JP4320210B2 - Electrophoresis device - Google Patents

Electrophoresis device Download PDF

Info

Publication number
JP4320210B2
JP4320210B2 JP2003126307A JP2003126307A JP4320210B2 JP 4320210 B2 JP4320210 B2 JP 4320210B2 JP 2003126307 A JP2003126307 A JP 2003126307A JP 2003126307 A JP2003126307 A JP 2003126307A JP 4320210 B2 JP4320210 B2 JP 4320210B2
Authority
JP
Japan
Prior art keywords
electrophoresis
buffer
present
capillary
migration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003126307A
Other languages
Japanese (ja)
Other versions
JP2004333190A (en
JP2004333190A5 (en
Inventor
理 小沢
作一郎 足立
隆史 入江
真一 福薗
友幸 坂井
康吉 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Tochigi Prefecture filed Critical Hitachi High Technologies Corp
Priority to JP2003126307A priority Critical patent/JP4320210B2/en
Publication of JP2004333190A publication Critical patent/JP2004333190A/en
Publication of JP2004333190A5 publication Critical patent/JP2004333190A5/ja
Application granted granted Critical
Publication of JP4320210B2 publication Critical patent/JP4320210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、DNAやRNAなどの遺伝子(核酸オリゴマー)の断片長を変性条件の電気泳動法により測定し、核酸の塩基配列や、VNTR多型などを解析する電気泳動装置に関する。
【0002】
【従来の技術】
核酸オリゴマーの断片長を手がかりとして、変性条件の電気泳動法により解析する方法として、非特許文献1(クリストフ・ヘラー著、エレクトロフォレシス、21巻、593−602頁、2000年)に記載されているキャピラリ電気泳動を利用する方法がある。この非特許文献1では、市販のシングルキャピラリ型のキャピラリ電気泳動装置を用い、キャピラリとして内径50μm、外径375μmのものを使用し、泳動媒体として市販のポリジメチルアクリルアミドに基づく再充填可能なポリマ、バッファとして100mMのTAPSバッファ(100mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid、NaOHによりpH8.0に調製、電気伝導度1250μS/cm)を使用している。泳動温度は50℃、泳動電圧は電界強度で150V/cmとしている。この非特許文献1の最適条件において、400塩基の一本鎖DNA断片について断片長が1塩基異なる断片同士を分離能0.5以上で分離するためには少なくとも10cm、600塩基の場合は少なくとも20cm、800塩基の場合は少なくとも37cmの有効長が必要であると結論している。これらの場合、400塩基を10cm、600塩基を20cm、800塩基を37cmの有効長で分離する場合についてそれぞれ約30分、67分、150分を要する(図3より)。
【0003】
しかしながら遺伝子情報の有用性に対する認識の高まりを反映して、より大量に、より迅速に核酸の塩基配列を決定するニーズが高まっている。そこで従来の分析速度をより高速化し、分析時間を短縮する試みが報告されている。例えば、電気泳動バッファの組成を変更することにより泳動速度を向上させる試みとして、非特許文献2(カレル・クレパルニクら著、エレクトロフォレシス、22巻、783−788頁、2001年)がある。非特許文献2では、バッファとして0.04M NaOH、ポリマとして4wt%LPA(直鎖状ポリアクリルアミド)を使用している。非特許文献2における電気泳動性能は、それ以前の方法(4%LPA、7M尿素、0.1M Tris-0.1M TAPS、pH8.3)と比較して約3倍高速と報告されている。しかし、下記の特別な工夫を行わない限り分離が悪く、例えば有効長19.5cmにおいて180塩基長の断片が全く分離しない(図4)。この問題は、試料注入直後にPEG−を注入することにより回避された。上記有効長の場合、163塩基長の断片を約10分で分離でき、また668塩基長の断片の(分離は悪いものの)泳動時間は約22分(図2、図1)、また有効長7cmの場合の163塩基長の断片の(分離は悪いものの)泳動時間は約3.5分である(図3)。なお、非特許文献2においてはアルカリによるポリマの加水分解を防止するため、最初はポリマを0.03MのNaClに溶解してキャピラリに充填した後、0.04MのNaOHからなる予備泳動バッファにキャピラリを浸して約5分間予備泳動することにより、泳動媒体のバッファを0.04M NaOHに交換している。
【0004】
【非特許文献1】
クリストフ・ヘラー著、エレクトロフォレシス、21巻、593−602頁、2000年
【非特許文献2】
カレル・クレパルニクら著、エレクトロフォレシス、22巻、783−788頁、2001年
【0005】
【発明が解決しようとする課題】
非特許文献1の方法は、400ntの核酸オリゴマーの1塩基分離を0.5以上の分離能で行うためには約30分と長い泳動時間を要する。非特許文献2の方法は従来例より3倍高速とのことであるが、163ntの核酸オリゴマーの分離を泳動時間3.5分で行う場合は分離が悪く、またPEG−の追加注入や予備泳動など煩雑な操作が必要となる。特に、予備泳動は約5分と、本泳動よりも時間がかかる。即ち、従来の核酸電気泳動においては高分離と迅速性は背反関係にあり、十分な分離を得るためには長い時間を要する、逆に短い分析時間では十分な分離が得られない、という問題があった。
【0006】
本発明の目的は、1又は複数の流路(キャピラリや、基板上に形成された溝など)を具備する電気泳動装置を用い、変性条件下において核酸の電気泳動を行いDNAシーケンシングや核酸の断片長解析を行う際、簡単な構成で迅速かつ高い核酸分離を達成し、長い核酸でも解析可能とすることにある。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明による電気泳動装置は、高分子と、緩衝剤と、核酸の変性剤とを含有する泳動媒体が充填された1又は複数の流路を具備し、緩衝剤として、水溶性一級アミンと両性電解質とを含むことを特徴とする。泳動媒体は、変性剤として尿素を含み、高分子として、アクリルアミド重合体、特に好ましくは(N−アルキル)アクリルアミド重合体を含む。高分子の濃度は好ましくは2〜8重量%、特に好ましくは4〜6重量%が好適に用いられ、測定毎に高分子を詰め替えて使用する。
【0008】
緩衝剤が含有する水溶性一級アミンとしてはメタナミン誘導体、両性電解質としてはアミノカルボン酸を用いることができ、好ましくは水溶性一級アミンとしてトリス(ヒドロキシメチル)アミノメタン、両性電解質としてグリシンを用いる。緩衝剤は、特に好ましくは0.01〜0.05[M]のトリス(ヒドロキシメチル)アミノメタンと、0.1〜0.4[M]のグリシンを含有する。
【0009】
泳動媒体の平均の電気伝導度は1[mS/cm]以下が好ましく、特に好ましくは0.7[mS/cm]以下である。本発明では、泳動媒体中の泳動電流が好ましくは流路1本当たり8μA以下、特に好ましくは流路1本当たり5μA以下となる条件下で電気泳動を行う。また、単位長さの流路1本当りの泳動電流による仕事率が好ましくは3[mW/cm]以下、特に好ましくは2[mW/cm]以下となる条件下で電気泳動を行う。
【0010】
流路の両端は泳動バッファを介して高圧電源に接続され、泳動バッファ中には、泳動媒体におけると同等の組成、濃度の緩衝剤を含有するのが好ましい。流路として、好ましくは内径が概ね25μmないし75μm、特に好ましくは内径が約50μmのキャピラリを使用する。
以上の構成を採用することにより、簡単な方法で迅速、高分離、かつ再現性の良い核酸の電気泳動を達成した。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
〔実施の形態1〕
本発明の第1の実施形態を以下に説明する。電気泳動装置としては非特許文献1に記載のと同様のシングルキャピラリ型のキャピラリ電気泳動装置を使用した。本装置は泳動媒体の自動充填機構を備え、またオートサンプラによる複数試料の連続測定が可能である。またレーザ励起蛍光の原理に基づく検出器を備える。具体的な実験条件は以下の通りである。
【0012】
試料溶液の調製条件は次のとおりである。
サイズスタンダード(アプライドバイオシステムズ社製GeneScan(R) 500 ROX)0.5μL、ホルムアミド12μLを混合、94℃で2分間熱変性後、氷冷した。
【0013】
電気泳動条件は次のとおりである。
キャピラリ:ポリマイクロテクノロジーズ社製の内径50μm、外径363μm、有効長30cm、全長41cmの溶融石英キャピラリ。
【0014】
泳動バッファ:非特許文献1に記載の100mMのTAPSバッファを従来の泳動バッファ(比較対象)として使用した。また本発明による泳動バッファとして、25mM Tris(hydroxymethyl)aminomethane(以下、トリスという)と、192mMグリシンを緩衝剤として含む緩衝溶液(以下、TGバッファという)を使用した。TGバッファのpHは約8.8であり、pHを調整せずそのまま使用した。
【0015】
泳動媒体:非特許文献1に記載の市販のポリマと、変性剤と、緩衝剤としてTAPSバッファとを含む泳動媒体を従来の泳動媒体(比較対象)として使用した。以降、この従来の泳動媒体をTAPS6と略記する。また本発明による泳動媒体として、上記の市販のポリマと、TGバッファと、核酸の変性剤として7Mの尿素を含む泳動媒体を調合した。以降、この泳動媒体をTG6と略記する。TG6の具体的な調合方法は、TAPS6中の低分子成分(緩衝剤など)を排除限界分子量30000の限外ろ過膜を通して除去した後、上記TGバッファ成分、尿素、純水を所定量加えて均一に混合した。非特許文献1によるとTAPS6にはポリマとしてポリジメチルアクリルアミドが含有されるため、TG6もポリマとして同濃度のポリジメチルアクリルアミドを含有する。
【0016】
泳動媒体のキャピラリへの充填時間:3.5分間。
試料の電界注入条件:印加電圧15kV、時間5秒。
泳動電圧:15kV。
【0017】
恒温槽の設定温度:特記なき場合50℃としたが、その他の温度条件も検討した。なお、試料は前述の通りホルムアミドと熱による変性を行い、泳動媒体中には変性剤である尿素を含み、泳動温度も50℃と高い条件を採用した。つまり核酸を一本鎖とした状態、即ち変性条件において泳動を行った。
【0018】
本発明の第1の実施の形態、即ち泳動媒体としてTG6、泳動バッファとしてTGバッファを用いた場合の典型的な電気泳動パターン(エレクトロフェログラム)を図1(a)に示した。また従来例、即ち泳動媒体としてTAPS6、泳動バッファとしてTAPSバッファを用いた場合の典型的な電気泳動パターンを図1(b)に示した。横軸は装置単位の時間軸であり、1カウントの幅は0.22秒に相当する。縦軸は特定の蛍光波長における蛍光信号の強度軸(任意目盛)であり、その波長で蛍光を発する色素で標識されたDNA断片の濃度に比例する。図1の縦軸は、GeneScan(R) 500 ROX試料を標識している蛍光色素(この場合はROX)の蛍光波長の信号強度を示す。以降のエレクトロフェログラムの意味も図1と同様である。
【0019】
図1(a)、(b)の最後のピーク(塩基長500の断片に対応、以降500ntと表記する)の泳動時間はそれぞれ7382カウントと9264カウント、即ちそれぞれ27.0分と34.0分である。従って、従来のTAPS6と比較して、本実施の形態によるTG6は、泳動時間が約2割短い、換言すると泳動速度が約25%速い。即ち、本発明の第1の実施の形態においては、従来例と比較して核酸の泳動速度が速い、という効果がある。
【0020】
ここで、本発明の主要な課題であるDNAのシーケンス解析、或いは断片長解析における解析可能な核酸断片の最大の長さに関する定量的取扱いについて詳述する。DNAのシーケンス解析法としては様々な方法が用いられるが、ここではダイターミネータ法を例にとって説明する。この方法は、解析対象のDNA断片をテンプレートとし、その配列の一部と相補的なプライマ、デオキシリボ核酸の単量体(dNTP)、4種類の塩基に対応してそれぞれ異なる蛍光色素で標識したダイデオキシリボ核酸の単量体(ddNTP)、DNAポリメラーゼ、緩衝溶液を混合する。この混合液を用いていわゆるサイクルシーケンス反応等を行うことにより、プライマに対してデオキシリボ核酸が様々な長さで(テンプレートと相補的に)付加し、末端がテンプレートと相補的な蛍光標識ddNTPである核酸断片の混合物が得られる。この断片の混合物を変性条件の電気泳動により分析し、塩基長が1異なる断片を互いに分離検出し、それぞれの断片の蛍光色を解析し、対応する塩基の配列から、テンプレートとしたDNAのシーケンスを決定する。
【0021】
電気泳動を用いてサイクルシーケンス反応産物の測定を行う際は、電気泳動結果(エレクトロフェログラム)において、長さが1塩基異なる核酸断片に対応するピーク同士を正確に分離検出できるかどうかが重要である。一般に、断片長が短い場合は断片長が互いに1塩基異なる断片同士のピークの間隔(スペーシング)は広く、分離分析は容易であるが、断片長が長くなるとスペーシングが狭くなり、分離は困難となる。目的とする断片長のピークの半値幅(半値全幅)と比較してスペーシングが小さくなりすぎると、2つの隣接するピークが互いに重なり合い、分離できなくなる。横軸に塩基数、縦軸にスペーシングとピークの半値幅をプロットし、スペーシングがピークの半値幅と同等以下となる境界条件における核酸塩基数をシーケンス可能な核酸断片の長さの目安とした。この核酸塩基数を、以下、等幅長と表記する。なお上記等幅長と同じ目的に用いられる指標として読取り長(Read Length)がある。読取り長は、例えば非特許文献1に記載の通り、2ピークの分離能Rsが0.5となる塩基数として定義される場合が多い。一方、等幅長におけるRsは定義より約0.59であるため、上記定義による等幅長は上記読取り長よりも小さな数値となる。
【0022】
図1(a)、(b)のエレクトロフェログラムについて等幅長を求める計算過程を図2の(a)、(b)にそれぞれ示した。図2の横軸は断片長、縦軸にスペーシングとピークの半値幅を示した。図中、四角形はスペーシングのプロットであり、菱形はピークの半値幅のプロットである。
【0023】
本発明に基づくTG6を用いた場合の図2(a)においては、菱形で示した半値幅は概ね0.45mm未満であり、四角形で示したスペーシングが半値幅より狭くなるのは断片長が約412ntより長い場合である。即ち、TG6における等幅長は412である。一方、従来のTAPS6の場合、図2(b)に示したとおり、半値幅はTG6より0.05〜0.1mm程度広い傾向があり、等幅長は325とTG6よりも短かった。従って、本発明は従来例と比較して、より長い核酸断片まで正確にDNAシーケンス解析が行える、という特長がある。
【0024】
次に、本発明に基づく電気泳動を行った際の泳動電流について説明する。本発明に基づくTG6を用いた場合、泳動電流Iは初期3[μA]であり、泳動を継続するに従い減少し、500ntのピークが検出された27分後の泳動電流は1[μA]であった。この泳動時間内における泳動電流の平均値は約2.3[μA]であった。電流がキャピラリ部分により規定されると仮定すると、泳動電圧Eが15[kV]であったことから、キャピラリ部分の泳動媒体の抵抗Rは平均6.5[GΩ]である。またキャピラリの全長Lは41[cm]、キャピラリの内径は50[μm]で断面積Sは0.0000196[cm2]であるため、この泳動媒体の平均の電気伝導度はL/(RS)から平均約0.32[mS/cm]と求められる。一方、従来のTAPS6の泳動電流Iは初期10[μA]、500ntのピークが検出された34分後の泳動電流は9[μA]、泳動電流の平均値は約9.5[μA]であった。従って、TAPS6の電気伝導度も同様に平均約1.33[mS/cm]と求められる。
【0025】
即ち、本実施の形態による泳動媒体TG6は従来の泳動媒体と比較して、電流と、電気伝導度が平均約4分の1と低い。電流に伴うジュール熱は、温度が一定と仮定した場合、電流による仕事率(RI2)と時間の積から求められる。上記の本実施の形態と従来例について、単位長さのキャピラリあたりの仕事率を求めると、それぞれ平均で0.84[mW/cm]と3.5[mW/cm]である。即ち、単位長さ当り、単位時間当りのジュール熱発生量は、本実施の形態の方が従来例の平均約4分の1と少ない。
【0026】
ジュール熱は電気泳動における代表的な不安定要因であり、分離性能に悪影響を及ぼすと考えられている。上記の通り、本実施の形態において従来例と比較して分離性能が高かったのは、ジュール熱発生が少ないためと考えられる。また、ジュール熱が多い場合は熱暴走により泳動結果が全く得られない場合があり、熱暴走はキャピラリの損傷の原因となる場合がある。本発明はジュール熱が従来の約4分の1と少ないため、高分離な核酸電気泳動結果が安定に得られ、熱暴走が起きず、キャピラリが損傷しない、という効果がある。本実施の形態による泳動媒体、泳動バッファを用いると、前述の通り核酸の泳動速度が本来約25%速いことに加え、電流や発熱が少ないため、本実施の形態の様に366[V/cm]とやや高い電界強度を採用しても良好な核酸分離が再現性良く得られる。従って、両要因の相乗効果により、核酸の測定が迅速に行えるという効果もある。
【0027】
泳動時間と泳動電流の検討結果をバッファ組成の観点から整理すると、本発明で採用したTGバッファは、従来のバッファよりも泳動時間が短く、泳動電流が低く、また分離が高い。泳動電圧や泳動路長などの物理的条件を変更する場合は、泳動時間の短縮のためには泳動電流が増加し分離が低下する、泳動電流低減や高分離化のためには泳動時間が増加するなど、時間、電流、分離の3特性は一般に背反関係にある。従って3特性を同時に改善できるTGバッファは、従来のバッファと比較して予想外に好適な特徴を有することが理解される。以上の検討結果に基づき、本実施の形態ではTGバッファを採用した。
【0028】
なお、本実施の形態では泳動バッファならびに泳動媒体中の緩衝剤としてトリスとグリシンとの組み合わせを使用したが、他の緩衝剤も同様に使用することができる。トリスと同様の性能を発揮する他の緩衝剤の例としては、各種のメタナミン誘導体などの水溶性一級アミンや、Good's Bufferと総称される一群の化合物がある。Good's Bufferの例としては、MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, HEPES, DIPSO, TAPSO, POPSO, HEPPSO, EPPS, Tricine, Bicine, TAPS, CHES, CAPSO, CAPSなどがあり、これらは本発明において緩衝剤として好適に使用できる。グリシンについても、正負両荷電を分子内に有するいわゆる両性電解質を同様に使用することができる。例えば、アラニン、バリンなどの各種アミノカルボン酸、イミノカルボン酸、アミノスルホン酸類などである。また、上記のGood's Bufferのうち両性電解質であるものも、両荷電サイトに対応するそれぞれのpKaを上限、下限とするpH範囲において、グリシン同様に使用することができる。
【0029】
なお、本実施の形態では泳動バッファならびに泳動媒体中の緩衝剤としてトリスとグリシンをそれぞれ25mM、192mM含有する系について検討したが、両者の濃度はこれに限定されない。低い方向での濃度の限界としては、それぞれ約10mM、100mMにおいても良好な電気泳動結果が得られたが、さらに半減すると良好な泳動パターンが得られなかった。濃度が高い方向では2倍以上の濃度でも泳動パターンが得られるが、それ以上とすると本発明の低電流の特長が発揮されにくくなるため、それぞれ約50mM、400mMが本発明の特長を良好に発揮出来る実質的な上限と考えられる。
【0030】
〔実施の形態2〕
本発明の第2の実施の形態を以下に説明する。第2の実施の形態は基本的に上記第1の実施の形態と同じ実験条件を採用したが、核酸の泳動媒体としてTG6ではなく、平均分子量(MW)約100万のポリジメチルアクリルアミドに基づくものを使用した点が異なる。
【0031】
本実施の形態の比較対象(従来例)として、文献(クリストフ・ヘラー著、エレクトロフォレシス、20巻、1962−1977頁、1999年)に記載されている方法で合成した平均分子量(MW)約100万のポリジメチルアクリルアミドを、重量濃度5%となるように、7M尿素を含むTAPSバッファに溶解したものを泳動媒体として用いた。以降、この従来の泳動媒体をTAPS7と略記する。また、比較例の泳動バッファとして、実施の形態1における従来例と同じTAPSバッファを使用した。
【0032】
一方、本実施の形態による泳動媒体として、上記ポリジメチルアクリルアミドを、重量濃度5%で含有し、第1の実施の形態と同じTGバッファを含み、さらに核酸の変性剤として7Mの尿素を含む泳動媒体を調合した。以降、この泳動媒体をTG7と略記する。また、本実施の形態においては泳動バッファとして、第1の実施の形態と同じくTGバッファを使用した。
【0033】
本発明によるTG7、並びに従来のTAPS7を用いた場合の、典型的な電気泳動パターン(エレクトロフェログラム)の一例をそれぞれ図3(a)、(b)に示した。図3(a)、(b)の最後(塩基長500nt)のピークの泳動時間はそれぞれ2625カウントと3977カウント、即ちそれぞれ9.6分と14.6分である。従って、従来のTAPS7と比較して、本実施の形態のTG7は、泳動時間が約3.5割短い、換言すると泳動速度が約52%速い。即ち、本発明の第2の実施の形態においても、従来例と比較して核酸の泳動速度が速い、という効果がある。
【0034】
図3(a)、(b)のエレクトロフェログラムについて等幅長を求める計算過程を図4の(a)、(b)にそれぞれ示した。図4(a)、(b)の横軸は断片長、縦軸はスペーシング及びピークの半値幅である。図中、四角形はスペーシングのプロットであり、菱形はピークの半値幅のプロットである。
【0035】
本発明に基づくTG7を用いた図4(a)の場合、ピークの半値幅は概ね0.3〜0.4mmであり、等幅長は約439ntである。一方、従来のTAPS7の場合、図4(b)に示したとおり、ピークの半値幅は300nt以上で0.5〜0.6mmとTG7より約0.1〜0.2mm広い傾向があり、等幅長は326ntとTG7よりも100塩基以上短かった。従って、本発明の第2の実施の形態においても、従来例と比較してより長い断片長まで正確にDNAシーケンス解析が行える、という特長がある。
【0036】
次に、泳動電流について説明する。本発明に基づくTG7を用いた場合、泳動電流Iは初期5[μA]であり、最終時点の泳動電流は4[μA]、泳動電流の平均値は約4.4[μA]であった。第1の実施の形態と同様の計算により、泳動媒体の抵抗Rは平均3.4[GΩ]、電気伝導度は約0.61[mS/cm]である。一方、従来のTAPS7の泳動電流は初期11[μA]、最終時点の泳動電流は10[μA]、泳動電流の平均値は約10.0[μA]であった。従って、TAPS7の電気伝導度は約1.4[mS/cm]と求められる。即ち、本実施の形態による泳動媒体TG7は対応する従来の泳動媒体と比較して、電流と電気伝導度が約2.2分の1と低い。
【0037】
本実施の形態と従来例について、単位長さのキャピラリあたりの仕事率を求めると、それぞれ平均で1.6[mW/cm]、3.7[mW/cm]である。つまり、単位長さ当り、単位時間当りのジュール熱発生量は、本実施の形態の方が従来例の平均約2.2分の1と少ない。従って、本実施の形態においても、核酸の電気泳動結果が高分離かつ安定に得られる、という効果がある。
【0038】
本実施の形態による泳動媒体、泳動バッファを用いると、前述の通り泳動速度が本来約52%速いことに加え、電流や発熱が少ないため、本実施の形態の様に366[V/cm]とやや高い電界強度を採用しても良好な核酸分離が再現性良く得られる。従って、両者の相乗効果により、迅速な核酸測定が可能であるという効果がある。
【0039】
〔実施の形態3〕
本発明の第3の実施の形態を以下に説明する。第3の実施の形態は、電気泳動装置として、穴沢ら著、アナリティカルケミストリ、68巻、2699頁、1996年に記載された装置と同じ原理に基づく、複数本のキャピラリを用いるキャピラリアレイ型装置を使用した点が異なるが、他の点は上記第1、第2の実施の形態と同様である。
【0040】
図5は、本実施の形態で使用したキャピラリアレイ電気泳動装置の概略構成図である。この装置の特徴は、電気泳動用のキャピラリを複数本備えたキャピラリアレイを採用し、検出法として横入射オンカラム検出法(マルチフォーカス法)を用いたことである。
【0041】
以下、本装置の構成を説明する。泳動バッファ3内にキャピラリアレイ4の一端と白金製の陰極5がセットされ、またキャピラリアレイ4の他端は束ねられた後、ポンプブロック6の流路7に接続されている。ポンプブロック6にはシリンジ8,8’、電磁弁9、逆止弁10、流路11が接続又は内蔵され、泳動バッファ3’内には白金製の陽極5’が設置されている。即ち陰極5と陽極5’の間には泳動バッファ3、キャピラリアレイ4、ポンプブロック6の流路7、電磁弁9、流路11、泳動バッファ3’が設けられ、これらが電気泳動路を形成する。陰極5と陽極5’は高圧電源12に接続されている。シリンジ8,8’はそれぞれシリンジ駆動機構(図示省略)に接続されており、シリンジ8,8’には泳動媒体13,13’が充填される。キャピラリアレイ4の両端を除くほとんどの部分は温度調節器14に内包されており、特にそのポリマブロックに近い一部は検出器15に接している。検出器15には光源16,16’(レーザ)と受光器(分光器とCCDカメラなどを含む、図示省略)が含まれる。泳動バッファ3はオートサンプラ17に保持され、オートサンプラ17の上には泳動バッファ3の他、洗浄液18、試料溶液19などが保持される。試料溶液19中にはDNA断片などの陰イオン性の測定対象物質が含まれ、これらは蛍光色素で標識されている。装置全体は計測制御装置(図示省略)と接続されている。
【0042】
次に、本装置の動作の概略を図5を用いて説明する。シリンジ8内の補充用泳動媒体13の一部を、ポンプブロック6の流路7、流路11に充填しておく。恒温槽14によりキャピラリアレイ4の温度を一定に保持する。電磁弁9を閉じた後、シリンジ8と8’の操作により、シリンジ8内の泳動媒体13の一部を流路7、逆止弁10を経由してシリンジ8’内部の注入用泳動媒体13’へ移し替える。オートサンプラ17を動作させ、キャピラリアレイの先端を洗浄液18に浸す。シリンジ8’を一定圧力で一定容量駆動することにより、ポンプブロック6内部の流路7を経由して、キャピラリアレイ4に泳動媒体13’を注入する。電磁弁9を開ける。オートサンプラ17を動作させ、キャピラリアレイの先端を試料溶液19に浸す。高電圧電源12を動作させ、試料中の荷電成分をキャピラリアレイに電界注入する。オートサンプラ17を動作させ、キャピラリアレイの先端を泳動バッファ3に浸す。高電圧電源を動作させ、キャピラリアレイ4の中の試料中成分を、検出器15の方向に電気泳動を行う。
【0043】
光源16,16’を連続駆動し、キャピラリアレイ4の両側面から照射する。各キャピラリのレンズ効果により、外側から中央のキャピラリに向かってレーザ光がキャピラリ内部を順次透過し、試料を励起する(横入射オンカラム検出法、別称マルチフォーカス法)。試料中成分の蛍光スペクトルを検出器15により分光計測することにより、蛍光標識された試料成分の電気泳動スペクトルを取得する。複数の試料を異なる蛍光色素により標識して同時に泳動する場合でも、互いの分光干渉を補正し、それぞれの試料を独立に同時に計測する。サイズスタンダードを同時に測定し、泳動時間を規格化する。1つの試料セットの測定終了後、引き続き別の試料セットを測定する場合は、泳動媒体13を13’に移し替える所から繰り返す。以上の全ての動作はオペレータの指示に基づき、計測制御装置が自動的に執り行う。
【0044】
次に、本装置の使用条件の概略を説明する。本実施の形態においては、上記装置をDNAの断片長解析のために使用した。そのための条件は、基本的に実施の形態1に記載のシングルキャピラリ装置におけるものと同じとした。主な変更点は下記の通りである。キャピラリアレイとして、内径50μm、外径365μm、有効長22cm、全長33cmのキャピラリ96本を有するキャピラリアレイ4を使用した。試料の電界注入条件は印加電圧10kV、時間8秒であり、泳動電圧は15kVである。泳動媒体、泳動バッファとして、実施の形態1と同じくTG6、TGバッファの組合せを使用した。
【0045】
本実施の形態の実験条件を検討する過程において、実施の形態1に記載の従来の泳動媒体、泳動バッファの組合せを用いると正常なエレクトロフェログラムが得られない場合があり、また一般に分離が悪い、また場合によってはポンプブロック部分が発熱により損傷するという課題があった。上記泳動条件(電界強度455V/cm)では泳動電流が約1130μA(キャピラリ1本当たり約11.8μA)と高かった。従来の泳動媒体、泳動バッファの組合せを用いて安定な泳動結果を得るためには、電界強度を約313V/cm以下とする必要があった。
【0046】
一方、本実施の形態では実施の形態1と同じくTGバッファと、それに基づく泳動媒体を採用した結果、上記従来例におけるごとき問題は発生せず、一本キャピラリの場合と同等の正常かつ高分離の核酸電気泳動パターンが全キャピラリについて得られた。本実施の形態における泳動電流は約270μA(キャピラリ1本当たり約2.8μA)と低かった。本実施の形態と従来例について、単位長さのキャピラリ1本あたりの仕事率を求めると、それぞれ平均で1.3[mW/cm]、5.4[mW/cm]である。即ち、キャピラリ1本あたり、単位長さ当り、単位時間当りのジュール熱発生量は、本実施の形態の方が従来例の平均約4分の1と少ない。
【0047】
従来例においてはジュール熱が大きく、本装置の様に特に検出器の近傍の様に多数のキャピラリが密集して配置される部分において温度上昇、分離低下、再現性低下、熱暴走、キャピラリ損傷、キャピラリ保持具の損傷などの問題が起きやすいのに対し、本実施の形態では、ジュール熱が従来例の約4分の1と低いため、これらの悪影響の発生を防止でき、良好な結果が得られたと考えられる。従って、本発明で採用したTGバッファ並びにそれに基づく泳動媒体は、本実施の形態のごとき多数のキャピラリが密集する部分を有する装置構成において、特に核酸泳動結果の再現性が高まり高信頼性が得られる効果がある。また、455[V/cm]という高い電界強度を採用できるため、核酸泳動時間が短いという効果がある。
【0048】
本実施の形態では96本のキャピラリを有するキャピラリアレイを用いたが、本発明はこの構成に限定されるものではなく、96本より多い、あるいは96本より少ない複数のキャピラリを有する装置構成においても同様に適用可能である。より多くのキャピラリを用いる場合、従来法においては上記発熱による問題がより顕著になるため、本発明の効果がより顕著になる。また本実施の形態においては泳動媒体の保持にキャピラリアレイを用いる場合について説明したが、基板に設けた溝に泳動媒体を保持する、いわゆるチップ電気泳動装置を用いる場合であっても、本発明は同様に適用可能であり、特に多数の泳動路を用いて同時に核酸電気泳動を行う高スループットな用途において、本発明は極めて優れた効果を発揮する。
【0049】
本実施の形態特有の効果は、複数のキャピラリを同時に用いることにより、並列処理が可能となり、スループットが高いこと、核酸泳動速度が従来より約25%速いことに加え、電流や発熱が少ないため、マルチキャピラリ装置においても455V/cmと従来より45%高い電界強度を採用可能であること、高分離の核酸電気泳動結果が再現性良く安定に得られること、これらの相乗効果により、迅速かつ高精度な核酸測定が可能なこと、である。
【0050】
次に、本発明の効果について説明する。
本発明と対比して比較検討した従来例は、各実施の形態中に記載したとおりである。即ち、本発明の各実施の形態における特徴事項である泳動媒体と泳動バッファを、従来技術によるそれに置き換え、その他の条件を本発明の各実施の形態に揃えたものである。具体的には、第1の従来例は、非特許文献1に記載の市販の電気泳動装置、泳動媒体、泳動バッファを用いてDNAの断片長解析を行う方法であり、具体的には電気泳動装置としてシングルキャピラリ型のキャピラリ電気泳動装置、キャピラリとして有効長30cmのキャピラリ、泳動媒体としてTAPS6、泳動バッファとして100mMのTAPSバッファを用いた。第2の従来例は、非特許文献1に記載の市販の電気泳動装置、並びに非特許文献2に記載の方法で合成したポリマに基づく泳動媒体、泳動バッファを用いて核酸の断片長解析を行う方法であり、具体的には電気泳動装置としてシングルキャピラリ型のキャピラリ電気泳動装置、キャピラリとして有効長30cmのキャピラリ、泳動媒体としてTAPS7、泳動バッファとしてTAPSバッファを用いた。第3の従来例は、マルチキャピラリ型の電気泳動装置と、非特許文献1に記載の市販の泳動媒体、泳動バッファを用いてDNAの断片長解析を行う方法であり、具体的には電気泳動装置として実施の形態3に記載のマルチキャピラリ型の電気泳動装置、キャピラリとして有効長22cmの96本のキャピラリを備えるキャピラリアレイ、泳動媒体としてTAPS6、泳動バッファとして100mMのTAPSバッファを用いた。
つまり、本発明は主に泳動媒体と泳動バッファにおける緩衝剤としてトリス−グリシンを用いる点が、TAPSを用いる従来例と異なる。
【0051】
従来例と本発明の比較結果の一例を図6に示した。図6は、本発明の各実施の形態並びに対応する各従来例について、電気泳動を行い、その結果の代表的な特性を比較した結果である。検討した特性は、分離特性(等幅長)、泳動時間、泳動電流、である。なお、第3の実施の形態に対応する従来例は第3の実施の形態と同じ条件下で比較を行うと良好な結果が得られない場合が多かった。良好な結果が得られた場合の特性値を図中に( )*の印を付けて表記したが、これはこの条件における最良の結果を表し、多くの場合、これよりも低い結果、もしくは何も結果が得られないこともあった。従って、第3の従来例の変形例として、確実に泳動結果が得られた条件、即ち泳動電圧を(標準条件として採用した15kVから)10kVに低下させた場合の結果も併記した。
【0052】
図6から明らかな通り、本発明の各実施の形態は、同じ条件の従来例と比較して、等幅長が長く、泳動電流が少なく、核酸泳動時間が短い、という特長を有する。また、第3の実施の形態に関しては、同一条件では本実施の形態の方が従来例より再現性良く核酸電気泳動が行えるという特長を有する。また、条件が異なる従来例3の変形例と比較すると泳動電流が少なく、核酸泳動時間が短い、という特長を有する。また単位時間当たりの等幅長は実施の形態3が13.7[nt/分]、従来例3の変形例が8.7[nt/分]と、単位時間当たりの解析塩基長が長い、という特長を有する。
【0053】
キャピラリ1本当たりの平均泳動電流について詳細に比較すると、前述の通り実施の形態1,2,3はそれぞれ約2.3[μA]、4.4[μA]、2.8[μA]であるのに対し、従来例1,2,3はそれぞれ約9.5[μA]、10[μA]、11.8[μA]である。即ち、本発明各実施の形態と従来例との間には明確な差異があり、本発明各実施の形態は5[μA]以下、従来例は8[μA]を越えている。発熱や分離、泳動安定性などの項目において本発明が従来例と比較して良好な特性が得られたのは、キャピラリ1本(即ち流路1本)当たりの平均泳動電流が従来例と比較して格段に低いことが大きな要因と考えられる。即ち、従来例ではキャピラリ1本当たりの平均泳動電流が8[μA]より大となる泳動条件を採用したため、高発熱、低分離、泳動の安定性低下などの課題があった。一方本発明はキャピラリ1本当たりの平均泳動電流が8[μA]以下、特に好ましくは5[μA]以下となる泳動条件を採用することにより、従来例と比較して低発熱、高分離、泳動の高安定性などの優れた効果を得た。
【0054】
同様に電気伝導度の観点で比較を行うと、前述の通り実施の形態1,3で使用したTG6は平均約0.32[mS/cm]、実施の形態2で使用したTG7は平均約0.61[mS/cm]であるのに対し、従来例1,3で使用したTAPS6は平均約1.33[mS/cm]、TAPS7は平均約1.4[mS/cm]である。即ち、本発明各実施の形態と従来例との間には明確な差異があり、本発明各実施の形態は0.7[mS/cm]以下であるのに対し、従来例は1[mS/cm]より大きい。発熱や分離、泳動安定性などの項目において本発明が従来例と比較して良好な特性が得られたのは、電気伝導度が従来例と比較して格段に低いことが大きな要因と考えられる。即ち、従来例では電気伝導度が1[mS/cm]より大となる泳動条件を採用したため、高発熱、低分離、泳動の安定性低下などの課題があった。一方、本発明は電気伝導度が1[mS/cm]以下、特に好ましくは0.7[μA]以下となる泳動条件を採用することにより、従来例と比較して低発熱、高分離、泳動の高安定性などの優れた効果を得た。
【0055】
同様に、キャピラリ1本当たりの単位長さ当たりの仕事率の観点で比較を行うと、前述の通り実施の形態1,2,3はそれぞれ約0.32[mW/cm]、0.61[mW/cm]、1.3[mW/cm]であるのに対し、従来例1,2,3はそれぞれ約3.5[mW/cm]、3.7[mW/cm]、5.4[mW/cm]である。即ち、本発明各実施の形態と従来例との間には明確な差異があり、本発明各実施の形態は2[mW/cm]以下、従来例は3[mW/cm]より大である。発熱や分離、泳動安定性などの項目において本発明が従来例と比較して良好な特性が得られたのは、キャピラリ1本当たりの単位長さ当たりの仕事率が従来例と比較して低いことが大きな要因と考えられる。即ち、従来例ではキャピラリ1本当たりの単位長さ当たりの仕事率が3[mW/cm]より大となる泳動条件を採用したため、高発熱、低分離、泳動の安定性低下などの課題があった。一方、本発明はキャピラリ1本当たりの単位長さ当たりの仕事率が3[mW/cm]以下、特に好ましくは2[mW/cm]以下となる泳動条件を採用することにより、従来例と比較して低発熱、高分離、泳動の高安定性などの優れた効果を得た。
【0056】
非特許文献2に記載の方法と本発明の各実施の形態との直接の比較実験は行わなかったが、非特許文献2の記載によると、十分な分離が得られる有効長19.5cmにおいて163塩基長の断片の泳動時間は約10分である。一方、本発明の第2の実施の形態では有効長30cmにおいて500塩基長の核酸断片の泳動時間は9.5分で分離できることから、非特許文献2よりも泳動が高速である。また、非特許文献2においてはアルカリによるポリマの加水分解を防止するため、最初はポリマを0.03MのNaClに溶解してキャピラリに充填した後、0.04MのNaOHからなる予備泳動バッファにキャピラリを浸して約5分間予備泳動することにより、ポリマのバッファを0.04M NaOHに交換した。即ち、この予備泳動の時間が試料の電気泳動時間に加えて必要となることから、泳動時間の合計は本発明の方が短いことは明らかである。従って、本発明は非特許文献2の方法と比較して、簡便かつ迅速な方法であるという特長を有する。
【0057】
以上説明したように、本発明は従来の技術と比較して高速、高精度、かつ高分離な核酸の電気泳動装置を提供可能で、解析できる核酸塩基数が長いという特長がある。
【0058】
【発明の効果】
本発明によれば、キャピラリ電気泳動装置において、簡単な構成で迅速かつ高い核酸分離を達成し、長い核酸でも解析できるようになる。
【図面の簡単な説明】
【図1】キャピラリ電気泳動装置を用いてサイズスタンダードを測定した結果(エレクトロフェログラム)の一例を示す図であり、(a)はTG6に基づく本発明の第1の実施の形態のエレクトロフェログラム、(b)はTAPS6に基づく従来例のエレクトロフェログラムである。
【図2】図1のエレクトロフェログラムについて、等幅長を求める計算過程を示す図であり、(a)は本発明の第1の実施の形態に対応し、(b)は従来例に対応する。
【図3】キャピラリ電気泳動装置を用いてサイズスタンダードを測定した結果(エレクトロフェログラム)の一例を示す図であり、(a)はTG7に基づく本発明の第2の実施の形態のエレクトロフェログラム、(b)はTAPS7に基づく従来例のエレクトロフェログラムである。
【図4】図3のエレクトロフェログラムについて、等幅長を求める計算過程を示す図であり、(a)は本発明の第2の実施の形態に対応し、(b)は従来例に対応する。
【図5】本発明によるキャピラリアレイ電気泳動装置の概略構成図である。
【図6】本発明と従来例による電気泳動特性の比較を示す図である。
【符号の説明】
3,3’…泳動バッファ、4…キャピラリアレイ、5…陰極、5’…陽極、6…ポンプブロック、7…流路、8,8’…シリンジ、9…電磁弁、10…逆止弁、11…流路、12…高圧電源、13,13’…泳動ポリマ、14…温度調節器、15…検出器、16,16’…光源、17…オートサンプラ、18…洗浄液、19…試料溶液。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophoresis apparatus for measuring a fragment length of a gene (nucleic acid oligomer) such as DNA or RNA by an electrophoresis method under denaturing conditions, and analyzing a nucleic acid base sequence, a VNTR polymorphism, or the like.
[0002]
[Prior art]
Non-Patent Document 1 (Christoph Heller, Electrophoresis, Vol. 21, 593-602, 2000) describes a method for analyzing by denaturing electrophoresis using a fragment length of a nucleic acid oligomer as a clue. There is a method using capillary electrophoresis. In this non-patent document 1, a commercially available single capillary type capillary electrophoresis apparatus is used, a capillary having an inner diameter of 50 μm and an outer diameter of 375 μm, and a refillable polymer based on a commercially available polydimethylacrylamide as an electrophoresis medium, A 100 mM TAPS buffer (100 mM N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid, adjusted to pH 8.0 with NaOH, electric conductivity 1250 μS / cm) is used as the buffer. The electrophoresis temperature is 50 ° C., and the electrophoresis voltage is 150 V / cm in terms of electric field strength. Under the optimum conditions of Non-Patent Document 1, at least 10 cm in order to separate fragments having a length of one base different from each other with 400 base single-stranded DNA fragments with a resolution of 0.5 or more, at least 20 cm in the case of 600 bases In the case of 800 bases, it is concluded that an effective length of at least 37 cm is necessary. In these cases, about 30 minutes, 67 minutes, and 150 minutes are required for separating 400 bases with an effective length of 10 cm, 600 bases of 20 cm, and 800 bases of 37 cm (from FIG. 3).
[0003]
However, reflecting the increasing recognition of the usefulness of genetic information, there is a growing need for more rapid and rapid determination of nucleic acid base sequences. Therefore, attempts have been reported to increase the conventional analysis speed and shorten the analysis time. For example, Non-Patent Document 2 (Karel Kleparnik et al., Electrophoresis, Vol. 22, pp. 783-788, 2001) is an attempt to improve the migration speed by changing the composition of the electrophoresis buffer. In Non-Patent Document 2, 0.04M NaOH is used as a buffer, and 4 wt% LPA (linear polyacrylamide) is used as a polymer. The electrophoretic performance in Non-Patent Document 2 is reported to be about 3 times faster than the previous method (4% LPA, 7M urea, 0.1M Tris-0.1M TAPS, pH 8.3). However, the separation is poor unless the following special measures are taken, and for example, a fragment having a length of 180 bases is not separated at an effective length of 19.5 cm (FIG. 4). This problem was avoided by injecting PEG- immediately after sample injection. In the case of the effective length, a fragment of 163 bases can be separated in about 10 minutes, and a migration time of a fragment of 668 bases (although poor separation) is about 22 minutes (FIGS. 2 and 1), and an effective length of 7 cm In this case, the 163 base-length fragment (although poor separation) has a migration time of about 3.5 minutes (FIG. 3). In Non-Patent Document 2, in order to prevent hydrolysis of the polymer by alkali, the polymer is first dissolved in 0.03M NaCl and filled into the capillary, and then the capillary is placed in a pre-migration buffer composed of 0.04M NaOH. The buffer of the running medium is exchanged with 0.04 M NaOH by pre-running for about 5 minutes.
[0004]
[Non-Patent Document 1]
Christoph Heller, Electrophoresis, 21, 593-602, 2000
[Non-Patent Document 2]
Karel Kleparnik et al., Electrophoresis, Vol. 22, pp. 783-788, 2001
[0005]
[Problems to be solved by the invention]
The method of Non-Patent Document 1 requires a long migration time of about 30 minutes in order to perform one base separation of a 400 nt nucleic acid oligomer with a resolution of 0.5 or more. The method of Non-Patent Document 2 is 3 times faster than the conventional example. However, when the separation of the 163 nt nucleic acid oligomer is performed with an electrophoresis time of 3.5 minutes, the separation is poor, and additional injection of PEG- or preliminary electrophoresis is performed. Such a complicated operation is required. In particular, the pre-electrophoresis takes about 5 minutes and takes longer than the main electrophoretic migration. That is, in conventional nucleic acid electrophoresis, there is a trade-off between high separation and rapidity, and it takes a long time to obtain sufficient separation, and conversely, sufficient separation cannot be obtained with a short analysis time. there were.
[0006]
An object of the present invention is to perform electrophoresis of nucleic acids under denaturing conditions using an electrophoresis apparatus having one or a plurality of flow paths (capillaries, grooves formed on a substrate, etc.) and DNA sequencing or nucleic acid When performing fragment length analysis, it is intended to achieve rapid and high nucleic acid separation with a simple configuration and to enable analysis of even long nucleic acids.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an electrophoresis apparatus according to the present invention includes one or a plurality of channels filled with an electrophoresis medium containing a polymer, a buffer, and a nucleic acid denaturant, and serves as a buffer. And a water-soluble primary amine and an amphoteric electrolyte. The electrophoresis medium contains urea as a denaturing agent, and as a polymer, an acrylamide polymer, particularly preferably an (N-alkyl) acrylamide polymer. The concentration of the polymer is preferably 2 to 8% by weight, particularly preferably 4 to 6% by weight, and the polymer is refilled for each measurement.
[0008]
As the water-soluble primary amine contained in the buffer, a metanamine derivative can be used, and as the amphoteric electrolyte, aminocarboxylic acid can be used. Preferably, tris (hydroxymethyl) aminomethane is used as the water-soluble primary amine, and glycine is used as the amphoteric electrolyte. The buffering agent particularly preferably contains 0.01 to 0.05 [M] of tris (hydroxymethyl) aminomethane and 0.1 to 0.4 [M] of glycine.
[0009]
The average electric conductivity of the electrophoresis medium is preferably 1 [mS / cm] or less, particularly preferably 0.7 [mS / cm] or less. In the present invention, electrophoresis is performed under the condition that the electrophoresis current in the electrophoresis medium is preferably 8 μA or less per channel, particularly preferably 5 μA or less per channel. Further, the electrophoresis is performed under the condition that the power of the electrophoresis current per unit length of the flow channel is preferably 3 [mW / cm] or less, particularly preferably 2 [mW / cm] or less.
[0010]
Both ends of the flow path are connected to a high voltage power source via an electrophoresis buffer, and the electrophoresis buffer preferably contains a buffer having the same composition and concentration as in the electrophoresis medium. As the flow path, a capillary having an inner diameter of approximately 25 μm to 75 μm, particularly preferably an inner diameter of approximately 50 μm is used.
By adopting the above construction, nucleic acid electrophoresis was achieved by a simple method with high speed, high separation and good reproducibility.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[Embodiment 1]
A first embodiment of the present invention will be described below. As the electrophoresis apparatus, a single capillary type capillary electrophoresis apparatus similar to that described in Non-Patent Document 1 was used. This device is equipped with an automatic filling mechanism for electrophoresis media, and can continuously measure multiple samples with an autosampler. A detector based on the principle of laser excitation fluorescence is provided. Specific experimental conditions are as follows.
[0012]
The preparation conditions of the sample solution are as follows.
0.5 μL of size standard (GeneScan® 500 ROX manufactured by Applied Biosystems) and 12 μL of formamide were mixed, heat-denatured at 94 ° C. for 2 minutes, and then ice-cooled.
[0013]
The electrophoresis conditions are as follows.
Capillary: A fused quartz capillary manufactured by Polymicro Technologies, Inc. having an inner diameter of 50 μm, an outer diameter of 363 μm, an effective length of 30 cm, and a total length of 41 cm.
[0014]
Electrophoresis buffer: A 100 mM TAPS buffer described in Non-Patent Document 1 was used as a conventional electrophoresis buffer (comparison target). Further, a buffer solution (hereinafter referred to as TG buffer) containing 25 mM Tris (hydroxymethyl) aminomethane (hereinafter referred to as Tris) and 192 mM glycine as a buffering agent was used as the electrophoresis buffer according to the present invention. The pH of the TG buffer was about 8.8, and was used as it was without adjusting the pH.
[0015]
Electrophoresis medium: An electrophoretic medium containing a commercially available polymer described in Non-Patent Document 1, a denaturant, and a TAPS buffer as a buffering agent was used as a conventional electrophoretic medium (comparative object). Hereinafter, this conventional electrophoresis medium is abbreviated as TAPS6. Moreover, as the electrophoresis medium according to the present invention, an electrophoresis medium containing the above-mentioned commercially available polymer, TG buffer, and 7M urea as a nucleic acid denaturant was prepared. Hereinafter, this electrophoresis medium is abbreviated as TG6. A specific method for preparing TG6 is to remove low molecular components (such as a buffer) in TAPS6 through an ultrafiltration membrane with an exclusion limit molecular weight of 30000, and then add a predetermined amount of the above TG buffer component, urea, and pure water to make it uniform. Mixed. According to Non-Patent Document 1, since TAPS6 contains polydimethylacrylamide as a polymer, TG6 also contains polydimethylacrylamide at the same concentration as a polymer.
[0016]
Filling time of electrophoresis medium into capillary: 3.5 minutes.
Sample electric field injection conditions: applied voltage 15 kV, time 5 seconds.
Electrophoresis voltage: 15 kV.
[0017]
Temperature setting of the thermostatic chamber: 50 ° C. unless otherwise specified, but other temperature conditions were also examined. The sample was denatured with formamide and heat as described above, and the electrophoresis medium contained urea as a denaturant and the electrophoresis temperature was as high as 50 ° C. That is, the electrophoresis was performed in a state where the nucleic acid was single-stranded, that is, under denaturing conditions.
[0018]
FIG. 1 (a) shows a typical electrophoresis pattern (electropherogram) in the first embodiment of the present invention, that is, when TG6 is used as the electrophoresis medium and TG buffer is used as the electrophoresis buffer. Further, FIG. 1B shows a typical electrophoresis pattern in the case where TAPS 6 is used as the electrophoresis medium and TAPS buffer is used as the electrophoresis buffer. The horizontal axis is a time axis for each unit, and the width of one count corresponds to 0.22 seconds. The vertical axis is the intensity axis (arbitrary scale) of the fluorescence signal at a specific fluorescence wavelength, and is proportional to the concentration of the DNA fragment labeled with a dye that emits fluorescence at that wavelength. The vertical axis | shaft of FIG. 1 shows the signal intensity of the fluorescence wavelength of the fluorescent pigment | dye (in this case ROX) which has labeled the GeneScan (R) 500 ROX sample. The meanings of the subsequent electropherograms are the same as in FIG.
[0019]
The migration time of the last peak in FIGS. 1A and 1B (corresponding to a fragment having a base length of 500, hereinafter referred to as 500 nt) is 7382 counts and 9264 counts, that is, 27.0 minutes and 34.0 minutes, respectively. It is. Therefore, compared with the conventional TAPS6, the TG6 according to this embodiment has a migration time of about 20% shorter, in other words, a migration speed is about 25% faster. That is, in the first embodiment of the present invention, there is an effect that the migration speed of the nucleic acid is faster than the conventional example.
[0020]
Here, the quantitative treatment relating to the maximum length of a nucleic acid fragment that can be analyzed in sequence analysis of DNA or fragment length analysis, which is the main problem of the present invention, will be described in detail. Various methods are used as the DNA sequence analysis method. Here, the dye terminator method will be described as an example. This method uses a DNA fragment to be analyzed as a template, a primer complementary to a part of the sequence, a monomer of deoxyribonucleic acid (dNTP), and a dye labeled with different fluorescent dyes corresponding to four types of bases. Mix deoxyribonucleic acid monomer (ddNTP), DNA polymerase, and buffer solution. By performing a so-called cycle sequence reaction or the like using this mixed solution, deoxyribonucleic acid is added to the primer in various lengths (complementary to the template), and the terminal is a fluorescently labeled ddNTP complementary to the template. A mixture of nucleic acid fragments is obtained. This mixture of fragments is analyzed by electrophoresis under denaturing conditions, fragments having different base lengths are separated and detected from each other, the fluorescence color of each fragment is analyzed, and the DNA sequence as a template is determined from the corresponding base sequence. decide.
[0021]
When measuring cycle sequence reaction products using electrophoresis, it is important whether or not the peaks corresponding to nucleic acid fragments that differ in length by one base in the electrophoresis results (electropherogram) can be accurately separated and detected. is there. In general, when the fragment length is short, the peak interval (spacing) between fragments whose fragment lengths differ from each other by one base is wide and separation analysis is easy. However, when the fragment length is long, the spacing becomes narrow and separation is difficult. It becomes. If the spacing is too small compared to the half width (full width at half maximum) of the peak of the desired fragment length, two adjacent peaks overlap each other and cannot be separated. Plot the number of bases on the horizontal axis, and the half width of the spacing and peak on the vertical axis, and a guideline for the length of the nucleic acid fragment that can sequence the number of nucleic acid bases under boundary conditions where the spacing is less than or equal to the half width of the peak. did. This number of nucleobases is hereinafter referred to as an equal width. An index used for the same purpose as the equal width length is a read length. For example, as described in Non-Patent Document 1, the read length is often defined as the number of bases at which the resolution Rs of two peaks is 0.5. On the other hand, since Rs in the equal width length is about 0.59 from the definition, the equal width length according to the definition is a numerical value smaller than the reading length.
[0022]
The calculation process for obtaining the equal width for the electropherograms of FIGS. 1 (a) and 1 (b) is shown in FIGS. 2 (a) and 2 (b), respectively. The horizontal axis of FIG. 2 indicates the fragment length, and the vertical axis indicates the spacing and the half width of the peak. In the figure, squares are plots of spacing, and diamonds are plots of peak half-value widths.
[0023]
In FIG. 2 (a) when TG6 according to the present invention is used, the half width shown by the rhombus is generally less than 0.45 mm, and the spacing shown by the square is narrower than the half width. This is the case when it is longer than about 412 nt. That is, the equal width length in TG6 is 412. On the other hand, in the case of the conventional TAPS6, as shown in FIG. 2B, the half width tends to be about 0.05 to 0.1 mm wider than TG6, and the equal width is 325 and shorter than TG6. Therefore, the present invention has an advantage that DNA sequence analysis can be performed accurately up to a longer nucleic acid fragment as compared with the conventional example.
[0024]
Next, the electrophoresis current when performing electrophoresis according to the present invention will be described. When TG6 according to the present invention was used, the electrophoretic current I was initially 3 [μA], decreased as the electrophoresis continued, and the electrophoretic current 27 minutes after the 500 nt peak was detected was 1 [μA]. It was. The average value of the electrophoretic current within this electrophoretic time was about 2.3 [μA]. Assuming that the current is defined by the capillary portion, since the migration voltage E is 15 [kV], the resistance R of the migration medium in the capillary portion is 6.5 [GΩ] on average. The total length L of the capillary is 41 [cm], the inner diameter of the capillary is 50 [μm], and the cross-sectional area S is 0.0000196 [cm]. 2 Therefore, the average electric conductivity of the electrophoresis medium is determined to be about 0.32 [mS / cm] on average from L / (RS). On the other hand, the electrophoretic current I of the conventional TAPS6 was 10 [μA] in the initial stage, the electrophoretic current 34 minutes after the 500 nt peak was detected was 9 [μA], and the average value of the electrophoretic current was about 9.5 [μA]. It was. Therefore, the electrical conductivity of TAPS6 is similarly determined to be about 1.33 [mS / cm] on average.
[0025]
That is, the electrophoretic medium TG6 according to the present embodiment has a current and electrical conductivity that are about one-fourth lower on average than the conventional electrophoretic medium. The Joule heat associated with the current is calculated based on the current power (RI) assuming that the temperature is constant. 2 ) And time. Regarding the above-described embodiment and the conventional example, when the power per unit length of capillary is obtained, the average is 0.84 [mW / cm] and 3.5 [mW / cm], respectively. That is, the amount of Joule heat generated per unit length and unit time is smaller in this embodiment, about an average of about one quarter of that in the conventional example.
[0026]
Joule heat is a typical instability factor in electrophoresis and is thought to adversely affect separation performance. As described above, the reason why the separation performance in the present embodiment is higher than that in the conventional example is considered to be due to less generation of Joule heat. In addition, when the Joule heat is high, the migration result may not be obtained at all due to thermal runaway, and the thermal runaway may cause damage to the capillary. The present invention has an effect that Joule heat is as low as about one-fourth that of the prior art, so that a high-resolution nucleic acid electrophoresis result can be stably obtained, thermal runaway does not occur, and the capillary is not damaged. When the electrophoresis medium and the electrophoresis buffer according to this embodiment are used, the migration speed of nucleic acid is essentially about 25% faster as described above, and the current and heat generation are small. Therefore, as in this embodiment, 366 [V / cm Good nucleic acid separation can be obtained with good reproducibility even if a slightly higher electric field strength is employed. Therefore, there is also an effect that the nucleic acid can be measured quickly by the synergistic effect of both factors.
[0027]
When the examination results of the running time and the running current are arranged from the viewpoint of the buffer composition, the TG buffer employed in the present invention has a shorter running time, lower running current, and higher separation than the conventional buffer. When changing physical conditions such as electrophoresis voltage or migration path length, the electrophoresis current increases and the separation decreases to shorten the migration time, and the migration time increases to reduce the electrophoresis current and increase the separation. The three characteristics of time, current, and separation are generally contradictory. Therefore, it is understood that the TG buffer that can improve the three characteristics at the same time has unexpectedly favorable characteristics as compared with the conventional buffer. Based on the above examination results, a TG buffer is employed in the present embodiment.
[0028]
In the present embodiment, a combination of Tris and glycine is used as the migration buffer and the buffer in the migration medium, but other buffers can be used as well. Examples of other buffering agents that exhibit the same performance as Tris include water-soluble primary amines such as various methanamin derivatives and a group of compounds collectively referred to as Good's Buffer. Examples of Good's Buffer include MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, HEPES, DIPSO, TAPSO, POPSO, HEPPSO, EPPS, Tricine, Bicine, TAPS, CHES, CAPSO, CAPS These can be suitably used as a buffering agent in the present invention. For glycine, so-called ampholytes having both positive and negative charges in the molecule can be used as well. For example, various aminocarboxylic acids such as alanine and valine, iminocarboxylic acids, aminosulfonic acids and the like. Moreover, what is an amphoteric electrolyte among said Good's Buffer can be used similarly to glycine in the pH range which sets each pKa corresponding to both charge sites as an upper limit and a minimum.
[0029]
In the present embodiment, a system containing 25 mM and 192 mM of Tris and glycine as the migration buffer and the buffer in the migration medium has been studied, but the concentration of both is not limited to this. As the concentration limit in the lower direction, good electrophoresis results were obtained even at about 10 mM and 100 mM, respectively. However, when the concentration was reduced by half, a good electrophoresis pattern could not be obtained. In the direction of higher concentration, an electrophoretic pattern can be obtained even when the concentration is twice or more. However, if the concentration is higher than that, the low current feature of the present invention is hardly exhibited. It is considered a practical upper limit.
[0030]
[Embodiment 2]
A second embodiment of the present invention will be described below. The second embodiment basically employs the same experimental conditions as the first embodiment, but is based on polydimethylacrylamide having an average molecular weight (MW) of about 1 million instead of TG6 as a nucleic acid migration medium. The point which used is different.
[0031]
As an object to be compared with the present embodiment (conventional example), an average molecular weight (MW) of about 100 synthesized by the method described in the literature (Christoph Heller, Electrophoresis, 20, 1962-1977, 1999). Ten thousand polydimethylacrylamide dissolved in a TAPS buffer containing 7 M urea so as to have a weight concentration of 5% was used as the electrophoresis medium. Hereinafter, this conventional electrophoresis medium is abbreviated as TAPS7. Moreover, the same TAPS buffer as the conventional example in Embodiment 1 was used as the electrophoresis buffer of the comparative example.
[0032]
On the other hand, as an electrophoresis medium according to the present embodiment, the polydimethylacrylamide is contained at a weight concentration of 5%, includes the same TG buffer as that of the first embodiment, and further includes 7M urea as a nucleic acid denaturant. The medium was prepared. Hereinafter, this electrophoresis medium is abbreviated as TG7. In the present embodiment, a TG buffer is used as the migration buffer as in the first embodiment.
[0033]
Examples of typical electrophoretic patterns (electropherograms) when TG7 according to the present invention and conventional TAPS7 are used are shown in FIGS. 3A and 3B, respectively. The migration time of the last peak (base length 500 nt) in FIGS. 3 (a) and 3 (b) is 2625 counts and 3777 counts, respectively 9.6 minutes and 14.6 minutes, respectively. Therefore, compared with the conventional TAPS7, the TG7 of this embodiment has a migration time of about 3.5% shorter, in other words, a migration speed is about 52% faster. That is, also in the second embodiment of the present invention, there is an effect that the migration speed of the nucleic acid is faster than the conventional example.
[0034]
FIGS. 4A and 4B show calculation processes for obtaining the equal width for the electropherograms of FIGS. 3A and 3B, respectively. 4A and 4B, the horizontal axis represents the fragment length, and the vertical axis represents the half width of the spacing and peak. In the figure, squares are plots of spacing, and diamonds are plots of peak half-value widths.
[0035]
In the case of FIG. 4A using TG7 according to the present invention, the half width of the peak is approximately 0.3 to 0.4 mm, and the equal width is approximately 439 nt. On the other hand, in the case of the conventional TAPS7, as shown in FIG. 4B, the peak half-value width tends to be 0.5 to 0.6 mm wider than 300 nt and about 0.1 to 0.2 mm wider than TG7, etc. The width was 326 nt and 100 bases shorter than TG7. Therefore, the second embodiment of the present invention also has a feature that DNA sequence analysis can be accurately performed up to a longer fragment length as compared with the conventional example.
[0036]
Next, the electrophoresis current will be described. When TG7 according to the present invention was used, the electrophoretic current I was 5 [μA] in the initial stage, the electrophoretic current at the final time point was 4 [μA], and the average value of the electrophoretic current was about 4.4 [μA]. According to the same calculation as that in the first embodiment, the resistance R of the electrophoresis medium is 3.4 [GΩ] on average and the electric conductivity is about 0.61 [mS / cm]. On the other hand, the migration current of the conventional TAPS7 was 11 [μA] at the initial stage, the migration current at the final time point was 10 [μA], and the average value of the migration current was about 10.0 [μA]. Therefore, the electrical conductivity of TAPS7 is required to be about 1.4 [mS / cm]. That is, the electrophoretic medium TG7 according to the present embodiment has a current and electrical conductivity that are as low as about 1 / 2.2 compared with the corresponding conventional electrophoretic medium.
[0037]
For the present embodiment and the conventional example, the power per unit length of the capillary is found to be 1.6 [mW / cm] and 3.7 [mW / cm] on average, respectively. That is, the amount of Joule heat generation per unit length and per unit time is smaller in this embodiment, about 1/2 of the average of the conventional example. Therefore, also in this embodiment, there is an effect that the electrophoresis result of the nucleic acid can be obtained with high separation and stability.
[0038]
When the electrophoresis medium and the electrophoresis buffer according to the present embodiment are used, the migration speed is originally about 52% faster as described above, and since current and heat generation are small, 366 [V / cm] as in the present embodiment. Good nucleic acid separation can be obtained with good reproducibility even if a slightly higher electric field strength is employed. Therefore, there is an effect that rapid nucleic acid measurement is possible due to the synergistic effect of both.
[0039]
[Embodiment 3]
A third embodiment of the present invention will be described below. The third embodiment is a capillary array type apparatus using a plurality of capillaries based on the same principle as the apparatus described in Anazawa et al., 68, 2699, 1996 as an electrophoresis apparatus. However, the other points are the same as those in the first and second embodiments.
[0040]
FIG. 5 is a schematic configuration diagram of the capillary array electrophoresis apparatus used in the present embodiment. A feature of this apparatus is that a capillary array having a plurality of capillaries for electrophoresis is employed, and a lateral incidence on-column detection method (multifocus method) is used as a detection method.
[0041]
Hereinafter, the configuration of the present apparatus will be described. One end of the capillary array 4 and a platinum cathode 5 are set in the electrophoresis buffer 3, and the other end of the capillary array 4 is bundled and then connected to the flow path 7 of the pump block 6. Syringes 8 and 8 ', a solenoid valve 9, a check valve 10, and a flow path 11 are connected to or built in the pump block 6, and a platinum anode 5' is installed in the migration buffer 3 '. That is, an electrophoresis buffer 3, a capillary array 4, a flow path 7 of a pump block 6, a solenoid valve 9, a flow path 11, and a migration buffer 3 'are provided between the cathode 5 and the anode 5', and these form an electrophoresis path. To do. The cathode 5 and the anode 5 ′ are connected to a high voltage power source 12. The syringes 8 and 8 ′ are respectively connected to a syringe drive mechanism (not shown), and the syringes 8 and 8 ′ are filled with the electrophoresis media 13 and 13 ′. Most of the capillary array 4 except for both ends is contained in the temperature controller 14, and in particular, a part close to the polymer block is in contact with the detector 15. The detector 15 includes light sources 16 and 16 ′ (laser) and a light receiver (including a spectroscope and a CCD camera, not shown). The electrophoresis buffer 3 is held by the autosampler 17, and the washing buffer 18, the sample solution 19, and the like are held on the autosampler 17 in addition to the electrophoresis buffer 3. The sample solution 19 contains anionic substances to be measured such as DNA fragments, and these are labeled with a fluorescent dye. The entire apparatus is connected to a measurement control apparatus (not shown).
[0042]
Next, an outline of the operation of this apparatus will be described with reference to FIG. A part of the replenishment electrophoresis medium 13 in the syringe 8 is filled in the flow path 7 and the flow path 11 of the pump block 6. The temperature of the capillary array 4 is kept constant by the thermostatic chamber 14. After closing the solenoid valve 9, by operating the syringes 8 and 8 ′, a part of the electrophoresis medium 13 in the syringe 8 passes through the flow path 7 and the check valve 10 to inject the electrophoresis medium 13 in the syringe 8 ′. Move to '. The autosampler 17 is operated and the tip of the capillary array is immersed in the cleaning liquid 18. The electrophoresis medium 13 ′ is injected into the capillary array 4 via the flow path 7 inside the pump block 6 by driving the syringe 8 ′ at a constant volume with a constant pressure. Open the solenoid valve 9. The autosampler 17 is operated and the tip of the capillary array is immersed in the sample solution 19. The high voltage power supply 12 is operated to inject an electric charge component in the sample into the capillary array. The autosampler 17 is operated and the tip of the capillary array is immersed in the electrophoresis buffer 3. The high voltage power supply is operated, and the components in the sample in the capillary array 4 are electrophoresed in the direction of the detector 15.
[0043]
The light sources 16 and 16 ′ are continuously driven to irradiate from both side surfaces of the capillary array 4. Due to the lens effect of each capillary, laser light sequentially passes through the capillary from the outside toward the center capillary to excite the sample (lateral incidence on-column detection method, also called multi-focus method). The fluorescence spectrum of the sample component is spectroscopically measured by the detector 15 to acquire the electrophoresis spectrum of the fluorescence-labeled sample component. Even when a plurality of samples are labeled with different fluorescent dyes and run simultaneously, the mutual spectral interference is corrected and each sample is measured simultaneously and independently. Measure the size standard at the same time and normalize the run time. When measuring another sample set after the measurement of one sample set is completed, the procedure is repeated from the place where the electrophoresis medium 13 is transferred to 13 '. All the above operations are automatically performed by the measurement control device based on an instruction from the operator.
[0044]
Next, the outline of the use conditions of this apparatus will be described. In the present embodiment, the above apparatus is used for DNA fragment length analysis. The conditions for this were basically the same as those in the single capillary device described in the first embodiment. The main changes are as follows. As the capillary array, a capillary array 4 having 96 capillaries having an inner diameter of 50 μm, an outer diameter of 365 μm, an effective length of 22 cm, and a total length of 33 cm was used. The electric field injection conditions of the sample are an applied voltage of 10 kV, a time of 8 seconds, and an electrophoresis voltage of 15 kV. As a migration medium and a migration buffer, a combination of TG6 and TG buffer was used as in the first embodiment.
[0045]
In the process of examining the experimental conditions of the present embodiment, when the combination of the conventional electrophoresis medium and the electrophoresis buffer described in the first embodiment is used, a normal electropherogram may not be obtained, and generally the separation is poor. In some cases, the pump block portion is damaged by heat generation. Under the above electrophoresis conditions (electric field strength of 455 V / cm), the electrophoresis current was as high as about 1130 μA (about 11.8 μA per capillary). In order to obtain a stable migration result using a combination of a conventional migration medium and a migration buffer, the electric field strength must be about 313 V / cm or less.
[0046]
On the other hand, in the present embodiment, as in the first embodiment, the TG buffer and the migration medium based thereon are employed. As a result, there is no problem as in the conventional example, and normal and high separation equivalent to the case of a single capillary is achieved. Nucleic acid electrophoresis patterns were obtained for all capillaries. In this embodiment, the electrophoretic current was as low as about 270 μA (about 2.8 μA per capillary). For the present embodiment and the conventional example, the power per unit length of capillary is found to be 1.3 [mW / cm] and 5.4 [mW / cm] on average, respectively. That is, the amount of Joule heat generation per unit length and per unit time per capillary is smaller in this embodiment, about an average of about one quarter of that in the conventional example.
[0047]
In the conventional example, Joule heat is large, and in the part where many capillaries are arranged densely like in the vicinity of the detector like this device, temperature rise, separation decline, reproducibility decline, thermal runaway, capillary damage, While problems such as damage to the capillary holder are likely to occur, in this embodiment, since Joule heat is as low as about one-fourth that of the conventional example, these adverse effects can be prevented and good results can be obtained. It is thought that it was done. Therefore, the TG buffer employed in the present invention and the electrophoresis medium based on the TG buffer have high reproducibility of nucleic acid electrophoresis results and high reliability, particularly in an apparatus configuration having a portion where a large number of capillaries are concentrated as in this embodiment. effective. Further, since a high electric field strength of 455 [V / cm] can be adopted, there is an effect that the nucleic acid migration time is short.
[0048]
In this embodiment, a capillary array having 96 capillaries is used. However, the present invention is not limited to this configuration, and an apparatus configuration having a plurality of capillaries with more than 96 or fewer than 96 capillaries is also used. The same applies. When more capillaries are used, in the conventional method, the problem due to the heat generation becomes more prominent, so the effect of the present invention becomes more prominent. In this embodiment, the case where the capillary array is used for holding the electrophoresis medium has been described. However, even when a so-called chip electrophoresis apparatus that holds the electrophoresis medium in a groove provided on the substrate is used, the present invention The present invention can be applied in the same manner, and particularly in a high-throughput application in which nucleic acid electrophoresis is performed simultaneously using a large number of migration paths, the present invention exhibits extremely excellent effects.
[0049]
The effect peculiar to the present embodiment is that parallel processing is possible by using a plurality of capillaries at the same time, the throughput is high, the nucleic acid migration speed is about 25% faster than conventional, and there is less current and heat generation. The multi-capillary device can adopt 455V / cm, which is 45% higher than the conventional electric field strength, and the high-resolution nucleic acid electrophoresis results can be obtained stably with good reproducibility. It is possible to measure nucleic acid accurately.
[0050]
Next, the effect of the present invention will be described.
Conventional examples compared with the present invention are as described in each embodiment. That is, the migration medium and the migration buffer, which are the characteristics of each embodiment of the present invention, are replaced with those according to the prior art, and other conditions are aligned with each embodiment of the present invention. Specifically, the first conventional example is a method of performing DNA fragment length analysis using a commercially available electrophoresis apparatus, electrophoresis medium, and electrophoresis buffer described in Non-Patent Document 1, and specifically, electrophoresis. A single-capillary capillary electrophoresis apparatus was used as the apparatus, a capillary with an effective length of 30 cm as the capillary, TAPS 6 as the electrophoresis medium, and 100 mM TAPS buffer as the electrophoresis buffer. In the second conventional example, nucleic acid fragment length analysis is performed using a commercially available electrophoresis apparatus described in Non-Patent Document 1, a migration medium based on a polymer synthesized by the method described in Non-Patent Document 2, and an electrophoresis buffer. Specifically, a single capillary type capillary electrophoresis apparatus was used as the electrophoresis apparatus, a capillary having an effective length of 30 cm as the capillary, TAPS7 as the electrophoresis medium, and a TAPS buffer as the electrophoresis buffer. The third conventional example is a method of performing DNA fragment length analysis using a multicapillary electrophoresis apparatus, a commercially available electrophoresis medium described in Non-Patent Document 1, and an electrophoresis buffer. Specifically, electrophoresis is performed. As the apparatus, the multicapillary electrophoresis apparatus described in the third embodiment, a capillary array including 96 capillaries having an effective length of 22 cm as capillaries, TAPS6 as an electrophoresis medium, and 100 mM TAPS buffer as an electrophoresis buffer were used.
That is, the present invention is different from the conventional example using TAPS in that Tris-glycine is mainly used as a buffering agent in the electrophoresis medium and the electrophoresis buffer.
[0051]
An example of the comparison result between the conventional example and the present invention is shown in FIG. FIG. 6 shows the results of performing electrophoresis for each embodiment of the present invention and corresponding conventional examples, and comparing the representative characteristics of the results. The properties studied are separation properties (equal width), migration time, and migration current. Note that the conventional example corresponding to the third embodiment often fails to obtain good results when compared under the same conditions as the third embodiment. Characteristic values when good results are obtained () * This represents the best result under this condition, and in many cases, a lower result or nothing was obtained. Therefore, as a modified example of the third conventional example, the conditions under which the migration results were obtained reliably, that is, the results when the migration voltage was reduced to 10 kV (from 15 kV adopted as the standard condition) are also shown.
[0052]
As is clear from FIG. 6, each embodiment of the present invention has the features that the equal width is longer, the migration current is smaller, and the nucleic acid migration time is shorter than the conventional example under the same conditions. In addition, the third embodiment has a feature that nucleic acid electrophoresis can be performed with higher reproducibility than the conventional example under the same conditions. Further, as compared with the modified example of the conventional example 3 having different conditions, the electrophoretic current is small and the nucleic acid electrophoretic time is short. Further, the equal width per unit time is 13.7 [nt / min] in the third embodiment, and 8.7 [nt / min] in the modified example of the conventional example 3, and the analysis base length per unit time is long. It has the feature.
[0053]
Comparing in detail the average electrophoretic current per capillary, as described above, the first, second, and third embodiments are about 2.3 [μA], 4.4 [μA], and 2.8 [μA], respectively. On the other hand, the conventional examples 1, 2, and 3 are about 9.5 [μA], 10 [μA], and 11.8 [μA], respectively. That is, there is a clear difference between each embodiment of the present invention and the conventional example, each embodiment of the present invention is 5 [μA] or less, and the conventional example exceeds 8 [μA]. In terms of heat generation, separation, migration stability, etc., the present invention has obtained better characteristics than the conventional example because the average migration current per capillary (ie, one flow path) is compared with the conventional example. Therefore, it is thought that it is a big factor that it is extremely low. In other words, the conventional example employs electrophoresis conditions in which the average migration current per capillary is larger than 8 [μA], and thus there are problems such as high heat generation, low separation, and reduced migration stability. On the other hand, the present invention adopts electrophoresis conditions in which the average migration current per capillary is 8 [μA] or less, particularly preferably 5 [μA] or less, thereby reducing heat generation, high separation, and electrophoresis compared to the conventional example. Excellent effects such as high stability were obtained.
[0054]
Similarly, when compared in terms of electrical conductivity, the average of TG6 used in the first and third embodiments is about 0.32 [mS / cm] and the average of TG7 used in the second embodiment is about 0 as described above. The TAPS6 used in Conventional Examples 1 and 3 has an average of about 1.33 [mS / cm] and TAPS7 has an average of about 1.4 [mS / cm]. That is, there is a clear difference between each embodiment of the present invention and the conventional example, and each embodiment of the present invention is 0.7 [mS / cm] or less, whereas the conventional example is 1 [mS]. / Cm]. It is considered that the reason why the present invention obtained favorable characteristics compared to the conventional example in terms of heat generation, separation, migration stability, etc. is that the electrical conductivity is remarkably lower than that of the conventional example. . In other words, the conventional example employs electrophoresis conditions in which the electric conductivity is greater than 1 [mS / cm], and thus has problems such as high heat generation, low separation, and reduced stability of electrophoresis. On the other hand, according to the present invention, by adopting the electrophoresis conditions in which the electric conductivity is 1 [mS / cm] or less, particularly preferably 0.7 [μA] or less, the heat generation is low, the separation is high, and the electrophoresis is low. Excellent effects such as high stability were obtained.
[0055]
Similarly, when comparing from the viewpoint of the power per unit length per capillary, the first, second, and third embodiments are about 0.32 [mW / cm] and 0.61 [respectively] as described above. mW / cm] and 1.3 [mW / cm], whereas the conventional examples 1, 2 and 3 are about 3.5 [mW / cm], 3.7 [mW / cm] and 5.4, respectively. [MW / cm]. That is, there is a clear difference between each embodiment of the present invention and the conventional example, each embodiment of the present invention is 2 [mW / cm] or less, and the conventional example is greater than 3 [mW / cm]. . In the items such as heat generation, separation, and migration stability, the present invention has obtained better characteristics compared to the conventional example because the work rate per unit length per capillary is lower than that of the conventional example. This is considered to be a major factor. In other words, the conventional example employs the electrophoresis conditions in which the power per unit length per capillary is larger than 3 [mW / cm], and thus there are problems such as high heat generation, low separation, and low stability of electrophoresis. It was. On the other hand, the present invention is compared with the conventional example by adopting electrophoresis conditions in which the power per unit length per capillary is 3 [mW / cm] or less, particularly preferably 2 [mW / cm] or less. As a result, excellent effects such as low heat generation, high separation, and high migration stability were obtained.
[0056]
Although a direct comparison experiment between the method described in Non-Patent Document 2 and each embodiment of the present invention was not performed, according to the description in Non-Patent Document 2, 163 at an effective length of 19.5 cm at which sufficient separation can be obtained. The migration time of the base length fragment is about 10 minutes. On the other hand, in the second embodiment of the present invention, the migration time of a nucleic acid fragment having a length of 500 bases at an effective length of 30 cm can be separated in 9.5 minutes, so that the migration is faster than in Non-Patent Document 2. In Non-Patent Document 2, in order to prevent hydrolysis of the polymer by alkali, the polymer is first dissolved in 0.03M NaCl and filled into the capillary, and then the capillary is placed in a pre-migration buffer made of 0.04M NaOH. The polymer buffer was exchanged with 0.04M NaOH by soaking and pre-running for about 5 minutes. That is, since this pre-electrophoresis time is required in addition to the sample electrophoretic time, it is clear that the total electrophoretic time is shorter in the present invention. Therefore, the present invention has a feature that it is a simple and quick method as compared with the method of Non-Patent Document 2.
[0057]
As described above, the present invention can provide a nucleic acid electrophoresis apparatus that is faster, more accurate, and more separated than conventional techniques, and has a feature that the number of nucleobases that can be analyzed is long.
[0058]
【The invention's effect】
According to the present invention, in a capillary electrophoresis apparatus, rapid and high nucleic acid separation can be achieved with a simple configuration, and even long nucleic acids can be analyzed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a result (electropherogram) of measuring a size standard using a capillary electrophoresis apparatus, (a) is an electropherogram of the first embodiment of the present invention based on TG6. (B) is an electropherogram of a conventional example based on TAPS6.
FIGS. 2A and 2B are diagrams showing a calculation process for obtaining a uniform width for the electropherogram of FIG. 1, wherein FIG. 2A corresponds to the first embodiment of the present invention, and FIG. To do.
FIG. 3 is a diagram showing an example (electropherogram) of a result of measuring a size standard using a capillary electrophoresis apparatus, where (a) is an electropherogram of a second embodiment of the present invention based on TG7. (B) is an electropherogram of a conventional example based on TAPS7.
FIGS. 4A and 4B are diagrams showing a calculation process for obtaining a uniform width for the electropherogram of FIG. 3, wherein FIG. 4A corresponds to the second embodiment of the present invention, and FIG. To do.
FIG. 5 is a schematic configuration diagram of a capillary array electrophoresis apparatus according to the present invention.
FIG. 6 is a diagram showing a comparison of electrophoretic characteristics between the present invention and a conventional example.
[Explanation of symbols]
3, 3 '... migration buffer, 4 ... capillary array, 5 ... cathode, 5' ... anode, 6 ... pump block, 7 ... flow path, 8, 8 '... syringe, 9 ... solenoid valve, 10 ... check valve, DESCRIPTION OF SYMBOLS 11 ... Flow path, 12 ... High voltage power supply, 13, 13 '... Electrophoresis polymer, 14 ... Temperature controller, 15 ... Detector, 16, 16' ... Light source, 17 ... Autosampler, 18 ... Cleaning solution, 19 ... Sample solution

Claims (2)

高分子と、緩衝剤と、核酸の変性剤としての尿素とを含有する泳動媒体が充填された複数のキャピラリ流路を具備する電気泳動装置において、
前記緩衝剤は、0.01〜0.05[M]のトリス(ヒドロキシメチル)アミノメタンと0.1〜0.4[M]のグリシンからなることを特徴とする電気泳動装置。
In an electrophoresis apparatus comprising a plurality of capillary channels filled with an electrophoresis medium containing a polymer, a buffer, and urea as a nucleic acid denaturant,
The electrophoretic device, wherein the buffer comprises 0.01 to 0.05 [M] tris (hydroxymethyl) aminomethane and 0.1 to 0.4 [M] glycine .
請求項1記載の電気泳動装置において、前記泳動媒体の平均の電気伝導度が1[mS/cm]以下であることを特徴とする電気泳動装置。  The electrophoresis apparatus according to claim 1, wherein an average electric conductivity of the electrophoresis medium is 1 [mS / cm] or less.
JP2003126307A 2003-05-01 2003-05-01 Electrophoresis device Expired - Lifetime JP4320210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126307A JP4320210B2 (en) 2003-05-01 2003-05-01 Electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126307A JP4320210B2 (en) 2003-05-01 2003-05-01 Electrophoresis device

Publications (3)

Publication Number Publication Date
JP2004333190A JP2004333190A (en) 2004-11-25
JP2004333190A5 JP2004333190A5 (en) 2005-11-10
JP4320210B2 true JP4320210B2 (en) 2009-08-26

Family

ID=33503281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126307A Expired - Lifetime JP4320210B2 (en) 2003-05-01 2003-05-01 Electrophoresis device

Country Status (1)

Country Link
JP (1) JP4320210B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681433B2 (en) * 2005-11-29 2011-05-11 株式会社日立ハイテクノロジーズ Capillary electrophoresis device
JP2009042004A (en) * 2007-08-07 2009-02-26 Norio Okuyama Electrophoretic support
JP5061261B2 (en) * 2012-02-02 2012-10-31 株式会社テクノフロント Method for producing support for electrophoresis
JP6232591B2 (en) 2016-04-27 2017-11-22 パナソニックIpマネジメント株式会社 Method for determining whether a capillary filled with an electrophoretic medium is properly used for electrophoresis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150760A (en) * 1988-11-30 1990-06-11 Fuji Photo Film Co Ltd Dyeing treatment in electrophoresis
CA2078559A1 (en) * 1990-03-20 1991-09-21 Robert Shorr Electrophoretic media
WO1995016910A1 (en) * 1993-12-17 1995-06-22 Perkin-Elmer Corporation Uncharged polymers for separation of biomolecules by capillary electrophoresis
ATE211822T1 (en) * 1994-02-07 2002-01-15 Pe Corp Ny ELECTROFORETIC FLUORESCENCE DEVICE FOR THE ANALYSIS OF POLYNUCLEOTIDES
JPH11148919A (en) * 1997-11-14 1999-06-02 Bunshi Bio Photonics Kenkyusho:Kk Capillary chip
EP1151287A1 (en) * 1999-01-12 2001-11-07 Spectrumedix Corporation Copolymers for capillary gel electrophoresis
JP4515640B2 (en) * 1999-02-02 2010-08-04 カリパー・ライフ・サイエンシズ・インク. Protein characterization method, apparatus and system
JP3942001B2 (en) * 1999-12-02 2007-07-11 ハイモ株式会社 Polyacrylamide precast gel for electrophoresis, method for producing the same, and method for separating and analyzing proteins
US6706162B1 (en) * 2000-09-25 2004-03-16 Applera Corporation High speed, high resolution compositions, methods, and kits for capillary electrophoresis
JP2002277438A (en) * 2001-03-22 2002-09-25 Hymo Corp Electrophoretic gel, method of making thereof and application thereof
JP2003004702A (en) * 2001-06-15 2003-01-08 Bio Meito:Kk Method for manufacturing gel for high resolution electrophresis

Also Published As

Publication number Publication date
JP2004333190A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
Paulus et al. Analysis of oligonucleotides by capillary gel electrophoresis
Dolnı́k DNA sequencing by capillary electrophoresis
Kleparnik et al. DNA diagnostics by capillary electrophoresis
Guttman et al. Separation of DNA by capillary electrophoresis
Schmalzing et al. Recent developments in DNA sequencing by capillary and microdevice electrophoresis
JPH09201200A (en) Confinement of nucleic acid sequence determining template in sample mixture with entangled polymer network structure
US20230314369A1 (en) Compositions, methods, kits and devices for molecular analysis
US20060108225A1 (en) High conductivity sieving matrices for high resolution biomolecule separations
Shewale et al. Principles, practice, and evolution of capillary electrophoresis as a tool for forensic DNA analysis
JP4320210B2 (en) Electrophoresis device
JP4342954B2 (en) Electrophoretic separation detection of nucleic acid using retrograde high affinity intercalation dye
US20070138014A1 (en) Buffers for electrophoresis and use thereof
Vainer et al. Short tandem repeat typing by capillary array electrophoresis: comparison of sizing accuracy and precision using different buffer systems
Smith et al. Capillary electrophoresis of DNA
Karger Separation of DNA sequencing fragments using an automated capillary electrophoresis instrument
EP0744024B1 (en) Fluorescence-based electrophoresis system for polynucleotide analysis
Huang et al. Maximization of injection volumes for DNA analysis in capillary electrophoresis
CN111344562B (en) Compositions, methods, kits and devices for molecular analysis
JP4021215B2 (en) Electrophoresis method
AU671569B2 (en) Entrapment of nucleic acid sequencing template in sample mixtures by entangled polymer networks
US20020189948A1 (en) Electrophoresis separation media and methods
Kim et al. Capillary electrophoresis of DNA fragments using poly (ethylene oxide) as a sieving material
SHEWALE et al. Principles practice and evolution of capillary electrophoresis as a tool for
WO2024088984A1 (en) Capillary gel electrophoresis separation of diastereomers of phosphorothioated oligonucleotides
JP2003227813A (en) Capillary cataphoresis apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4320210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term