JP4320443B2 - Method for producing allylglycine or an analog thereof - Google Patents

Method for producing allylglycine or an analog thereof Download PDF

Info

Publication number
JP4320443B2
JP4320443B2 JP2005022642A JP2005022642A JP4320443B2 JP 4320443 B2 JP4320443 B2 JP 4320443B2 JP 2005022642 A JP2005022642 A JP 2005022642A JP 2005022642 A JP2005022642 A JP 2005022642A JP 4320443 B2 JP4320443 B2 JP 4320443B2
Authority
JP
Japan
Prior art keywords
producing
formula
analog
acid
allyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005022642A
Other languages
Japanese (ja)
Other versions
JP2006206531A (en
Inventor
修 小林
正晴 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005022642A priority Critical patent/JP4320443B2/en
Publication of JP2006206531A publication Critical patent/JP2006206531A/en
Application granted granted Critical
Publication of JP4320443B2 publication Critical patent/JP4320443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

この発明は、アリルグリシン又はその類縁体の製造方法に関し、好ましくは高い化学選択性と立体選択性で、アリルグリシン又はその類縁体を製造する方法に関する。   The present invention relates to a method for producing allyl glycine or an analog thereof, and preferably relates to a method for producing allyl glycine or an analog thereof with high chemical selectivity and stereoselectivity.

アリルグリシンおよびその類縁体は、それ自体に酵素阻害活性などの薬理作用を持つ場合が多いだけでなく(非特許文献1)、二重結合部分の化学変換による様々な非天然アミノ酸や天然物の合成中間体としても有用な化合物群である(非特許文献2〜5)。
光学活性なアリルグリシンおよびその類縁体の製造法としては、不斉アリル化反応による直接的な合成方法が試みられてはいるが(非特許文献6〜8)、コスト的に見て工業化にまだ問題が残されている。
一方、アリルホウ素化合物を用いたカルボニル化合物のアリル化反応や、アリルホウ素化合物とアンモニアを併用したカルボニル化合物のα−アミノアリル化反応などが報告されている(非特許文献9、10)。後者の文献には、グリオキシル酸、アンモニア、クロチルボロネートの3成分反応による、イソロイシン類の立体選択的製造方法も記載されている。
Allylglycine and its analogs often have pharmacological actions such as enzyme inhibitory activity themselves (Non-Patent Document 1), and various non-natural amino acids and natural products by chemical conversion of double bond moieties. This compound group is also useful as a synthetic intermediate (Non-Patent Documents 2 to 5).
As a method for producing optically active allylglycine and its analogs, a direct synthesis method by an asymmetric allylation reaction has been tried (Non-Patent Documents 6 to 8), but it has not yet been industrialized in terms of cost. The problem remains.
On the other hand, an allylation reaction of a carbonyl compound using an allylboron compound, an α-aminoallylation reaction of a carbonyl compound using both an allylboron compound and ammonia have been reported (Non-Patent Documents 9 and 10). The latter document also describes a method for stereoselective production of isoleucines by a three-component reaction of glyoxylic acid, ammonia and crotylboronate.

Kunz, D. A.: Ribbons, D. w.; Chapman, P. J. J. Bacteriol 148, 72(1981).Kunz, D. A .: Ribbons, D. w .; Chapman, P. J. J. Bacteriol 148, 72 (1981). Schneider, H.; Sigmund, G.; Schricker, B.; Trirring, K.; Berner, H. J. Org. Chem. 58, 683(1993).Schneider, H .; Sigmund, G .; Schricker, B .; Trirring, K .; Berner, H. J. Org. Chem. 58, 683 (1993). Hutton, C. A.; White, J. M. Tetrahedron Lett. 38, 1643(1997).Hutton, C. A .; White, J. M. Tetrahedron Lett. 38, 1643 (1997). Baldwin, J. E.; Bradley, M.; Turner, N. J.; Adlington, R. M.; Pitt, A. R.; Sheriden, H, Tetrahedron 47, 8203(1991).Baldwin, J. E .; Bradley, M .; Turner, N. J .; Adlington, R. M .; Pitt, A. R .; Sheriden, H, Tetrahedron 47, 8203 (1991). Kurokawa, N.; Ohfune, Y. Tetrahedron, 28, 6195(1993).Kurokawa, N .; Ohfune, Y. Tetrahedron, 28, 6195 (1993). Hamon, D. P. G.; Massy-Westropp, M.; Razzino, P. Tetrahedron, 14, 4183(1995).Hamon, D. P. G .; Massy-Westropp, M .; Razzino, P. Tetrahedron, 14, 4183 (1995). Hamada, T.; Manabe, K.; Kobayashi, S. Angew. Chem. Int. Ed. 42. 3927(2003).Hamada, T .; Manabe, K .; Kobayashi, S. Angew. Chem. Int. Ed. 42. 3927 (2003). Williams, R. M. "Synthesis of Optically Active α-Amino Acids (Organic Chemistry Series, J. E. Baldwin, Series Editor), Pergamon Press、410頁、1989年Williams, R. M. "Synthesis of Optically Active α-Amino Acids (Organic Chemistry Series, J. E. Baldwin, Series Editor), Pergamon Press, 410, 1989 Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 126, 7182(2004).Sugiura, M .; Hirano, K .; Kobayashi, S. J. Am. Chem. Soc. 126, 7182 (2004). 米国特許第6232467号明細書U.S. Patent No. 6232467

しかし、上記した従来技術の場合、保護基が必要であったり、出発原料が複雑な構造の化合物である等の問題がある。
このようなことから、本発明は、保護基を用いず、単純な構造の化合物を原料とした1段階のアリル化反応で、高収率で好ましくは高いジアステレオ選択性でアリルグリシン又はその類縁体、及びイソロイシン又はアロイソロイシンを製造する方法の提供を目的とする。
However, in the case of the above-described conventional techniques, there are problems that a protecting group is necessary and that the starting material is a compound having a complicated structure.
Therefore, the present invention is a one-step allylation reaction using a compound having a simple structure as a raw material without using a protecting group. Allylglycine or the like thereof is preferably obtained in a high yield and preferably high diastereoselectivity. And a method for producing isoleucine or alloisoleucine.

このような課題を解決するために、本発明者らは、出発原料としてヒドロキシグリシンを用い、これに所定のアリルボロン酸(又はアリルボロネート)を求核反応させることにより、無保護のアリルグリシン(又はその類縁体)が得られることを見出し、本発明の完成に至った。   In order to solve such a problem, the present inventors use hydroxyglycine as a starting material, and nucleophilic reaction of a predetermined allylboronic acid (or allylboronate) to the unprotected allylglycine ( Or an analog thereof) and the present invention has been completed.

すなわち、本発明は、アルコール中で下式(化1)
で表されるヒドロキシグリシンと、下式(化2)
(式中、R,R、R、及びRはそれぞれ同じであっても異なってもよく、水素原子、アルキル基又はアリール基を表し、R とはBに結合した炭素原子と一緒になって環をなしてもよく、R及びRは、それぞれ同じであっても異なってもよく、水素原子、アルキル基又はアリール基を表し、R とはBと一緒になって成してもよい。)で表されるアリルボロン酸又はアリルボロネートとを反応させることを含むアリルグリシン又はその類縁体を製造する方法である。
That is, the present invention is the following formula in an alcohol (Formula 1)
And the following formula (Formula 2)
(Wherein R 1 , R 2 , R 3 , and R 4 may be the same or different and each represents a hydrogen atom, an alkyl group, or an aryl group, and R 2 and R 4 are bonded to B. A ring may be formed together with a carbon atom, and R 5 and R 6 may be the same or different and each represents a hydrogen atom, an alkyl group or an aryl group, and R 5 and R 6 are a method of producing allyl glycine or analogues thereof comprising B and together reacting Ariruboron acid or boronate represented by may also be.) to form a ring.

応系にアミン類又はアルカリ無機塩を添加することが好ましい。 It is preferred to add the amine or alkali inorganic salt reaction system.

又、本発明は、前記方法において、前記アリルボロン酸又はアリルボロネートとして(E)−クロチルボロネート(Rがメチル基;R 、R 及びが水素原子である。)を用いて下式(化3)
(式中、R 及びR は前記と同様に定義される。)で表されるアンチ(anti)体アリルグリシン類縁体を製造する段階、該アンチ(anti)体アリルグリシン類縁体を水素添加する段階を含むイソロイシンを製造する方法である。
The present invention, in the above method, as the Ariruboron acid or boronate (E) - crotyl boronate (R 1 is a methyl group; R 2, R 3 and R 4 are hydrogen atoms.) Using (Formula 3)
(Wherein R 1 and R 4 are defined in the same manner as described above), the step of producing an anti-allyl allylic glycine analog, and hydrogenating the anti-allyl glycine analog A process for producing isoleucine.

さらに、本発明は、前記方法において、前記アリルボロン酸又はアリルボロネートとして(Z)−クロチルボロネート(Rがメチル基;R 、R 及びが水素原子である。)を用いて下式(化4)
(式中、R 及びR は前記と同様に定義される。)で表されるシン(syn)体アリルグリシン類縁体を製造する段階、該シン(syn)体アリルグリシン類縁体を水素添加する段階を含むアロイソロイシンを製造する方法である。


Furthermore, the present invention uses (Z) -crotyl boronate (R 2 is a methyl group ; R 1 , R 3 and R 4 are hydrogen atoms) as the allyl boronic acid or allyl boronate in the method . (Formula 4)
(Wherein R 2 and R 4 are defined in the same manner as described above), a step of producing a syn allylic glycine analog represented by hydrogenation of the syn allylic glycine analog A method for producing alloisoleucine.


本発明の好ましい態様によれば、例えば、クロチル化反応の場合に、原料のクロチルボロネートの幾何異性により生成物のシン(syn)/アンチ(anti)の選択性をコントロールできる。   According to a preferred embodiment of the present invention, for example, in the case of crotylation reaction, the syn / anti selectivity of the product can be controlled by the geometric isomerism of the raw material crotylboronate.

この発明によれば、例えば医薬品やそのリード化合物等の原料または合成中間体として有用なアリルグリシン又はその類縁体を、保護基を用いず、単純な構造の化合物を原料とした1段階の反応で、高収率で好ましくは高立体選択的に得ることができる。   According to the present invention, for example, allyl glycine or an analog thereof useful as a raw material or a synthetic intermediate of a pharmaceutical or its lead compound is a one-step reaction using a compound having a simple structure as a raw material without using a protecting group. It can be obtained in high yield, preferably with high stereoselectivity.

本発明は、液相でヒドロキシグリシン、及びアリルボロン酸又はアリルボロネートを反応させて、アリルグリシン又はその類縁体を製造する方法、この方法によって製造されるアリルグリシン類縁体、及びイソロイシン又はアロイソロイシンを製造する方法である。
本発明の方法で用いるヒドロキシグリシンは下式(化1)で表される。
ヒドロキシグリシンは、グリオキシル酸のアンモニア付加体であり等電点付近(pH=約6)で両性イオンとして得られ、pH6よりも強い酸性水溶液中では容易にグリオキシル酸に分解する。両性イオンとしてのヒドロキシグリシンについては、例えば、文献11(Hoefnagel, A.; van Bekkum, H.; Peters, J. A. J. Org. Chem, 57, 3916(1992).)に記載されている。
又、ヒドロキシグリシンの本反応における実際の反応活性種であるイミノ酢酸は下式(化5)で表される。
The present invention relates to a method for producing allyl glycine or an analog thereof by reacting hydroxyglycine with allylboronic acid or allylboronate in a liquid phase, an allylglycine analog produced by this method, and isoleucine or alloisoleucine. It is a manufacturing method.
Hydroxyglycine used in the method of the present invention is represented by the following formula (Formula 1).
Hydroxyglycine is an ammonia adduct of glyoxylic acid, obtained as an amphoteric ion near the isoelectric point (pH = about 6), and easily decomposes into glyoxylic acid in an acidic aqueous solution stronger than pH 6. Hydroxyglycine as zwitterion is described in, for example, Reference 11 (Hoefnagel, A .; van Bekkum, H .; Peters, JAJ Org. Chem, 57, 3916 (1992)).
Further, iminoacetic acid, which is the actual reactive species in this reaction of hydroxyglycine, is represented by the following formula (Formula 5).

本発明の方法で用いるアリルボロン酸(下式(化2)で、R及びRが共に水素原子を表す。)、又はアリルボロネートは下式(化2)で表される。本発明の方法では、アリルボロネートが好ましく用いられる。
,R、R、及びRはそれぞれ同じであっても異なってもよく、水素原子、アルキル基又はアリール基を表し、好ましくはアルキル基が挙げられ、R及びRは環状をなしてもよい。
The allylboronic acid used in the method of the present invention (in the following formula (Chemical Formula 2), R 5 and R 6 both represent a hydrogen atom), or allylboronate is represented by the following formula (Chemical Formula 2). In the method of the present invention, allyl boronate is preferably used.
R 1 , R 2 , R 3 and R 4 may be the same or different and each represents a hydrogen atom, an alkyl group or an aryl group, preferably an alkyl group, and R 2 and R 4 are cyclic May be made.

及びRは、それぞれ同じであっても異なってもよく、水素原子、アルキル基又はアリール基であり、R及びRは共に環状を成してもよい。例えば、R及びRは共に下式(化6)のようなアリーレン基やアルキリデン基であってもよい。
アリルボロネートとしては、アルコール全般から誘導されるボロン酸エステルが好ましく、光学活性アルコール由来のものでもよい。
R 5 and R 6 may be the same or different, and are a hydrogen atom, an alkyl group, or an aryl group, and R 5 and R 6 may both be cyclic. For example, both R 5 and R 6 may be an arylene group or an alkylidene group as shown in the following formula (Formula 6).
As the allyl boronate, boronic acid esters derived from all alcohols are preferable, and those derived from optically active alcohols may be used.

本発明の方法では、溶媒として、プロトン性溶媒を好適に用いることができる。プロトン性溶媒としては一般にアルコールが好ましく、特にメタノール、エタノール、プロパノール等の低級アルコールが好ましく、さらにメタノールがより好ましい。但し、水は、ヒドロキシグリシンを一部グリオキシル酸に加水分解するので収率の低下を招くので好ましくない。   In the method of the present invention, a protic solvent can be suitably used as the solvent. As the protic solvent, alcohol is generally preferable, and lower alcohols such as methanol, ethanol and propanol are particularly preferable, and methanol is more preferable. However, water is not preferable because hydroxyglycine is partially hydrolyzed to glyoxylic acid, resulting in a decrease in yield.

溶媒中の各成分の濃度はそれぞれ0.01〜5mol/lであることが好ましい。
この反応の温度は、好ましくは20〜60℃である。室温〜40℃程度とすると、温和な条件で反応させることができるのでより好ましい。なお、温度が高くなりすぎるとヒドロキシグリシンが分解する場合がある。
この反応時間は、数分〜数時間(又は数十時間)程度である。
The concentration of each component in the solvent is preferably 0.01 to 5 mol / l.
The temperature of this reaction is preferably 20-60 ° C. The room temperature to about 40 ° C. is more preferable because the reaction can be performed under mild conditions. If the temperature becomes too high, hydroxyglycine may be decomposed.
This reaction time is about several minutes to several hours (or several tens of hours).

本発明において、好ましくは塩基性物質を添加する。塩基性物質の添加は、目的物質の収率を大幅に向上させる。これは、出発物質であるヒドロキシグリシンの反応活性種であるイミノ酢酸への変換が、塩基性物質によって促進されるためと、生成物の転位反応を抑制するためと考えられる。塩基性物質としては、アミン類、アルカリ無機塩が例示できる.特に、3級アミンが好ましく、特にトリエチルアミンが好ましい。アミン類の添加量は、ヒドロキシグリシンに対して例えば10〜300モル%とすることができる。   In the present invention, a basic substance is preferably added. The addition of a basic substance greatly improves the yield of the target substance. This is considered to be because the conversion of the starting material hydroxyglycine to the reactive active species iminoacetic acid is promoted by the basic substance and the rearrangement reaction of the product is suppressed. Examples of basic substances include amines and alkali inorganic salts. In particular, tertiary amines are preferable, and triethylamine is particularly preferable. The addition amount of amines can be 10-300 mol% with respect to hydroxyglycine, for example.

生成物であるアリルグリシン又はその類縁体の精製法としては、イオン交換、抽出、カラムクロマトグラフィー、再結晶等の一般的精製法を利用して回収できる。   As a purification method of the product, allylglycine or its analog, it can be recovered by using a general purification method such as ion exchange, extraction, column chromatography, recrystallization and the like.

本発明の生成物であるアリルグリシン又はその類縁体は下式(化7)で表すことができる。
(式中、R、R、R、Rは上記と同様に定義される。)
本発明では、特にアリルボロン酸のR及び、RまたはRの一方が水素原子であり他方が水素原子以外である場合、E体(R及びRが水素原子)のアリルボロン酸又はアリルボロネートからアンチ体のアリルグリシン類縁体が、Z体(R及びRが水素原子)のアリルボロン酸又はアリルボロネートからはシン体のアリルグリシン類縁体が立体選択的に生成する
このようにして製造したアリルグリシン又はその類縁体は、医薬中間体等の用途に用いることができる。
The product of the present invention, allylglycine or its analog, can be represented by the following formula (Formula 7).
(Wherein R 1 , R 2 , R 3 and R 4 are defined in the same manner as described above.)
In the present invention, particularly when R 3 of allyl boronic acid and one of R 1 or R 2 is a hydrogen atom and the other is other than a hydrogen atom, allyl boronic acid or allyl of E form (R 1 and R 3 are hydrogen atoms) An anti-allyl glycine analog is formed from boronate, and a allylic glycine analog of Z form (R 2 and R 3 is a hydrogen atom) or an allyl boronate of a Z form (R 2 and R 3 are hydrogen atoms) is generated in a stereoselective manner. Allyl glycine or its analog produced in this manner can be used for pharmaceutical intermediates and the like.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。   The following examples illustrate the invention but are not intended to limit the invention.

本実施例ではヒドロキシグリシン1は上記文献11に従って合成した。アリルボロネート3a〜3fは以下の文献12〜15に従って合成した。   In this example, hydroxyglycine 1 was synthesized according to the above document 11. Allyl boronates 3a to 3f were synthesized according to the following documents 12 to 15.

文献12:Roush, W. R.; Walts, A. E. Tetrahedron Lett. 26, 3427(1985).
文献13:Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 108, 3422(1986).
文献14:Hoffmann, W.; Ladner, W.; Ditrich, K. Liebigs Ann. Chem. 1989, 883.
文献15:Murata, M.; Watanabe, S.; Masuda, Y. Tetrahedron Lett. 41, 5877(2000).
Reference 12: Roush, WR; Walts, AE Tetrahedron Lett. 26, 3427 (1985).
Reference 13: Roush, WR; Adam, MA; Walts, AE; Harris, DJJ Am. Chem. Soc. 108, 3422 (1986).
Reference 14: Hoffmann, W .; Ladner, W .; Ditrich, K. Liebigs Ann. Chem. 1989, 883.
Reference 15: Murata, M .; Watanabe, S .; Masuda, Y. Tetrahedron Lett. 41, 5877 (2000).

その他、本実施例において、他の化合物は市販品を必要に応じて精製して使用した。 In addition, in this Example, other compounds were used after being purified as necessary.

<実施例1>
ヒドロキシグリシン(1)とアリルボロネート(3a)との反応
アルゴン雰囲気下、乾燥メタノール(2ml)に懸濁させたヒドロキシグリシン1(45.5mg、0.5mmol)に、攪拌しながらアリルボロネート3a(0.6mmol)を室温で加えた。所定時間後、水を加えて希釈し、陽イオン交換樹脂(DOWEX 50W−X2、50−100メッシュ、H型、約5g)を充填したカラム管中に水とともに加えた。樹脂を蒸留水で十分に洗浄した後、1.0Mのアンモニア水で溶出した。溶出物のうち、ニンヒドリン反応に陽性のフラクションを集め、濃縮してアリルグリシン4aを得た。なお、副生成物として、ヒドロキシグリシン1の加水分解物である、グリオキシル酸がアリル化されたα−ヒドロキシ酸5aが生じる場合がある。
<Example 1>
Reaction of hydroxyglycine (1) with allylboronate (3a) Allylboronate 3a with stirring in hydroxyglycine 1 (45.5 mg, 0.5 mmol) suspended in dry methanol (2 ml) under argon atmosphere (0.6 mmol) was added at room temperature. After a predetermined time, water was added for dilution, and the solution was added together with water into a column tube filled with a cation exchange resin (DOWEX 50W-X2, 50-100 mesh, H + type, about 5 g). The resin was thoroughly washed with distilled water and then eluted with 1.0 M aqueous ammonia. From the eluate, fractions positive for the ninhydrin reaction were collected and concentrated to obtain allylglycine 4a. In addition, as a by-product, α-hydroxy acid 5a in which glyoxylic acid is allylated, which is a hydrolyzate of hydroxyglycine 1, may be generated.

表1に実施例1の結果を示す。
Table 1 shows the results of Example 1.

表1において、添字aは単離収率を示す。添字bは、アリルグリシン4aの単離収率に基づき、粗生成物のH-NMR分析により決定した収率を示す。添字cは、2回の試験の平均値である。ndは、検出されなかったことを示す。添字dは、H-NMRスペクトルの積分における実験誤差を含む。 In Table 1, the subscript a indicates the isolation yield. The subscript b indicates the yield determined by 1 H-NMR analysis of the crude product based on the isolated yield of allylglycine 4a. The subscript c is an average value of two tests. nd indicates that it was not detected. The subscript d includes experimental errors in the integration of the 1 H-NMR spectrum.

エタノール、及びメタノール中では、アリルグリシンが中程度の収率で得られ、α−ヒドロキシ酸5aの生成は僅かであった(実験例1,2)。
メタノール中では、反応温度を上げたり反応時間を延長しても収率が向上した(実験例3、4)。
さらに、触媒量(20モル%、溶媒中に0.1mmol)のトリエチルアミンの添加により収率は大幅に向上した(実験例5)。又、この場合、α−ヒドロキシ酸5aも全く生成しなかった。トリエチルアミンによる反応の加速効果は、ヒドロキシグリシン1のイミノ酢酸2への変換が塩基により促進されたためと考えられる。
一方、水溶媒中では、ヒドロキシグリシン1の加水分解物であるグリオキシル酸がアリル化され、α−ヒドロキシ酸5aが主生成物となった(比較例1)。又、非プロトン性溶媒中ではほとんどアリルグリシン4aは得られなかった(比較例2〜4)。
In ethanol and methanol, allyl glycine was obtained in a moderate yield, and the production of α-hydroxy acid 5a was slight (Experimental Examples 1 and 2).
In methanol, the yield was improved even when the reaction temperature was increased or the reaction time was extended (Experimental Examples 3 and 4).
Further, the yield was significantly improved by adding a catalytic amount (20 mol%, 0.1 mmol in the solvent) of triethylamine (Experimental Example 5). In this case, α-hydroxy acid 5a was not produced at all. The acceleration effect of the reaction with triethylamine is considered to be because the conversion of hydroxyglycine 1 to iminoacetic acid 2 was promoted by the base.
On the other hand, in an aqueous solvent, glyoxylic acid, which is a hydrolyzate of hydroxyglycine 1, was allylated, and α-hydroxy acid 5a became the main product (Comparative Example 1). Further, almost allyl glycine 4a was hardly obtained in the aprotic solvent (Comparative Examples 2 to 4).

<実施例2>
トリエチルアミンを添加した時の反応
表1の実験例5の反応条件下で、各種のアリルボロネート3(3b〜3f)を用いて反応を行った。
<Example 2>
Reaction when triethylamine was added The reaction was performed using various allylboronates 3 (3b to 3f) under the reaction conditions of Experimental Example 5 in Table 1.

表2に実施例2の結果を示す。
Table 2 shows the results of Example 2.

表2において、添字aは生成物4、4’(記号4はγ−付加体、4’はα−付加体)の合計収率を示す。添字bは、HNMR分析により決定した値を示す。添字cは、1当量のトリエチルアミンを添加したことを示す。添字dは、2当量のトリエチルアミンを添加したことを示す。添字eは、反応時間が6時間であったことを示す。 In Table 2, the subscript a indicates the total yield of the products 4, 4 ′ (symbol 4 is a γ-adduct, 4 ′ is an α-adduct). The subscript b indicates a value determined by 1 HNMR analysis. The subscript c indicates that 1 equivalent of triethylamine was added. The subscript d indicates that 2 equivalents of triethylamine was added. The subscript e indicates that the reaction time was 6 hours.

メタリルボロネートを用いた場合、トリエチルアミンを1当量用いることで81%の収率で目的とする生成物が得られた(実験例6)。
クロチル化反応においては、Z−体のクロチルボロネートからはsyn−体のγ−付加体が主生成物として得られ(実験例7の生成物syn-4c)、E−体のクロチルボロネートからはanti−体のγ−付加体が主生成物として得られた(実験例8の生成物anti-4c)。但し、いずれの場合も、α−付加体が僅かに生成した(実験例7,8の生成物4c’)。
シンナミルボロネートおよびシクロヘキシルボロネートを用いた場合には、いずれも高収率で、高立体選択的に生成物が得られた(実験例9、10)。実験例9の場合、1当量のトリエチルアミンを添加することにより、α−付加体(生成物4d’)の生成を抑制することができた。
γ−位に2つの置換基を持つプロペニルボロネートを用いた場合には、2当量のトリエチルアミンを添加することにより、高収率で生成物が得られた(実験例11)。なお、この場合、γ付加体:α付加体=85:15の混合物となった。
When methallyl boronate was used, the target product was obtained in 81% yield by using 1 equivalent of triethylamine (Experimental Example 6).
In the crotylation reaction, a syn-form γ-adduct is obtained as a main product from the Z-form crotylboronate (the product syn-4c in Experimental Example 7), and an E-form crotylboronate. An anti-γ-adduct was obtained as the main product from the nate (product anti-4c of Experimental Example 8). However, in all cases, α-adduct was slightly produced (product 4c ′ of Experimental Examples 7 and 8).
When cinnamyl boronate and cyclohexyl boronate were used, the product was obtained in high yield and highly stereoselectively (Experimental Examples 9 and 10). In the case of Experimental Example 9, it was possible to suppress the formation of the α-adduct (product 4d ′) by adding 1 equivalent of triethylamine.
When propenyl boronate having two substituents at the γ-position was used, the product was obtained in high yield by adding 2 equivalents of triethylamine (Experimental Example 11). In this case, a mixture of γ adduct: α adduct = 85: 15 was obtained.

なお、実施例2において、反応終了後、精製操作の前に反応混合物を加熱するとα−付加体の比率が増加した。一方、反応後の液を直接イオン交換処理(イオン交換樹脂:DOWEX 50W-X2)することにより、α−付加体の生成が抑制できた。また、トリエチルアミンの添加は単なる反応の加速効果だけでなく、α−付加体の生成を抑制し、目的とするγ−付加体の収量を向上させる効果が認められた。   In Example 2, when the reaction mixture was heated after the reaction and before the purification operation, the ratio of the α-adduct increased. On the other hand, the production of α-adducts could be suppressed by subjecting the solution after the reaction to direct ion exchange treatment (ion exchange resin: DOWEX 50W-X2). Moreover, the addition of triethylamine was confirmed not only to accelerate the reaction but also to suppress the formation of α-adduct and to improve the yield of the target γ-adduct.

(実施例2のアミノアリル化生成物の分析値)
表2の化合物の分析値を示す。なお、以下の生成物名の括弧内は表2の化合物の符号に対応する。又、M.pは融点を示す。. 1H-13C NMRスペクトルは、日本電子製の測定装置(JEOL ECX-400、 ECX-600)を用い、D2O中で測定し、1,4-Dioxaneを内部標準に用いた (?3.75 ppm for 1H NMR、?67.19 ppm for 13C NMR)。高分解能イオン化質量分析(HR-ESIMS)は、質量分析機器(BRUKER DALTONICS BioTOF II mass spectrometer)によって行った。
(Analytical value of the aminoallylation product of Example 2)
Analytical values of the compounds in Table 2 are shown. The parentheses in the following product names correspond to the symbols of the compounds in Table 2. Mp represents the melting point. . 1 H- 13 C NMR spectra were measured in D 2 O using JEOL measuring equipment (JEOL ECX-400, ECX-600) and 1,4-Dioxane was used as the internal standard (? 3.75 ppm for 1 H NMR,? 67.19 ppm for 13 C NMR). High resolution ionization mass spectrometry (HR-ESIMS) was performed with a mass spectrometer (BRUKER DALTONICS BioTOF II mass spectrometer).

2-Aminopent-4-enoic acid (4a)
:上記非特許文献9によった。
2-Amino-4-methylpent-4-enoic acid (4b)
:M.p. = 228-231 °C. 1H NMR (400 MHz) δ: 5.00 (s, 1H), 4.90 (s, 1H), 3.85 (dd, J = 9.6, 4.6 Hz, 1H), 2.68 (dd, J = 14.7, 4.6 Hz, 1H), 2.50 (dd, J = 14.7, 9.6 Hz, 1H), 1.77 (s, 3H). 13C NMR (100 MHz) δ: 175.2, 140.7, 116.0, 53.2, 39.7, 21.3. HR-ESIMS calcd for C6H12NO2 (M+H+) 130.0863, found 130.0867.
syn-2-Amino-3-methylpent-4-enoic acid (syn-4c)
:M.p. = 224-227 °C. 1H NMR (400 MHz) δ: 5.84 (ddd, J = 17.9, 10.1, 6.4 Hz, 1H), 5.26 (d, J = 10.1 Hz, 1H), 5.25 (d, J = 17.9 Hz, 1H), 3.76 (d, J = 4.1 Hz, 1H), 2.94-2.82 (m, 1H), 1.10 (d, J = 6.9 Hz, 3H). 13C NMR (100 MHz) δ: 174.0, 138.2, 118.2, 59.0, 38.4, 13.6. HR-ESIMS calcd for C6H12NO2 (M+H+) 130.0863, found 130.0866.
anti-2-Amino-3-methylpent-4-enoic acid (anti-4c)
:M.p. = 220-223 °C. 1H NMR (400 MHz) δ: 5.75 (ddd, J = 17.4, 10.1, 7.3 Hz, 1H), 5.25 (d, J = 17.4 Hz, 1H), 5.24 (d, J = 10.1 Hz, 1H), 3.61 (d, J = 5.5 Hz, 1H), 2.87-2.74 (m, 1H), 1.16 (d, J = 7.3 Hz, 3H). 13C NMR (100 MHz) δ: 174.4, 137.3, 118.8, 59.8, 39.1, 16.0. HR-ESIMS calcd for C6H12NO2 (M+H+) 130.0863, found 130.0862.
2-Aminohex-4-enoic acid (4c')
1H NMR (400 MHz) (E-isomer) δ: 5.74 (dqt, J = 15.1, 6.4, 1.4 Hz, 1H), 5.38 (dtq, J = 15.1, 7.3, 1.8 Hz, 1H), 3.83 (dd, J = 6.7, 5.3 Hz, 1H), 2.67-2.49 (m, 2H), 1.67 (d, J = 6.4 Hz, 3H). (Z-isomer, a representative signal) δ: 1.63 (d, J = 6.9 Hz, 3H).
anti-2-Amino-3-phenylpent-4-enoic acid (4d) and (E)-2-Amino-5-phenylpent-4-enoic acid (4d') (4d/4d' = 93:7)
:M.p. = 172-176 °C. 1H NMR (400 MHz) δ: 7.52-7.28 (m, 5.00H), 6.65 (d, J = 15.6 Hz, 0.07H), 6.29-6.14 (m, 1.00H), 5.36 (d, J = 17.4 Hz, 0.93H), 5.34 (d, J = 10.1 Hz, 0.93H), 3.98 (d, J = 7.8 Hz, 0.93H), 3.91-3.83 (m, 1.00H), 2.89-2.71 (m, 0.14H). 13C NMR (150 MHz) 4d: δ: 173.6, 139.2, 135.3, 129.8, 128.54, 128.47, 120.6, 60.0, 51.8. 4d' (distinguishable signals): δ: 174.7, 137.2, 129.5, 127.0, 123.6, 54.9, 34.7. HR-ESIMS calcd for C11H14NO2 (M+H+) 192.1019, found 192.1021.
syn-Aminocyclohex-2-enyl-acetic acid (4e):
M.p. = 233-236 °C. 1H NMR (400 MHz) δ: 6.07-5.96 (m, 1H), 5.54 (d, J = 10.1 Hz, 1H), 3.78 (d, J = 4.1 Hz, 1H), 2.94-2.80 (m, 1H), 2.08-1.90 (m, 2H), 1.85-1.74 (m, 1H), 1.72-1.61 (m, 1H), 1.60-1.46 (m, 1H), 1.40-1.25 (m, 1H). 13C NMR (100 MHz) δ: 174.4, 133.7, 126.1, 58.9, 37.1, 24.8, 23.2, 21.6. HR-ESIMS calcd for C8H14NO2 (M+H+) 156.1019, found 156.1015.
2-Amino-3,3-dimethylpent-4-enoic acid (4f):
M.p. = 212-216 °C. 1H NMR (400 MHz) δ: 5.86 (dd, J = 17.4, 11.0 Hz, 1H), 5.24 (d, J = 11.0 Hz, 1H), 5.21 (d, J = 17.4 Hz, 1H), 3.52 (s, 1H), 1.21 (s, 3H), 1.14 (s, 3H). 13C NMR (100 MHz) δ: 173.4, 143.0, 116.0, 62.9, 38.8, 25.0, 22.0. HR-ESIMS calcd for C7H14NO2 (M+H+) 144.1019, found 144.1020 (checked as a 83:17 mixture of 4f and 4f').
2-Amino-5-methylhex-4-enoic acid (4f'):
M.p. = 198-202 °C. 1H NMR (400 MHz) δ: 5.10 (t, J = 7.8 Hz, 1H), 3.74 (t, J = 6.0 Hz, 1H), 2.68-2.50 (m, 2H), 1.74 (s, 3H), 1.65 (s, 3H). 13C NMR (100 MHz) δ: 175.1, 139.6, 116.7, 55.3, 29.7, 25.7, 17.7. HR-ESIMS calcd for C7H14NO2 (M+H+) 144.1019, found 144.1021.
2-Aminopent-4-enoic acid (4a)
: According to Non-Patent Document 9 above.
2-Amino-4-methylpent-4-enoic acid (4b)
: Mp = 228-231 ° C. 1 H NMR (400 MHz) δ: 5.00 (s, 1H), 4.90 (s, 1H), 3.85 (dd, J = 9.6, 4.6 Hz, 1H), 2.68 (dd, . J = 14.7, 4.6 Hz, 1H), 2.50 (dd, J = 14.7, 9.6 Hz, 1H), 1.77 (s, 3H) 13 C NMR (100 MHz) δ: 175.2, 140.7, 116.0, 53.2, 39.7, 21.3.HR-ESIMS calcd for C 6 H 12 NO 2 (M + H + ) 130.0863, found 130.0867.
syn-2-Amino-3-methylpent-4-enoic acid (syn-4c)
: Mp = 224-227 ° C. 1 H NMR (400 MHz) δ: 5.84 (ddd, J = 17.9, 10.1, 6.4 Hz, 1H), 5.26 (d, J = 10.1 Hz, 1H), 5.25 (d, J = 17.9 Hz, 1H), 3.76 (d, J = 4.1 Hz, 1H), 2.94-2.82 (m, 1H), 1.10 (d, J = 6.9 Hz, 3H). 13 C NMR (100 MHz) δ: 174.0, 138.2, 118.2, 59.0, 38.4, 13.6. HR-ESIMS calcd for C 6 H 12 NO 2 (M + H + ) 130.0863, found 130.0866.
anti-2-Amino-3-methylpent-4-enoic acid (anti-4c)
: Mp = 220-223 ° C. 1 H NMR (400 MHz) δ: 5.75 (ddd, J = 17.4, 10.1, 7.3 Hz, 1H), 5.25 (d, J = 17.4 Hz, 1H), 5.24 (d, J = 10.1 Hz, 1H), 3.61 (d, J = 5.5 Hz, 1H), 2.87-2.74 (m, 1H), 1.16 (d, J = 7.3 Hz, 3H). 13 C NMR (100 MHz) δ: 174.4, 137.3, 118.8, 59.8, 39.1, 16.0.HR-ESIMS calcd for C 6 H 12 NO 2 (M + H + ) 130.0863, found 130.0862.
2-Aminohex-4-enoic acid (4c ')
: 1 H NMR (400 MHz) (E-isomer) δ: 5.74 (dqt, J = 15.1, 6.4, 1.4 Hz, 1H), 5.38 (dtq, J = 15.1, 7.3, 1.8 Hz, 1H), 3.83 (dd , J = 6.7, 5.3 Hz, 1H), 2.67-2.49 (m, 2H), 1.67 (d, J = 6.4 Hz, 3H). (Z-isomer, a representative signal) δ: 1.63 (d, J = 6.9 Hz, 3H).
anti-2-Amino-3-phenylpent-4-enoic acid (4d) and (E) -2-Amino-5-phenylpent-4-enoic acid (4d ') (4d / 4d' = 93: 7)
: Mp = 172-176 ° C. 1 H NMR (400 MHz) δ: 7.52-7.28 (m, 5.00H), 6.65 (d, J = 15.6 Hz, 0.07H), 6.29-6.14 (m, 1.00H) , 5.36 (d, J = 17.4 Hz, 0.93H), 5.34 (d, J = 10.1 Hz, 0.93H), 3.98 (d, J = 7.8 Hz, 0.93H), 3.91-3.83 (m, 1.00H), 2.89-2.71 (m, 0.14H) 13 C NMR (150 MHz) 4d:. δ:. 173.6, 139.2, 135.3, 129.8, 128.54, 128.47, 120.6, 60.0, 51.8 4d '(distinguishable signals): δ: 174.7, 137.2, 129.5, 127.0, 123.6, 54.9, 34.7.HR-ESIMS calcd for C 11 H 14 NO 2 (M + H + ) 192.1019, found 192.1021.
syn-Aminocyclohex-2-enyl-acetic acid (4e):
Mp = 233-236 ° C. 1 H NMR (400 MHz) δ: 6.07-5.96 (m, 1H), 5.54 (d, J = 10.1 Hz, 1H), 3.78 (d, J = 4.1 Hz, 1H), 2.94-2.80 (m, 1H), 2.08-1.90 (m, 2H), 1.85-1.74 (m, 1H), 1.72-1.61 (m, 1H), 1.60-1.46 (m, 1H), 1.40-1.25 (m , 1H). 13 C NMR (100 MHz) δ: 174.4, 133.7, 126.1, 58.9, 37.1, 24.8, 23.2, 21.6.HR-ESIMS calcd for C 8 H 14 NO 2 (M + H + ) 156.1019, found 156.1015 .
2-Amino-3,3-dimethylpent-4-enoic acid (4f):
Mp = 212-216 ° C. 1 H NMR (400 MHz) δ: 5.86 (dd, J = 17.4, 11.0 Hz, 1H), 5.24 (d, J = 11.0 Hz, 1H), 5.21 (d, J = 17.4 Hz, 1H), 3.52 (s, 1H), 1.21 (s, 3H), 1.14 (s, 3H). 13 C NMR (100 MHz) δ: 173.4, 143.0, 116.0, 62.9, 38.8, 25.0, 22.0.HR -ESIMS calcd for C 7 H 14 NO 2 (M + H + ) 144.1019, found 144.1020 (checked as a 83:17 mixture of 4f and 4f ').
2-Amino-5-methylhex-4-enoic acid (4f '):
Mp = 198-202 ° C. 1 H NMR (400 MHz) δ: 5.10 (t, J = 7.8 Hz, 1H), 3.74 (t, J = 6.0 Hz, 1H), 2.68-2.50 (m, 2H), 1.74 (s, 3H), 1.65 (s, 3H). 13 C NMR (100 MHz) δ: 175.1, 139.6, 116.7, 55.3, 29.7, 25.7, 17.7. HR-ESIMS calcd for C 7 H 14 NO 2 (M + H + ) 144.1019, found 144.1021.

<実施例3>
アロイソロイシン及びイソロイシンの生成
表2の実験例10,11の生成物に対し、単離を行うことなく直接パラジウム活性炭を添加し水素ガスを導入することで水素化反応を進行させた。
<Example 3>
Production of Alloisoleucine and Isoleucine Hydrogenation reaction was allowed to proceed by directly adding palladium activated carbon to the products of Experimental Examples 10 and 11 in Table 2 without introducing isolation and introducing hydrogen gas.

実験例10(Z−体のクロチルボロネートを出発原料とした)場合、アロイソロイシン(97%syn)が70%の収率で得られた。又、実験例11(E−体のクロチルボロネートを原料とした)場合、イソロイシン(95%anti)が82%の収率で得られた。   In Experimental Example 10 (Z-form crotylboronate as a starting material), alloisoleucine (97% syn) was obtained in a yield of 70%. In Experimental Example 11 (using E-form crotylboronate as a raw material), isoleucine (95% anti) was obtained in a yield of 82%.

Claims (4)

アルコール中で下式(化1)
で表されるヒドロキシグリシンと、下式(化2)
(式中、R,R、R、及びRはそれぞれ同じであっても異なってもよく、水素原子、アルキル基又はアリール基を表し、R とはBに結合した炭素原子と一緒になって環をなしてもよく、R及びRは、それぞれ同じであっても異なってもよく、水素原子、アルキル基又はアリール基を表し、R とはBと一緒になって成してもよい。)で表されるアリルボロン酸又はアリルボロネートとを反応させることを含むアリルグリシン又はその類縁体を製造する方法。
The following formula in alcohol (Chemical Formula 1)
And the following formula (Formula 2)
(Wherein R 1 , R 2 , R 3 , and R 4 may be the same or different and each represents a hydrogen atom, an alkyl group, or an aryl group, and R 2 and R 4 are bonded to B. A ring may be formed together with a carbon atom, and R 5 and R 6 may be the same or different and each represents a hydrogen atom, an alkyl group or an aryl group, and R 5 and R 6 are method for producing allyl glycine or analogues thereof comprising B and together reacting Ariruboron acid or boronate represented by may also be.) to form a ring.
反応系にアミン類又はアルカリ無機塩を添加する請求項1記載の方法。 The method according to claim 1 , wherein an amine or an alkali inorganic salt is added to the reaction system. 請求項1又は2に記載の方法において、前記アリルボロン酸又はアリルボロネートとして(E)−クロチルボロネート(Rがメチル基;R 、R 及びが水素原子である。)を用いて下式(化3)
(式中、R 及びR は前記と同様に定義される。)で表されるアンチ(anti)体アリルグリシン類縁体を製造する段階、該アンチ(anti)体アリルグリシン類縁体を水素添加する段階を含むイソロイシンを製造する方法。
3. The method according to claim 1, wherein (E) -crotylboronate (R 1 is a methyl group ; R 2 , R 3, and R 4 are hydrogen atoms) as the allylboronic acid or allylboronate. Use the following formula (Formula 3)
(Wherein R 1 and R 4 are defined in the same manner as described above), the step of producing an anti-allyl allylic glycine analog, and hydrogenating the anti-allyl glycine analog A process for producing isoleucine comprising the step of:
請求項1又は2に記載の方法において、前記アリルボロン酸又はアリルボロネートとして(Z)−クロチルボロネート(Rがメチル基;R 、R 及びが水素原子である。)を用いて下式(化4)
(式中、R 及びR は前記と同様に定義される。)で表されるシン(syn)体アリルグリシン類縁体を製造する段階、該シン(syn)体アリルグリシン類縁体を水素添加する段階を含むアロイソロイシンを製造する方法。
3. The method according to claim 1, wherein (Z) -crotylboronate (R 2 is a methyl group ; R 1 , R 3, and R 4 are hydrogen atoms) as the allylboronic acid or allylboronate. Using the following formula (Formula 4)
(Wherein R 2 and R 4 are defined in the same manner as described above), a step of producing a syn allylic glycine analog represented by hydrogenation of the syn allylic glycine analog A method for producing alloisoleucine comprising the step of:
JP2005022642A 2005-01-31 2005-01-31 Method for producing allylglycine or an analog thereof Expired - Fee Related JP4320443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022642A JP4320443B2 (en) 2005-01-31 2005-01-31 Method for producing allylglycine or an analog thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022642A JP4320443B2 (en) 2005-01-31 2005-01-31 Method for producing allylglycine or an analog thereof

Publications (2)

Publication Number Publication Date
JP2006206531A JP2006206531A (en) 2006-08-10
JP4320443B2 true JP4320443B2 (en) 2009-08-26

Family

ID=36963763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022642A Expired - Fee Related JP4320443B2 (en) 2005-01-31 2005-01-31 Method for producing allylglycine or an analog thereof

Country Status (1)

Country Link
JP (1) JP4320443B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628979B2 (en) * 2006-03-09 2011-02-09 独立行政法人科学技術振興機構 Process for producing optically active homoallyl primary amine using asymmetric 2-aza-corp rearrangement
JP5072026B2 (en) * 2007-03-09 2012-11-14 独立行政法人科学技術振興機構 Method for producing homoallyl alcohol or homoallyl hydrazide

Also Published As

Publication number Publication date
JP2006206531A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
Abele et al. Preparation of achiral and of enantiopure geminally disubstituted β‐amino acids for β‐peptide synthesis
JP2010538019A5 (en)
EP2719677B1 (en) Method for producing bicyclic compound via claisen rearrangement
JP4320443B2 (en) Method for producing allylglycine or an analog thereof
JPH047753B2 (en)
ZA200601262B (en) Cycloakylaminoacid compounds, processes for making and uses thereof
KR20120127276A (en) Method for preparing chiral -amino nitrile using catalyst for strecker reaction
US20080064905A1 (en) Process for preparing 1,2-diols from carbonyl compounds
JP3814881B2 (en) Method for producing cyclohexyl amino acids
KR100625649B1 (en) The method of preparing ?-hydroxybutyric acid alkyl esters
CN112321475B (en) Gamma-amino acid analogue and synthetic method thereof
JP2010180142A (en) Method for producing cyclohexanecarbonitrile
JP5115762B2 (en) Process for producing 4-formylpiperidine acetal derivative
JP5173152B2 (en) Process for producing β-alanine compound, piperidone compound and aminopiperidine compound
KR101142052B1 (en) Method of preparing zanamivir
Zhang et al. A practical synthesis of L-threo-dihydrosphingosine (safingol), an antineoplastic and antipsoriatic agent
KR101859586B1 (en) Process for the preparation of lacosamide or its analogues
JP4314602B2 (en) Process for producing optically active 3-hydroxypyrrolidine derivative
KR100638171B1 (en) Preparation method of 2,N-dimethyl-N-3,3-diphenylpropyl-1-amino-2-propanol
JP4023255B2 (en) Method for producing dicarboxylic acid and method for producing catalyst used therefor
JP4923698B2 (en) Method for producing 4-aminotetrahydropyran compound
JPH08109170A (en) Production of hexahydropyridazine
WO2010079605A1 (en) Process for producing high-purity 1-benzyl-3-aminopyrrolidine
HUE033692T2 (en) Method for synthesising substituted aminocyclohexanone derivatives
JP2003146921A (en) Method for producing perfluoroalkyl compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees