JP4320338B2 - Manufacturing method of liquid crystal panel cell - Google Patents

Manufacturing method of liquid crystal panel cell Download PDF

Info

Publication number
JP4320338B2
JP4320338B2 JP2006330742A JP2006330742A JP4320338B2 JP 4320338 B2 JP4320338 B2 JP 4320338B2 JP 2006330742 A JP2006330742 A JP 2006330742A JP 2006330742 A JP2006330742 A JP 2006330742A JP 4320338 B2 JP4320338 B2 JP 4320338B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
alignment film
crystal panel
panel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006330742A
Other languages
Japanese (ja)
Other versions
JP2008145592A (en
Inventor
優一 桃井
Original Assignee
エルジー ディスプレイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ディスプレイ カンパニー リミテッド filed Critical エルジー ディスプレイ カンパニー リミテッド
Priority to JP2006330742A priority Critical patent/JP4320338B2/en
Priority to KR1020070045949A priority patent/KR101341787B1/en
Publication of JP2008145592A publication Critical patent/JP2008145592A/en
Application granted granted Critical
Publication of JP4320338B2 publication Critical patent/JP4320338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、液晶表示素子の液晶パネルセルの製造方法に関する。 The present invention relates to a method for manufacturing a liquid crystal panel cell of a liquid crystal display element.

従来、一対のガラス基板(薄膜トランジスタ(TFT)又はカラーフィルタが設けられている)の一方の基板上にポリイミド(PI)を塗布し、塗布されたPI膜を布等で擦るラビング法、又はUV光又はイオンビームの照射による非接触配向法により配向処理を行い配向膜を形成し、その上にスペーサボールを散布し、基板周縁には接着剤を塗布してシーラントを形成し、次いで、同様にして配向膜が形成されたもう一方のガラス基板と重ね合わせて、加圧固定の後、加熱又はUV光照射により接着させ、その後、液晶を注入して形成される液晶表示素子がある。   Conventionally, a rubbing method in which polyimide (PI) is applied on one substrate of a pair of glass substrates (provided with a thin film transistor (TFT) or a color filter), and the applied PI film is rubbed with a cloth, or UV light Alternatively, an alignment process is formed by non-contact alignment method by ion beam irradiation, an alignment film is formed, spacer balls are dispersed on the substrate, an adhesive is applied to the periphery of the substrate, and a sealant is formed. There is a liquid crystal display element that is formed by superimposing on another glass substrate on which an alignment film is formed, pressing and fixing, adhering by heating or UV light irradiation, and then injecting liquid crystal.

しかしながら配向膜を形成する際、ラビング法では、ラビング時に用いられた特殊な形態の布から微細粒子または繊維が離脱して配向膜を汚染する場合があり、またラビング時に発生する静電気により薄膜トランジスタに損傷を与える問題があった。   However, when forming the alignment film, the rubbing method may contaminate the alignment film by removing fine particles or fibers from the special form of cloth used for rubbing, and damage the thin film transistor due to static electricity generated during rubbing. There was a problem giving.

この問題を解決するために、ほこりや静電気を発生させない光配向方法が開発された。この方法は非破壊的な配向方法であり、偏光された光が光配向膜に照射されれば非等方性光重合が起こって光配向膜が配向性を有するようになり、液晶が均一に配向するというものである。   In order to solve this problem, a photo-alignment method that does not generate dust and static electricity has been developed. This method is a non-destructive alignment method, and if the photo-alignment film is irradiated with polarized light, anisotropic photopolymerization occurs and the photo-alignment film becomes oriented, and the liquid crystal is uniformly aligned. That's it.

しかしながら、上記の従来の配向膜は、配向膜自体の配向性を向上させたものではない。   However, the above conventional alignment film does not improve the alignment of the alignment film itself.

この発明は、配向膜の部分の配向性そのものを向上させた液晶パネルセルの製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a liquid crystal panel cell in which the alignment itself of the alignment film portion is improved.

この発明は、一対の基板に液晶を狭持してなる液晶パネルセルの製造方法であって、(a)前記一対の基板の一方の基板上に配向膜を形成する工程、(b)前記配向膜上に、分子骨格にメソゲン構造を有し両端に熱又は紫外線で反応する反応基を有する樹脂材料を有機溶剤で希釈した溶液を塗布する工程、(c)前記塗布された溶液から前記有機溶剤を室温で蒸発させて前記配向膜上に前記樹脂材料を析出させ、前記配向膜より高い配向性を有する高配向性膜を形成する工程、及び(d)上記と同様の工程により配向膜及びその上に高配向性膜が形成された他方の基板を、双方の前記高配向性膜が対向するように重ね合わせ両者を接着する工程を含み、前記樹脂材料が、メソゲンを含む樹脂のメソゲンの部分がビフェニルを含有する結晶性エポキシ樹脂であることを特徴とする液晶パネルセルの製造方法にある。 The present invention relates to a method of manufacturing a liquid crystal panel cell in which liquid crystal is sandwiched between a pair of substrates, wherein (a) a step of forming an alignment film on one of the pair of substrates, (b) the alignment film And a step of applying a solution obtained by diluting a resin material having a mesogenic structure in the molecular skeleton and having reactive groups reacting with heat or ultraviolet rays at both ends with an organic solvent, and (c) removing the organic solvent from the applied solution. Evaporating at room temperature to deposit the resin material on the alignment film, forming a highly oriented film having higher orientation than the alignment film, and (d) the alignment film and the upper layer by the same process as above And the other substrate on which the highly oriented film is formed is overlapped so that both of the highly oriented films are opposed to each other, and the resin material is a mesogen portion of a resin containing a mesogen. Crystalline epoxy resin containing biphenyl In a method of manufacturing a liquid crystal panel cell, characterized in that.

この発明においては、配向膜の部分の配向性そのものを向上させた液晶パネルセルの製造方法を提供することができる。
In the present invention, it is possible to provide a method for manufacturing a liquid crystal panel cell in which the alignment itself of the alignment film portion is improved.

以下、本発明を適用した実施の形態について説明する。なお、本発明は下記の実施の形態に限定されるものではなく、本特許請求の範囲に規定された範囲において種々の修正及び変更を加えることができることは明らかである。   Embodiments to which the present invention is applied will be described below. It should be noted that the present invention is not limited to the following embodiments, and it is obvious that various modifications and changes can be made within the scope defined by the claims.

実施の形態1.
図1は、本発明の一実施の形態による液晶パネルセルの断面図である。図1に示されるように本発明の液晶パネルセルは、少なくとも一方が透明な一対のガラス基板1のうち一方のガラス基板1上に形成された配向膜3上に、結晶性エポキシ樹脂からなる高配向性膜6が形成され、該高配向性膜6上にスペーサボール4が散布され、さらに基板周縁部に接着剤を塗布してシーラント5が形成される。そして、上記と同様に配向膜3上に高配向性膜6が形成された他方のガラス基板を重ね合わせて接着し基板間に液晶が狭持された構造を有する。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a liquid crystal panel cell according to an embodiment of the present invention. As shown in FIG. 1, the liquid crystal panel cell of the present invention has a high orientation made of a crystalline epoxy resin on an orientation film 3 formed on one glass substrate 1 of a pair of glass substrates 1 at least one of which is transparent. An adhesive film 6 is formed, spacer balls 4 are dispersed on the highly oriented film 6, and an adhesive is applied to the peripheral edge of the substrate to form a sealant 5. In the same manner as described above, the other glass substrate on which the highly oriented film 6 is formed on the orientation film 3 is superposed and bonded, and the liquid crystal is sandwiched between the substrates.

なお、一対のガラス基板1には、実際の画像表示を行うためのTFT又はカラーフィルタ(図示省略)等が形成されているが、本発明には直接関係しないので、図示およびその説明は省略する。   Note that TFTs or color filters (not shown) for actual image display are formed on the pair of glass substrates 1, but they are not directly related to the present invention, so illustration and description thereof are omitted. .

以下、本発明の液晶パネルセルの製造工程を説明する。   Hereafter, the manufacturing process of the liquid crystal panel cell of this invention is demonstrated.

図2〜9は、本発明の一実施の形態による液晶パネルセルの製造工程を示す断面図である。一対のガラス基板の一方のガラス基板1(図2)を準備し、これを洗浄乾燥後、その基板上に高分子材料であるポリイミド(PI)膜2を塗布する(図3)。次いで、200℃で30分間焼成した後、塗布されたPI膜2を布等で擦ることによるラビング法(図4)か又は、UV光照射又はイオンビーム照射による非接触配向方法(図5)により配向処理を行い約1000Åの膜厚の配向膜3を形成する。なお、配向膜3の膜厚は、約500Å乃至約1000Åの範囲とすることが可能である。   2 to 9 are cross-sectional views showing the manufacturing process of the liquid crystal panel cell according to the embodiment of the present invention. One glass substrate 1 (FIG. 2) of a pair of glass substrates is prepared, and after washing and drying, a polyimide (PI) film 2 which is a polymer material is applied on the substrate (FIG. 3). Next, after baking for 30 minutes at 200 ° C., the rubbing method (FIG. 4) by rubbing the applied PI film 2 with a cloth or the like, or the non-contact alignment method by UV light irradiation or ion beam irradiation (FIG. 5) An alignment process is performed to form an alignment film 3 having a thickness of about 1000 mm. Note that the film thickness of the alignment film 3 can be in the range of about 500 mm to about 1000 mm.

次いで、図6に示すように、結晶性エポキシ樹脂を予め有機溶媒に溶解させた結晶性エポキシ樹脂溶液8を配向処理後の配向膜3上に塗布する。本実施の形態においては、有機溶剤としてメチルエチルケトン(以下「MEK」と省略する。)を使用し、これに結晶性エポキシ樹脂であるジャパンエポキシレジン社製YX4000(登録商標)を溶解して結晶性エポキシ樹脂濃度20%の飽和溶液を作製した後、エチルアルコール(COH)で希釈し、結晶性エポキシ樹脂濃度が0.1%の結晶性エポキシ樹脂溶液8を使用した。 Next, as shown in FIG. 6, a crystalline epoxy resin solution 8 in which a crystalline epoxy resin is previously dissolved in an organic solvent is applied onto the alignment film 3 after the alignment treatment. In this embodiment, methyl ethyl ketone (hereinafter abbreviated as “MEK”) is used as an organic solvent, and a crystalline epoxy resin YX4000 (registered trademark) manufactured by Japan Epoxy Resin Co., Ltd. is dissolved in the crystalline epoxy. After preparing a saturated solution with a resin concentration of 20%, it was diluted with ethyl alcohol (C 2 H 5 OH), and a crystalline epoxy resin solution 8 with a crystalline epoxy resin concentration of 0.1% was used.

次いで、図7に示すように、室温(例えば15〜25℃)にてゆっくり溶剤を蒸発させて配向膜3上に結晶性エポキシ樹脂を析出させる。溶剤がゆっくり蒸発するときに析出した結晶性エポキシ樹脂は細長い分子構造であるため、析出時に配向膜3表面の屈折率異方性の影響をうけて効率よく一軸方向に配向し、配向膜3の表面に析出する。溶剤がゆっくり蒸発して結晶性エポキシ樹脂が析出した後、160℃で6時間、ヒートチャンバーに放置して熱を加えることにより、接着剤としての機能をもつエポキシ基が開環反応して配向膜もしくは結晶性エポキシ樹脂同士が結合することで固着し、結晶性エポキシ樹脂が配向膜3上にコーティングされて高配向性膜6を形成する。   Next, as shown in FIG. 7, the solvent is slowly evaporated at room temperature (for example, 15 to 25 ° C.) to deposit a crystalline epoxy resin on the alignment film 3. Since the crystalline epoxy resin deposited when the solvent slowly evaporates has an elongated molecular structure, it is efficiently aligned in the uniaxial direction under the influence of the refractive index anisotropy on the surface of the alignment film 3 at the time of deposition. Precipitate on the surface. After the solvent is slowly evaporated and the crystalline epoxy resin is precipitated, the epoxy group having a function as an adhesive undergoes a ring-opening reaction by applying heat by leaving it in a heat chamber at 160 ° C. for 6 hours. Alternatively, the crystalline epoxy resins are bonded together to be fixed, and the crystalline epoxy resin is coated on the alignment film 3 to form the high alignment film 6.

形成された高配向性膜6の配向性については後述する。   The orientation of the formed highly oriented film 6 will be described later.

次に、スペーサボール4を散布し、基板周縁に接着剤を塗布してシーラント5を形成する(図8)。次いで、図9に示すように上記と同様の工程により、配向処理された配向膜3上に高配向性膜6が形成されたもう一方のガラス基板1と、双方の高配向性膜6が対向するように重ね合わせ、治具(図示省略)による加圧固定の後、加熱又はUV光照射により接着させる。その後、液晶を注入し偏光板(図示省略)をガラス基板1の外側にそれぞれ形成して液晶パネルセルができあがる。   Next, spacer balls 4 are sprayed and an adhesive is applied to the periphery of the substrate to form a sealant 5 (FIG. 8). Next, as shown in FIG. 9, the other glass substrate 1 in which the high orientation film 6 is formed on the orientation film 3 subjected to the orientation treatment and the both high orientation films 6 face each other by the same process as described above. In this way, they are overlapped and fixed with pressure by a jig (not shown), and then bonded by heating or UV light irradiation. Thereafter, liquid crystal is injected and a polarizing plate (not shown) is formed on the outside of the glass substrate 1 to complete a liquid crystal panel cell.

本実施の形態においては、高配向性膜6の材料として結晶性エポキシ樹脂を使用した。これにより、液晶の配向性の均一化が図られる。さらに、結晶性エポキシ樹脂溶液を配向膜3上に塗布後、室温にてゆっくり溶剤を蒸発させたことにより、高配向性の膜が得られる。以下にビフェニル型エポキシである結晶性エポキシ樹脂の分子構造の一般式を示す。結晶性エポキシ樹脂のメソゲンの部分がビフェニルを含有している。

Figure 0004320338
In the present embodiment, a crystalline epoxy resin is used as the material for the highly oriented film 6. Thereby, the alignment of the liquid crystal is made uniform. Further, after applying the crystalline epoxy resin solution onto the alignment film 3, the solvent is slowly evaporated at room temperature, whereby a highly oriented film is obtained. The general formula of the molecular structure of a crystalline epoxy resin that is a biphenyl type epoxy is shown below. The mesogenic portion of the crystalline epoxy resin contains biphenyl.
Figure 0004320338

本実施の形態においては、上記ビフェニル型エポキシの一般式で表される結晶性エポキシ樹脂であるジャパンエポキシレジン株式会社製YX4000(登録商標)を使用したが、上記一般式で表される種々の樹脂、例えば、同社製YX4000H,YL6121H(登録商標)も本発明において使用できる。なお、結晶性エポキシ樹脂以外でも、アクリレート樹脂やアリル樹脂等も使用可能である。   In this embodiment, YX4000 (registered trademark) manufactured by Japan Epoxy Resin Co., Ltd., which is a crystalline epoxy resin represented by the general formula of the above biphenyl type epoxy, was used, but various resins represented by the above general formula For example, YX4000H, YL6121H (registered trademark) manufactured by the same company can also be used in the present invention. In addition to crystalline epoxy resins, acrylate resins, allyl resins, and the like can also be used.

本発明において適用しうる液晶として、例えばフッ素型TN液晶が挙げられ、これは以下の構造式を有する複数の単体からなる混合物である。各単体の構造式を以下に示す。

Figure 0004320338
Examples of the liquid crystal that can be applied in the present invention include a fluorine-type TN liquid crystal, which is a mixture of a plurality of simple substances having the following structural formula. The structural formula of each single unit is shown below.
Figure 0004320338

上記したような結晶性エポキシ樹脂は、液晶分子の骨格(メソゲン)部位を持ちながら分子の両端にグリシジルエーテルを有する化学構造を持つ材料であり、結晶性と接着性の二つの性質を併せ持つ。本実施の形態において、高配向性膜6の形成の際に溶剤の蒸発工程により析出された結晶性エポキシ樹脂は、細長い分子構造を有するため析出時に配向膜上に一軸方向に配向する。本発明では特に、室温にてゆっくり溶剤を蒸発させたことにより、高い配向性を有する膜が得られる。その後、熱により接着性を有するエポキシ基が開環反応して、配向膜との接着性を向上させるとともに、結晶性エポキシ樹脂分子同士が結合することで固着させることが可能となる。   A crystalline epoxy resin as described above is a material having a chemical structure having a glycidyl ether at both ends of a molecule while having a skeleton (mesogen) portion of a liquid crystal molecule, and has both properties of crystallinity and adhesiveness. In the present embodiment, the crystalline epoxy resin deposited by the solvent evaporation step when forming the highly oriented film 6 has an elongated molecular structure, and thus is oriented in the uniaxial direction on the oriented film at the time of deposition. In the present invention, in particular, a film having high orientation can be obtained by slowly evaporating the solvent at room temperature. Thereafter, the epoxy group having adhesiveness is subjected to a ring-opening reaction by heat to improve the adhesiveness with the alignment film, and it is possible to fix the crystalline epoxy resin molecules by bonding with each other.

結晶性エポキシ樹脂は、上記のように細長い分子構造を有し、上記したような液晶の構成分子と形状及び大きさの点で類似する。従って、これらの結晶性エポキシ材料を蒸発により析出させて配向膜表面に薄くコーティングし、配向膜上に一軸方向に配向させることにより、配向膜の液晶に対する配向性を伝え受け、特に室温にてゆっくり溶剤を蒸発させることにより、配向膜以上の高い配向性を有する膜が得られ、なおかつ、配向膜表面に固定される機能を有することで、長期信頼性を向上させる役割を持たせることができる。更に、コーティングされた結晶性エポキシ樹脂が液晶中に不純物として溶け出るような場合にも、上記のように結晶性エポキシ樹脂と液晶はそれらの形状及び大きさにおいて類似するため、液晶の光スイッチ機能を妨害することがない。   The crystalline epoxy resin has an elongated molecular structure as described above, and is similar in shape and size to the liquid crystal constituent molecules described above. Therefore, by depositing these crystalline epoxy materials by evaporation, thinly coating the surface of the alignment film, and orienting the alignment film in a uniaxial direction, the orientation of the alignment film with respect to the liquid crystal is transmitted, particularly at room temperature. By evaporating the solvent, a film having higher orientation than that of the alignment film can be obtained, and the function of fixing to the surface of the alignment film can be used to improve the long-term reliability. Furthermore, even when the coated crystalline epoxy resin is dissolved as an impurity in the liquid crystal, the crystalline epoxy resin and the liquid crystal are similar in shape and size as described above, so that the optical switch function of the liquid crystal Will not interfere.

なお、液晶としては、結晶性エポキシ樹脂と構造的に上記のごとき形状及び大きさの点で類似する関係を有する限り他の液晶も使用可能である。   As the liquid crystal, other liquid crystals can be used as long as they have a similar structure and size to the crystalline epoxy resin as described above.

本発明において使用される結晶性エポキシ樹脂を溶解する有機溶媒としては、本実施の形態においてはMEKを使用したが、アセトン(CHCOCH)のような配向膜を荒らしてしまうほど強い溶媒を除き、結晶性エポキシ樹脂を溶解するものであれば適用可能である。 As the organic solvent for dissolving the crystalline epoxy resin used in the present invention, MEK is used in the present embodiment, but a solvent that is strong enough to roughen the alignment film such as acetone (CH 3 COCH 3 ) is used. Except for this, any resin that dissolves the crystalline epoxy resin is applicable.

次に、高配向性膜6の配向性について、以下の実験を行った。液晶配向膜の表面の屈折率異方性の大きさが配向性(配向力)と相関があることが知られている(2002年日本液晶学会論文集:井上他)。そこで、液晶配向膜評価装置(株式会社東陽テクニカ製)で液晶配向膜の表面の屈折率異方性を測定した。液晶配向膜評価装置は図10に示すように、回転台10上のサンプル11を水平面内で360°回転させながら、その時のレーザ照射部12から照射されるレーザ光のサンプル11での反射光を検出器13で検出するものである。   Next, the following experiment was conducted on the orientation of the highly oriented film 6. It is known that the refractive index anisotropy of the surface of the liquid crystal alignment film has a correlation with the orientation (alignment force) (2002 Japan Liquid Crystal Society Annual Report: Inoue et al.). Therefore, the refractive index anisotropy of the surface of the liquid crystal alignment film was measured with a liquid crystal alignment film evaluation apparatus (manufactured by Toyo Technica Co., Ltd.). As shown in FIG. 10, the liquid crystal alignment film evaluation apparatus rotates the sample 11 on the turntable 10 360 ° in a horizontal plane, and reflects the reflected light from the sample 11 of the laser light emitted from the laser irradiation unit 12 at that time. This is detected by the detector 13.

配向膜のもととなるIP膜を形成してラビングを行わない場合(条件1)、IP膜を形成してラビングを行い配向膜を形成した場合(条件2)、IP膜を形成してラビングを行い配向膜を形成し、さらに配向膜上に高配向性膜を形成した場合(条件3)、のそれぞれの表面の屈折率異方性を求めた。   When the IP film that forms the alignment film is formed and rubbing is not performed (condition 1), when the IP film is formed and rubbing is performed and alignment film is formed (condition 2), the IP film is formed and rubbing is performed. The refractive index anisotropy of each surface was obtained when an alignment film was formed and a highly oriented film was further formed on the alignment film (condition 3).

0.5mm厚の10×10cmサイズのガラス基板を用意し、洗浄乾燥した後、PI(日産化学社製SE7492)を塗布、200℃。30分で焼成してIP膜を形成した(条件1)。次に、IP膜をラビング処理して配向膜とした(条件2)。   A 10 × 10 cm glass substrate having a thickness of 0.5 mm was prepared, washed and dried, and then PI (SE7942 manufactured by Nissan Chemical Industries) was applied at 200 ° C. An IP film was formed by firing in 30 minutes (Condition 1). Next, the IP film was rubbed to form an alignment film (Condition 2).

一方、結晶性エポキシ系接着剤(ジャパンエポキシレジン社製YX4000)を用意し、有機溶剤であるMEKで結晶性エポキシ樹脂濃度20%の飽和溶液を作製した。その後、エチルアルコールで希釈することで、結晶性エポキシ樹脂の濃度が0.1%の溶液を準備した。そして、ガラス基板上に形成された配向膜上に、濃度0.1%の溶液を滴下した後、有機溶剤を室温にてゆっくり蒸発させた。そして蒸発させた後、160℃で6時間、ヒートチャンバーに放置することで熱接着させ、高配向性膜を形成した(条件3)。   On the other hand, a crystalline epoxy adhesive (YX4000 manufactured by Japan Epoxy Resin Co., Ltd.) was prepared, and a saturated solution having a crystalline epoxy resin concentration of 20% was prepared with MEK as an organic solvent. Thereafter, a solution having a crystalline epoxy resin concentration of 0.1% was prepared by diluting with ethyl alcohol. Then, a solution having a concentration of 0.1% was dropped on the alignment film formed on the glass substrate, and then the organic solvent was slowly evaporated at room temperature. After evaporation, the film was left to stand in a heat chamber at 160 ° C. for 6 hours to be thermally bonded to form a highly oriented film (Condition 3).

上記各条件1〜3の状態で、上記液晶配向膜評価装置で反射エリプソ測定を行い、表面の屈折率異方性の測定を行うと図11に示すような結果となった。なお図11では2つのサンプルについて測定を行っている。図11の縦軸は検出された偏光の位相のずれ(位相差(nm:ナノメートル))、横軸はサンプルの回転角度位置(°)を示す。ずれの差が大きい程、膜表面分子の異方性が高く、結晶性エポキシ樹脂の棒状分子が規則正しく並んでいることになる。図11の(a)はラビング無しの条件1の場合のIP膜表面の屈折率異方性であるが、屈折率に異方性がまったく見られない。当然、液晶分子は配向されない。図11の(b)はラビングした条件2の場合の配向膜表面の屈折率異方性を示す。回転角の90°周期で屈折率異方性が見られるが、これは配向膜表面をラビングしたことによる配向膜表面の分子が擦った方向に再配列したことによるものと考えられ、液晶分子はその方向に沿って配向する。さらに図11の(c)は結晶性エポキシ樹脂濃度が0.1%の結晶性エポキシ樹脂溶液を滴下し、高配向性膜を形成した条件3の場合の高配向性膜表面の屈折率異方性を示す。有機溶剤を室温にてゆっくり蒸発させて形成された高配向性膜表面の屈折率異方性が、図11の(b)に比べて明らかに増長されていることがわかる。   When the reflection ellipsometer measurement was performed with the liquid crystal alignment film evaluation apparatus under the above conditions 1 to 3, and the refractive index anisotropy of the surface was measured, the results shown in FIG. 11 were obtained. In FIG. 11, two samples are measured. The vertical axis in FIG. 11 indicates the phase shift (phase difference (nm: nanometer)) of the detected polarized light, and the horizontal axis indicates the rotation angle position (°) of the sample. The greater the difference in deviation, the higher the anisotropy of the film surface molecules, and the rod-like molecules of the crystalline epoxy resin are regularly arranged. FIG. 11A shows the refractive index anisotropy of the surface of the IP film in the case of condition 1 without rubbing, but no anisotropy is observed in the refractive index. Of course, the liquid crystal molecules are not aligned. FIG. 11B shows the refractive index anisotropy of the alignment film surface in the case of the rubbed condition 2. Refractive index anisotropy is observed with a 90 ° period of rotation angle. This is thought to be due to the rearrangement of the alignment film surface molecules by rubbing the alignment film surface in the rubbing direction. Oriented along that direction. Further, (c) of FIG. 11 shows a refractive index anisotropy on the surface of the highly oriented film in condition 3 in which a crystalline epoxy resin solution having a crystalline epoxy resin concentration of 0.1% is dropped to form a highly oriented film. Showing gender. It can be seen that the refractive index anisotropy of the surface of the highly oriented film formed by slowly evaporating the organic solvent at room temperature is clearly increased as compared with FIG.

溶液の結晶性エポキシ樹脂の濃度を変えて高配向性膜を形成し、同様に液晶配向膜評価装置での反射エリプソ測定による表面の屈折率異方性の測定を行った。図12の(a)は結晶性エポキシ樹濃度が1%、(b)は結晶性エポキシ樹濃度が3%の場合を示す。図12の(a)では90°周期の表面の屈折率異方性が見られるが、(b)では顕著な屈折率異方性が見られない。このことから、良好な表面の屈折率異方性を得るには、溶液の結晶性エポキシ樹濃度の上限は3%未満とすべきであることが分かる。   A highly oriented film was formed by changing the concentration of the crystalline epoxy resin in the solution, and the refractive index anisotropy of the surface was similarly measured by reflection ellipsometry using a liquid crystal alignment film evaluation apparatus. 12A shows a case where the crystalline epoxy tree concentration is 1%, and FIG. 12B shows a case where the crystalline epoxy tree concentration is 3%. In FIG. 12 (a), the refractive index anisotropy of the surface with a period of 90 ° is observed, but in FIG. 12 (b), no significant refractive index anisotropy is observed. This shows that the upper limit of the crystalline epoxy resin concentration of the solution should be less than 3% in order to obtain a good surface refractive index anisotropy.

上述のように、液晶分子配向はPI膜表面の屈折率異方性と相関があることはすでに分かっているので、その屈折率異方性を増長する作用を持つことは、高配向性膜はラビングされた配向膜以上の配向する力を持つものと考えられる。考えられるモデルとしては、液晶分子と似た棒状分子形状のYX4000(結晶性エポキシ樹脂)の溶剤がゆっくり蒸発してコーティングされる際に、配向膜表面で規則正しく分子が配向することにより、さらに表面の屈折率異方性を高めているものと考えられる。   As described above, it is already known that the liquid crystal molecular orientation has a correlation with the refractive index anisotropy of the PI film surface. Therefore, the high orientation film has the function of increasing the refractive index anisotropy. It is considered that it has an aligning force higher than that of the rubbed alignment film. As a possible model, when the solvent of YX4000 (crystalline epoxy resin) having a rod-like molecular shape similar to liquid crystal molecules is slowly evaporated and coated, the molecules are regularly aligned on the surface of the alignment film. It is considered that the refractive index anisotropy is increased.

実施の形態2.
図13〜16は、本発明の別の実施の形態による液晶パネルセルの製造の工程を示す断面図である。本実施の形態においては、上記実施の形態1で用いたスペーサボールに変えて、カラムスペーサ4aを用いた。以下、工程を説明する。
Embodiment 2. FIG.
13-16 is sectional drawing which shows the process of manufacture of the liquid crystal panel cell by another embodiment of this invention. In the present embodiment, a column spacer 4a is used instead of the spacer ball used in the first embodiment. Hereinafter, the process will be described.

一対のガラス基板1の一方の基板1(図13)上に、感光性樹脂をスピンコートで塗布し、この感光性樹脂の溶剤をプリベークにより蒸発させる。次いで、マスクを介して上方からUV光を照射する。ここで適用するマスクは、カラムスペーサ4aのパターン模様を有している。マスクパターンのない部分に対応する感光性樹脂は、紫外線によって照射後軟化する。次いで、現像液で処理することにより、軟化した感光性樹脂を除去する。最後に、残った感光性樹脂をポストベークする。以上の工程により、3.5μmの高さを有するカラムスペーサ4aを形成する(図15)。なお、本実施の形態においては、カラムスペーサ4aの高さを3.5μmとしたが、形成する液晶パネルセルの用途に応じて、2乃至10μmの範囲で設定することが可能である。   A photosensitive resin is applied by spin coating on one substrate 1 (FIG. 13) of the pair of glass substrates 1, and the solvent of the photosensitive resin is evaporated by pre-baking. Next, UV light is irradiated from above through a mask. The mask applied here has the pattern of the column spacer 4a. The photosensitive resin corresponding to the portion without the mask pattern is softened after irradiation with ultraviolet rays. Subsequently, the softened photosensitive resin is removed by processing with a developing solution. Finally, the remaining photosensitive resin is post-baked. Through the above steps, a column spacer 4a having a height of 3.5 μm is formed (FIG. 15). In the present embodiment, the height of the column spacer 4a is 3.5 μm, but it can be set in the range of 2 to 10 μm depending on the use of the liquid crystal panel cell to be formed.

次いで、上記実施の形態と同様の方法により、図15に示されるように、ガラス基板1上及びカラムスペーサ4aを覆うように、配向膜3及びその上に高配向性膜6を形成する。   Next, as shown in FIG. 15, the alignment film 3 and the high alignment film 6 are formed on the glass substrate 1 and the column spacer 4 a by the same method as in the above embodiment so as to cover the column spacer 4 a.

次に、図16に示されるように、基板周縁の高配向性膜6上に接着剤を塗布してシーラント5を形成し、次いで、上記実施の形態と同様の方法により形成された配向膜3及び高配向性膜6を有する他方のガラス基板1を高配向性膜6が対向するように重ね合わせ、冶具(図示省略)による加圧固定の後、加熱又はUV光照射により接着させる。その後、液晶を注入し偏光板(図示省略)を形成して液晶パネルセルができあがる。   Next, as shown in FIG. 16, an adhesive is applied to the high-orientation film 6 on the periphery of the substrate to form the sealant 5, and then the alignment film 3 formed by the same method as in the above embodiment. Then, the other glass substrate 1 having the high orientation film 6 is superposed so that the high orientation film 6 opposes, and after being pressure-fixed by a jig (not shown), it is bonded by heating or UV light irradiation. Thereafter, liquid crystal is injected to form a polarizing plate (not shown) to complete a liquid crystal panel cell.

以上にように形成された液晶パネルセルにつても、上記実施の形態と同様の効果が得られた。   For the liquid crystal panel cell formed as described above, the same effect as in the above embodiment was obtained.

本発明の一実施の形態による完成した液晶パネルセルの断面図である。It is sectional drawing of the completed liquid crystal panel cell by one embodiment of this invention. 本発明の一実施の形態による液晶パネルセルの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the liquid crystal panel cell by one embodiment of this invention. 図2に続く液晶パネルセルの製造工程を示す断面図である。FIG. 3 is a cross-sectional view showing a manufacturing process of the liquid crystal panel cell following FIG. 2. 図3に続く液晶パネルセルの製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process of the liquid crystal panel cell following FIG. 3. 図4に続く液晶パネルセルの製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing a manufacturing process of the liquid crystal panel cell following FIG. 4. 図5に続く液晶パネルセルの製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing a manufacturing process of the liquid crystal panel cell following FIG. 5. 図6に続く液晶パネルセルの製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing a manufacturing process of the liquid crystal panel cell following FIG. 6. 図7に続く液晶パネルセルの製造工程を示す断面図である。FIG. 8 is a cross-sectional view showing a manufacturing step of the liquid crystal panel cell following FIG. 7. 図8に続く液晶パネルセルの製造工程を示す断面図である。FIG. 9 is a cross-sectional view showing a manufacturing step of the liquid crystal panel cell following that of FIG. 8. 液晶配向膜評価装置の構成を示す図である。It is a figure which shows the structure of a liquid crystal aligning film evaluation apparatus. 本発明による液晶パネルセルにおける効果を説明するための液晶配向膜評価装置での測定結果を示す図である。It is a figure which shows the measurement result in the liquid crystal aligning film evaluation apparatus for demonstrating the effect in the liquid crystal panel cell by this invention. 本発明に関する高配向性膜形成時に使用される溶液の結晶性エポキシ樹脂濃度を変えた場合の液晶配向膜評価装置での測定結果を示す図である。It is a figure which shows the measurement result in the liquid crystal aligning film evaluation apparatus at the time of changing the crystalline epoxy resin density | concentration of the solution used at the time of highly oriented film formation regarding this invention. 本発明の別の実施の形態による液晶パネルセルの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the liquid crystal panel cell by another embodiment of this invention. 図13に続く液晶パネルセルの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the liquid crystal panel cell following FIG. 図14に続く液晶パネルセルの製造工程を示す断面図である。FIG. 15 is a cross-sectional view showing a manufacturing step of the liquid crystal panel cell following FIG. 14. 図15に続く液晶パネルセルの製造工程を示す断面図である。FIG. 16 is a cross-sectional view showing a manufacturing step of the liquid crystal panel cell following FIG. 15.

符号の説明Explanation of symbols

1 ガラス基板、2 IP膜、3 配向膜、4 スペーサボール、4a カラムスペーサ、5 シーラント、6 高配向性膜、8 結晶性エポキシ樹脂溶液、10 回転台、11 サンプル、12 レーザ照射部、13 検出器。   DESCRIPTION OF SYMBOLS 1 Glass substrate, 2 IP film, 3 Orientation film, 4 Spacer ball, 4a Column spacer, 5 Sealant, 6 Highly oriented film, 8 Crystalline epoxy resin solution, 10 Turntable, 11 Sample, 12 Laser irradiation part, 13 Detection vessel.

Claims (5)

一対の基板に液晶を狭持してなる液晶パネルセルの製造方法であって、
(a)前記一対の基板の一方の基板上に配向膜を形成する工程、
(b)前記配向膜上に、分子骨格にメソゲン構造を有し両端に熱又は紫外線で反応する反応基を有する樹脂材料を有機溶剤で希釈した溶液を塗布する工程、
(c)前記塗布された溶液から前記有機溶剤を室温で蒸発させて前記配向膜上に前記樹脂材料を析出させ、前記配向膜より高い配向性を有する高配向性膜を形成する工程、及び
(d)上記と同様の工程により配向膜及びその上に高配向性膜が形成された他方の基板を、双方の前記高配向性膜が対向するように重ね合わせ両者を接着する工程
を含み、前記樹脂材料が、メソゲンを含む樹脂のメソゲンの部分がビフェニルを含有する結晶性エポキシ樹脂であることを特徴とする液晶パネルセルの製造方法。
A method of manufacturing a liquid crystal panel cell in which liquid crystal is sandwiched between a pair of substrates,
(a) forming an alignment film on one of the pair of substrates;
(b) on the alignment film, a step of applying a solution obtained by diluting a resin material having a mesogenic structure in the molecular skeleton and having reactive groups that react with heat or ultraviolet rays at both ends with an organic solvent;
(c) evaporating the organic solvent from the applied solution at room temperature to precipitate the resin material on the alignment film, and forming a highly aligned film having higher alignment than the alignment film; and
(d) the and the other substrate to highly-oriented film is formed on the alignment film and thereon the same process, viewed including the steps of both the highly oriented film of bonding the two superimposed so as to face The method for producing a liquid crystal panel cell , wherein the resin material is a crystalline epoxy resin in which a mesogen portion of a resin containing a mesogen contains biphenyl .
工程(c)の後、ボールスペーサが高配向性膜上に散布されることを特徴とする請求項1記載の液晶パネルセルの製造方法。 2. The method of manufacturing a liquid crystal panel cell according to claim 1 , wherein after the step (c), ball spacers are dispersed on the highly oriented film. 工程(a)おいて、前記一方の基板上に配向膜がカラムスペーサを介して形成されることを特徴とする請求項1記載の液晶パネルセルの製造方法。 2. The method of manufacturing a liquid crystal panel cell according to claim 1 , wherein in step (a), an alignment film is formed on the one substrate via a column spacer. 前記樹脂材料の分子がその分子の両端にグリシジルエーテルを有することを特徴とする請求項1記載の液晶パネルセルの製造方法。 2. The method for producing a liquid crystal panel cell according to claim 1, wherein the molecule of the resin material has glycidyl ether at both ends of the molecule. 工程(a)の後に、前記配向膜を、ラビング、UV照射及びイオンビームの中の1つを利用して配向を行うことを特徴とする請求項1記載の液晶パネルセルの製造方法。 2. The method of manufacturing a liquid crystal panel cell according to claim 1 , wherein after the step (a), the alignment film is aligned using one of rubbing, UV irradiation, and ion beam.
JP2006330742A 2006-12-07 2006-12-07 Manufacturing method of liquid crystal panel cell Active JP4320338B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006330742A JP4320338B2 (en) 2006-12-07 2006-12-07 Manufacturing method of liquid crystal panel cell
KR1020070045949A KR101341787B1 (en) 2006-12-07 2007-05-11 Manufacturing method of liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330742A JP4320338B2 (en) 2006-12-07 2006-12-07 Manufacturing method of liquid crystal panel cell

Publications (2)

Publication Number Publication Date
JP2008145592A JP2008145592A (en) 2008-06-26
JP4320338B2 true JP4320338B2 (en) 2009-08-26

Family

ID=39605863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330742A Active JP4320338B2 (en) 2006-12-07 2006-12-07 Manufacturing method of liquid crystal panel cell

Country Status (2)

Country Link
JP (1) JP4320338B2 (en)
KR (1) KR101341787B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115338A1 (en) * 2010-03-16 2011-09-22 한양대학교 산학협력단 Liquid crystal display with an alignment control layer containing polymerized mesogen and a manufacturing method of the liquid crystal display
CN102650759B (en) * 2012-01-06 2014-11-05 京东方科技集团股份有限公司 LCD (Liquid crystal display) panel and manufacturing method thereof
KR101966212B1 (en) * 2012-08-16 2019-04-05 엘지이노텍 주식회사 Epoxy resin compound and radiant heat circuit board using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9704623D0 (en) * 1997-03-06 1997-04-23 Sharp Kk Liquid crytal optical element and liquid crystal device incorporating same
JPH10330756A (en) * 1997-06-05 1998-12-15 Sumitomo Bakelite Co Ltd Liquid crystal aligning agent and liquid crystal display prepared by using the same
JP4393662B2 (en) * 2000-03-17 2010-01-06 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
JP2002023164A (en) * 2000-07-04 2002-01-23 Nec Corp Method for liquid crystal displaying, liquid crystal display device and device for manufacturing the same
JP4528645B2 (en) * 2004-02-10 2010-08-18 大日本印刷株式会社 Liquid crystal display element
WO2006123791A1 (en) * 2005-05-19 2006-11-23 Dai Nippon Printing Co., Ltd. Liquid crystal display device and method for manufacturing liquid crystal display device
EP1790977A1 (en) * 2005-11-23 2007-05-30 SONY DEUTSCHLAND GmbH Nanoparticle/nanofiber based chemical sensor, arrays of such sensors, uses and method of fabrication thereof, and method of detecting an analyte

Also Published As

Publication number Publication date
JP2008145592A (en) 2008-06-26
KR101341787B1 (en) 2013-12-13
KR20080052190A (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US6822713B1 (en) Optical compensation film for liquid crystal display
JP4452633B2 (en) Birefringence optical film and optical compensation film including the same
JP3614263B2 (en) Control method of pretilt direction of liquid crystal cell
JP5714682B2 (en) Alignment film for liquid crystal obtained by direct particle beam evaporation
US8178288B2 (en) Method for fabricating display substrate and liquid crystal display
JP4546340B2 (en) Manufacturing method of liquid crystal display element
US8724073B2 (en) Method for manufacturing liquid crystal display device comprising applying adhesive solution on column spacers and sidewall
JPH07104302A (en) Formation of transforming film for liquid crystal display device
JP2004046194A (en) Manufacturing method for optical compensator
US8576358B2 (en) Display device having polarizing layer and manufacturing method of the same
Park et al. Polymer‐Stabilized Chromonic Liquid‐Crystalline Polarizer
JPH11223817A (en) Liquid crystal display element
JP4320338B2 (en) Manufacturing method of liquid crystal panel cell
JP4594484B2 (en) Alignment film for liquid crystal display elements
JPH08292432A (en) Production of optical film
Mikulich et al. Waterproof material for liquid crystals photoalignment based on azo dyes
JP2005196109A (en) Liquid crystal display having compensated film, and method for manufacturing the same
JP4797468B2 (en) Phase difference control member, manufacturing method thereof, and liquid crystal display device
KR101987187B1 (en) Liquid Crystal Display Device Including Light Orientation Film And Method Of Fabricating The Same
JPH05150246A (en) Liquid crystal display element with plastic substrate
US9846266B2 (en) Liquid crystalline polymer film with diffractive optical noise removed and method of manufacturing the same
TWI838370B (en) Liquid crystal dimming element
Lall et al. In situ, spatially variable photoalignment of liquid crystals inside a glass cell using brilliant yellow
KR101123156B1 (en) Method for preparation of photoalignment layer formed pretilt angle using peel-off process
JP2014130272A (en) Method for controlling liquid crystal alignment layer and method for manufacturing liquid crystal display element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4320338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250