JP4320511B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP4320511B2
JP4320511B2 JP2001041810A JP2001041810A JP4320511B2 JP 4320511 B2 JP4320511 B2 JP 4320511B2 JP 2001041810 A JP2001041810 A JP 2001041810A JP 2001041810 A JP2001041810 A JP 2001041810A JP 4320511 B2 JP4320511 B2 JP 4320511B2
Authority
JP
Japan
Prior art keywords
power
circuit
voltage
electrochemical element
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001041810A
Other languages
Japanese (ja)
Other versions
JP2002247776A (en
Inventor
純一郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001041810A priority Critical patent/JP4320511B2/en
Publication of JP2002247776A publication Critical patent/JP2002247776A/en
Application granted granted Critical
Publication of JP4320511B2 publication Critical patent/JP4320511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、直列接続した電気二重層コンデンサなどの電気化学素子の端子間電圧を制御する電源装置に関するものである。
【0002】
【従来の技術】
電気二重層コンデンサは静電容量が大きく、バッテリと比較して充電効率が高いため、電気自動車や、エレベータの回生電力を蓄積する動力源として注目されている。しかしながら、一個当たりの耐電圧が低いため、高い電圧が必要な場合には複数の電気二重層コンデンサを直列接続する必要が有る。
【0003】
このとき、直列に接続された電気二重層コンデンサの漏洩電流のバラツキや静電容量のバラツキから、電気二重層コンデンサへの充放電によって個々の電気二重層コンデンサの端子間電圧にアンバランスが生じ、個々の電気二重層コンデンサに定格電圧を超える電圧が印加される可能性がある。
【0004】
そこで、従来は図9に示すように各コンデンサの端子間に抵抗を接続することで個々のコンデンサの端子間電圧を均等に保つ方法や、図10に示す特開平9−247851号公報のような方法により、各電圧バランスの補正を行いコンデンサの端子間電圧が定格電圧を超えないようにしていた。
【0005】
しかし、図9に示すコンデンサの端子間に抵抗を接続する方法では常時抵抗に電流が流れるとともに、急激な充放電の際に生じる電圧のアンバランスの均等化速度を向上させるには、抵抗を小さくしなければならないため大きなエネルギーが常時抵抗で消費されてしまう。また、図10に示す特開平9−247851号公報の従来例の方法では、各コンデンサ毎に所定の電圧を超えた場合にのみ当該コンデンサの充電を停止する構造となっている。
【0006】
そのためエネルギー効率は改善されるが、充電制御用トランジスタSで余分な充電電流をバイパスさせることになり、その間余分なエネルギー全てが熱エネルギーになる。このとき、コンデンサなどの電気化学素子の静電容量にバラツキがあって頻繁に充放電される回路では、多量の熱が発生するためにエネルギー効率が悪く冷却装置のための空間を確保する必要があり装置の小型化が難しくなるという問題もある。
【0007】
【発明が解決しようとする課題】
上記のような従来の電源装置においては、特開平9−247851号公報に記載の発明に示すように、漏洩電流のアンバランスなどにより個々の電気化学素子の端子間電圧が上昇し基準電圧に達した場合に、さらに流入した電流により端子間電圧が基準電圧を超えないようにするために、その電力を一旦コイルに蓄積し他の電気化学素子に分配することにより過充電を防いでいる。また、直列に接続された電気化学素子間の静電容量にバラツキがある場合、充放電により各電気化学素子に発生する電圧の変化幅は静電容量に反比例する。そのために直列に接続された電気化学素子の蓄積電荷を充放電する場合には、静電容量の小さい電気化学素子が他のものより早く端子間電圧が増減することになる。
【0008】
また、特開平9−247851号公報に記載の従来の方法では、充電時に相対的に静電容量の少ない電気化学素子の端子間電圧の過充電を防ぐことができる。しかし、基準電圧以下では制御が行われないため、電気化学素子の電荷を放電する際には、容量の少ない電気化学素子が他の電気化学素子と比較して急激に充電され、場合によっては電気化学素子に逆電圧が印加される可能性があり、有極性の電気化学素子の場合には寿命の低下をまねくような不適切な電圧を印加するという問題がある。
【0009】
また、図11に示す特開平9−247851号公報に記載されている2個以上の電気化学素子を直列に接続する場合の接続方法では、充電によって基準電圧に達した電気化学素子の電荷を他の電気化学素子に分配する際に、隣接した他の電気化学素子の電圧に係わりなく分配しているため、分配先の電気化学素子が既に基準電圧に達している場合には、その電力がさらにその先に隣接した他の電気化学素子に再分配され、全ての電気化学素子が基準値以下になるまで再分配が繰り返されることになる。
【0010】
さらに、各制御回路ブロックP1は余分なエネルギーを図中のより下に位置する電気化学素子に分配し、最下段に位置する制御ブロックP2でのみ全電気化学素子に分配される構成になっているため余分な電力は下側の段に偏りやすく、余分な電力をとくに余裕のあるところに選択的に分配されるわけではなく、下側に位置している電気化学素子全てに分配されるため上側の電気化学素子に再分配する必要がある場合必然的に回路の通過回数が増加してしまう構成となっている。
【0011】
そのため、分配する電力は動作開始時点から通過する制御回路ブロックの電気化学素子の端子間電圧が基準値以下に達するまでの間再分配され、通過する制御回路の回路数乗倍の効率になってしまうなど、エネルギー効率を向上させることが難しい特性を有している。
【0012】
また、各制御回路P1、P2の電力蓄積手段L1、L2に蓄積された電力を電気化学素子C1、C2に受け渡すためのダイオードD1bの端子間に掛かる電圧は、特開平9−247851号公報に示すようにダイオードD1bより下に位置する電気化学素子の端子間電圧の和になり、ダイオードD2bの場合、前記ダイオードD2bより上に位置する電気化学素子の端子電圧の和になるため、ダイオード端子間電圧の定格の関係上電気化学素子に充電できる電圧が制限されるという問題がある。
【0013】
この発明は上記問題点を解消するためになされたもので、直列に接続した複数の電気化学素子の端子間電圧を高速にかつ少ない熱損失で制御できる電源装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
この発明に係る電源装置は、複数の電気化学素子の各端子間に端子間電圧を調整する電力制御回路を各々接続した電源装置において、各電力制御回路間を電磁気的に結合し相互に電力を授受するために、一群を構成する磁気回路と、前記磁気回路を介して前記電力制御回路間で相互に電力を授受する電力授受手段とを備え、前記電力授受手段は、前記磁気回路と電磁気的に結合した電力授受用巻線と、前記電気化学素子に充電された電圧を前記電力授受用巻線に印加する放電回路と、前記電力授受用巻線に発生した電圧により前記電気化学素子を充電する充電回路を有しており、前記充電回路は、前記電力授受用巻線の一端を前記電気化学素子の一端に接続するとともに、前記電気化学素子の端子間電圧より前記電力授受用巻線の端子間電圧の方が高い場合に、前記電気化学素子を充電する方向に電流を流す第1の整流素子と、前記電気化学素子を充電する場合に一時的に電力を蓄積して、前記電気化学素子に流れる電流の急峻な変化を抑制するコイルと、 前記コイルと前記第1の整流素子に流れる電流の経路が絶たれた場合に、前記コイルに蓄積した電流を前記電気化学素子に還流する第2の整流素子とを備えており、前記放電回路は、前記電気化学素子に充電された電圧を前記電力授受用巻線に印加する場合に、直列に接続された複数の電気化学素子の中から、端子間電圧の高い電気化学素子を選択する放電素子選択手段を備え、前記放電素子選択手段は、前記電力授受用巻線に流れる電流を制限する第3の整流素子を、備えたものである。
【0015】
また、異なる一群を構成する磁気回路と、一方の磁気回路と他方の磁気回路とを電磁気的に結合するとともに、前記磁気回路間で相互に電力を授受する磁気回路結合手段とを、備えたものである。
【0016】
また、前記磁気回路結合手段は、前記磁気回路の一方と電力を授受する第1の電力制御回路と、前記磁気回路の他方と電力を授受する第2の電力制御回路と、前記第1の電力制御回路と前記第2の電力制御回路を、前記直列に接続された複数の電気化学素子のいずれか1つの端子に並列に接続するとともに、前記電気化学素子を介して前記磁気回路間で相互に電力を授受する回路とを、備えたものである。
【0017】
また、前記磁気回路結合手段は、前記磁気回路の一方と電磁気的に結合した第1の磁気回路結合用巻線と、前記磁気回路の他方と電磁気的に結合した第2の磁気回路結合用巻線と、前記第1の磁気回路結合用巻線と前記第2の磁気回路結合用巻線を相互に接続するとともに、前記磁気回路間で相互に電力を授受する回路と、を備えたものである。
【0030】
【発明の実施の形態】
実施の形態1.
図1はこの発明による実施の形態1を示す電源装置の概略回路構成図である。
図において、C1、C2、C3は直列接続された例えば電気二重層コンデンサあるいはバッテリなどの電気化学素子であり、直列回路の両端に図示しない電源と負荷などが接続されている。また、PC1、PC2、PC3はそれぞれ各電気化学素子の端子間電圧を調整するために、それぞれの電気化学素子Cの端子間に接続した電力制御回路である。さらに、TRSは、電力制御回路PCが電気化学素子Cの端子間電圧を調整する時に、相互の電力制御回路PCに電力を授受するために一群を構成する磁気回路である。
【0031】
なお、図1では3個の電気化学素子Cを直列に接続した例を示しており、それぞれの電気化学素子Cの端子間に接続した3個の電力制御回路PCは全て同様な回路として構成した。ここで、図1では回路を構成する部品の符号の末尾に1から3の数字を付して示した。例えば、電気化学素子Cは上からC1、C2、C3の符号で表わし、電力制御回路PCは同じくPC1、PC2、PC3の符号で表わし、さらに巻線W1は同様にW11、W12、W13の符号で表わした。
【0032】
ここで、電力制御回路PCの回路構成を説明する。
W1は磁気回路TRSと電磁気的に結合して一端を電気化学素子Cに接続した巻線、S1は巻線W1に電気化学素子Cの電圧を印加するために、一端を巻線W1に接続し他端を電気化学素子Cに接続したスイッチであり、電気化学素子Cと巻線W1およびスイッチS1からなる直列回路を構成する。
【0033】
次に、D1は、電気化学素子Cの端子間電圧と比較して巻線W1の端子間電圧の方が高い場合に、電気化学素子Cを充電する方向に電流を流すように、カソード側を巻線W1とスイッチS1との接続部に接続した整流素子であり、Lは、その一端を整流素子D1のアノード側と接続し、他端を電気化学素子CとスイッチS1との接続部に接続されて、巻線W1の端子電圧により充電する時に一時的に電力を蓄積して、電気化学素子Cに流れる電流の急峻な変化を抑制するためのコイルである。
なお、D1は電気化学素子Cの端子間電圧と比較して巻線W1の端子間電圧の方が高い場合に、電気化学素子Cを充電する方向に電流を流すように、カソード側を巻線W1とスイッチS1との接続部に接続した整流機能回路としても良い。さらに、整流機能回路D1はMOSFET等による同期整流回路などコイルL導通時に片方向導通整流機能回路D2への電流経路が絶たれた場合に導通させ、それ以外のときには導通を遮断できる導通制御可能なスイッチで置き換えることが可能であり、片方向導通整流機能回路は例えばダイオードなど印加電圧の向きにより自動的に導通する回路である。
【0034】
また、D2は、コイルLと整流素子D1に流れている電流の経路が絶たれた場合に、コイルLに蓄積した電流を電気化学素子Cに還流するために、アノード側をコイルLと整流素子D1の接続部に接続し、カソード側を電気化学素子Cと巻線W1の接続部に接続した整流素子である。そして、SBは、スイッチS1を開放した瞬間に発生するサージ電力を吸収するために、巻線W1の端子間に接続したスナバ回路である。
【0035】
次に動作について述べる。
図2はこの発明による実施の形態1を示す電源装置の電圧電流波形の説明図である。図2aは、電気化学素子直列回路の両端に接続された電源及び負荷により、電気化学素子Cに流れる充電電流、図2bは電気化学素子C1、およびC2の端子間電圧、図2cは巻線W11、およびW12の端子間電圧、図2dはコイルL2に流れる電流、図2eは巻線W11に流れる電流、のそれぞれの変化について時間軸をA期間からF期間に分割して示すものである。
【0036】
図1に示すような3個の電気化学素子Cを直列に接続した場合において、図示しないが直列に接続した電気化学素子の両端に接続した電源や回生電力を発生する負荷などにより、図2aのB期間に示すように充放電電流が流れた場合、図2bのB期間のように電気化学素子C1およびC2の端子間にはそれぞれの容量に反比例した電圧変化が現れる。
【0037】
ここで、巻線W11、W12の巻線比が等しいとすると、期間CにスイッチS11を投入した場合、巻線W11、W12の各端子間には図2cに示すように電気化学素子Cの端子間電圧に相当する電圧が現れる。ここでは、巻線W12の端子間電圧より電気化学素子C2の端子間電圧が低いので、整流素子D12が導通し、このときコイルL2の電流IL2、および巻線W11の電流Iw11の時間変化率は図2d及び数式1のようになる。
【0038】
【数1】

Figure 0004320511
【0039】
式1に示すように巻線電圧Vw11と電気化学素子の端子間電圧Vc2との差が大きいほど電流の増加率が大きくなる。従って、端子間電圧の低い電気化学素子が優先的に充電されることになり、応答を改善することが可能となると同時に、充電を必要としない電気化学素子を充電しないため、余剰電力の再分配が不要となり回路の効率改善が可能となる。
【0040】
次に、投入したスイッチS1を開放した場合、巻線W12のインピーダンスが大きくなり、コイルL2を流れる電流はこれ以上整流素子D12を通過することができなくなり、コイルL2に発生した逆起電力により整流素子D22が導通して、図2dのD期間に示すようにコイルL2に蓄えられている電力を放電しながら電気化学素子C2を充電する。
【0041】
そして、コイルL2の電流が零になったときから次にスイッチを投入するまでは各部の電流は零となる。以降各電力制御回路PC毎に期間C、Dの動作を繰り返すことにより、各電気化学素子Cを巻線比で決定される電圧に収束させることができる。ここで、同一電圧であれば巻線比を同じにすれば良く、また、電圧が異なればその比で巻線比を決めれば良い。
なお、スイッチS1の投入および開放のタイミングについて図示はしないが汎用の制御回路を使用すれば良い。
【0042】
また、上述の方法では同一磁気回路に接続した電力制御回路PCのスイッチS11、S12を順次投入するか、より応答を改善する場合には端子間電圧が基準電圧と比較して過剰率が最も高い電力制御回路PCのスイッチS1を選択して投入しても良い。
【0043】
以上のように構成したことにより、端子間電圧の低い電気化学素子が優先的に充電されることになり、充電を必要としない電気化学素子を充電しないため、余剰電力の再分配が不要となり回路の効率改善が可能となる。従って、直列に接続した複数の電気化学素子の端子間電圧を高速にかつ少ない熱損失で適正な電圧に制御できる。
【0044】
実施の形態2.
図3はこの発明による実施の形態2を示す電源装置の概略回路構成図である。図3において、図1と同一の符号は同一または相当の部分を表わす。
図に示すように、電気化学素子Cの端子電圧調整用に実施の形態1と同様な電力制御回路PCを備えて、磁気回路TRSと電磁気的に結合した巻線W1に印加する電圧を調整するスイッチS1と直列に整流素子D3を接続した。すなわち、整流素子D3のアノード側を巻線W1と整流素子D2のカソード側との接続点に接続し、整流素子D3のカソード側をスイッチS1に接続した。
【0045】
なお、図3では3個の電気化学素子Cを直列に接続した例を示しており、それぞれの電気化学素子Cの端子間に接続した3個の電力制御回路PCは全て同様な回路として構成した。ここで、図3では回路を構成する部品の符号の末尾に1から3の数字を付して示した。例えば、電気化学素子Cは上からC1、C2、C3の符号で表わし、電力制御回路PCは同じくPC1、PC2、PC3の符号で表わし、さらに整流素子D3は同様にD31、D32、D33の符号で表わした。
【0046】
次に動作について説明する。
図4はこの発明による実施の形態2を示す電源装置の電圧波形説明図である。以下では、簡略化のため、各スイッチ、各整流素子の導通時の端子間電圧は零であるものとし、各巻線W1の巻数が等しいものとする。また、AからCの各期間は十分に短く、各電力制御回路PCのスイッチS1の投入による電気化学素子Cの端子間電圧の変化を無視できるものとし、端子間電圧の大小関係はC1>C2>C3の順であるものとする。
【0047】
図4のA期間はスイッチS13のみを投入した場合の各巻線W1の端子間電圧を示している。また、B期間はA期間に投入されていたスイッチS13に加えてスイッチS12を投入した場合の各巻線W1の端子間電圧を示している。さらに、C期間はA期間に投入されていたスイッチS13、およびスイッチS12に加えてスイッチS11を投入した場合の各巻線W1の端子間電圧を示している。
【0048】
ここで、A期間では、スイッチS13のみをオンさせており、各巻線W1にはこの電気化学素子C3の端子間電圧が現れている。また、B期間では、スイッチS13に加えてスイッチS12をオンさせる。この場合、各電力制御回路PCの巻線W1には電気化学素子C2の端子間電圧が現れる。このとき、整流素子D33の巻線W13との接続側の電位は整流素子D33のスイッチ13との接続側の電位より低くなっているため、整流素子D33は導通することはない。
【0049】
さらに、C期間では、スイッチS13およびスイッチS12に加えてスイッチS11をオンさせており、各巻線W11、W12、W13には電気化学素子C1、C2、C3の端子間電圧が現れる。このとき、整流素子D33および整流素子D32の巻線W13および巻線W12との接続側の電位は整流素子D33および整流素子D32のスイッチ13およびスイッチ12との接続側の電位より低くなっているため、整流素子D33および整流素子D32は導通することはない。
【0050】
このように、各電力制御回路PCのスイッチS11、S12、S13を同時に投入すると、端子間電圧の高い電気化学素子Cに接続された電力制御回路PCの整流素子D3が導通し、それ以外の整流素子D3には逆電圧が印加されて導通が切れるため、端子間電圧の高い電気化学素子Cから選択的に電力を受け取って、実施の形態1で述べた整流素子D1の効果により、端子間電圧の低い電気化学素子Cに選択的に電力を受け渡すことを可能とした。
【0051】
以上のように構成したことにより、各電力制御回路PCのスイッチS1と巻線W1の間に、整流素子D3を電気化学素子Cから巻線W1に電流を流す方向に直列に接続することにより、充電電圧の最も高い電気化学素子Cを自動的に選択することが可能となる。従って、各電力制御回路PCのスイッチS1を同時にスイッチングする単純な制御回路で、直列接続した電気化学素子Cの端子間電圧を電力制御回路PCの巻線W1の巻線比で決まる電圧に制御できる。
【0052】
実施の形態3.
図5はこの発明による実施の形態3を示す電源装置の概略回路構成図である。図5において、図1と同一の符号は同一または相当の部分を表わす。図に示すように、電気化学素子Cの端子電圧調整用に実施の形態1と同様な電力制御回路PCを備えて、巻線W1と整流素子D1のカソード側との間にスイッチS2を直列接続するように、スイッチS2の一端を巻線W1に接続し他端を整流素子D1のカソード側に接続した。また、VSは電気化学素子Cの端子間電圧を検出する電圧検出器であり、CNTは電圧検出器VSが検出した電気化学素子Cの端子間電圧に基づいて、スイッチS2を開閉制御するスイッチ制御回路である。
【0053】
なお、図5では3個の電気化学素子Cを直列に接続した例を示しており、それぞれの電気化学素子Cの端子間に接続した3個の電力制御回路PCは全て同様な回路として構成した。ここで、図5では回路を構成する部品の符号の末尾に1から3の数字を付して示した。例えば、電気化学素子Cは上からC1、C2、C3の符号で表わし、電力制御回路PCは同じくPC1、PC2、PC3の符号で表わし、さらにスイッチS2は同様にS21、S22、S23の符号で表わした。
【0054】
次に動作について説明する。
基本となる動作は実施の形態1と同様であるので説明を省略し異なる動作について説明する。
電力制御回路PCにより巻線W1から受け渡された電力で電気化学素子Cを充電する場合に、スイッチ制御回路CNTは、電気化学素子Cの端子間電圧を電圧検出器VSで検出し、電気化学素子Cの端子間電圧が基準値に達していないときにはスイッチS2を投入し、電気化学素子Cを巻線W1から受け渡された電力で充電する。さらに、スイッチ制御回路CNTは、電気化学素子Cの端子間電圧を電圧検出器VSで検出し、電気化学素子Cの端子間電圧が基準値に達したときにはスイッチS2を開放し、電気化学素子Cが過充電されることを防止する。
【0055】
以上述べたように、実施の形態1、および実施の形態2の場合、各電気化学素子Cの充電電圧は各巻線W1の磁気回路TRSへの結合比で決定されるため、充電電圧を高精度で制御するためには磁気回路TRSへの各巻線W1の結合比を高精度に管理する必要がある。そこで、実施の形態3ではスイッチS2を追加することにより各巻線W1の結合比にバラツキが生じた場合でも、電気化学素子Cの端子間電圧が基準値に到達した場合にスイッチS2を開放することにより、電気化学素子Cが過充電されることを防ぐことができる。
【0056】
実施の形態4.
図6はこの発明による実施の形態4を示す電源装置の概略回路構成図である。
図6において、図1と同一の符号は同一または相当の部分を表わす。図に示すように、電気化学素子Cの端子電圧調整用に実施の形態3と同様な電力制御回路PCを備えて、電力授受用の巻線W1の替わりに、電力受け渡し用巻線W2と電力受け取り用巻線W3を独立して設けたものである。すなわち、W2は磁気回路TRSと電磁気的に結合した電力受け渡し用巻線であり、一端を電気化学素子Cに接続し、他端をスイッチS1に接続した。また、W3は磁気回路TRSと電磁気的に結合した電力受け取り用巻線であり、一端を電力受け渡し用巻線W2に接続し、他端をスイッチS1に接続した。なお、電力受け渡し用巻線W2と電力受け取り用巻線W3は同方向同極性に巻かれている。
【0057】
なお、図6では3個の電気化学素子Cを直列に接続した例を示しており、それぞれの電気化学素子Cの端子間に接続した3個の電力制御回路PCは全て同様な回路として構成した。ここで、図6では回路を構成する部品の符号の末尾に1から3の数字を付して示した。例えば、電気化学素子Cは上からC1、C2、C3の符号で表わし、電力制御回路PCは同じくPC1、PC2、PC3の符号で表わし、さらに電力受け渡し用巻線W2は同様にW21、W22、W23、また、電力受け取り用巻線W3は同様にW31、W32、W33の符号で表わした。
【0058】
ここで、電力制御回路PCの回路構成を説明する。
W2は磁気回路TRSの単一の磁気回路と電磁気的に結合して一端を電気化学素子Cに接続した電力受け渡し用巻線、S1は巻線W2に電気化学素子Cの電圧を印加するために、一端を巻線W2に接続し他端を電気化学素子Cに接続したスイッチであり、電気化学素子Cと巻線W2およびスイッチS1からなる直列回路を構成する。また、W3は磁気回路TRSの磁気回路と電磁気的に結合した電力受け取り用巻線であり、一端を電力受け渡し用巻線W2とスイッチS1との接続部に接続した。
【0059】
次に、D1は、電気化学素子Cの端子間電圧と比較して巻線W3の端子間電圧の方が高い場合に、電気化学素子Cを充電する方向に電流を流すように、カソード側を巻線W3に接続した整流素子であり、Lは、その一端を整流素子D1のアノード側と接続し、他端を電気化学素子CとスイッチS1との接続部に接続されて、磁気回路TRSからの充電時に一時的に電力を蓄積して、電気化学素子Cに流れる電流の急峻な変化を抑制するためのコイルである。
【0060】
また、D2は、コイルLと整流素子D1に流れている電流の経路が絶たれた場合に、コイルLに蓄積した電流を電気化学素子Cに還流するために、アノード側をコイルLと整流素子D1の接続部に接続し、カソード側を電気化学素子Cと巻線W2の接続部に接続した整流素子である。そして、SBは、スイッチS1を開放した瞬間に発生するサージ電力を吸収するために、巻線W1の端子間に接続したスナバ回路である。
【0061】
さらに、S2は巻線W3と整流素子D1のカソード側との間に直列接続したスイッチS2であり、スイッチS2の一端を巻線W3に接続し他端を整流素子D1のカソード側に接続した。
また、VSは電気化学素子Cの端子間電圧を検出する電圧検出器であり、CNTは電圧検出器VSが検出した電気化学素子Cの端子間電圧に基づいて、スイッチS2を開閉制御するスイッチ制御回路である。
【0062】
次に動作について説明する。
基本となる動作は実施の形態3と同様であるので説明を省略し異なる動作について説明する。
電力制御回路PCにより電気化学素子Cから磁気回路TRSすなわち電力受け渡し用巻線W2へ電力を供給する場合は実施の形態1と同様である。磁気回路TRSから電気化学素子Cを充電する電力を受け取る場合に、電力受け渡し用巻線W2と電力受け取り用巻線W3は直列に接続されることになり、巻線数が電力受け渡し巻線W2よりも多くなるため、磁気回路TRSへ供給する電圧より高い電圧を受け取ることができる。
【0063】
以上述べたように、実施の形態3ではスイッチS2を設けることにより、巻線の結合比のバラツキ等による過充電を防ぐことを可能としたが、充電電圧の不足を防ぐことは不可能であった。一方、実施の形態4では電力受け取り用巻線W3の巻線数を電力受け渡し用巻線W2の巻線数より大きい値に設定することができる。これにより、実施の形態1から実施の形態3で発生する恐れがあるような、結合比が低い巻線Wによる電気化学素子Cの充電不足を解消することができる。さらに、電気化学素子Cの目標電圧と比較して電力受け取り用巻線W3の電圧を充分に高く設定することができるため、コイルLの端子間に印加される電圧を大きくすることができ、時間あたりの電流の増加率を大きくすることができ、制御応答性を改善することができる。
【0064】
実施の形態5.
図7はこの発明による実施の形態5を示す電源装置の概略回路構成図である。図に示すように、電気化学素子Cの端子電圧調整用に実施の形態4と同様な電力制御回路PCを備えている。ここでは、例えば1つの磁気回路TRSには最大6個の巻線を備えることができるものとした。すなわち、電力制御回路PCは電力受け渡し用巻線W2と電力受け取り用巻線W3の2つの巻線を備えるため、1つの磁気回路TRSには3個の電力制御回路を結合できることになる。
【0065】
ここで、電力制御回路PCの回路構成を説明する。
W2は磁気回路TRSの単一の磁気回路と電磁気的に結合して一端を電気化学素子Cに接続した電力受け渡し用巻線、S1は巻線W2に電気化学素子Cの電圧を印加するために、一端を巻線W2に接続し他端を電気化学素子Cに接続したスイッチであり、電気化学素子Cと巻線W2およびスイッチS1からなる直列回路を構成する。また、W3は磁気回路TRSの磁気回路と電磁気的に結合した電力受け取り用巻線であり、一端を電力受け渡し用巻線W2とスイッチS1との接続部に接続した。
【0066】
次に、D1は、電気化学素子Cの端子間電圧と比較して巻線W3の端子間電圧の方が高い場合に、電気化学素子Cを充電する方向に電流を流すように、カソード側を巻線W3に接続した整流素子であり、Lは、その一端を整流素子D1のアノード側と接続し、他端を電気化学素子CとスイッチS1との接続部に接続されて、磁気回路TRSからの充電時に一時的に電力を蓄積して、電気化学素子Cに流れる電流の急峻な変化を抑制するためのコイルである。
【0067】
また、D2は、コイルLと整流素子D1に流れている電流の経路が絶たれた場合に、コイルLに蓄積した電流を電気化学素子Cに還流するために、アノード側をコイルLと整流素子D1の接続部に接続し、カソード側を電気化学素子Cと巻線W2の接続部に接続した整流素子である。そして、SBは、スイッチS1を開放した瞬間に発生するサージ電力を吸収するために、巻線W1の端子間に接続したスナバ回路である。
【0068】
さらに、S2は巻線W3と整流素子D1のカソード側との間に直列接続したスイッチS2であり、スイッチS2の一端を巻線W3に接続し他端を整流素子D1のカソード側に接続した。
また、VSは電気化学素子Cの端子間電圧を検出する電圧検出器であり、CNTは電圧検出器VSが検出した電気化学素子Cの端子間電圧に基づいて、スイッチS2を開閉制御するスイッチ制御回路である。
【0069】
なお、図7では5個の電気化学素子Cを直列に接続した例を示しており、それぞれの電気化学素子Cの端子間に接続した6個の電力制御回路PCは全て同様な回路として構成した。ここで、図7では回路を構成する部品の符号の末尾に1から6の数字を付して示した。例えば、電気化学素子CはC1からC5の符号で表わし、電力制御回路PCは同じくPC1からPC6の符号で表わし、さらに電力受け渡し用巻線W2は同様にW21からW26、また、電力受け取り用巻線W3は同様にW31からW36の符号で表わした。
【0070】
一方、図7に示すように、5個の電気化学素子Cが直列接続されており、1番目の電気化学素子C1の電力制御回路PC1から、3番目の電気化学素子C3の電力制御回路PC3まで3個の電力制御回路PCを第1の磁気回路TRS1に結合し、4番目の電気化学素子C4の電力制御回路PC4と、5番目の電気化学素子C5の電力制御回路PC5とを第2の磁気回路TRS2に結合した。さらに、3番目の電気化学素子C3の端子電圧調整用として、電力制御回路PC6を電力制御回路PC3と並列に追加接続して第2の磁気回路TRS2に結合した。すなわち、第2の磁気回路TRS2にも、電力制御回路PC4、PC5、PC6の3個の電力制御回路PCを結合したことになる。
【0071】
次に動作について説明する。
基本となる動作は実施の形態5と同様であるので説明を省略し異なる動作について説明する。
図7では5個の電気化学素子Cを直列に接続した例を示している。図において電気化学素子C3を電力制御回路PC3と電力制御回路PC6が共有している。ここで、電気化学素子C3に蓄積した電力は、電力制御回路PC3側のスイッチS13を投入すれば、磁気回路TRS1側に電力を供給することになり、電力制御回路PC6側のスイッチS16を投入すれば、磁気回路TRS2側に電力を供給することになる。
【0072】
また、電気化学素子C3を充電する電力は、電力制御回路PC3側の電力受け取り用巻線W33、あるいは、電力制御回路PC6側の電力受け取り用巻線W36、のどちらからでも受け取ることができる。すなわち、電気化学素子C3を介して磁気回路TRS1と磁気回路TRS2の間で電力を相互に授受することになり、全体として5個の電気化学素子Cの端子間電圧を制御することが可能となる。
【0073】
以上述べたように、実施の形態5では、1つの磁気回路TRSに設けることができる巻線の個数を超える電気化学素子Cを直列接続した場合に、複数の磁気回路TRSを使用し、異なる磁気回路に結合した2組の電力制御回路PC間で、同一の電気化学素子Cを共有するように相互に接続することにより、全ての電気化学素子Cの端子間電圧を制御することができ、直列接続する電気化学素子Cの数の制限をなくすことができる。
【0074】
また、図7では、実施の形態4と同様の電力制御回路PCを使用した例を説明したが、図7と同様に2つの磁気回路TRSに結合した2組の電力制御回路PC間で、同一の電気化学素子Cを共有するように構成すれば、実施の形態1から実施の形態3で説明した電力制御回路PCを使用しても、同様の効果を得ることができることは言うまでもない。
【0075】
実施の形態6.
図8はこの発明による実施の形態6を示す電源装置の概略回路構成図である。ここでは、例えば1つの磁気回路TRSには最大7個の巻線を備えることができるものとした。すなわち、電力制御回路PCは電力受け渡し用巻線W2と電力受け取り用巻線W3の2つの巻線を備えるため、1つの磁気回路TRSには3個の電力制御回路を結合できることになる。
【0076】
ここで、電力制御回路PCの回路構成を説明する。
W2は磁気回路TRSの単一の磁気回路と電磁気的に結合して一端を電気化学素子Cに接続した電力受け渡し用巻線、S1は巻線W2に電気化学素子Cの電圧を印加するために、一端を巻線W2に接続し他端を電気化学素子Cに接続したスイッチであり、電気化学素子Cと巻線W2およびスイッチS1からなる直列回路を構成する。また、W3は磁気回路TRSの磁気回路と電磁気的に結合した電力受け取り用巻線であり、一端を電力受け渡し用巻線W2とスイッチS1との接続部に接続した。
【0077】
次に、D1は、電気化学素子Cの端子間電圧と比較して巻線W3の端子間電圧の方が高い場合に、電気化学素子Cを充電する方向に電流を流すように、カソード側を巻線W3に接続した整流素子であり、Lは、その一端を整流素子D1のアノード側と接続し、他端を電気化学素子CとスイッチS1との接続部に接続されて、磁気回路TRSからの充電時に一時的に電力を蓄積して、電気化学素子Cに流れる電流の急峻な変化を抑制するためのコイルである。
【0078】
また、D2は、コイルLと整流素子D1に流れている電流の経路が絶たれた場合に、コイルLに蓄積した電流を電気化学素子Cに還流するために、アノード側をコイルLと整流素子D1の接続部に接続し、カソード側を電気化学素子Cと巻線W2の接続部に接続した整流素子である。そして、SBは、スイッチS1を開放した瞬間に発生するサージ電力を吸収するために、巻線W1の端子間に接続したスナバ回路である。
【0079】
さらに、S2は巻線W3と整流素子D1のカソード側との間に直列接続したスイッチS2であり、スイッチS2の一端を巻線W3に接続し他端を整流素子D1のカソード側に接続した。
また、VSは電気化学素子Cの端子間電圧を検出する電圧検出器であり、CNTは電圧検出器VSが検出した電気化学素子Cの端子間電圧に基づいて、スイッチS2を開閉制御するスイッチ制御回路である。
【0080】
なお、図8では6個の電気化学素子Cを直列に接続した例を示しており、それぞれの電気化学素子Cの端子間に接続した6個の電力制御回路PCは全て同様な回路として構成した。ここで、図8では回路を構成する部品の符号の末尾に1から6の数字を付して示した。例えば、電気化学素子CはC1からC6の符号で表わし、電力制御回路PCは同じくPC1からPC6の符号で表わし、さらに電力受け渡し用巻線W2は同様にW21からW26、また、電力受け取り用巻線W3は同様にW31からW36の符号で表わした。ところで、W71、W72は異なる一群を構成する磁気回路TRS1、TRS2の各々と電磁気的に結合した磁気回路結合用巻線である。
【0081】
一方、図8に示すように、6個の電気化学素子Cが直列接続されており、1番目の電気化学素子C1の電力制御回路PC1から、3番目の電気化学素子C3の電力制御回路PC3まで3個の電力制御回路PCを第1の磁気回路TRS1に結合し、4番目の電気化学素子C4の電力制御回路PC4から、6番目の電気化学素子C6の電力制御回路PC6まで3個の電力制御回路PCを第2の磁気回路TRS2に結合した。さらに、第1の磁気回路TRS1の磁気回路結合用巻線W71と第2の磁気回路TRS2の磁気回路結合用巻線W72とを相互に接続した。
【0082】
次に動作について説明する。
基本となる動作は実施の形態5と同様であるので説明を省略し異なる動作について説明する。
図8では6個の電気化学素子Cを直列に接続した例を示している。図において、第1の磁気回路TRS1の磁気回路結合用巻線W71と第2の磁気回路TRS2の磁気回路結合用巻線W72との間で電力を相互に授受することになり、全体として6個の電気化学素子Cの端子間電圧を制御することが可能となる。
【0083】
以上述べたように、実施の形態6では、1つの磁気回路TRSに設けることができる巻線の個数を超える電気化学素子Cを直列接続した場合に、複数の磁気回路TRSを使用し、異なる磁気回路に結合した2組の磁気回路結合用巻線どうしを相互に接続することにより、2つの磁気回路間で電力を授受することができるようになる。このように、簡単な回路構成で全ての電気化学素子Cの端子間電圧を制御することができ、直列接続する電気化学素子Cの数の制限をなくすことができる。
【0084】
また、図8では、実施の形態4と同様の電力制御回路PCを使用した例を説明したが、実施の形態1から実施の形態3で説明した電力制御回路PCを使用しても、同様の効果を得ることができることは言うまでもない。
【0085】
【発明の効果】
この発明は以上説明したように構成されているので、以下に示すような効果がある。
【0086】
複数の電気化学素子の各端子間に端子間電圧を調整する電力制御回路を各々接続した電源装置において、各電力制御回路間を電磁気的に結合し相互に電力を授受するために、一群を構成する磁気回路と、前記磁気回路を介して前記電力制御回路間で相互に電力を授受する電力授受手段とを備え、前記電力授受手段は、前記磁気回路と電磁気的に結合した電力授受用巻線と、前記電気化学素子に充電された電圧を前記電力授受用巻線に印加する放電回路と、前記電力授受用巻線に発生した電圧により前記電気化学素子を充電する充電回路を有しており、前記充電回路は、前記電力授受用巻線の一端を前記電気化学素子の一端に接続するとともに、前記電気化学素子の端子間電圧より前記電力授受用巻線の端子間電圧の方が高い場合に、前記電気化学素子を充電する方向に電流を流す第1の整流素子と、前記電気化学素子を充電する場合に一時的に電力を蓄積して、前記電気化学素子に流れる電流の急峻な変化を抑制するコイルと、前記コイルと前記第1の整流素子に流れる電流の経路が絶たれた場合に、前記コイルに蓄積した電流を前記電気化学素子に還流する第2の整流素子とを備えており、前記放電回路は、前記電気化学素子に充電された電圧を前記電力授受用巻線に印加する場合に、直列に接続された複数の電気化学素子の中から、端子間電圧の高い電気化学素子を選択する放電素子選択手段を備え、前記放電素子選択手段は、前記電力授受用巻線に流れる電流を制限する第3の整流素子を、充電電圧の最も高い電気化学素子を自動的に選択することが可能となり、直列に接続した複数の電気化学素子の端子間電圧を適切な電圧に制御する安価な電源装置を提供できる。
【0087】
また、異なる一群を構成する磁気回路と、一方の磁気回路と他方の磁気回路とを電磁気的に結合するとともに、磁気回路間で相互に電力を授受する磁気回路結合手段とを備えたことにより、多数の電気化学素子を直列接続することができる電源装置を提供できる。
【0088】
また、磁気回路結合手段は、磁気回路の一方と電力を授受する第1の電力制御回路と、磁気回路の他方と電力を授受する第2の電力制御回路と、第1の電力制御回路と第2の電力制御回路を、直列に接続された複数の電気化学素子のいずれか1つの端子に並列に接続するとともに、電気化学素子を介して磁気回路間で相互に電力を授受する回路とを備えたことにより、全ての電気化学素子の端子間電圧を適切な電圧に制御できる電源装置を提供できる。
【0089】
また、磁気回路結合手段は、磁気回路の一方と電磁気的に結合した第1の磁気回路結合用巻線と、磁気回路の他方と電磁気的に結合した第2の磁気回路結合用巻線と、第1の磁気回路結合用巻線と第2の磁気回路結合用巻線を相互に接続するとともに、磁気回路間で相互に電力を授受する回路とを備えたことにより、2つの磁気回路間で電力を授受することができ、簡単な回路構成で全ての電気化学素子の端子間電圧を適切な電圧に制御することができる電源装置を提供できる。
【図面の簡単な説明】
【図1】 この発明による実施の形態1を示す電源装置の概略回路構成図。
【図2】 この発明による実施の形態1を示す電源装置の電圧電流波形説明図。
【図3】 この発明による実施の形態2を示す電源装置の概略回路構成図。
【図4】 この発明による実施の形態2を示す電源装置の電圧波形説明図。
【図5】 この発明による実施の形態3を示す電源装置の概略回路構成図。
【図6】 この発明による実施の形態4を示す電源装置の概略回路構成図。
【図7】 この発明による実施の形態5を示す電源装置の概略回路構成図。
【図8】 この発明による実施の形態6を示す電源装置の概略回路構成図。
【図9】 従来のコンデンサの端子間電圧調整回路図。
【図10】 従来のコンデンサ端子間電圧バランスの補正回路図。
【図11】 従来の電源装置の概略回路構成図。
【符号の説明】
C 電気化学素子、PC 電力制御回路、TRS 磁気回路、S1 第1のスイッチ、S2 第2のスイッチ、W1 電力授受用巻線、W2 電力受け渡し用巻線、W3 電力受け取り用巻線、D1 第1の整流素子、D2 第2の整流素子、D3 第3の整流素子、L コイル、SB スナバ回路、CNT スイッチ制御回路、Vs 電圧検出器、W7 磁気回路結合用巻線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device for controlling a voltage between terminals of an electrochemical element such as an electric double layer capacitor connected in series.
[0002]
[Prior art]
An electric double layer capacitor has a large electrostatic capacity and has a higher charging efficiency than a battery, and thus has attracted attention as a power source for accumulating regenerative power of electric vehicles and elevators. However, since the withstand voltage per unit is low, when a high voltage is required, it is necessary to connect a plurality of electric double layer capacitors in series.
[0003]
At this time, due to the variation in leakage current and capacitance variation of the electric double layer capacitors connected in series, the electric double layer capacitor is unbalanced between the terminals of the electric double layer capacitors due to charging and discharging, A voltage exceeding the rated voltage may be applied to each electric double layer capacitor.
[0004]
Therefore, in the prior art, as shown in FIG. 9, a resistor is connected between the terminals of each capacitor to keep the voltage between the terminals of each capacitor uniform, as in Japanese Patent Laid-Open No. 9-247851 shown in FIG. Each voltage balance was corrected by the method so that the voltage across the capacitor did not exceed the rated voltage.
[0005]
However, in the method of connecting a resistor between the terminals of the capacitor shown in FIG. 9, a current always flows through the resistor, and in order to improve the equalization speed of voltage imbalance that occurs during sudden charge / discharge, the resistance is decreased. Therefore, a large amount of energy is always consumed by resistance. Further, in the method of the prior art disclosed in Japanese Patent Application Laid-Open No. 9-247851 shown in FIG. 10, charging of the capacitor is stopped only when a predetermined voltage is exceeded for each capacitor.
[0006]
As a result, the energy efficiency is improved, but the charging current is bypassed by the charge control transistor S, and all of the excess energy becomes thermal energy. At this time, in a circuit that is frequently charged and discharged due to variations in capacitance of electrochemical elements such as capacitors, a large amount of heat is generated, so that energy efficiency is low and it is necessary to secure a space for a cooling device. There is also a problem that it is difficult to downsize the device.
[0007]
[Problems to be solved by the invention]
In the conventional power supply apparatus as described above, as shown in the invention described in Japanese Patent Laid-Open No. 9-247851, the voltage between terminals of each electrochemical element rises and reaches the reference voltage due to the imbalance of leakage current. In this case, in order to prevent the inter-terminal voltage from exceeding the reference voltage due to a further inflowing current, overcharge is prevented by temporarily storing the electric power in the coil and distributing it to other electrochemical elements. Moreover, when the electrostatic capacitance between the electrochemical elements connected in series varies, the change width of the voltage generated in each electrochemical element due to charging / discharging is inversely proportional to the electrostatic capacity. Therefore, when charging and discharging the accumulated charges of the electrochemical elements connected in series, the voltage between terminals of the electrochemical elements having a small electrostatic capacity increases or decreases faster than the others.
[0008]
Further, according to the conventional method described in Japanese Patent Application Laid-Open No. 9-247851, overcharge of the voltage between terminals of the electrochemical element having relatively little capacitance can be prevented during charging. However, since the control is not performed below the reference voltage, when discharging the charge of the electrochemical element, the electrochemical element having a small capacity is charged more rapidly than other electrochemical elements, and in some cases, the electric element is electrically charged. There is a possibility that a reverse voltage is applied to the chemical element, and in the case of a polar electrochemical element, there is a problem that an inappropriate voltage is applied so as to reduce the lifetime.
[0009]
Further, in the connection method in the case where two or more electrochemical elements described in Japanese Patent Laid-Open No. 9-247851 shown in FIG. 11 are connected in series, the charge of the electrochemical element that has reached the reference voltage by charging is different from the other. When distributing to other electrochemical elements, the voltage is distributed regardless of the voltage of other adjacent electrochemical elements. Therefore, if the distribution target electrochemical element has already reached the reference voltage, the power further increases. It is redistributed to other adjacent electrochemical elements, and redistribution is repeated until all electrochemical elements are below the reference value.
[0010]
Further, each control circuit block P1 is configured to distribute excess energy to the electrochemical elements located in the lower part of the drawing, and to distribute to all the electrochemical elements only in the control block P2 located at the lowest level. Therefore, the excess power tends to be biased to the lower stage, and the excess power is not selectively distributed to a particularly roomy area, but is distributed to all the electrochemical elements located on the lower side. When it is necessary to redistribute to the electrochemical element, the number of times the circuit passes is inevitably increased.
[0011]
Therefore, the power to be distributed is redistributed until the voltage between the terminals of the electrochemical element of the control circuit block that passes from the start of operation reaches a reference value or less, and the efficiency of the control circuit that passes through is multiplied by the power of the circuit number. For example, it is difficult to improve energy efficiency.
[0012]
Further, the voltage applied between the terminals of the diode D1b for transferring the power stored in the power storage means L1, L2 of each control circuit P1, P2 to the electrochemical elements C1, C2 is disclosed in Japanese Patent Laid-Open No. 9-247851. As shown, the sum is the sum of the voltages across the terminals of the electrochemical element located below the diode D1b. In the case of the diode D2b, the sum of the terminal voltages of the electrochemical elements located above the diode D2b is There is a problem that the voltage that can be charged to the electrochemical device is limited due to the voltage rating.
[0013]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a power supply device capable of controlling the voltage between terminals of a plurality of electrochemical elements connected in series at high speed with a small heat loss.
[0014]
[Means for Solving the Problems]
A power supply device according to the present invention is a power supply device in which a power control circuit for adjusting a voltage between terminals is connected between terminals of a plurality of electrochemical elements, and the power control circuits are electromagnetically coupled to each other to supply power. In order to transmit and receive, a magnetic circuit that constitutes a group, and a power transfer unit that transfers power to and from the power control circuit via the magnetic circuit, the power transfer unit includes the magnetic circuit and the electromagnetic circuit A power transfer winding coupled to the power transfer winding, a discharge circuit for applying a voltage charged to the electrochemical device to the power transfer winding, and charging the electrochemical device with a voltage generated in the power transfer winding. The charging circuit connects one end of the power transfer coil to one end of the electrochemical element, and the voltage of the power transfer coil from the voltage across the terminals of the electrochemical element. Voltage between terminals A first rectifier element that causes a current to flow in a direction in which the electrochemical element is charged and a current that flows temporarily through the electrochemical element when the electrochemical element is charged. A coil that suppresses a steep change in current, and a second rectifying element that circulates current accumulated in the coil to the electrochemical element when a path of current flowing through the coil and the first rectifying element is cut off And when the voltage charged in the electrochemical element is applied to the power transfer coil, the discharge circuit is connected to the terminal voltage from the plurality of electrochemical elements connected in series. Discharge element selection means for selecting a high electrochemical element, and the discharge element selection means includes a third rectifier element for limiting a current flowing through the power transfer winding.
[0015]
Also, a magnetic circuit constituting a different group, and a magnetic circuit coupling means for electromagnetically coupling one magnetic circuit and the other magnetic circuit and transferring power between the magnetic circuits. It is.
[0016]
The magnetic circuit coupling means includes a first power control circuit that exchanges power with one of the magnetic circuits, a second power control circuit that exchanges power with the other of the magnetic circuits, and the first power. A control circuit and the second power control circuit are connected in parallel to any one of the terminals of the plurality of electrochemical elements connected in series, and are mutually connected between the magnetic circuits via the electrochemical element. And a circuit for transmitting and receiving electric power.
[0017]
The magnetic circuit coupling means includes a first magnetic circuit coupling winding electromagnetically coupled to one of the magnetic circuits and a second magnetic circuit coupling winding electromagnetically coupled to the other of the magnetic circuits. And a circuit for connecting the first magnetic circuit coupling winding and the second magnetic circuit coupling winding to each other and transferring power between the magnetic circuits. is there.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a schematic circuit configuration diagram of a power supply device showing Embodiment 1 according to the present invention.
In the figure, C1, C2, and C3 are electrochemical elements such as an electric double layer capacitor or a battery connected in series, and a power source and a load (not shown) are connected to both ends of the series circuit. PC1, PC2, and PC3 are power control circuits connected between the terminals of each electrochemical element C in order to adjust the voltage between the terminals of each electrochemical element. Furthermore, the TRS is a magnetic circuit that constitutes a group in order to transfer power to the mutual power control circuit PC when the power control circuit PC adjusts the voltage across the terminals of the electrochemical element C.
[0031]
FIG. 1 shows an example in which three electrochemical elements C are connected in series, and the three power control circuits PC connected between the terminals of each electrochemical element C are all configured as similar circuits. . Here, in FIG. 1, the numerals of 1 to 3 are added to the end of the reference numerals of the parts constituting the circuit. For example, the electrochemical element C is represented by the symbols C1, C2, and C3 from the top, the power control circuit PC is also represented by the symbols PC1, PC2, and PC3, and the winding W1 is similarly represented by the symbols W11, W12, and W13. Represented.
[0032]
Here, the circuit configuration of the power control circuit PC will be described.
W1 is a winding that is electromagnetically coupled to the magnetic circuit TRS and has one end connected to the electrochemical element C. S1 has one end connected to the winding W1 in order to apply the voltage of the electrochemical element C to the winding W1. A switch having the other end connected to the electrochemical element C, and constitutes a series circuit including the electrochemical element C, the winding W1, and the switch S1.
[0033]
Next, D1 sets the cathode side so that the current flows in the direction of charging the electrochemical element C when the voltage between the terminals of the winding W1 is higher than the voltage between the terminals of the electrochemical element C. R is a rectifying element connected to the connection part of the winding W1 and the switch S1, and L is connected to the anode side of the rectifying element D1 at one end and connected to the connection part between the electrochemical element C and the switch S1. Thus, the coil temporarily accumulates electric power when charged by the terminal voltage of the winding W1, and suppresses a steep change in the current flowing through the electrochemical element C.
Note that D1 is wound on the cathode side so that a current flows in a direction in which the electrochemical element C is charged when the voltage between the terminals of the winding W1 is higher than the voltage between the terminals of the electrochemical element C. A rectifying function circuit connected to a connection portion between W1 and the switch S1 may be used. Further, the rectification function circuit D1 can be controlled to conduct, such as a synchronous rectification circuit using a MOSFET or the like, which is turned on when the current path to the one-way conduction rectification function circuit D2 is cut off when the coil L is turned on, and can be cut off at other times. The unidirectional conduction rectification function circuit is a circuit that automatically conducts depending on the direction of the applied voltage, such as a diode.
[0034]
Further, D2 is configured such that when the path of the current flowing in the coil L and the rectifying element D1 is cut off, the anode side is connected to the coil L and the rectifying element in order to return the current accumulated in the coil L to the electrochemical element C. This is a rectifying element that is connected to the connecting part of D1 and whose cathode side is connected to the connecting part of the electrochemical element C and the winding W1. SB is a snubber circuit connected between the terminals of the winding W1 in order to absorb the surge power generated at the moment when the switch S1 is opened.
[0035]
Next, the operation will be described.
FIG. 2 is an explanatory diagram of a voltage / current waveform of the power supply device according to Embodiment 1 of the present invention. 2a is a charging current flowing through the electrochemical element C by a power source and a load connected to both ends of the electrochemical element series circuit, FIG. 2b is a voltage between terminals of the electrochemical elements C1 and C2, and FIG. 2c is a winding W11. , And the voltage between terminals of W12, FIG. 2d shows the current flowing through the coil L2, and FIG. 2e shows the change of the time axis from the A period to the F period for the current flowing through the winding W11.
[0036]
When three electrochemical elements C as shown in FIG. 1 are connected in series, although not shown, the power supply connected to both ends of the electrochemical elements connected in series, the load generating regenerative power, etc. When the charge / discharge current flows as shown in the B period, a voltage change inversely proportional to the respective capacitances appears between the terminals of the electrochemical elements C1 and C2 as shown in the B period of FIG. 2b.
[0037]
Here, assuming that the winding ratios of the windings W11 and W12 are equal, when the switch S11 is turned on in the period C, the terminals of the electrochemical element C are interposed between the terminals of the windings W11 and W12 as shown in FIG. A voltage corresponding to the inter-voltage appears. Here, since the inter-terminal voltage of the electrochemical element C2 is lower than the inter-terminal voltage of the winding W12, the rectifying element D12 conducts. At this time, the rate of change over time of the current IL2 of the coil L2 and the current Iw11 of the winding W11 is As shown in FIG.
[0038]
[Expression 1]
Figure 0004320511
[0039]
As shown in Equation 1, the current increase rate increases as the difference between the winding voltage Vw11 and the terminal voltage Vc2 of the electrochemical element increases. Therefore, the electrochemical element having a low voltage between terminals is preferentially charged, and the response can be improved. At the same time, the electrochemical element that does not need to be charged is not charged. Is unnecessary, and the efficiency of the circuit can be improved.
[0040]
Next, when the input switch S1 is opened, the impedance of the winding W12 increases, and the current flowing through the coil L2 can no longer pass through the rectifying element D12, and is rectified by the counter electromotive force generated in the coil L2. The element D22 becomes conductive, and the electrochemical element C2 is charged while discharging the electric power stored in the coil L2 as shown in the period D of FIG. 2d.
[0041]
From the time when the current of the coil L2 becomes zero until the next switch is turned on, the current of each part becomes zero. Thereafter, by repeating the operations in the periods C and D for each power control circuit PC, each electrochemical element C can be converged to a voltage determined by the winding ratio. Here, if the voltage is the same, the winding ratio may be the same. If the voltages are different, the winding ratio may be determined based on the ratio.
Note that a general-purpose control circuit may be used although the timing of turning on and off the switch S1 is not shown.
[0042]
In the above-described method, when the switches S11 and S12 of the power control circuit PC connected to the same magnetic circuit are sequentially turned on or the response is improved, the inter-terminal voltage has the highest excess ratio compared to the reference voltage. The switch S1 of the power control circuit PC may be selected and turned on.
[0043]
By configuring as described above, an electrochemical element having a low voltage between terminals is preferentially charged, and an electrochemical element that does not need to be charged is not charged. Efficiency improvement. Therefore, the voltage between the terminals of the plurality of electrochemical elements connected in series can be controlled to an appropriate voltage at high speed with little heat loss.
[0044]
Embodiment 2. FIG.
FIG. 3 is a schematic circuit diagram of a power supply device showing Embodiment 2 according to the present invention. 3, the same reference numerals as those in FIG. 1 represent the same or corresponding parts.
As shown in the figure, a power control circuit PC similar to that of the first embodiment is provided for adjusting the terminal voltage of the electrochemical element C, and the voltage applied to the winding W1 electromagnetically coupled to the magnetic circuit TRS is adjusted. A rectifying element D3 is connected in series with the switch S1. That is, the anode side of the rectifying element D3 was connected to the connection point between the winding W1 and the cathode side of the rectifying element D2, and the cathode side of the rectifying element D3 was connected to the switch S1.
[0045]
FIG. 3 shows an example in which three electrochemical elements C are connected in series, and the three power control circuits PC connected between the terminals of each electrochemical element C are all configured as similar circuits. . Here, in FIG. 3, the numerals of 1 to 3 are added to the end of the reference numerals of the parts constituting the circuit. For example, the electrochemical element C is represented by C1, C2, and C3 from the top, the power control circuit PC is similarly represented by PC1, PC2, and PC3, and the rectifier element D3 is similarly represented by D31, D32, and D33. Represented.
[0046]
Next, the operation will be described.
FIG. 4 is an explanatory diagram of voltage waveforms of the power supply device according to the second embodiment of the present invention. In the following, for simplification, it is assumed that the voltage between terminals when each switch and each rectifying element is conductive is zero, and the number of turns of each winding W1 is equal. Further, each period from A to C is sufficiently short, and the change in the voltage between the terminals of the electrochemical element C caused by turning on the switch S1 of each power control circuit PC can be ignored. The magnitude relationship between the voltages between the terminals is C1> C2 It is assumed that the order is> C3.
[0047]
The period A in FIG. 4 shows the inter-terminal voltage of each winding W1 when only the switch S13 is turned on. The period B shows the voltage between the terminals of each winding W1 when the switch S12 is turned on in addition to the switch S13 that was turned on in the period A. Furthermore, the period C shows the voltage across the terminals of each winding W1 when the switch S11 is turned on in addition to the switches S13 and S12 that were turned on in the period A.
[0048]
Here, in the period A, only the switch S13 is turned on, and the voltage between the terminals of the electrochemical element C3 appears in each winding W1. In the period B, the switch S12 is turned on in addition to the switch S13. In this case, the voltage across the terminals of the electrochemical element C2 appears in the winding W1 of each power control circuit PC. At this time, since the potential on the connection side of the rectifying element D33 with the winding W13 is lower than the potential on the connection side of the rectifying element D33 with the switch 13, the rectifying element D33 does not conduct.
[0049]
Further, in the period C, the switch S11 is turned on in addition to the switches S13 and S12, and the voltages across the terminals of the electrochemical elements C1, C2, and C3 appear in the windings W11, W12, and W13. At this time, the potential on the connection side of the rectification element D33 and the rectification element D32 to the winding W13 and the winding W12 is lower than the potential on the connection side of the rectification element D33 and the rectification element D32 to the switch 13 and the switch 12. The rectifying element D33 and the rectifying element D32 do not conduct.
[0050]
As described above, when the switches S11, S12, and S13 of each power control circuit PC are simultaneously turned on, the rectifying element D3 of the power control circuit PC connected to the electrochemical element C having a high voltage between terminals is turned on, and the other rectification is performed. Since a reverse voltage is applied to the element D3 and the conduction is cut off, power is selectively received from the electrochemical element C having a high inter-terminal voltage, and the inter-terminal voltage is obtained by the effect of the rectifying element D1 described in the first embodiment. It is possible to selectively deliver power to the electrochemical element C having a low value.
[0051]
By configuring as described above, by connecting the rectifying element D3 in series in the direction in which current flows from the electrochemical element C to the winding W1, between the switch S1 and the winding W1 of each power control circuit PC, It becomes possible to automatically select the electrochemical element C having the highest charging voltage. Therefore, the voltage between terminals of the electrochemical element C connected in series can be controlled to a voltage determined by the winding ratio of the winding W1 of the power control circuit PC by a simple control circuit that switches the switches S1 of the power control circuits PC simultaneously. .
[0052]
Embodiment 3 FIG.
FIG. 5 is a schematic circuit diagram of a power supply device showing Embodiment 3 according to the present invention. 5, the same reference numerals as those in FIG. 1 represent the same or corresponding parts. As shown in the figure, a power control circuit PC similar to that of the first embodiment is provided for adjusting the terminal voltage of the electrochemical element C, and a switch S2 is connected in series between the winding W1 and the cathode side of the rectifying element D1. Thus, one end of the switch S2 was connected to the winding W1, and the other end was connected to the cathode side of the rectifying element D1. VS is a voltage detector that detects the voltage between terminals of the electrochemical element C, and CNT is a switch control that controls opening and closing of the switch S2 based on the voltage between terminals of the electrochemical element C detected by the voltage detector VS. Circuit.
[0053]
FIG. 5 shows an example in which three electrochemical elements C are connected in series, and the three power control circuits PC connected between the terminals of each electrochemical element C are all configured as similar circuits. . Here, in FIG. 5, the numerals of 1 to 3 are added to the end of the reference numerals of the parts constituting the circuit. For example, the electrochemical element C is represented by the symbols C1, C2, and C3 from the top, the power control circuit PC is similarly represented by the symbols PC1, PC2, and PC3, and the switch S2 is similarly represented by the symbols S21, S22, and S23. It was.
[0054]
Next, the operation will be described.
Since the basic operation is the same as that of the first embodiment, a description thereof will be omitted, and a different operation will be described.
When the electrochemical element C is charged with the power delivered from the winding W1 by the power control circuit PC, the switch control circuit CNT detects the voltage between the terminals of the electrochemical element C with the voltage detector VS, and the electrochemical When the voltage across the terminals of the element C does not reach the reference value, the switch S2 is turned on to charge the electrochemical element C with the power delivered from the winding W1. Further, the switch control circuit CNT detects the voltage between the terminals of the electrochemical element C with the voltage detector VS, and opens the switch S2 when the voltage between the terminals of the electrochemical element C reaches the reference value, and the electrochemical element C Prevents overcharging.
[0055]
As described above, in the first and second embodiments, the charging voltage of each electrochemical element C is determined by the coupling ratio of each winding W1 to the magnetic circuit TRS. Therefore, it is necessary to manage the coupling ratio of each winding W1 to the magnetic circuit TRS with high accuracy. Therefore, in the third embodiment, even when the coupling ratio of the windings W1 varies due to the addition of the switch S2, the switch S2 is opened when the voltage between the terminals of the electrochemical element C reaches the reference value. This can prevent the electrochemical element C from being overcharged.
[0056]
Embodiment 4 FIG.
FIG. 6 is a schematic circuit diagram of a power supply device showing Embodiment 4 according to the present invention.
6, the same reference numerals as those in FIG. 1 represent the same or corresponding parts. As shown in the figure, a power control circuit PC similar to that of the third embodiment is provided for adjusting the terminal voltage of the electrochemical element C, and instead of the power transfer coil W1, the power transfer coil W2 and the power The receiving winding W3 is provided independently. That is, W2 is a power transfer winding electromagnetically coupled to the magnetic circuit TRS, one end connected to the electrochemical element C and the other end connected to the switch S1. W3 is a power receiving winding electromagnetically coupled to the magnetic circuit TRS, one end connected to the power passing winding W2 and the other end connected to the switch S1. The power delivery winding W2 and the power reception winding W3 are wound in the same direction and the same polarity.
[0057]
FIG. 6 shows an example in which three electrochemical elements C are connected in series, and the three power control circuits PC connected between the terminals of each electrochemical element C are all configured as similar circuits. . Here, in FIG. 6, the numerals of 1 to 3 are added to the end of the reference numerals of the parts constituting the circuit. For example, the electrochemical element C is represented by the symbols C1, C2, and C3 from the top, the power control circuit PC is also represented by the symbols PC1, PC2, and PC3, and the power transfer winding W2 is similarly W21, W22, and W23. Similarly, the power receiving winding W3 is represented by the symbols W31, W32, and W33.
[0058]
Here, the circuit configuration of the power control circuit PC will be described.
W2 is a power transfer winding that is electromagnetically coupled to a single magnetic circuit of the magnetic circuit TRS and has one end connected to the electrochemical element C. S1 is for applying the voltage of the electrochemical element C to the winding W2. , A switch having one end connected to the winding W2 and the other end connected to the electrochemical element C, and constitutes a series circuit including the electrochemical element C, the winding W2 and the switch S1. W3 is a power receiving winding electromagnetically coupled to the magnetic circuit of the magnetic circuit TRS, and one end thereof is connected to a connection portion between the power passing winding W2 and the switch S1.
[0059]
Next, D1 sets the cathode side so that the current flows in the direction of charging the electrochemical element C when the voltage between the terminals of the winding W3 is higher than the voltage between the terminals of the electrochemical element C. A rectifying element connected to the winding W3, L is connected to the anode side of the rectifying element D1 at one end and connected to the connecting portion between the electrochemical element C and the switch S1, and from the magnetic circuit TRS. Is a coil for temporarily accumulating electric power during charging and suppressing a sharp change in the current flowing through the electrochemical element C.
[0060]
Further, D2 is configured such that when the path of the current flowing in the coil L and the rectifying element D1 is cut off, the anode side is connected to the coil L and the rectifying element in order to return the current accumulated in the coil L to the electrochemical element C. It is a rectifying element that is connected to the connecting part of D1 and whose cathode side is connected to the connecting part of the electrochemical element C and the winding W2. SB is a snubber circuit connected between the terminals of the winding W1 in order to absorb the surge power generated at the moment when the switch S1 is opened.
[0061]
Further, S2 is a switch S2 connected in series between the winding W3 and the cathode side of the rectifying element D1, and one end of the switch S2 is connected to the winding W3 and the other end is connected to the cathode side of the rectifying element D1.
VS is a voltage detector that detects the voltage between terminals of the electrochemical element C, and CNT is a switch control that controls opening and closing of the switch S2 based on the voltage between terminals of the electrochemical element C detected by the voltage detector VS. Circuit.
[0062]
Next, the operation will be described.
Since the basic operation is the same as that of the third embodiment, a description thereof will be omitted and a different operation will be described.
The case where power is supplied from the electrochemical element C to the magnetic circuit TRS, that is, the power transfer winding W2 by the power control circuit PC is the same as in the first embodiment. When receiving electric power for charging the electrochemical element C from the magnetic circuit TRS, the power delivery winding W2 and the power reception winding W3 are connected in series, and the number of windings is greater than that of the power delivery winding W2. Therefore, a voltage higher than the voltage supplied to the magnetic circuit TRS can be received.
[0063]
As described above, in the third embodiment, by providing the switch S2, it is possible to prevent overcharge due to variations in the coupling ratio of the windings, but it is impossible to prevent a shortage of charge voltage. It was. On the other hand, in the fourth embodiment, the number of windings of the power receiving winding W3 can be set to a value larger than the number of windings of the power passing winding W2. Thereby, insufficient charging of the electrochemical element C by the winding W having a low coupling ratio, which may occur in the first to third embodiments, can be solved. Furthermore, since the voltage of the power receiving winding W3 can be set sufficiently higher than the target voltage of the electrochemical element C, the voltage applied between the terminals of the coil L can be increased, and the time The increase rate of the per-current can be increased, and the control response can be improved.
[0064]
Embodiment 5 FIG.
FIG. 7 is a schematic circuit diagram of a power supply device showing Embodiment 5 according to the present invention. As shown in the figure, a power control circuit PC similar to that of the fourth embodiment is provided for adjusting the terminal voltage of the electrochemical element C. Here, for example, one magnetic circuit TRS can be provided with a maximum of six windings. That is, since the power control circuit PC includes two windings, ie, a power transfer winding W2 and a power reception winding W3, three power control circuits can be coupled to one magnetic circuit TRS.
[0065]
Here, the circuit configuration of the power control circuit PC will be described.
W2 is a power transfer winding that is electromagnetically coupled to a single magnetic circuit of the magnetic circuit TRS and has one end connected to the electrochemical element C. S1 is for applying the voltage of the electrochemical element C to the winding W2. , A switch having one end connected to the winding W2 and the other end connected to the electrochemical element C, and constitutes a series circuit including the electrochemical element C, the winding W2 and the switch S1. W3 is a power receiving winding electromagnetically coupled to the magnetic circuit of the magnetic circuit TRS, and one end thereof is connected to a connection portion between the power passing winding W2 and the switch S1.
[0066]
Next, D1 sets the cathode side so that the current flows in the direction of charging the electrochemical element C when the voltage between the terminals of the winding W3 is higher than the voltage between the terminals of the electrochemical element C. A rectifying element connected to the winding W3, L is connected to the anode side of the rectifying element D1 at one end and connected to the connecting portion between the electrochemical element C and the switch S1, and from the magnetic circuit TRS. Is a coil for temporarily accumulating electric power during charging and suppressing a sharp change in the current flowing through the electrochemical element C.
[0067]
Further, D2 is configured such that when the path of the current flowing in the coil L and the rectifying element D1 is cut off, the anode side is connected to the coil L and the rectifying element in order to return the current accumulated in the coil L to the electrochemical element C. It is a rectifying element that is connected to the connecting part of D1 and whose cathode side is connected to the connecting part of the electrochemical element C and the winding W2. SB is a snubber circuit connected between the terminals of the winding W1 in order to absorb the surge power generated at the moment when the switch S1 is opened.
[0068]
Further, S2 is a switch S2 connected in series between the winding W3 and the cathode side of the rectifying element D1, and one end of the switch S2 is connected to the winding W3 and the other end is connected to the cathode side of the rectifying element D1.
VS is a voltage detector that detects the voltage between terminals of the electrochemical element C, and CNT is a switch control that controls opening and closing of the switch S2 based on the voltage between terminals of the electrochemical element C detected by the voltage detector VS. Circuit.
[0069]
FIG. 7 shows an example in which five electrochemical elements C are connected in series, and all six power control circuits PC connected between the terminals of each electrochemical element C are configured as similar circuits. . Here, in FIG. 7, numerals 1 to 6 are added to the end of the reference numerals of the parts constituting the circuit. For example, the electrochemical element C is represented by reference numerals C1 to C5, the power control circuit PC is also represented by reference numerals PC1 to PC6, and the power delivery winding W2 is similarly W21 to W26, and the power reception winding. W3 is similarly represented by the symbols W31 to W36.
[0070]
On the other hand, as shown in FIG. 7, five electrochemical elements C are connected in series, from the power control circuit PC1 of the first electrochemical element C1 to the power control circuit PC3 of the third electrochemical element C3. Three power control circuits PC are coupled to the first magnetic circuit TRS1, and the power control circuit PC4 of the fourth electrochemical element C4 and the power control circuit PC5 of the fifth electrochemical element C5 are connected to the second magnetic circuit. Coupled to circuit TRS2. Further, a power control circuit PC6 was additionally connected in parallel with the power control circuit PC3 and coupled to the second magnetic circuit TRS2 for adjusting the terminal voltage of the third electrochemical element C3. That is, three power control circuits PC, that is, power control circuits PC4, PC5, and PC6, are also coupled to the second magnetic circuit TRS2.
[0071]
Next, the operation will be described.
Since the basic operation is the same as that of the fifth embodiment, a description thereof will be omitted and a different operation will be described.
FIG. 7 shows an example in which five electrochemical elements C are connected in series. In the figure, the electrochemical element C3 is shared by the power control circuit PC3 and the power control circuit PC6. Here, the electric power stored in the electrochemical element C3 is supplied to the magnetic circuit TRS1 side when the switch S13 on the power control circuit PC3 side is turned on, and the switch S16 on the power control circuit PC6 side is turned on. In this case, power is supplied to the magnetic circuit TRS2 side.
[0072]
The power for charging the electrochemical element C3 can be received from either the power receiving winding W33 on the power control circuit PC3 side or the power receiving winding W36 on the power control circuit PC6 side. That is, power is mutually exchanged between the magnetic circuit TRS1 and the magnetic circuit TRS2 via the electrochemical element C3, and it becomes possible to control the voltage across the terminals of the five electrochemical elements C as a whole. .
[0073]
As described above, in the fifth embodiment, when electrochemical elements C exceeding the number of windings that can be provided in one magnetic circuit TRS are connected in series, a plurality of magnetic circuits TRS are used, and different magnetic elements are used. By connecting the two sets of power control circuits PC coupled to the circuit so as to share the same electrochemical element C, the voltage across all the electrochemical elements C can be controlled. The restriction on the number of electrochemical elements C to be connected can be eliminated.
[0074]
7 illustrates an example in which the same power control circuit PC as that of the fourth embodiment is used. However, in the same manner as in FIG. 7, the same power control circuit PC coupled to two magnetic circuits TRS is the same between the two sets of power control circuits PC. It is needless to say that the same effect can be obtained even if the power control circuit PC described in the first to third embodiments is used if the electrochemical element C is shared.
[0075]
Embodiment 6 FIG.
FIG. 8 is a schematic circuit diagram of a power supply device showing Embodiment 6 according to the present invention. Here, for example, one magnetic circuit TRS can be provided with a maximum of seven windings. That is, since the power control circuit PC includes two windings, ie, a power transfer winding W2 and a power reception winding W3, three power control circuits can be coupled to one magnetic circuit TRS.
[0076]
Here, the circuit configuration of the power control circuit PC will be described.
W2 is a power transfer winding that is electromagnetically coupled to a single magnetic circuit of the magnetic circuit TRS and has one end connected to the electrochemical element C. S1 is for applying the voltage of the electrochemical element C to the winding W2. , A switch having one end connected to the winding W2 and the other end connected to the electrochemical element C, and constitutes a series circuit including the electrochemical element C, the winding W2 and the switch S1. W3 is a power receiving winding electromagnetically coupled to the magnetic circuit of the magnetic circuit TRS, and one end thereof is connected to a connection portion between the power passing winding W2 and the switch S1.
[0077]
Next, D1 sets the cathode side so that the current flows in the direction of charging the electrochemical element C when the voltage between the terminals of the winding W3 is higher than the voltage between the terminals of the electrochemical element C. A rectifying element connected to the winding W3, L is connected to the anode side of the rectifying element D1 at one end and connected to the connecting portion between the electrochemical element C and the switch S1, and from the magnetic circuit TRS. Is a coil for temporarily accumulating electric power during charging and suppressing a sharp change in the current flowing through the electrochemical element C.
[0078]
Further, D2 is configured such that when the path of the current flowing in the coil L and the rectifying element D1 is cut off, the anode side is connected to the coil L and the rectifying element in order to return the current accumulated in the coil L to the electrochemical element C. It is a rectifying element that is connected to the connecting part of D1 and whose cathode side is connected to the connecting part of the electrochemical element C and the winding W2. SB is a snubber circuit connected between the terminals of the winding W1 in order to absorb the surge power generated at the moment when the switch S1 is opened.
[0079]
Further, S2 is a switch S2 connected in series between the winding W3 and the cathode side of the rectifying element D1, and one end of the switch S2 is connected to the winding W3 and the other end is connected to the cathode side of the rectifying element D1.
VS is a voltage detector that detects the voltage between terminals of the electrochemical element C, and CNT is a switch control that controls opening and closing of the switch S2 based on the voltage between terminals of the electrochemical element C detected by the voltage detector VS. Circuit.
[0080]
FIG. 8 shows an example in which six electrochemical elements C are connected in series, and all six power control circuits PC connected between the terminals of each electrochemical element C are configured as similar circuits. . Here, in FIG. 8, the numerals of 1 to 6 are added to the end of the reference numerals of the parts constituting the circuit. For example, the electrochemical element C is represented by reference numerals C1 to C6, the power control circuit PC is also represented by reference numerals PC1 to PC6, and the power delivery winding W2 is similarly W21 to W26, and the power reception winding. W3 is similarly represented by the symbols W31 to W36. By the way, W71 and W72 are magnetic circuit coupling windings electromagnetically coupled to each of the magnetic circuits TRS1 and TRS2 constituting different groups.
[0081]
On the other hand, as shown in FIG. 8, six electrochemical elements C are connected in series, from the power control circuit PC1 of the first electrochemical element C1 to the power control circuit PC3 of the third electrochemical element C3. Three power control circuits PC are coupled to the first magnetic circuit TRS1, and three power controls from the power control circuit PC4 of the fourth electrochemical element C4 to the power control circuit PC6 of the sixth electrochemical element C6 The circuit PC was coupled to the second magnetic circuit TRS2. Further, the magnetic circuit coupling winding W71 of the first magnetic circuit TRS1 and the magnetic circuit coupling winding W72 of the second magnetic circuit TRS2 were connected to each other.
[0082]
Next, the operation will be described.
Since the basic operation is the same as that of the fifth embodiment, a description thereof will be omitted and a different operation will be described.
FIG. 8 shows an example in which six electrochemical elements C are connected in series. In the figure, electric power is mutually exchanged between the magnetic circuit coupling winding W71 of the first magnetic circuit TRS1 and the magnetic circuit coupling winding W72 of the second magnetic circuit TRS2, and there are six in total. It becomes possible to control the voltage between the terminals of the electrochemical element C.
[0083]
As described above, in the sixth embodiment, when electrochemical elements C exceeding the number of windings that can be provided in one magnetic circuit TRS are connected in series, a plurality of magnetic circuits TRS are used, and different magnetic elements are used. By connecting two sets of magnetic circuit coupling windings coupled to a circuit to each other, power can be transferred between the two magnetic circuits. Thus, the voltage between terminals of all the electrochemical elements C can be controlled with a simple circuit configuration, and the limitation on the number of electrochemical elements C connected in series can be eliminated.
[0084]
8 illustrates an example in which the same power control circuit PC as that in the fourth embodiment is used. However, even if the power control circuit PC described in the first to third embodiments is used, the same operation is performed. Needless to say, an effect can be obtained.
[0085]
【The invention's effect】
Since the present invention is configured as described above, there are the following effects.
[0086]
In a power supply device in which a power control circuit that adjusts the voltage between terminals is connected between terminals of a plurality of electrochemical elements, a group is formed to electromagnetically couple each power control circuit and transfer power to each other A power circuit for transmitting and receiving power between the power control circuits via the magnetic circuit, and the power transmitting and receiving means is a power transfer coil electromagnetically coupled to the magnetic circuit. And a discharge circuit for applying a voltage charged to the electrochemical element to the power transfer coil, and a charging circuit for charging the electrochemical element with the voltage generated in the power transfer coil. The charging circuit connects one end of the power transfer coil to one end of the electrochemical element, and the voltage between the terminals of the power transfer coil is higher than the voltage between the terminals of the electrochemical element. The electricity A first rectifying element that allows current to flow in the direction of charging the chemical element, and a coil that temporarily accumulates power when charging the electrochemical element and suppresses a steep change in the current flowing through the electrochemical element And a second rectifying element that circulates the current accumulated in the coil to the electrochemical element when the path of the current flowing through the coil and the first rectifying element is cut off, and the discharge When applying a voltage charged in the electrochemical element to the power transfer coil, the circuit selects an electrochemical element having a high inter-terminal voltage from among a plurality of electrochemical elements connected in series. Discharging element selecting means is provided, and the discharging element selecting means can automatically select the third rectifying element for limiting the current flowing in the power transfer coil and the electrochemical element having the highest charging voltage. Connected in series The voltage between the terminals of the plurality of electrochemical element can be provided an inexpensive power supply to control the proper voltage.
[0087]
Also, by providing magnetic circuits constituting different groups, and magnetic circuit coupling means for electromagnetically coupling one magnetic circuit and the other magnetic circuit, and transferring power between the magnetic circuits, A power supply apparatus capable of connecting a large number of electrochemical elements in series can be provided.
[0088]
The magnetic circuit coupling means includes a first power control circuit that exchanges power with one of the magnetic circuits, a second power control circuit that exchanges power with the other of the magnetic circuits, a first power control circuit, and a first power control circuit. The power control circuit of 2 is connected in parallel to any one terminal of a plurality of electrochemical elements connected in series, and a circuit for transferring power between the magnetic circuits via the electrochemical element is provided. Thus, it is possible to provide a power supply device that can control the voltage between terminals of all the electrochemical elements to an appropriate voltage.
[0089]
Further, the magnetic circuit coupling means includes a first magnetic circuit coupling winding electromagnetically coupled to one of the magnetic circuits, a second magnetic circuit coupling winding electromagnetically coupled to the other of the magnetic circuits, The first magnetic circuit coupling winding and the second magnetic circuit coupling winding are connected to each other, and a circuit for transferring power between the magnetic circuits is provided between the two magnetic circuits. It is possible to provide a power supply apparatus that can transmit and receive electric power and can control the voltage between terminals of all electrochemical elements to an appropriate voltage with a simple circuit configuration.
[Brief description of the drawings]
FIG. 1 is a schematic circuit configuration diagram of a power supply device according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of voltage and current waveforms of the power supply device according to the first embodiment of the present invention.
FIG. 3 is a schematic circuit configuration diagram of a power supply device according to a second embodiment of the present invention.
FIG. 4 is a voltage waveform explanatory diagram of a power supply device according to Embodiment 2 of the present invention.
FIG. 5 is a schematic circuit configuration diagram of a power supply device showing Embodiment 3 according to the present invention.
FIG. 6 is a schematic circuit configuration diagram of a power supply device showing Embodiment 4 according to the present invention.
FIG. 7 is a schematic circuit configuration diagram of a power supply device according to a fifth embodiment of the present invention.
FIG. 8 is a schematic circuit configuration diagram of a power supply device showing Embodiment 6 according to the present invention.
FIG. 9 is a circuit diagram of a conventional capacitor terminal voltage adjustment circuit.
FIG. 10 is a conventional circuit diagram for correcting the voltage balance between capacitor terminals.
FIG. 11 is a schematic circuit configuration diagram of a conventional power supply device.
[Explanation of symbols]
C electrochemical element, PC power control circuit, TRS magnetic circuit, S1 first switch, S2 second switch, W1 power transfer winding, W2 power transfer winding, W3 power reception winding, D1 first Rectifier element, D2 second rectifier element, D3 third rectifier element, L coil, SB snubber circuit, CNT switch control circuit, Vs voltage detector, W7 winding for magnetic circuit coupling.

Claims (4)

複数の電気化学素子の各端子間に端子間電圧を調整する電力制御回路を各々接続した電源装置において、
各電力制御回路間を電磁気的に結合し相互に電力を授受するために、一群を構成する磁気回路と、前記磁気回路を介して前記電力制御回路間で相互に電力を授受する電力授受手段とを備え、
前記電力授受手段は、前記磁気回路と電磁気的に結合した電力授受用巻線と、前記電気化学素子に充電された電圧を前記電力授受用巻線に印加する放電回路と、
前記電力授受用巻線に発生した電圧により前記電気化学素子を充電する充電回路を有しており、
前記充電回路は、前記電力授受用巻線の一端を前記電気化学素子の一端に接続するとともに、前記電気化学素子の端子間電圧より前記電力授受用巻線の端子間電圧の方が高い場合に、前記電気化学素子を充電する方向に電流を流す第1の整流素子と、
前記電気化学素子を充電する場合に一時的に電力を蓄積して、前記電気化学素子に流れる電流の急峻な変化を抑制するコイルと、
前記コイルと前記第1の整流素子に流れる電流の経路が絶たれた場合に、前記コイルに蓄積した電流を前記電気化学素子に還流する第2の整流素子とを備えており、
前記放電回路は、前記電気化学素子に充電された電圧を前記電力授受用巻線に印加する場合に、直列に接続された複数の電気化学素子の中から、端子間電圧の高い電気化学素子を選択する放電素子選択手段を備え、
前記放電素子選択手段は、前記電力授受用巻線に流れる電流を制限する第3の整流素子を、
備えたことを特徴とする電源装置。
In the power supply device connected to each power control circuit for adjusting the voltage between the terminals between the terminals of the plurality of electrochemical elements,
In order to electromagnetically couple each power control circuit and exchange power with each other, a magnetic circuit constituting a group, and power exchange means for exchanging power between the power control circuits via the magnetic circuit With
The power transfer means includes a power transfer winding electromagnetically coupled to the magnetic circuit, a discharge circuit that applies a voltage charged to the electrochemical element to the power transfer winding,
Having a charging circuit for charging the electrochemical element with the voltage generated in the power transfer coil;
The charging circuit connects one end of the power transfer coil to one end of the electrochemical element, and the voltage between the terminals of the power transfer coil is higher than the voltage between the terminals of the electrochemical element. A first rectifying element that causes a current to flow in the direction of charging the electrochemical element;
A coil that temporarily accumulates electric power when charging the electrochemical element and suppresses a sharp change in current flowing in the electrochemical element;
A second rectifying element that circulates the current accumulated in the coil to the electrochemical element when the path of the current flowing through the coil and the first rectifying element is interrupted;
When the voltage charged in the electrochemical element is applied to the power transfer coil, the discharge circuit selects an electrochemical element having a high inter-terminal voltage from among a plurality of electrochemical elements connected in series. A discharge element selection means for selecting,
The discharge element selection means includes a third rectifier element that limits a current flowing through the power transfer coil.
A power supply device comprising:
異なる一群を構成する磁気回路と、一方の磁気回路と他方の磁気回路とを電磁気的に結合するとともに、前記磁気回路間で相互に電力を授受する磁気回路結合手段とを
備えたことを特徴とする請求項1に記載の電源装置。
A magnetic circuit comprising a different group, and a magnetic circuit coupling means for electromagnetically coupling one magnetic circuit and the other magnetic circuit and transferring power between the magnetic circuits. The power supply device according to claim 1.
前記磁気回路結合手段は、前記磁気回路の一方と電力を授受する第1の電力制御回路と、
前記磁気回路の他方と電力を授受する第2の電力制御回路と、
前記第1の電力制御回路と前記第2の電力制御回路を、前記直列に接続された複数の電気化学素子のいずれか1つの端子に並列に接続するとともに、前記電気化学素子を介して前記磁気回路間で相互に電力を授受する回路と
を備えたことを特徴とする請求項2に記載の電源装置。
The magnetic circuit coupling means includes: a first power control circuit that exchanges power with one of the magnetic circuits;
A second power control circuit for transferring power to and from the other of the magnetic circuits;
The first power control circuit and the second power control circuit are connected in parallel to any one of the terminals of the plurality of electrochemical elements connected in series, and the magnetism is interposed via the electrochemical element. The power supply apparatus according to claim 2, further comprising: a circuit that exchanges electric power between the circuits.
前記磁気回路結合手段は、前記磁気回路の一方と電磁気的に結合した第1の磁気回路結合用巻線と、
前記磁気回路の他方と電磁気的に結合した第2の磁気回路結合用巻線と、前記第1の磁気回路結合用巻線と前記第2の磁気回路結合用巻線を相互に接続するとともに、前記磁気回路間で相互に電力を授受する回路と
を備えたことを特徴とする請求項2に記載の電源装置。
The magnetic circuit coupling means includes a first magnetic circuit coupling winding electromagnetically coupled to one of the magnetic circuits;
A second magnetic circuit coupling winding electromagnetically coupled to the other of the magnetic circuits, the first magnetic circuit coupling winding and the second magnetic circuit coupling winding are connected to each other; The power supply device according to claim 2, further comprising: a circuit that exchanges power between the magnetic circuits.
JP2001041810A 2001-02-19 2001-02-19 Power supply Expired - Fee Related JP4320511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041810A JP4320511B2 (en) 2001-02-19 2001-02-19 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041810A JP4320511B2 (en) 2001-02-19 2001-02-19 Power supply

Publications (2)

Publication Number Publication Date
JP2002247776A JP2002247776A (en) 2002-08-30
JP4320511B2 true JP4320511B2 (en) 2009-08-26

Family

ID=18904196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041810A Expired - Fee Related JP4320511B2 (en) 2001-02-19 2001-02-19 Power supply

Country Status (1)

Country Link
JP (1) JP4320511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795499B2 (en) * 2003-12-26 2006-07-12 富士重工業株式会社 Voltage equalization device for storage element
JP4616238B2 (en) * 2006-11-14 2011-01-19 日本無線株式会社 Equal storage / discharge circuit
CN101877489B (en) * 2009-04-30 2012-11-21 富港电子(昆山)有限公司 Battery charging circuit

Also Published As

Publication number Publication date
JP2002247776A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
Kutkut et al. Dynamic equalization techniques for series battery stacks
KR101220339B1 (en) Automatic Charge Equalization Method and Apparatus for Series Connected Battery String
US10164441B2 (en) System and method for cell balancing and charging using a serially coupled inductor and capacitor
CN101606300B (en) Charge equalization apparatus
Kutkut A modular nondissipative current diverter for EV battery charge equalization
TWI483507B (en) Apparatus and method for battery-cell balancing and charging
US6150795A (en) Modular battery charge equalizers and method of control
KR101294378B1 (en) BATTERY BALANCING CONTROL APPARATUS and METHOD THEREOF
US20120206095A1 (en) Charge balancing system
JP6480935B2 (en) Charge balance device
WO2005046033A2 (en) Multiple input dc-dc power converter
Kutkut Nondissipative current diverter using a centralized multi-winding transformer
KR20130001234A (en) Charge equalization system for batteries
JP2002125325A (en) Storage device
JP4320511B2 (en) Power supply
JP5285322B2 (en) Voltage equalizing device, charging device, battery assembly, and charging system
JP3280635B2 (en) Energy transfer device and power storage system
JP3280649B2 (en) Energy transfer device, charging device and power supply device
KR20100017325A (en) Charging circuit for charging two batteries
US20220302743A1 (en) Quick loading unit
JP3392214B2 (en) Battery charge control device and method
WO2023165710A1 (en) A switch mode electrical power converter
JPS638708B2 (en)
JPH06113472A (en) Battery charger

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees