processing circuit 24 may be provided separately from the image sensor, or may be formed integrally with the image sensor on a semiconductor chip that functions as the image sensor. Each light receiving cell (photodiode 20) corresponds to the light receiving means according to the present invention.

図2に示すように、受光器14の信号処理回路24は、本発明に係る電荷蓄積手段としての蓄積部26を備えている。蓄積部26は一端が給電端に接続されており、蓄積部26の他端はスイッチ28を介し、撮像素子の受光セルに内蔵され一端が給電端に接続されたフォトダイオード20の他端に接続されている。スイッチ28は給電端にも接続されており、入力される変調信号に応じて、フォトダイオード20の他端を給電端に接続する第1の状態、又は、フォトダイオード20の他端を蓄積部26に接続する第2の状態に切り替わる。なお、スイッチ28は例えばトランジスタ等の半導体スイッチング素子を組合わせることで実現できる。フォトダイオード20が受光量に応じたレベルの受光信号を出力し、スイッチ28が第2の状態になっている場合、蓄積部26には信号線を介して入力される受光信号のレベルに応じた量の電荷が蓄積される(詳しくは、入力された受光信号のレベルをスイッチ28が第2の状態になっている時間(電荷蓄積時間)で積分した値に相当する量の電荷が蓄積される)。   As shown in FIG. 2, the signal processing circuit 24 of the light receiver 14 includes a storage unit 26 as charge storage means according to the present invention. One end of the storage unit 26 is connected to the power supply end, and the other end of the storage unit 26 is connected to the other end of the photodiode 20 which is built in the light receiving cell of the image sensor and connected to the power supply end via the switch 28. Has been. The switch 28 is also connected to the power supply end, and in accordance with an input modulation signal, the first state in which the other end of the photodiode 20 is connected to the power supply end, or the other end of the photodiode 20 is connected to the storage unit 26. It switches to the 2nd state connected to. The switch 28 can be realized by combining semiconductor switching elements such as transistors. When the photodiode 20 outputs a light reception signal of a level corresponding to the amount of light received and the switch 28 is in the second state, the storage unit 26 corresponds to the level of the light reception signal input via the signal line. An amount of charge is accumulated (specifically, an amount of charge corresponding to a value obtained by integrating the level of the received light reception signal with the time during which the switch 28 is in the second state (charge accumulation time) is accumulated. ).

また、蓄積部26の他端はスイッチ40、増幅器42を介してA/D(アナログデジタル)変換器44に接続されている。なお、スイッチ40も例えばトランジスタ等の半導体スイッチング素子で構成することができる。スイッチ40は入力される読出信号に応じてオンオフし、スイッチ40がオンされると、蓄積部26に蓄積されていた電荷がスイッチ40を介して増幅器42へ転送・入力され、増幅器42で増幅された後にA/D変換器44で蓄積部26の蓄積電荷量を表すデジタルデータ(蓄積電荷量データ)へ変換されて出力される。また、蓄積部26とスイッチ40を接続する信号線は途中で2本に分岐されており、分岐された信号線はスイッチ46を介して給電端に接続されている。なお、スイッチ46も例えばトランジスタ等の半導体スイッチング素子で構成することができる。スイッチ46は入力されるリセット信号に応じてオンオフし、スイッチ46がオンされると、蓄積部26に蓄積されていた電荷が排出され、蓄積部26が初期状態(蓄積電荷量=0の状態)にリセットされる。   The other end of the storage unit 26 is connected to an A / D (analog / digital) converter 44 via a switch 40 and an amplifier 42. Note that the switch 40 can also be formed of a semiconductor switching element such as a transistor. The switch 40 is turned on / off in response to an input read signal. When the switch 40 is turned on, the charge accumulated in the storage unit 26 is transferred / input to the amplifier 42 via the switch 40 and amplified by the amplifier 42. After that, the A / D converter 44 converts it into digital data (accumulated charge amount data) representing the accumulated charge amount of the accumulation unit 26 and outputs it. Further, the signal line connecting the storage unit 26 and the switch 40 is branched into two on the way, and the branched signal line is connected to the power feeding end via the switch 46. Note that the switch 46 can also be formed of a semiconductor switching element such as a transistor. The switch 46 is turned on / off in response to the input reset signal. When the switch 46 is turned on, the electric charge accumulated in the accumulating unit 26 is discharged, and the accumulating unit 26 is in an initial state (accumulated charge amount = 0 state). Reset to.

また受光器14は、制御部16から入力される制御信号に従い、信号処理回路24の各部に各種信号(上述した変調信号、選択信号、読出信号及びリセット信号)を入力することで各部の動作を制御する制御回路も設けられている。一方、制御部16はCPUやメモリ、HDD(Hard Disk Drive)やフラッシュメモリ等の不揮発性記憶手段を備えたマイクロコンピュータ、或いは、DSP(Digital Signal Process)で構成され、発光器12及び受光器14の動作を制御すると共に、受光器14から出力された画像データに基づいて検出物体との距離の演算(後述)等の処理を行う。 The light receiver 14 operates various parts by inputting various signals (the above-described modulation signal, selection signal, readout signal, and reset signal) to each part of the signal processing circuit 24 in accordance with the control signal input from the control part 16. A control circuit for controlling is also provided. On the other hand, the control unit 16 is composed of a CPU, a memory, a microcomputer having nonvolatile storage means such as an HDD (Hard Disk Drive) or a flash memory, or a DSP (Digital Signal Process ) , and includes a light emitter 12 and a light receiver. 14 is controlled, and processing such as calculation (described later) of the distance to the detected object is performed based on the image data output from the light receiver 14.

次に本実施形態の作用を説明する。本実施形態に係る制御部16では図3に示す物体検出処理を繰り返し実行している。なお、以下では一連の物体検出処理のうち、まず物体検出のための通常の位相画像の取得(ステップ60〜ステップ76)を説明する。   Next, the operation of this embodiment will be described. The control unit 16 according to the present embodiment repeatedly executes the object detection process shown in FIG. In the following, in the series of object detection processes, first, acquisition of a normal phase image for object detection (step 60 to step 76) will be described.

ステップ60では変数iに0を設定する。ステップ62では受光器14を介して発光器12へ所定の制御信号を出力することで、発光器12の光源の発光を開始させる。これにより、発光器12の光源は、図4(A)に示すように一定時間の発光が一定周期で繰り返されることで断続的に発光され、発光器12から射出された光は検出物体に照射され、物体で反射された後に反射光として受光器14で受光される。また、受光器14の撮像素子の個々の受光セル(のフォトダイオード20)は反射光を受光する毎に受光信号を出力するが、この受光信号の出力タイミングは、図4(B)に示すように、発光器12における発光タイミングに対し、光を反射した物体との距離に応じて遅延することになる。なお、図4(A)の例では光源の発光時間を光源の発光周期の1/2としているが、これに限られるものではない。   In step 60, 0 is set to the variable i. In step 62, a predetermined control signal is output to the light emitter 12 via the light receiver 14, thereby starting light emission of the light source of the light emitter 12. As a result, the light source of the light emitter 12 emits light intermittently by repeating light emission for a fixed time at a constant cycle as shown in FIG. 4A, and the light emitted from the light emitter 12 irradiates the detection object. After being reflected by the object, it is received by the light receiver 14 as reflected light. Each light receiving cell (photodiode 20) of the image sensor of the light receiver 14 outputs a light reception signal every time it receives reflected light. The output timing of this light reception signal is as shown in FIG. In addition, the light emission timing in the light emitter 12 is delayed according to the distance from the object that has reflected the light. In the example of FIG. 4A, the light emission time of the light source is set to ½ of the light emission period of the light source, but the present invention is not limited to this.

次のステップ64では変調位相を位相i(このときはi=0であるので位相0)に設定し、設定した変調位相を受光器14へ通知する。本実施形態における位相0の変調は、各受光セルに対応する信号処理回路24において、図4(C)に電荷蓄積期間として示すように、発光器12の発光周期よりも短く(本実施形態では発光器12の発光時間と同長さ)かつ発光器12における光源の発光期間に対して位相差0の期間(光源の発光開始タイミングに対して位相差0〜πの電荷蓄積期間)にのみ、フォトダイオード20から出力される受光信号を蓄積部26に電荷として蓄積する変調(変調0)を行うものであり、変調位相が位相0であることが通知されると、受光器14の制御回路は、個々の信号処理回路24のスイッチ28を上記蓄積期間にのみ第2の状態(フォトダイオード20の他端を蓄積部26に接続する状態)に切り替える変調信号を個々のスイッチ28に入力する。   In the next step 64, the modulation phase is set to the phase i (in this case, i = 0, so phase 0), and the set modulation phase is notified to the optical receiver 14. In the present embodiment, the phase 0 modulation is shorter than the light emission period of the light emitter 12 in the signal processing circuit 24 corresponding to each light receiving cell, as shown in FIG. Only during a period of phase difference 0 with respect to the light emission period of the light source in the light emitter 12 (charge accumulation period of phase difference 0 to π with respect to the light emission start timing of the light source). The light receiving signal output from the photodiode 20 is subjected to modulation (modulation 0) for accumulating as a charge in the accumulating unit 26. When the modulation phase is notified that the phase is 0, the control circuit of the light receiver 14 The modulation signals for switching the switches 28 of the individual signal processing circuits 24 to the second state (the state in which the other end of the photodiode 20 is connected to the storage unit 26) are input to the individual switches 28 only during the accumulation period. .

またステップ66では、受光器14に対して個々の信号処理回路24の蓄積部26のリセットを指示する。これにより、受光器14の制御回路は、個々の信号処理回路24にリセット信号を入力してスイッチ46を一定時間オンさせることで、個々の信号処理回路24の蓄積部26に蓄積されていた電荷を全て排出(廃棄)させる。次のステップ68では蓄積部26への電荷蓄積回数が位相iに対して予め設定された電荷蓄積回数Ni回以上になったか否か判定し、判定が肯定される迄ステップ68を繰り返す。   In step 66, the optical receiver 14 is instructed to reset the storage unit 26 of each signal processing circuit 24. As a result, the control circuit of the light receiver 14 inputs a reset signal to each signal processing circuit 24 and turns on the switch 46 for a certain period of time, so that the charge accumulated in the storage unit 26 of each signal processing circuit 24 is obtained. Are discharged (discarded). In the next step 68, it is determined whether or not the number of charges stored in the storage unit 26 has become equal to or greater than the number of charges stored in advance with respect to the phase i, and step 68 is repeated until the determination is affirmed.

この間、個々の受光セルに対応するフォトダイオード20は、反射光を受光する毎に受光量に応じたレベルの受光信号を出力するが(図4(B)も参照)、個々の信号処理回路24では、図4(C)に示す電荷蓄積期間にのみスイッチ28が第2の状態に切り替わるので、図4(C)にハッチングで示す期間にのみ、蓄積部26に信号が入力されて電荷が蓄積される。また、蓄積部26への電荷の蓄積はNi回行われるので、受光器14における反射光の受光強度に比して電荷蓄積期間が短い等の場合にも、Niを比較的に大きな値に設定しておくことで、蓄積部26の電荷蓄積量がNi倍されることで、反射光量の受光強度に対する実質的な感度を増大させることができる。   During this time, the photodiode 20 corresponding to each light receiving cell outputs a light receiving signal at a level corresponding to the amount of received light every time it receives reflected light (see also FIG. 4B), but the individual signal processing circuit 24. Then, since the switch 28 is switched to the second state only during the charge accumulation period shown in FIG. 4C, a signal is inputted to the accumulation unit 26 and charges are accumulated only during the period shown by hatching in FIG. Is done. Further, since the charge is accumulated in the accumulator 26 Ni times, Ni is set to a relatively large value even when the charge accumulation period is shorter than the received light intensity of the reflected light in the light receiver 14. As a result, the charge storage amount of the storage unit 26 is multiplied by Ni, so that the substantial sensitivity of the reflected light amount to the received light intensity can be increased.

蓄積部26へのNi回の電荷の蓄積が完了すると、ステップ68の判定が肯定されてステップ70へ移行し、受光器14に対して個々の信号処理回路24の蓄積部26からの蓄積電荷量の読み出しを指示する。これにより、受光器14の制御回路は、個々の信号処理回路24に読出信号を入力しスイッチ40を一定時間オンさせることで、個々の信号処理回路24の蓄積部26に蓄積されていた電荷を増幅器42へ転送させる(蓄積電荷量の読み出し)。増幅器42へ転送された蓄積電荷は、増幅器42で増幅されA/D変換器44でデジタルの蓄積電荷量データへ変換されて制御部16へ出力される。次のステップ72では、受光器14の個々の信号処理回路24から各々入力された蓄積電荷量データを、位相iの位相画像データとしてメモリ又は不揮発性記憶部に記憶させる。   When the accumulation of Ni charges in the accumulating unit 26 is completed, the determination in step 68 is affirmed and the process proceeds to step 70, and the accumulated charge amount from the accumulating unit 26 of each signal processing circuit 24 to the photoreceiver 14. Is instructed to read. As a result, the control circuit of the light receiver 14 inputs the readout signal to each signal processing circuit 24 and turns on the switch 40 for a certain period of time, so that the charge accumulated in the storage unit 26 of each signal processing circuit 24 is obtained. The data is transferred to the amplifier 42 (reading of the accumulated charge amount). The accumulated charge transferred to the amplifier 42 is amplified by the amplifier 42, converted into digital accumulated charge amount data by the A / D converter 44, and output to the control unit 16. In the next step 72, the accumulated charge amount data respectively input from the individual signal processing circuits 24 of the light receiver 14 is stored in the memory or the nonvolatile storage unit as the phase image data of the phase i.

ステップ74では変数iが3か否か判定する。判定が否定された場合はステップ76で変数iを1だけインクリメントした後にステップ64に戻り、ステップ74の判定が肯定される迄ステップ64〜ステップ76を繰り返す。本実施形態では、変調位相として位相0〜位相3の4種類の位相が設定されており、上記のようにステップ64〜ステップ76が繰り返されることで、個々の信号処理回路24において、フォトダイオード20から出力される受光信号が、位相1〜位相3に対応する互いに異なる電荷蓄積期間に、電荷として蓄積部26に蓄積される。   In step 74, it is determined whether or not the variable i is 3. If the determination is negative, the variable i is incremented by 1 in step 76, and then the process returns to step 64. Steps 64 to 76 are repeated until the determination in step 74 is affirmed. In the present embodiment, four types of phases, phase 0 to phase 3, are set as modulation phases, and steps 64 to 76 are repeated as described above, so that the photodiode 20 in each signal processing circuit 24 is repeated. The light reception signals output from the signal are accumulated as charges in the accumulation unit 26 in different charge accumulation periods corresponding to the phases 1 to 3.

より詳しくは、個々の信号処理回路24において、位相1の変調では、図4(D)に電荷蓄積期間として示すように、発光器12における光源の発光期間に対して位相差1/2πの期間(光源の発光開始タイミングに対して位相差1/2π〜3/2πの期間)にのみ受光信号を蓄積部26に電荷として蓄積する変調(変調1)が行われ、位相2の変調では、図4(E)に電荷蓄積期間として示すように、発光器12における光源の発光期間に対して位相差πの期間(光源の発光開始タイミングに対して位相差π〜2πの期間)にのみ受光信号を蓄積部26に電荷として蓄積する変調(変調2)が行われ、位相3の変調では、図4(F)に電荷蓄積期間として示すように、発光器12における光源の発光期間に対して位相差3/2πの期間(光源の発光開始タイミングに対して位相差3/2π〜5/2πの期間)にのみ受光信号を蓄積部26に電荷として蓄積する変調(変調3)が行われる。そして、上述した位相0〜位相3の変調(電荷の蓄積)を順次行い、各位相に対応する蓄積電荷量データが各位相の位相画像データとしてメモリ又は不揮発性記憶部に記憶されると、ステップ74の判定が肯定される。   More specifically, in each signal processing circuit 24, in phase 1 modulation, as shown in FIG. 4D as a charge accumulation period, a period having a phase difference of 1 / 2π with respect to the light emission period of the light source in the light emitter 12 Modulation (modulation 1) for accumulating received light signals as charges in the accumulator 26 is performed only during a period of a phase difference of 1 / 2π to 3 / 2π with respect to the light emission start timing of the light source. As shown in FIG. 4E as a charge accumulation period, the light receiving signal is only in the period of phase difference π with respect to the light emission period of the light source in the light emitter 12 (period of phase difference π to 2π with respect to the light emission start timing of the light source). Is modulated as a charge in the storage unit 26 (modulation 2). In the phase 3 modulation, as shown in FIG. Phase difference of 3 / 2π (light emission start of light source Modulation for storing the charges received light signal in the storage unit 26 only during the period) of the phase difference 3 / 2π~5 / 2π (modulation 3) is performed on the timing. Then, when the phase 0 to phase 3 modulation (charge accumulation) described above is sequentially performed, and accumulated charge amount data corresponding to each phase is stored in the memory or the nonvolatile storage unit as phase image data of each phase, The determination of 74 is affirmed.

次に、上述した位相0〜位相3の変調(電荷の蓄積)によって得られる各位相毎の蓄積電荷量(各位相毎の位相画像)に基づく物体との距離検出の原理を説明する。図4(C)〜(F)の右側には、受光セル(フォトダイオード20)が図4(B)に示すタイミングで反射光を受光した場合に、位相0〜位相3の変調で蓄積部26に蓄積される電荷量が示されているが、発光器12の光源の発光タイミングに対する反射光の受光タイミングの遅延時間(位相差)は光を反射した物体との距離に応じて変化し、光を反射した物体との距離の変化に応じて反射光受光タイミングの遅延時間が変化し、この遅延時間の変化に応じて各位相の変調における蓄積電荷量も変化する。位相0〜位相3の各位相の変調における蓄積電荷量をA0〜A3とすると、発光器12の光源の発光タイミングに対する反射光の受光タイミングの位相差φは、
φ=tan-1(A3−A1)/(A0−A2) …(1)
上記(1)式で求まり、光を反射した物体との距離dは、発光器12の光源の発光周波数をf、光速をcとすると、次の(2)式で求めることができる。
Next, the principle of distance detection with respect to an object based on the accumulated charge amount for each phase (phase image for each phase) obtained by the above-described phase 0 to phase 3 modulation (charge accumulation) will be described. On the right side of FIGS. 4C to 4F, when the light receiving cell (photodiode 20) receives reflected light at the timing shown in FIG. The delay time (phase difference) of the light reception timing of the reflected light with respect to the light emission timing of the light source of the light emitter 12 changes according to the distance from the object that reflected the light, The delay time of the reflected light reception timing changes in accordance with the change in the distance from the object that reflects the light, and the amount of accumulated charge in each phase modulation also changes in accordance with the change in the delay time. When the accumulated charge amount in the modulation of each phase of phase 0 to phase 3 is A 0 to A 3 , the phase difference φ of the light reception timing of the reflected light with respect to the light emission timing of the light source of the light emitter 12 is
φ = tan −1 (A 3 −A 1 ) / (A 0 −A 2 ) (1)
The distance d from the object reflected by the above equation (1) and the object reflecting the light can be obtained by the following equation (2), where f is the emission frequency of the light source of the light emitter 12 and c is the speed of light.

d=(c/2f)・(φ/2π) …(2)
但し、上記の(2)式は、発光器12の光源の発光タイミングに対する反射光の受光タイミングの実際の位相差が0〜2πの間に収まっている(発光器12の光源の発光タイミングに対する反射光の受光タイミングの遅延時間が光源の発光周期以内に収まっている)ことが前提であり、物体との距離dが(c/2f)を越えることで上記前提が崩れると、距離dを正しく求めることができない。これを回避するためには、検出対象の物体との最大距離に基づいて、上記の前提が崩れないように発光器12の光源の発光周波数fを設定すればよい。上記演算を個々の受光セル(蓄積部26)毎に行うことで、個々の受光セルに入射された反射光を反射した物体との距離dを各々求めることができる。
d = (c / 2f) · (φ / 2π) (2)
However, in the above equation (2), the actual phase difference of the light reception timing of the reflected light with respect to the light emission timing of the light source of the light emitter 12 is in the range of 0 to 2π (reflection with respect to the light emission timing of the light source of the light emitter 12). The delay time of the light reception timing is within the light emission cycle of the light source), and if the above assumption is broken when the distance d to the object exceeds (c / 2f), the distance d is obtained correctly. I can't. In order to avoid this, it is only necessary to set the light emission frequency f of the light source of the light emitter 12 based on the maximum distance from the object to be detected so that the above assumption is not lost. By performing the above calculation for each light receiving cell (accumulation unit 26), it is possible to obtain the distances d to the object that reflects the reflected light incident on each light receiving cell.

また、発光器12の光源が、図4(A)に示すように方形波状に発光する場合には、先の(1)式に代えて、次の(3)式に従って位相差φを演算することで、位相差φをより正確に求めることができる。   When the light source of the light emitter 12 emits a square wave as shown in FIG. 4A, the phase difference φ is calculated according to the following equation (3) instead of the above equation (1). Thus, the phase difference φ can be obtained more accurately.

上記(3)〜(5)式を用いて演算を行った場合、(1)式のtan-1の演算が不要となるので演算処理の高速化が可能となる。 When the calculation is performed using the above equations (3) to (5), the calculation of tan −1 in the equation (1) becomes unnecessary, so that the calculation process can be speeded up.

また、前述のように物体との距離dの変化に応じて各位相の変調における蓄積電荷量が変化し、蓄積電荷量が最大となる位相も物体との距離dに応じて変化するので、位相0〜位相3の位相画像データを、該位相画像データが表す各画素(受光セル)毎の電荷蓄積量を各画素毎の輝度として可視化し画像として表示した場合、位相0〜位相3の各画像は、撮像素子の撮像範囲内のうち互いに異なる距離レンジ内に存在している物体が高輝度の物体として表示される画像(これを距離画像という)となる。   Further, as described above, the accumulated charge amount in the modulation of each phase changes in accordance with the change in the distance d to the object, and the phase at which the accumulated charge amount becomes maximum also changes in accordance with the distance d from the object. When phase image data of 0 to phase 3 is displayed as an image by visualizing the charge accumulation amount for each pixel (light receiving cell) represented by the phase image data as luminance for each pixel, each image of phase 0 to phase 3 Is an image (this is referred to as a distance image) in which objects that exist in different distance ranges within the imaging range of the imaging device are displayed as high-luminance objects.

ところで、位相0〜位相3では検出対象の物体(反射光が電荷として蓄積される物体)の距離レンジが相違しており、例えば距離検出のレンジ(検出対象の物体との最大距離)が10mの場合、各位相の変調で反射光が電荷として蓄積される物体の距離レンジは、位相0が0〜5m、位相1が2.5〜7.5m、位相2が5〜10m、位相3が7.5〜10m及び0〜2.5mとなる。また、受光器14が受光する反射光の強度は光を反射した物体との距離によって大きく変化する。このため、比較的近距離に存在する物体からの反射光を受光する位相0の変調では、受光器14における反射光の受光強度が過大となり、蓄積部26で蓄積電荷の飽和が生ずる恐れがある一方で、比較的遠距離に存在する物体からの反射光を受光する位相2,3の変調では、受光器14における遠距離に存在する物体からの反射光の受光強度が過小となり、これに伴って蓄積部26における蓄積電荷量も過小となることで物体の検出精度が低下する恐れがある。   By the way, in the phase 0 to the phase 3, the distance range of the object to be detected (object in which reflected light is accumulated as electric charges) is different. For example, the distance detection range (maximum distance from the object to be detected) is 10 m. In this case, the distance range of an object in which reflected light is accumulated as electric charges by modulation of each phase is as follows: phase 0 is 0 to 5 m, phase 1 is 2.5 to 7.5 m, phase 2 is 5 to 10 m, phase 3 is 7.5 to 10 m, and 0-2.5m. The intensity of the reflected light received by the light receiver 14 varies greatly depending on the distance from the object that reflects the light. For this reason, in the phase 0 modulation for receiving the reflected light from an object present at a relatively short distance, the received light intensity of the reflected light at the light receiver 14 becomes excessive, and the accumulated charge may be saturated in the accumulation unit 26. On the other hand, in the modulation of the phases 2 and 3 for receiving the reflected light from the object existing at a relatively long distance, the received light intensity of the reflected light from the object existing at a long distance in the light receiver 14 becomes too small. As a result, the amount of charge stored in the storage unit 26 is too small, which may reduce the object detection accuracy.

上記を考慮し、本実施形態に係る物体検出装置10では、各位相毎の電荷蓄積回数Niの初期値を、発光器12の発光タイミングとの位相差がより小さい位相になるに従って電荷蓄積回数Niが小さくなるように設定している。これにより、位相0の変調において蓄積部26で蓄積電荷の飽和が生じたり、位相2や位相3の変調において蓄積部26における蓄積電荷量が過小となることを防止することができる。各位相毎の電荷蓄積回数Niを相違させた場合、個々の蓄積部26から読み出した各位相毎の蓄積電荷量A0〜A3に対し、各位相毎の電荷蓄積回数Niで除算するか(Ai←Ai/Ni)、各位相毎の電荷蓄積回数Niと電荷蓄積回数の最大値Nmaxの比を乗ずる(Ai←Ai・Nmax/Ni)ことで各位相毎の電荷蓄積回数Niの相違を補正することができ、補正後の蓄積電荷量A0〜A3を(1)式又は(3)〜(5)式に代入して位相差φを求め、求めた位相差φを(2)式に代入することで物体との距離dを求めることができる。 In consideration of the above, in the object detection device 10 according to the present embodiment, the initial value of the charge accumulation number Ni for each phase is set to the phase where the phase difference from the light emission timing of the light emitter 12 becomes smaller. Is set to be smaller. Accordingly, it is possible to prevent the accumulated charge from being saturated in the accumulation unit 26 in the phase 0 modulation or the accumulated charge amount in the accumulation unit 26 from being excessively small in the phase 2 or phase 3 modulation. When the charge accumulation frequency Ni for each phase is made different, the accumulated charge amount A 0 to A 3 for each phase read out from each accumulation unit 26 is divided by the charge accumulation frequency Ni for each phase ( Ai ← Ai / Ni), the difference between the charge accumulation count Ni for each phase is corrected by multiplying the ratio of the charge accumulation count Ni for each phase by the maximum value Nmax of the charge accumulation count (Ai ← Ai · Nmax / Ni). The phase difference φ is obtained by substituting the corrected stored charge amounts A 0 to A 3 into the equations (1) or (3) to (5), and the obtained phase difference φ is represented by the equation (2). By substituting into, the distance d to the object can be obtained.

なお、各位相毎の電荷蓄積回数Nの初期値を上記のように設定することは、本発明に係る制御手段(詳しくは請求項に記載の制御手段)に対応している。また、上記のように各位相毎の電荷蓄積回数Nを相違させることに代えて、発光器12の発光タイミングとの位相差がより小さい位相になるに従って発光器12の発光強度が小さくなるように、各位相の変調を行う際の発光器12の発光強度を相違させるようにしてもよい。 Note that setting the initial value of the charge accumulation count N for each phase as described above corresponds to the control means according to the present invention (specifically, the control means described in claim 8 ). Further, instead of changing the charge accumulation frequency N for each phase as described above, the emission intensity of the light emitter 12 decreases as the phase difference from the light emission timing of the light emitter 12 becomes smaller. The light emission intensity of the light emitter 12 at the time of modulating each phase may be made different.

一方、以上の説明では受光器14に反射光以外の環境光が入射されないものとして説明したが、例えば受光器14の撮像素子の撮像範囲(物体検出範囲)が屋外等の場合、撮像素子に反射光が入射されていない期間にも撮像素子が環境光を受光することで、例として図5(A)に示すように、各受光セルのフォトダイオード20から出力される受光信号には環境光が含まれることになる。そして、反射光の受光量に比して環境光の受光量が高い場合には、図5(B)にも示すように、蓄積部26に蓄積される電荷量の大半が環境光に対応する電荷となり、物体検出装置10による検出精度(物体との距離dの演算精度や距離画像の精度)が環境光の影響で大幅に低下するという問題が生ずる。   On the other hand, in the above description, it has been described that the ambient light other than the reflected light is not incident on the light receiver 14. However, for example, when the imaging range (object detection range) of the image sensor of the light receiver 14 is outdoors, the light is reflected on the image sensor. As shown in FIG. 5A, for example, the ambient light is output to the light receiving signal output from the photodiode 20 of each light receiving cell, as shown in FIG. Will be included. When the amount of ambient light received is higher than the amount of reflected light received, as shown in FIG. 5B, most of the charge accumulated in the storage unit 26 corresponds to the ambient light. There is a problem that the detection accuracy by the object detection device 10 (the calculation accuracy of the distance d to the object and the accuracy of the distance image) is significantly reduced by the influence of ambient light.

このため、本実施形態に係る物体検出処理では、上述したステップ60〜ステップ76の位相画像の取得に先立ち、ステップ50〜ステップ58で非発光時の蓄積電荷量の取得を行う。すなわち、まずステップ50では変調位相を任意の位相に設定し、設定した変調位相を受光器14へ通知することで、受光器14の制御回路により、通知した変調位相に対応する蓄積期間にのみ個々の信号処理回路24のスイッチ28を第2の状態に切り替えさせる。またステップ52では、受光器14に対して個々の信号処理回路24の蓄積部26のリセットを指示し、受光器14の制御回路により、個々の信号処理回路24の蓄積部26に蓄積されていた電荷を全て排出(廃棄)させる。そして、ステップ54では蓄積部26への電荷蓄積回数が非発光時の電荷蓄積回数Nx回以上になったか否か判定し、判定が肯定される迄ステップ54を繰り返す。   For this reason, in the object detection process according to the present embodiment, prior to the acquisition of the phase image in steps 60 to 76 described above, the accumulated charge amount during non-light emission is acquired in steps 50 to 58. That is, first, in step 50, the modulation phase is set to an arbitrary phase, and the set modulation phase is notified to the photoreceiver 14, so that the control circuit of the photoreceiver 14 individually sets only the accumulation period corresponding to the notified modulation phase. The switch 28 of the signal processing circuit 24 is switched to the second state. In step 52, the optical receiver 14 is instructed to reset the storage unit 26 of each signal processing circuit 24, and is stored in the storage unit 26 of each signal processing circuit 24 by the control circuit of the light receiver 14. All charges are discharged (discarded). In step 54, it is determined whether or not the number of charges stored in the storage section 26 is equal to or greater than the number of charges stored Nx when no light is emitted, and step 54 is repeated until the determination is positive.

この間、発光器12は発光していないので、個々の受光セルに対応するフォトダイオード20は環境光のみを受光し、例として図5(C)に示すように環境光の受光量に応じたレベルの受光信号を出力する。そして個々の信号処理回路24では、制御部16から通知された変調位相に対応する電荷蓄積期間にのみスイッチ28が第2の状態に切り替わることで、例えば図5(D)にハッチングで示す期間に蓄積部26に信号が入力され、環境光に相当する電荷のみが蓄積される。なお、非発光時の電荷蓄積回数Nxは位相画像取得時の電荷蓄積回数と同一であることが好ましいが、本実施形態では位相画像取得時の電荷蓄積回数Niが各位相毎に相違しており、ステップ50〜ステップ58で取得した非発光時の蓄積電荷量は各位相毎の蓄積電荷量A0〜A3の補正に各々用いるので(詳細は後述)、非発光時の電荷蓄積回数Nxとしては、「1」又は各位相毎の電荷蓄積回数N0〜N3の最大公約数を採用することができる。 During this time, since the light emitter 12 is not emitting light, the photodiode 20 corresponding to each light receiving cell receives only ambient light, and as an example, a level corresponding to the amount of received ambient light as shown in FIG. The received light signal is output. In each signal processing circuit 24, the switch 28 is switched to the second state only during the charge accumulation period corresponding to the modulation phase notified from the control unit 16, for example, in the period indicated by hatching in FIG. A signal is input to the storage unit 26, and only a charge corresponding to ambient light is stored. Note that the number Nx of charge accumulation during non-light emission is preferably the same as the number of charge accumulation during phase image acquisition. However, in this embodiment, the number of charge accumulation Ni during phase image acquisition is different for each phase. The accumulated charge amount at the time of non-light emission acquired in steps 50 to 58 is used for correcting the accumulated charge amount A 0 to A 3 for each phase (details will be described later). Can adopt “1” or the greatest common divisor of the number of charge accumulations N 0 to N 3 for each phase.

蓄積部26へのNx回の電荷の蓄積が完了すると、ステップ54の判定が肯定されてステップ56へ移行し、個々の信号処理回路24の蓄積部26から蓄積電荷量を読み出させ、次のステップ58において、受光器14の個々の信号処理回路24から各々入力された蓄積電荷量データを、非発光時画像データとしてメモリ又は不揮発性記憶部に記憶させる。そして本実施形態に係る物体検出処理では、位相0〜位相3の位相画像データの取得が完了することでステップ74の判定が肯定されると、次のステップ78において、上記の処理によって得られた非発光時画像のデータを用いて、個々の蓄積部26から読み出した各位相毎の蓄積電荷量A0〜A3(各位相毎の位相画像)から環境光成分を除去する補正を各々行うことで差分画像を生成する。 When the accumulation of Nx times of charges in the storage unit 26 is completed, the determination in step 54 is affirmed and the process proceeds to step 56 to read out the stored charge amount from the storage units 26 of the individual signal processing circuits 24. In step 58, the accumulated charge amount data respectively input from the individual signal processing circuits 24 of the light receiver 14 is stored in the memory or the nonvolatile storage unit as non-light emitting image data. In the object detection process according to the present embodiment, when the determination of step 74 is affirmed when the acquisition of the phase image data of phase 0 to phase 3 is completed, in the next step 78, the above process is obtained. Using the non-light-emitting image data, correction is performed to remove the ambient light component from the accumulated charge amounts A 0 to A 3 (phase images for each phase) read from each storage unit 26 for each phase. To generate a difference image.

ステップ78における補正では、まず、非発光時画像データが表す各画素毎(各受光セル毎/各蓄積部26毎)の蓄積電荷量Axを、非発光時の電荷蓄積回数Nxと位相iの電荷蓄積回数Niの差に応じて補正する。この補正は、位相iの蓄積電荷量Aiに対して位相iの電荷蓄積回数Niで除算する(Ai←Ai/Ni)補正を行った場合には、同様に、非発光時の蓄積電荷量Axを非発光時の電荷蓄積回数Nxで除算する(Ax←Ax/Nx)補正を行えばよく、位相iの蓄積電荷量Aiに対して位相iの電荷蓄積回数Niと電荷蓄積回数の最大値Nmaxの比を乗ずる(Ai←Ai・Nmax/Ni)補正を行った場合には、非発光時の電荷蓄積回数Nxと電荷蓄積回数の最大値Nmaxの比を乗ずる(Ax←Ax・Nmax/Nx)補正を行えばよい。そして、次の(6)式に示すように、位相iの位相画像データが表す個々の画素の蓄積電荷量Aiから、上記補正を経た非発光時画像データにおける対応する画素の蓄積電荷量Axを各々差し引くことで差分電荷量Ai'を演算する。   In the correction in step 78, first, the accumulated charge amount Ax for each pixel (each light receiving cell / each accumulating unit 26) represented by the image data at the time of non-emission is calculated from the charge accumulation number Nx at the time of non-emission and the charge of phase i. Correction is made according to the difference in the number of accumulations Ni. When the correction is made by dividing the accumulated charge amount Ai of the phase i by the charge accumulation number Ni of the phase i (Ai ← Ai / Ni), similarly, the accumulated charge amount Ax when no light is emitted. (Ax ← Ax / Nx) may be corrected by dividing the charge accumulation number Nx when no light is emitted, and the charge accumulation number Ni of phase i and the maximum value Nmax of the charge accumulation number with respect to the accumulated charge amount Ai of phase i. When the correction is performed (Ai ← Ai · Nmax / Ni), the ratio of the number Nx of charge accumulation during non-light emission and the maximum value Nmax of the number of charge accumulation is multiplied (Ax ← Ax · Nmax / Nx). Correction may be performed. Then, as shown in the following equation (6), the accumulated charge amount Ax of the corresponding pixel in the non-light-emitting image data subjected to the above correction is calculated from the accumulated charge amount Ai of each pixel represented by the phase image data of phase i. The difference charge amount Ai ′ is calculated by subtracting each.

Ai'←Ai−Ax …(6)
なお、(6)式によって算出された差分電荷量Ai'によって表される画像を、以下では差分画像と称する。上記の補正により、図5(E)にも示すように、位相iの蓄積電荷量から環境光成分に相当する電荷量が差し引かれ、差分画像データが表す各画素毎の電荷量(差分電荷量Ai')は、対応する受光セルにおける反射光の受光強度を正確に表すデータになる。そして、例えば図6に示すように、位相iの位相画像中に環境光としての太陽光が直接入射されることで蓄積電荷の飽和が生じている領域が存在していたとしても、非発光時画像中の同じ領域にも同様に蓄積電荷の飽和が生じていることで、差分画像上では前記領域における蓄積電荷の飽和が除去されることになる。ステップ78では上記の補正を各位相毎に行うことで、差分画像を各位相毎に各々生成する。
Ai '← Ai-Ax (6)
Note that an image represented by the differential charge amount Ai ′ calculated by the equation (6) is hereinafter referred to as a differential image. As a result of the above correction, as shown in FIG. 5E, the charge amount corresponding to the ambient light component is subtracted from the accumulated charge amount of phase i, and the charge amount (difference charge amount) for each pixel represented by the difference image data. Ai ′) is data that accurately represents the received light intensity of the reflected light in the corresponding light receiving cell. For example, as shown in FIG. 6, even when there is a region in which accumulated charge is saturated due to direct incidence of sunlight as ambient light in the phase image of phase i, Similarly, since the accumulated charge is saturated in the same region in the image, the accumulated charge in the region is removed from the difference image. In step 78, the above correction is performed for each phase, thereby generating a difference image for each phase.

また先に説明したように、発光器12の発光タイミングとの位相差がより小さい位相になるに従って電荷蓄積回数Niが小さくなるように、各位相毎の電荷蓄積回数Niを予め設定しておくことにより、検出対象物体の各位相毎の距離レンジが相違していることに伴って、蓄積部26における蓄積電荷量が過大(飽和)或いは過小となることを防止することができるが、受光器14における反射光の受光強度は、発光器12から射出された光を反射する物体の光反射率によっても大きく変化するので、物体の光反射率によっては蓄積部26で蓄積電荷の飽和が生じたり、逆に蓄積電荷量が過小となることがある。   Further, as described above, the charge accumulation number Ni for each phase is set in advance so that the charge accumulation number Ni becomes smaller as the phase difference from the light emission timing of the light emitter 12 becomes smaller. Thus, it is possible to prevent the accumulated charge amount in the accumulation unit 26 from becoming excessive (saturated) or excessively small due to the difference in the distance range for each phase of the detection target object. The received light intensity of the reflected light greatly varies depending on the light reflectance of the object that reflects the light emitted from the light emitter 12, so that depending on the light reflectance of the object, saturation of the accumulated charge occurs in the accumulation unit 26, Conversely, the amount of stored charge may be too small.

このため、本実施形態に係る物体検出処理では、次のステップ80〜ステップ118において、位相iの差分画像に基づいて位相iにおける検出対象の物体の光反射率を推定し、推定結果に応じて次回の位相画像の取得における位相iの電荷蓄積回数Niを調整する処理を、各位相について順次行う。すなわち、ステップ80では位相0の差分画像内に明度(蓄積電荷量)が閾値TH1以上の高明度領域又は閾値TH2以上の明度領域(当該領域は明度範囲が中〜高明度の領域であるが、以下では便宜上、当該明度領域を「中明度領域」と称する)が存在しているか否か探索する。なお、ノイズの影響による誤判定を防止するために、上記の高明度領域・中明度領域には、「面積が所定値以上」の条件を加えることが望ましい。また、閾値TH1≫閾値TH2であり、閾値TH2としては距離検出が可能な最小明度に相当する値等を用いることができる。そして、次のステップ82では、ステップ80の探索によって高明度領域が発見されたか否か判定する。   For this reason, in the object detection processing according to the present embodiment, in the next step 80 to step 118, the light reflectance of the object to be detected in the phase i is estimated based on the difference image of the phase i, and according to the estimation result. The process of adjusting the number of charge accumulations Ni of phase i in the next phase image acquisition is sequentially performed for each phase. That is, in step 80, the brightness value (accumulated charge amount) in the phase 0 difference image is a high brightness area with a brightness TH1 or more or a brightness area with a threshold TH2 or more (the area is a medium to high brightness area, Hereinafter, for convenience, the brightness area is referred to as “medium brightness area”). In order to prevent erroneous determination due to the influence of noise, it is desirable to add a condition that “the area is equal to or greater than a predetermined value” in the high brightness area / medium brightness area. Further, threshold value TH1 >> threshold value TH2, and as the threshold value TH2, a value corresponding to the minimum brightness with which distance detection is possible can be used. In the next step 82, it is determined whether or not a high brightness area has been found by the search in step 80.

例えば位相0の検出対象距離レンジ内に光反射率の高い物体が存在している場合、例として図7(A)に示す位相画像のように、前記物体に相当する画像領域内に、蓄積部26で蓄積電荷の飽和が生じた領域(蓄積電荷飽和領域)が出現する。この領域は非発光時画像上では蓄積電荷の飽和は生じないので、差分画像上でも高明度領域として残ることになる(図7(A)に示す差分画像も参照)。従って、ステップ80の探索によって差分画像上に高明度領域が存在していることが発見された場合、位相0の電荷蓄積時(位相画像0の取得時)に該当する蓄積部26で蓄積電荷の飽和が生じた可能性が高く、位相0の検出対象距離レンジ内に光反射率の高い物体が存在している可能性が高いと判断できる。このため、ステップ82の判定が肯定された場合はステップ84へ移行し、位相0の電荷蓄積回数N0の値を小さくした後にステップ90へ移行する。これにより、次回の位相画像0の取得時の蓄積部26への蓄積電荷量が抑制され、一部の蓄積部26で蓄積電荷の飽和が生ずることを防止することができるので、上記物体に対する距離dの演算精度が向上する。なお、位相0の電荷蓄積回数N0の値を小さくすることに代えて、次回の位相画像0の取得時の発光器12の発光強度を小さくするようにしてもよい。 For example, when an object having a high light reflectivity exists within the detection target distance range of phase 0, an accumulation unit is included in an image region corresponding to the object as shown in FIG. 7A as an example. 26, an area where accumulated charge is saturated (accumulated charge saturation area) appears. Since this area does not saturate the accumulated charge on the non-light-emitting image, it remains as a high brightness area on the difference image (see also the difference image shown in FIG. 7A). Therefore, when it is found by the search in step 80 that a high brightness area exists on the difference image, the accumulated charge of the accumulation unit 26 corresponding to the phase 0 charge accumulation (when the phase image 0 is acquired) is stored. It can be determined that there is a high possibility that saturation has occurred, and there is a high possibility that an object having a high light reflectance exists within the detection target distance range of phase 0. For this reason, if the determination in step 82 is affirmative, the process proceeds to step 84, and the process proceeds to step 90 after the value of the number of charge accumulations N 0 in phase 0 is reduced. As a result, the amount of stored charge in the storage unit 26 at the time of acquiring the next phase image 0 is suppressed, and it is possible to prevent saturation of the stored charge in some of the storage units 26. The calculation accuracy of d improves. Instead of decreasing the value of the charge accumulation count N 0 of phase 0, the light emission intensity of the light emitter 12 at the next acquisition of the phase image 0 may be decreased.

一方、ステップ82の判定が否定された場合はステップ86へ移行し、ステップ80の探索によって中明度領域が発見されたか否か判定する。例えば位相0の検出対象距離レンジ内に存在している物体の光反射率が低い場合、当該物体からの反射光の受光強度が低くなることで、例として図7(B)に示す位相画像のように、上記物体からの反射光を受光する受光セルに対応する蓄積部26における蓄積電荷量が、上記物体の背景に相当する箇所からの反射光を受光する受光セルに対応する蓄積部26における蓄積電荷量と同程度になり(図7では蓄積電荷量を明度に置き換えて示している)、環境光成分に相当する電荷量を差し引いた後の差分画像上で、上記物体に対応する画像領域が不明確になり、画像全体が低明度となる(図7(B)に示す差分画像も参照)。従って、ステップ80の探索によって差分画像上に中明度領域さえも発見されなかった場合には、位相0の電荷蓄積時(位相画像0の取得時)に該当する蓄積部26における蓄積電荷量が過小であった可能性が高く、位相0の検出対象距離レンジ内に光反射率の低い物体が存在している可能性が高いと判断できる。   On the other hand, if the determination in step 82 is negative, the process proceeds to step 86, and it is determined whether or not a medium lightness area has been found by the search in step 80. For example, when the light reflectance of an object existing within the detection target distance range of phase 0 is low, the received light intensity of the reflected light from the object becomes low, and as an example, the phase image shown in FIG. As described above, in the storage unit 26 corresponding to the light receiving cell that receives the reflected light from the portion corresponding to the background of the object, the accumulated charge amount in the storage unit 26 corresponding to the light receiving cell that receives the reflected light from the object is The image area corresponding to the object on the difference image after subtracting the charge amount corresponding to the ambient light component, which is almost the same as the accumulated charge amount (in FIG. 7, the accumulated charge amount is replaced with lightness). Becomes unclear and the entire image has low brightness (see also the difference image shown in FIG. 7B). Therefore, if even the middle lightness region is not found on the difference image by the search in step 80, the accumulated charge amount in the accumulation unit 26 corresponding to the phase 0 charge accumulation (when the phase image 0 is acquired) is too small. Therefore, it can be determined that there is a high possibility that an object having a low light reflectance exists within the detection target distance range of phase 0.

このため、ステップ86の判定が否定された場合はステップ88へ移行し、位相0の電荷蓄積回数N0の値を大きくした後にステップ90へ移行する。これにより、次回の位相画像0の取得時の蓄積部26への蓄積電荷量が増大され、光反射率の低い物体からの反射光を十分な蓄積電荷量の電荷として蓄積させることができるので、上記物体に対する距離dの演算精度が向上する。なお、位相0の電荷蓄積回数N0の値を大きくすることに代えて、次回の位相画像0の取得時の発光器12の発光強度を大きくするようにしてもよい。 Therefore, if the determination in step 86 is negative, the process proceeds to step 88, and after increasing the value of the charge accumulation count N 0 in phase 0, the process proceeds to step 90. As a result, the amount of accumulated charge in the accumulation unit 26 at the time of acquiring the next phase image 0 is increased, and reflected light from an object having a low light reflectance can be accumulated as a sufficient amount of accumulated charge. The calculation accuracy of the distance d with respect to the object is improved. Note that instead of increasing the value of the charge accumulation count N 0 of phase 0, the light emission intensity of the light emitter 12 at the next acquisition of the phase image 0 may be increased.

本実施形態に係る物体検出処理では、上述したステップ80〜ステップ88で位相0に対して行った処理と同様の処理を、次のステップ90〜ステップ98で位相1に対して行い、ステップ100〜ステップ108で位相2に対して行い、ステップ110〜ステップ118で位相3に対して行う。これにより、次回の位相画像の取得時の電荷蓄積回数Niが、各位相毎の検出対象距離レンジ内に存在している物体の光反射率に応じて、各位相毎に最適化されることになる。なお、上述した処理は本発明に係る制御手段に相当する処理であり、より詳しくは、ステップ82,84,92,94,102,104,112,114は請求項に記載の制御手段に、ステップ86,88,96,98,106,108,116,118は請求項に記載の制御手段に各々対応している。 In the object detection processing according to the present embodiment, processing similar to the processing performed for phase 0 in steps 80 to 88 described above is performed for phase 1 in the next steps 90 to 98, and steps 100 to 100 are performed. Step 108 is performed for phase 2, and steps 110 to 118 are performed for phase 3. As a result, the number of charge accumulations Ni when acquiring the next phase image is optimized for each phase in accordance with the light reflectance of the object existing within the detection target distance range for each phase. Become. The above-described processing is processing corresponding to the control means according to the present invention. More specifically, steps 82, 84, 92, 94, 102, 104, 112, 114 are added to the control means according to claim 1 . Steps 86, 88, 96, 98, 106, 108, 116, 118 correspond to the control means described in claim 2 .

上記のように、次回の位相画像の取得における各位相毎の電荷蓄積回数Niを調整すると、次のステップ120では、位相0〜位相3の差分画像に基づき、制御部16は、先の(1)式又は(3)〜(5)式を用いて位相差φを演算し、先の(2)式を用いて物体との距離dを演算することを撮像素子の個々の受光セルについて各々行い、演算結果を外部へ出力する。この物体との距離dの演算結果を参照することで、受光器14の撮像素子による撮像範囲内に存在する各物体との距離を認識することができる。   As described above, when the number of charge accumulations Ni for each phase in the next phase image acquisition is adjusted, in the next step 120, the control unit 16 determines whether the previous (1 ) Or (3) to (5) is used to calculate the phase difference φ, and the distance d to the object is calculated using the above equation (2) for each light receiving cell of the image sensor. Outputs the calculation result to the outside. By referring to the calculation result of the distance d to the object, it is possible to recognize the distance to each object existing in the imaging range by the imaging device of the light receiver 14.

なお、物体との距離dの演算に際し、位相0〜位相3の差分画像の何れかで蓄積電荷の飽和が生じている画素・領域については、距離dの演算対象から除外することが望ましい(請求項記載の発明に相当)が、本実施形態に係る物体検出処理によれば、環境光の影響で位相画像上に蓄積電荷の飽和が生じた領域が存在していたとしても、非発光時画像との差分が演算されることで、差分画像上では上記領域は除去されると共に、検出対象の物体が高反射率の物体であったために差分画像上の一部の領域で蓄積電荷の飽和が生じていたとしても、次回の位相画像の取得時には蓄積電荷の飽和が生じないように電荷蓄積回数Niの値が調整されるので、距離dの演算対象から除外した画素・領域についても、次回以降の物体検出処理で距離dが演算されることになる。 When calculating the distance d to the object, it is desirable to exclude pixels / regions in which accumulated charge is saturated in any of the phase 0 to phase 3 difference images from the calculation target of the distance d (claims). (Equivalent to the invention described in item 6 ), according to the object detection processing according to the present embodiment, even when there is a region where the accumulated charge is saturated on the phase image due to the influence of environmental light, By calculating the difference from the image, the above area is removed from the difference image, and the accumulated charge is saturated in some areas on the difference image because the object to be detected is a highly reflective object. Since the value of the charge accumulation count Ni is adjusted so that the accumulated charge is not saturated when the next phase image is acquired, the pixel / region excluded from the calculation target of the distance d is also next time. In the subsequent object detection process, the distance d is Will be calculated.

またステップ122では、位相0〜位相3の差分画像のデータに基づき、各差分画像が表す各画素毎の電荷蓄積量を対応する明度(濃度)に置き換えた各位相(に対応する検出対象の距離レンジ)毎の距離画像データを生成し、生成した距離画像データを外部へ出力し、物体検出処理を終了する。この距離画像データが表す画像をディスプレイ等に表示させることで、受光器14の撮像素子による撮像範囲内に、各距離レンジ毎にどのような物体が存在しているのかを視覚的に認識することができる。上述したステップ120、122は、先に説明したステップ50〜ステップ78と共に本発明に係る検出手段(詳しくは請求項,請求項〜請求項に記載の検出手段)に対応している。 In step 122, based on the difference image data of phase 0 to phase 3, the detection target distance corresponding to each phase in which the charge accumulation amount for each pixel represented by each difference image is replaced with the corresponding brightness (density). Distance image data for each range) is generated, the generated distance image data is output to the outside, and the object detection process is terminated. By displaying the image represented by the distance image data on a display or the like, it is possible to visually recognize what object exists for each distance range within the imaging range of the imaging device of the light receiver 14. Can do. Steps 120 and 122 described above correspond to the detection means according to the present invention (specifically, the detection means according to claims 3 and 5 to 7 ) together with steps 50 to 78 described above.

なお、上記では各位相毎の蓄積電荷量Ai(位相画像)から非発光時の蓄積電荷量Ax(非発光時画像)を各々差し引くことで、環境光成分に相当する電荷量を除去した電荷量Ai'(差分画像)を得る態様を説明したが、本発明はこれに限定されるものではなく、個々の画素毎に、位相iの蓄積電荷量Aiから、電荷蓄積期間が位相iと重複しない位相jの蓄積電荷量Ajを差し引くことを各位相について各々行うことで(次式参照:但し、次式においてAi'<0の場合はAi'=0に置き換える)、
0'←A0−A21'←A1−A32'←A2−A03'←A3−A1
環境光成分に相当する電荷量を除去した電荷量Ai'(差分画像)を得るようにしてもよい(図8も参照)。
In the above description, the charge amount obtained by removing the charge amount corresponding to the ambient light component by subtracting the accumulated charge amount Ax (non-light-emitting image) when not emitting light from the accumulated charge amount Ai (phase image) for each phase. Although the aspect of obtaining Ai ′ (difference image) has been described, the present invention is not limited to this, and the charge accumulation period does not overlap with phase i from the accumulated charge amount Ai of phase i for each pixel. By subtracting the accumulated charge amount Aj of phase j for each phase (see the following formula: However, if Ai ′ <0 in the following formula, it is replaced with Ai ′ = 0).
A 0 '← A 0 -A 2 A 1 ' ← A 1 -A 3 A 2 '← A 2 -A 0 A 3 ' ← A 3 -A 1
A charge amount Ai ′ (difference image) from which the charge amount corresponding to the ambient light component is removed may be obtained (see also FIG. 8).

例えば距離検出のレンジ(検出対象の物体との最大距離)が10mで、図8に示すように1m及び7mの距離に各々物体が存在している状況で、位相画像0から位相画像2を差し引く演算を行った場合、検出対象物体の距離レンジが位相0は0〜5m、位相2は5〜10mであるので、1mの距離に存在している物体は位相画像0上に明るく現れる(7mの距離に存在している物体は位相画像2上に明るく現れる)ので、位相画像0から位相画像2を差し引く演算を行ったとしても、1mの距離に存在している物体は差分画像0上に残る一方で、太陽光が直接入射されることで蓄積電荷の飽和が生じている領域等は除去されることになり、環境光の影響で物体検出の精度が低下することを回避することができる。上記処理では、非発光時の蓄積電荷量Axを求める必要が無くなるので、処理速度を向上させる(物体検出の周期を短くする)ことができる。なお、上記態様は請求項記載の発明に対応している。 For example, when the distance detection range (maximum distance from the object to be detected) is 10 m and objects exist at distances of 1 m and 7 m as shown in FIG. 8, phase image 2 is subtracted from phase image 0. When the calculation is performed, since the distance range of the detection target object is 0 to 5 m for phase 0 and 5 to 10 m for phase 2, an object existing at a distance of 1 m appears brightly on the phase image 0 (7 m Since the object existing at the distance appears brightly on the phase image 2), even if the calculation of subtracting the phase image 2 from the phase image 0 is performed, the object existing at the distance of 1 m remains on the difference image 0. On the other hand, a region where accumulated charge is saturated due to direct incidence of sunlight is removed, and it is possible to avoid a decrease in the accuracy of object detection due to the influence of ambient light. In the above processing, it is not necessary to obtain the accumulated charge amount Ax when no light is emitted, so that the processing speed can be improved (the object detection cycle can be shortened). The above aspect corresponds to the invention described in claim 4 .

また、上記では位相iの差分画像内に明度(蓄積電荷量)が閾値TH1以上の高明度領域が存在している場合に、位相iの電荷蓄積回数Niの値を小さくする態様を説明したが、本発明はこれに限定されるものではなく、位相iの位相画像上での明度が閾値TH1以上で、かつ、位相iの位相画像上での明度に対する位相iの差分画像上での明度の低下量が閾値TH3以下の領域を探索し、該当する領域が存在している場合に、位相iの電荷蓄積回数Niの値を小さくする(或いは、位相iの位相画像取得時の発光器12の発光強度を小さくする)ようにしてもよい。これにより、位相iの検出対象距離レンジ内に光反射率の高い物体が存在しているか否かをより正確に検知することができ、上記物体が存在している場合に、上記物体に対する距離dの演算精度を更に向上させることができる。   In the above description, the mode in which the value of the number of charge accumulations Ni at the phase i is reduced when the brightness (accumulated charge amount) is higher than the threshold TH1 in the difference image at the phase i has been described. The present invention is not limited to this, and the brightness on the phase image of phase i is equal to or higher than the threshold TH1, and the brightness on the difference image of phase i with respect to the brightness on the phase image of phase i is A region where the amount of decrease is equal to or less than the threshold TH3 is searched, and when the corresponding region exists, the value of the charge accumulation count Ni of phase i is decreased (or the light emitting device 12 at the time of acquiring the phase image of phase i). (The emission intensity may be reduced). Accordingly, it is possible to more accurately detect whether or not an object having a high light reflectance exists within the detection target distance range of the phase i. When the object exists, the distance d to the object is determined. The calculation accuracy can be further improved.

また、上記では位相iの差分画像中に閾値TH1以上の高明度領域が存在している場合又は閾値TH2以上の中明度領域さえも存在していない場合に、検出対象の物体が高反射率物体又は低反射率物体と判断して位相iの電荷蓄積回数Niを変更する態様を説明したが、本発明はこれに限定されるものではなく、位相画像iと非発光時画像との明度差を各画素毎に比較し、位相画像i上で蓄積電荷の飽和が生じている領域(一定面積以上とすることが望ましい)が非発光時画像上で蓄積電荷の飽和が生じていない場合は、検出対象の物体が高反射率物体と判断して位相iの電荷蓄積回数Niの値を小さくし、位相画像iと非発光時画像との間に明度差のある領域が存在していない場合は、検出対象の物体が低反射率物体と判断して位相iの電荷蓄積回数Niの値を大きくするようにしてもよい。この態様は、判定が適切に行われるように閾値TH1,TH2の大きさを調整する等の作業を行う必要がなくなるという利点を有している。   In addition, in the above, when the high brightness area having the threshold value TH1 or more exists in the difference image of the phase i or even the middle brightness area having the threshold value TH2 or more does not exist, the object to be detected is the high reflectance object. Alternatively, the aspect of changing the charge accumulation number Ni of the phase i by determining that the object is a low reflectivity object has been described, but the present invention is not limited to this, and the brightness difference between the phase image i and the non-light emitting image is calculated. Compared to each pixel, if the area where accumulated charge is saturated on the phase image i (desirably greater than a certain area) is not detected when the accumulated charge is not saturated on the non-light-emitting image When the target object is determined to be a high-reflectance object, the value of the charge accumulation number Ni of the phase i is reduced, and there is no region having a brightness difference between the phase image i and the non-light-emitting image, Number of charge accumulations of phase i when the object to be detected is judged as a low reflectance object It may be the value of i is increased. This aspect has an advantage that it is not necessary to perform an operation such as adjusting the magnitudes of the thresholds TH1 and TH2 so that the determination is appropriately performed.

また、上記では本発明に係る受光手段に相当する受光セルが2次元に複数個配列されて成る撮像素子が設けられている態様を説明したが、本発明はこれに限定されるものではなく、単一の受光手段を備え、受光手段が受光した光を反射した物体との距離を検出する距離検出装置等に適用することも可能である。   Moreover, although the aspect provided with the image pick-up element by which two or more light-receiving cells corresponded to the light-receiving means based on this invention was provided in the above was demonstrated, this invention is not limited to this, The present invention can also be applied to a distance detecting device that includes a single light receiving means and detects a distance from an object that reflects light received by the light receiving means.

更に、発光器12の発光パターンは、図4(A)に示すような方形波状の発光パターンに限られるものではなく、例えば正弦波状や三角波状、のこぎり波状等の各種波形の発光パターンの何れであってもよい。また、発光器12の発光パターンは図4(A)に示すように各周期内における発光期間の位相が一定であることに限られるものでもなく、各周期内における発光期間の位相を変動させてもよい。また、発光器12の発光パターンは図4(A)に示すように周期が一定であることに限られるものでもなく、例えば発光期間の長さは一定で非発光期間の長さを変動させたり、非発光期間の長さは一定で発光期間の長さを変動させたり、発光期間及び非発光期間の長さを各々変動させることで、発光パターンの周期を変動させるようにしてもよい。   Furthermore, the light emission pattern of the light emitter 12 is not limited to a square wave light emission pattern as shown in FIG. 4A, and may be any light emission pattern having various waveforms such as a sine wave shape, a triangular wave shape, and a sawtooth wave shape. There may be. Further, the light emission pattern of the light emitter 12 is not limited to the constant phase of the light emission period within each cycle as shown in FIG. 4A, and the phase of the light emission period within each cycle is varied. Also good. Further, the light emission pattern of the light emitter 12 is not limited to a constant period as shown in FIG. 4A. For example, the length of the light emission period is constant and the length of the non-light emission period is varied. The period of the light emission pattern may be changed by changing the length of the light emission period or changing the length of the light emission period and the non-light emission period.

本実施形態に係る物体検出装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the object detection apparatus which concerns on this embodiment. 受光器の各受光セルに接続された信号処理部の回路図である。It is a circuit diagram of the signal processing part connected to each light reception cell of a light receiver. 物体検出処理の内容を示すフローチャートである。It is a flowchart which shows the content of an object detection process. 各位相での電荷の蓄積と蓄積部に蓄積される電荷量を示すタイミングチャートである。It is a timing chart which shows accumulation | storage of the electric charge in each phase, and the electric charge amount accumulate | stored in an accumulation | storage part. 発光器非発光時の蓄積電荷量に基づく環境光成分の除去を説明するための説明図である。It is explanatory drawing for demonstrating removal of the environmental light component based on the amount of stored charges at the time of light emitter non-light emission. 発光器非発光時の蓄積電荷量に基づく環境光成分の除去を説明するためのイメージ図である。It is an image figure for demonstrating removal of the environmental light component based on the amount of stored charges at the time of light emitter non-light emission. 差分画像上に高明度領域が生ずる場合及び中明度領域も生じない場合を各々説明するためのイメージ図である。It is an image figure for demonstrating the case where a high brightness area | region arises on a difference image, and the case where a medium brightness area | region does not arise, respectively. 環境光成分除去の他の方法を説明するためのイメージ図である。It is an image figure for demonstrating the other method of environmental light component removal.

符号の説明Explanation of symbols

10 物体検出装置
12 発光器
14 受光器
16 制御部
20 フォトダイオード
24 信号処理回路
26 蓄積部
DESCRIPTION OF SYMBOLS 10 Object detection apparatus 12 Light emitter 14 Light receiver 16 Control part 20 Photodiode 24 Signal processing circuit 26 Accumulation part

Claims (8)

発光強度を時間的に変化させながら発光する発光手段と、
光の入射方向に交差する方向に沿って2次元に配列され、受光量に応じた受光信号を出力する複数の受光手段と、
前記複数の受光手段の各々に対応して複数設けられた電荷蓄積手段と、
前記受光手段から出力される受光信号を、前記発光手段の発光周期よりも短くかつ前記発光手段の発光タイミングに対する位相が一定の蓄積期間に、前記電荷蓄積手段へ電荷として所定回蓄積させることを、前記位相が互いに異なる複数種の蓄積期間について各々行わせ、前記電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行う検出手段と、
前記位相の異なる蓄積期間に前記複数の電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させると共に、前記複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は前記特定位相での前記補正後の蓄積電荷量によって表される補正画像中に、第1の所定値以上の明度の領域が存在している場合に、前記特定位相の蓄積期間に前記電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させる制御手段と、
を含む物体検出装置。
A light emitting means for emitting light while changing the light emission intensity over time;
A plurality of light receiving means arranged in a two-dimensional manner along a direction intersecting the light incident direction and outputting a light reception signal corresponding to the amount of light received;
A plurality of charge storage means provided corresponding to each of the plurality of light receiving means ;
The light receiving signal output from the light receiving means is accumulated a predetermined number of times as charges in the charge accumulating means during an accumulation period shorter than the light emission period of the light emitting means and with a constant phase with respect to the light emission timing of the light emitting means. Detection means for performing each of a plurality of types of accumulation periods having different phases, and performing at least one of object detection and information output for object detection based on a stored charge amount for each of the plurality of types of phases in the charge storage means When,
At least one of the light emission intensity and the number of times of charge accumulation of the light emitting means when charge is accumulated in the plurality of charge accumulation means during the accumulation periods having different phases, and at a specific phase in the plurality of charge accumulation means. In the image represented by the accumulated charge amount or the corrected image represented by the accumulated charge amount after the correction in the specific phase, when there is a region having a brightness greater than or equal to the first predetermined value, Control means for reducing at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation when accumulating charges in the charge accumulating means during an accumulation period of a specific phase ;
An object detection apparatus including:
発光強度を時間的に変化させながら発光する発光手段と、
光の入射方向に交差する方向に沿って2次元に配列され、受光量に応じた受光信号を出力する複数の受光手段と、
前記複数の受光手段の各々に対応して複数設けられた電荷蓄積手段と、
前記受光手段から出力される受光信号を、前記発光手段の発光周期よりも短くかつ前記発光手段の発光タイミングに対する位相が一定の蓄積期間に、前記電荷蓄積手段へ電荷として所定回蓄積させることを、前記位相が互いに異なる複数種の蓄積期間について各々行わせ、前記電荷蓄積手段における複数種の位相毎の蓄積電荷量に基づいて物体検出及び物体検出のための情報の出力の少なくとも一方を行う検出手段と、
前記位相の異なる蓄積期間に前記電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を相違させると共に、前記複数の電荷蓄積手段における特定位相での蓄積電荷量によって表される画像又は前記特定位相での前記補正後の蓄積電荷量によって表される補正画像中に、第2の所定値以上の明度の領域が存在していない場合に、前記特定位相の蓄積期間に前記電荷蓄積手段への電荷の蓄積を行う際の前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を増加させる制御手段と、
を含む物体検出装置。
A light emitting means for emitting light while changing the light emission intensity over time;
A plurality of light receiving means arranged in a two-dimensional manner along a direction intersecting the light incident direction and outputting a light reception signal corresponding to the amount of light received;
A plurality of charge storage means provided corresponding to each of the plurality of light receiving means;
The light receiving signal output from the light receiving means is accumulated a predetermined number of times as charges in the charge accumulating means during an accumulation period shorter than the light emission period of the light emitting means and with a constant phase with respect to the light emission timing of the light emitting means. Detection means for performing each of a plurality of types of accumulation periods having different phases, and performing at least one of object detection and information output for object detection based on a stored charge amount for each of the plurality of types of phases in the charge storage means When,
At least one of the light emission intensity and the number of times of charge accumulation of the light emitting means when accumulating charges in the charge accumulating means during the accumulation periods having different phases is made different, and accumulation at a specific phase in the plurality of charge accumulating means In a case where there is no region of lightness equal to or greater than a second predetermined value in the image represented by the charge amount or the corrected image represented by the accumulated charge amount after the correction in the specific phase, the specific phase Control means for increasing at least one of the light emission intensity of the light emitting means and the number of times of charge accumulation when accumulating charges in the charge accumulating means during the accumulation period;
An object detection apparatus including:
前記検出手段は、前記発光手段が発光を停止している状態で前記受光手段から出力される受光信号も、任意の位相の蓄積期間に前記電荷蓄積手段へ電荷として蓄積させ、前記複数種の位相毎の蓄積電荷量から前記発光手段が発光を停止している状態での蓄積電荷量を各々差し引くことで前記複数種の位相毎の蓄積電荷量を補正し、前記複数種の位相毎の補正後の蓄積電荷量に基づいて、前記物体検出及び物体検出のための情報の出力の少なくとも一方を行うことを特徴とする請求項1又は請求項2記載の物体検出装置。 The detecting means accumulates the light receiving signal output from the light receiving means in a state where the light emitting means stops emitting light in the charge accumulating means during the accumulation period of an arbitrary phase, and the plurality of types of phases. The accumulated charge amount for each of the plurality of phases is corrected by subtracting the accumulated charge amount in a state where the light emitting unit stops light emission from the accumulated charge amount for each of the plurality of phases. 3. The object detection apparatus according to claim 1, wherein at least one of the object detection and the output of information for object detection is performed based on a stored charge amount . 前記検出手段は、第1の位相での蓄積電荷量から、前記第1の位相の蓄積期間と重複しない第2の位相での蓄積電荷量を差し引くことで前記第1の位相での蓄積電荷量を補正することを、前記各位相毎の蓄積電荷量に対して各々行い、前記複数種の位相毎の補正後の蓄積電荷量に基づいて、前記物体検出及び物体検出のための情報の出力の少なくとも一方を行うことを特徴とする請求項1又は請求項2記載の物体検出装置。 The detection means subtracts the accumulated charge amount in the second phase that does not overlap with the accumulation period in the first phase from the accumulated charge amount in the first phase, thereby subtracting the accumulated charge amount in the first phase. Is corrected for each of the accumulated charge amounts for each phase, and based on the corrected accumulated charge amounts for each of the plurality of phases, the object detection and the output of information for object detection are performed. The object detection apparatus according to claim 1, wherein at least one of them is performed . 前記検出手段は、前記複数種の位相毎の蓄積電荷量又は前記複数種の位相毎の前記補正後の蓄積電荷量に基づき、前記物体検出として、前記発光手段から射出された光を反射した物体との距離の検出を行うことを特徴とする請求項1〜請求項4の何れか1項記載の物体検出装置。 The detection means reflects the light emitted from the light emitting means as the object detection based on the accumulated charge amount for each of the plurality of phases or the corrected accumulated charge amount for each of the plurality of phases. The object detection apparatus according to any one of claims 1 to 4, wherein a distance between the detection object and the object is detected. 前記受光手段が複数設けられ、個々の受光手段が光の入射方向に交差する方向に沿って2次元に配列されていると共に、前記電荷蓄積手段が個々の受光手段に対応して複数設けられており、
前記検出手段は、前記個々の受光手段毎に物体との距離を演算すると共に、前記個々の受光手段のうち、対応する電荷蓄積手段における蓄積電荷量又は前記補正後の蓄積電荷量が蓄積電荷の飽和に相当する値を示している受光手段を、前記物体との距離の演算対象から除外することを特徴とする請求項5記載の物体検出装置。
A plurality of the light receiving means are provided, each of the light receiving means is two-dimensionally arranged along a direction intersecting the light incident direction, and a plurality of the charge storage means are provided corresponding to each of the light receiving means. And
The detection means calculates the distance to the object for each individual light receiving means, and among the individual light receiving means, the accumulated charge amount in the corresponding charge accumulation means or the corrected accumulated charge amount is the accumulated charge amount. 6. The object detection apparatus according to claim 5, wherein the light receiving means showing a value corresponding to saturation is excluded from the calculation target of the distance to the object.
前記受光手段が複数設けられ、個々の受光手段が光の入射方向に交差する方向に沿って2次元に配列されていると共に、前記電荷蓄積手段が個々の受光手段に対応して複数設けられており、
前記検出手段は、前記物体検出のための情報として、複数の電荷蓄積手段における前記複数種の位相毎の蓄積電荷量又は前記複数種の位相毎の前記補正後の蓄積電荷量を、各位相毎に距離レンジの異なる画像として出力することを特徴とする請求項1〜請求項4の何れか1項記載の物体検出装置。
A plurality of the light receiving means are provided, each of the light receiving means is two-dimensionally arranged along a direction intersecting the light incident direction, and a plurality of the charge storage means are provided corresponding to each of the light receiving means. And
The detection means uses, as information for detecting the object, the accumulated charge amount for each of the plurality of phases in the plurality of charge accumulation means or the accumulated charge amount after the correction for each of the plurality of phases for each phase. 5. The object detection device according to claim 1, wherein the object detection device outputs an image having a different distance range .
前記制御手段は、前記電荷の蓄積を行う蓄積期間の位相が、前記発光手段の発光タイミングとの位相差がより小さい位相になるに従って、前記発光手段の発光強度及び電荷蓄積回数の少なくとも一方を減少させることを特徴とする請求項1〜請求項4の何れか1項記載の物体検出装置。 The control means reduces at least one of the light emission intensity of the light emitting means and the number of charge accumulations as the phase of the accumulation period for accumulating the charge becomes a phase with a smaller phase difference from the light emission timing of the light emitting means. The object detection device according to claim 1, wherein the object detection device is a device.
JP2006095382A 2006-03-30 2006-03-30 Object detection device Expired - Fee Related JP4321540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095382A JP4321540B2 (en) 2006-03-30 2006-03-30 Object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095382A JP4321540B2 (en) 2006-03-30 2006-03-30 Object detection device

Publications (2)

Publication Number Publication Date
JP2007271373A JP2007271373A (en) 2007-10-18
JP4321540B2 true JP4321540B2 (en) 2009-08-26

Family

ID=38674334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095382A Expired - Fee Related JP4321540B2 (en) 2006-03-30 2006-03-30 Object detection device

Country Status (1)

Country Link
JP (1) JP4321540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164496A (en) * 2006-12-28 2008-07-17 Toyota Central R&D Labs Inc Measurement device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452200B2 (en) * 2009-12-10 2014-03-26 スタンレー電気株式会社 Distance image generating apparatus and distance image generating method
WO2013009099A2 (en) * 2011-07-12 2013-01-17 삼성전자 주식회사 Device and method for blur processing
JP5637117B2 (en) * 2011-10-26 2014-12-10 株式会社デンソー Distance measuring device and distance measuring program
KR101913321B1 (en) 2012-05-10 2018-10-30 삼성전자주식회사 Method of geometry acquisition for specular object based on depth sensor and the device thereof
JP6281942B2 (en) * 2014-02-14 2018-02-21 オムロンオートモーティブエレクトロニクス株式会社 Laser radar apparatus and object detection method
JP2015206651A (en) * 2014-04-18 2015-11-19 浜松ホトニクス株式会社 Distance measurement method and distance measurement system
JP6498429B2 (en) * 2014-12-16 2019-04-10 スタンレー電気株式会社 Distance image generation device, distance image generation method and program
EP3396410A4 (en) 2015-12-21 2019-08-21 Koito Manufacturing Co., Ltd. Image acquisition device for vehicles, control device, vehicle provided with image acquisition device for vehicles and control device, and image acquisition method for vehicles
JP6851985B2 (en) 2015-12-21 2021-03-31 株式会社小糸製作所 Vehicle and vehicle image acquisition method equipped with vehicle image acquisition device, control device, vehicle image acquisition device or control device
WO2017110414A1 (en) 2015-12-21 2017-06-29 株式会社小糸製作所 Image acquisition device for vehicles, and vehicle provided with same
US11187805B2 (en) 2015-12-21 2021-11-30 Koito Manufacturing Co., Ltd. Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle
JP6733100B2 (en) * 2015-12-22 2020-07-29 株式会社リコー Distance sensor, running body, robot and three-dimensional measuring device
WO2017183114A1 (en) * 2016-04-19 2017-10-26 株式会社日立エルジーデータストレージ Distance image generation device and distance image generation method
JP2017198477A (en) * 2016-04-25 2017-11-02 スタンレー電気株式会社 Distance image generation device
WO2018110183A1 (en) * 2016-12-14 2018-06-21 パナソニックIpマネジメント株式会社 Image capture control device, image capture control method, program, and recording medium
JP7042582B2 (en) * 2017-09-28 2022-03-28 株式会社東芝 Image pickup device and distance calculation method for image pickup device
JP7135846B2 (en) * 2018-12-27 2022-09-13 株式会社デンソー Object detection device and object detection method
CN112799087A (en) * 2020-12-30 2021-05-14 艾普柯微电子(江苏)有限公司 Distance measuring method and distance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164496A (en) * 2006-12-28 2008-07-17 Toyota Central R&D Labs Inc Measurement device

Also Published As

Publication number Publication date
JP2007271373A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4321540B2 (en) Object detection device
JP5098331B2 (en) Measuring device
JP6443132B2 (en) Arithmetic unit
US7379100B2 (en) Method and system to increase dynamic range of time-of-flight (TOF) and/or imaging sensors
JP6863342B2 (en) Optical ranging device
US11668826B2 (en) Photodetector
TWI544232B (en) Calibration circuitry and method for a time of flight imaging system
US8768010B2 (en) Distance measuring apparatus, distance measuring method, and program
US8797513B2 (en) Distance measuring system and distance measuring method
US7280141B1 (en) Fixed pattern noise subtraction in a digital image sensor
US9927516B2 (en) Distance measuring apparatus and distance measuring method
CN110596727B (en) Distance measuring device for outputting precision information
JPWO2016189808A1 (en) Ranging imaging device and solid-state imaging device
JP5218513B2 (en) Displacement sensor
JP2009192499A (en) Apparatus for generating distance image
JP2020112443A (en) Distance measurement device and distance measurement method
JPWO2016133053A1 (en) Distance image measuring device
JP2008249673A (en) Distance measuring device, distance measurement method, and distance measurement system
JP2008122223A (en) Distance measuring device
US10924687B2 (en) Adaptive generation of a high dynamic range image of a scene, on the basis of a plurality of images obtained by non-destructive reading of an image sensor
WO2018181013A1 (en) Light detector
JPWO2020021914A1 (en) Distance measuring device and reliability judgment method
JP6735515B2 (en) Solid-state imaging device
WO2019050024A1 (en) Distance measuring method and distance measuring device
JP2007248227A (en) Object detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees