JP4319576B2 - Automatic ice making machine - Google Patents

Automatic ice making machine Download PDF

Info

Publication number
JP4319576B2
JP4319576B2 JP2004132094A JP2004132094A JP4319576B2 JP 4319576 B2 JP4319576 B2 JP 4319576B2 JP 2004132094 A JP2004132094 A JP 2004132094A JP 2004132094 A JP2004132094 A JP 2004132094A JP 4319576 B2 JP4319576 B2 JP 4319576B2
Authority
JP
Japan
Prior art keywords
water supply
water
supply tank
ice making
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004132094A
Other languages
Japanese (ja)
Other versions
JP2005315472A (en
Inventor
淳二 吉田
睦 加藤
利枝 平岡
清 八木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004132094A priority Critical patent/JP4319576B2/en
Publication of JP2005315472A publication Critical patent/JP2005315472A/en
Application granted granted Critical
Publication of JP4319576B2 publication Critical patent/JP4319576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、自動製氷装置及び自動製氷装置の製氷方法及び自動製氷装置を搭載した冷蔵庫に関するものである。   The present invention relates to an automatic ice making device, an ice making method for the automatic ice making device, and a refrigerator equipped with the automatic ice making device.

近年の冷蔵庫は、冷蔵室内に給水タンクを設置するとともに、冷凍室内(もしくは製氷室内)には駆動装置にて回転される製氷皿を設置し、給水ポンプによって給水タンクから製氷皿に給水することにより、製氷を行う自動製氷機を備えている。   In recent refrigerators, a water supply tank is installed in a refrigeration room, an ice tray that is rotated by a driving device is installed in a freezing chamber (or an ice making chamber), and water is supplied from the water supply tank to the ice making tray by a water supply pump. It has an automatic ice maker that makes ice.

この場合、給水タンクは冷蔵室内に着脱自在に設けられ、給水タンクに給水する際には冷蔵室から給水タンクを取り出し、水道水を注水するものであった。この給水タンク内の水道水は前述の如く給水ポンプによって製氷皿へ送られ、冷凍室内(もしくは製氷室内)の冷却作用によって凍結せられる。そして、製氷皿にて製氷が完了した場合には、駆動装置によって製氷皿を回動させ、捻って離氷するとともに、製氷皿から落下した氷は受け皿に蓄えられるものであった(例えば、特許文献1参照)。   In this case, the water supply tank is detachably provided in the refrigerating chamber, and when water is supplied to the water supply tank, the water supply tank is taken out from the refrigerating chamber, and tap water is poured. As described above, the tap water in the water supply tank is sent to the ice tray by the water supply pump, and is frozen by the cooling action in the freezer compartment (or ice compartment). When the ice making is completed in the ice tray, the ice tray is rotated by the drive device, twisted to separate the ice, and the ice dropped from the ice tray is stored in the tray (for example, patents) Reference 1).

従来、給水ポンプによる給水動作の後、製氷皿の温度を検出するなどにより製氷皿に給水されたか否かを判別することにより、給水タンクの水切れ検知が行われていた。例えば、給水ポンプによる給水動作(給水ポンプの所定時間の作動)の後に、製氷皿の温度が所定温度(例えば−2℃)を越えれば給水がなされた、すなわち、給水タンクの水切れは生じていないと判別し、所定温度を越えなければ給水がなされなかった、給水タンクの水切れが生じたと判別する。   Conventionally, after a water supply operation by a water supply pump, it has been detected whether or not water has been supplied to the ice tray by detecting the temperature of the ice tray or the like, thereby detecting the water tank running out of water. For example, after the water supply operation by the water supply pump (operation of the water supply pump for a predetermined time), if the temperature of the ice tray exceeds a predetermined temperature (for example, −2 ° C.), water is supplied, that is, the water supply tank does not run out. If the predetermined temperature is not exceeded, it is determined that water has not been supplied or that the water supply tank has run out.

また、他の従来の冷蔵庫によれば、給水タンクの水切れ検知後、扉開閉があったか否か、及び所定時間後に給水ポンプを作動させ製氷皿の温度が所定温度以上になるか否かを検出することにより、給水タンクへの水の補給がなされたかどうかを判定することができる。それによりポンプの空動作による騒音低減と長寿命化、小電力化を実現している(例えば、特許文献2参照)。   In addition, according to another conventional refrigerator, after the water tank is detected to run out, it is detected whether the door has been opened and closed, and whether the temperature of the ice tray is equal to or higher than a predetermined temperature by operating the water supply pump after a predetermined time. Thus, it can be determined whether or not water has been supplied to the water supply tank. As a result, noise reduction, long life, and low power consumption due to the idling operation of the pump are realized (for example, see Patent Document 2).

また、さらに他の冷蔵庫によれば、給水タンクから供給される一定量の水を貯える定量タンクに全体または部分的に透明部を設けて、透明部の外側の一方に発光素子を、もう一方に受光素子を相対向して設け、両素子間の光信号授受によりタンク内の水の有無を検知する検知手段と、その検知結果により給水動作を自動的に制御する制御手段とを備えたことを特徴とする冷蔵庫が開示されている(例えば、特許文献3参照)。
特開平9−250852号公報 特開2003−329344号公報 実開平03−124179号公報
According to still another refrigerator, a transparent portion is provided in whole or in part in a fixed amount tank that stores a certain amount of water supplied from a water supply tank, and a light emitting element is provided on one side outside the transparent portion, and the other side. A light receiving element is provided opposite to each other, and a detecting means for detecting the presence or absence of water in the tank by transmitting and receiving an optical signal between both elements, and a control means for automatically controlling the water supply operation based on the detection result are provided. The characteristic refrigerator is disclosed (for example, refer patent document 3).
Japanese Patent Laid-Open No. 9-250852 JP 2003-329344 A Japanese Utility Model Publication No. 03-124179

しかしながら特許文献2の冷蔵庫においては、給水ポンプを作動させなければ製氷皿への給水は行われず、水切れ判定が実施されない。よって給水タンクが水切れを起こしていても給水ポンプは作動し、給水ポンプの空運転が減ることはない。また、その回数を減らすために給水ポンプの動作の間隔を広げれば、給水タンクへの水の補給から製氷完了までの時間が長引き、ユーザーにとって不利益を生じる。   However, in the refrigerator of Patent Document 2, water supply to the ice tray is not performed unless the water supply pump is operated, and the water outage determination is not performed. Therefore, even if the water supply tank runs out of water, the water supply pump operates and the idle operation of the water supply pump does not decrease. Further, if the interval of operation of the water supply pump is increased in order to reduce the number of times, the time from replenishment of water to the water supply tank to completion of ice making is prolonged, resulting in a disadvantage for the user.

また、特許文献3によれば、自動製氷機では水位検知を水と空気の屈折率の違いを利用して、発光素子からの光が受光素子に授受されるか否かで水の有無を判別しているため、水滴が残っているだけでも水が有と判定されてしまうという問題があった。   According to Patent Document 3, in an automatic ice maker, the water level is detected using the difference in refractive index between water and air, and the presence or absence of water is determined based on whether or not light from the light emitting element is transferred to the light receiving element. Therefore, there is a problem that water is determined to be present even if water droplets remain.

この発明は、上記のような問題点を解決するためになされたもので、給水ポンプの空運転を防止して、給水ポンプの空運転による騒音を防止することができると共に給水ポンプの長寿命化が図れる自動製氷装置及び自動製氷装置の製氷方法及び冷蔵庫を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can prevent the idle operation of the feed water pump, thereby preventing noise caused by the idle operation of the feed water pump and extending the life of the feed water pump. It is an object of the present invention to provide an automatic ice making device, an ice making method for the automatic ice making device, and a refrigerator.

また、空運転を防止して省電力化が図れることを目的とする。   Another object of the present invention is to save power by preventing idling.

また、部品数低減による低価格な給水タンクの水位検知機能及び給水タンク内の除菌機能を有する自動製氷装置及び自動製氷装置の製氷方法及び冷蔵庫を提供することを目的とする。   It is another object of the present invention to provide an automatic ice making device, an ice making method for an automatic ice making device, and a refrigerator having a low-price water level detection function and a sterilization function in the water supply tank by reducing the number of parts.

また、水位誤検知の可能性を低くした高品質な水位検知機能を有する自動製氷装置及び自動製氷装置の製氷方法及び冷蔵庫を提供することを目的とする。   It is another object of the present invention to provide an automatic ice making device having a high-quality water level detection function that reduces the possibility of erroneous water level detection, an ice making method for the automatic ice making device, and a refrigerator.

この発明に係る自動製氷装置は、製氷用の水を貯留する給水タンクと、この給水タンク内に設けられ、該給水タンクの水を外部に送出する給水ポンプと、この給水ポンプにより給水タンクから水が供給される製氷皿と、この製氷皿をひねり離氷を行う駆動装置と、給水タンク近傍の面に設けられ、光を発する発光手段と、この発光手段と同一面に設けられ、給水タンクの内部で反射された反射光を受光する受光手段とを備えたことを特徴とする。   An automatic ice making device according to the present invention includes a water supply tank that stores water for ice making, a water supply pump that is provided in the water supply tank and sends out water from the water supply tank to the outside, and water is supplied from the water supply tank by the water supply pump. An ice tray, a drive device that twists the ice tray to remove ice, a light emitting means that emits light provided on a surface near the water supply tank, and a light emitting means that is provided on the same surface as the light emitting means. And a light receiving means for receiving the reflected light reflected inside.

この発明に係る自動製氷装置は、上記構成により、給水ポンプの空運転による騒音を防止することができると共に給水ポンプの長寿命化が図れる。   With the above-described configuration, the automatic ice making device according to the present invention can prevent noise caused by the idling operation of the water supply pump and can extend the life of the water supply pump.

実施の形態1.
図1〜7は実施の形態1を示す図で、図1は冷蔵庫の概略図、図2は給水タンク周辺の概略側断面図、図3は水位検知部の斜視図、図4は製氷室の概略側断面図、図5は冷蔵庫の側断面図、図6は冷蔵庫の水位検知制御のフローチャート、図7は自動製氷制御の概略ブロック回路図である。
図1において、冷蔵庫1は、鋼板製の外箱2と樹脂製の内箱3とこれらの間に充填された発泡断熱材4とで形成された断熱箱体5を複数の室に仕切り、それぞれの室の開口部を開閉自在に閉塞する扉体を有する。
Embodiment 1 FIG.
1 to 7 are diagrams showing Embodiment 1, FIG. 1 is a schematic diagram of a refrigerator, FIG. 2 is a schematic side sectional view around a water supply tank, FIG. 3 is a perspective view of a water level detection unit, and FIG. FIG. 5 is a schematic side sectional view, FIG. 5 is a side sectional view of the refrigerator, FIG. 6 is a flowchart of water level detection control of the refrigerator, and FIG. 7 is a schematic block circuit diagram of automatic ice making control.
In FIG. 1, a refrigerator 1 partitions a heat insulating box 5 formed of a steel plate outer box 2, a resin inner box 3, and a foam heat insulating material 4 filled therebetween, into a plurality of chambers, respectively. The door has a door that can be opened and closed.

冷蔵庫1の断熱箱体5は、上から順に冷蔵室11、製氷室12及び切替室13、野菜室16、冷凍室18に仕切られている。そして、これらの室は、その開口部を開閉自在に閉塞する冷蔵室扉体6、製氷室扉体7、切替室扉体8、野菜室扉体9、冷凍室扉体10を有する。   The heat insulation box 5 of the refrigerator 1 is partitioned into a refrigerating room 11, an ice making room 12, a switching room 13, a vegetable room 16, and a freezing room 18 in order from the top. And these rooms have the refrigerator compartment door body 6, the ice making room door body 7, the switching room door body 8, the vegetable compartment door body 9, and the freezer compartment door body 10 which obstruct | occludes the opening part so that opening and closing is possible.

断熱箱体5を複数の室に仕切る仕切部材には、冷蔵室11と製氷室12及び切替室13との仕切部材14、製氷室12と切替室13との仕切部材15、製氷室12及び切替室13と野菜室16との仕切部材17、野菜室16と冷凍室18との仕切部材19がある。   The partition member that partitions the heat insulation box 5 into a plurality of chambers includes a partition member 14 between the refrigerator compartment 11, the ice making chamber 12, and the switching chamber 13, a partition member 15 between the ice making chamber 12 and the switching chamber 13, the ice making chamber 12, and switching. There are a partition member 17 between the chamber 13 and the vegetable chamber 16, and a partition member 19 between the vegetable chamber 16 and the freezing chamber 18.

冷蔵室11内には、給水タンクの蓋39を有する給水タンク20が配置されている。給水タンク20は冷蔵室11と製氷室12及び切替室13とを仕切る、冷蔵室と製氷室及び切替室との仕切部材14に取出し自在に挿入されている。給水タンク20の材料は透明であり、例えば透明ポリスチレンである。なお、本実施の形態においては耐磨耗性の高いグレードの透明ポリスチレンを使用している。給水タンク20はユーザーにより洗浄することができるが、その際、傷つく恐れがあるが磨耗に対して強いグレードの透明ポリスチレンを使用することにより傷つきを抑制することができる。   A water supply tank 20 having a water supply tank lid 39 is disposed in the refrigerator compartment 11. The water supply tank 20 is detachably inserted into a partition member 14 that separates the refrigerator compartment 11 from the ice making compartment 12 and the switching compartment 13 between the refrigerator compartment, the ice making compartment, and the switching compartment. The material of the water supply tank 20 is transparent, for example, transparent polystyrene. In this embodiment, a transparent polystyrene having a high wear resistance is used. Although the water supply tank 20 can be cleaned by the user, there is a risk that the water supply tank 20 may be damaged, but it is possible to suppress the damage by using a grade of transparent polystyrene that is resistant to wear.

製氷室12及び切替室13、野菜室16、冷凍室18の後方に冷却器21及び庫内ファン22が設置された冷却室34がある。また、冷却室34から冷蔵室11への冷気流量を調整する冷蔵室用ダンパ装置23と、切替室13への冷気流量を調整する切替室用ダンパ装置24とが設けられている。   Behind the ice making room 12 and the switching room 13, the vegetable room 16, and the freezing room 18 is a cooling room 34 in which a cooler 21 and an internal fan 22 are installed. Further, a cold room damper device 23 for adjusting the cold air flow rate from the cooling chamber 34 to the cold room 11 and a switching chamber damper device 24 for adjusting the cold air flow rate to the switching chamber 13 are provided.

冷蔵庫1には製氷室12内後部に製氷コーナー25が配設され、製氷コーナー25は、製氷皿26、製氷皿26をひねる駆動装置27、製氷皿26を支える製氷コーナー外壁部材28、検氷レバー29を備えている。   The refrigerator 1 is provided with an ice making corner 25 at the rear of the ice making chamber 12. The ice making corner 25 includes an ice tray 26, a drive device 27 that twists the ice tray 26, an ice making corner outer wall member 28 that supports the ice tray 26, and an ice detection lever. 29.

給水タンク20から水の通り道である給水経路30を経て製氷皿26へと水を供給する。製氷室12内には氷を貯めておく貯氷箱31が設けられる。   Water is supplied from the water supply tank 20 to the ice tray 26 through a water supply path 30 which is a water passage. An ice storage box 31 for storing ice is provided in the ice making chamber 12.

冷蔵室扉体6の表面には表示パネル32を有し、表示パネル32には製氷オンオフスイッチ33を備えている。この製氷オンオフスイッチ33をオフさせることにより製氷を停止することができる。   A display panel 32 is provided on the surface of the refrigerator compartment door 6, and the display panel 32 is provided with an ice making on / off switch 33. The ice making can be stopped by turning off the ice making on / off switch 33.

また、表示パネル32には発光手段オンオフスイッチ35を備えている。ユーザーの好みにより、発光手段オンオフスイッチ35により、発光手段のオンオフを選択できる。   The display panel 32 includes a light emitting means on / off switch 35. Depending on the user's preference, the light emitting means on / off switch 35 can be used to select on / off of the light emitting means.

図2の給水タンク周辺の概略側断面図に示すように、給水タンク20は給水タンク受49に給水タンク20の大部分が埋まるように設置されている。給水タンク受49は冷蔵室と製氷室及び切替室との仕切部材14に設置されている。給水タンク受49にはマグネットポンプモーター43が取付けられている。給水タンク20内には給水ポンプ40が、マグネットポンプモーター43と給水タンク受49及び給水タンク20を挟んで対面するように配置されている。   As shown in the schematic side sectional view of the periphery of the water supply tank in FIG. 2, the water supply tank 20 is installed so that most of the water supply tank 20 is buried in the water supply tank receiver 49. The water tank receiver 49 is installed in the partition member 14 between the refrigerator compartment, the ice making chamber, and the switching chamber. A magnet pump motor 43 is attached to the water tank receiver 49. In the water supply tank 20, a water supply pump 40 is disposed so as to face each other with the magnet pump motor 43, the water supply tank receiver 49, and the water supply tank 20 interposed therebetween.

給水ポンプ40にはポンプカバー61が被せられるように設置されている。ポンプカバー61は浄水フィルター41を収納できる形状をしており、蓋部材62にてポンプカバー61を閉塞する(詳しくは、実施の形態3で説明する)。   The feed water pump 40 is installed so as to cover the pump cover 61. The pump cover 61 has a shape that can store the water purification filter 41 and closes the pump cover 61 with a lid member 62 (details will be described in Embodiment 3).

給水ポンプ40には給水パイプ36が取付けられている。マグネットポンプモーター43に通電することにより、給水ポンプ40に内蔵されているマグネットで構成される羽根車(マグネットインペラ、詳しくは実施の形態3で説明する)が磁気力で回転し、その作用により給水タンク20内の水が浄水フィルター41を通過しながら吸い上げられ給水パイプ36の内部を通過し、給水経路30に落ちたのち製氷皿26へ供給される構造となっている。   A water supply pipe 36 is attached to the water supply pump 40. When the magnet pump motor 43 is energized, an impeller (magnet impeller, which will be described in detail in Embodiment 3) composed of a magnet built in the water supply pump 40 is rotated by magnetic force, and water is supplied by the action. The water in the tank 20 is sucked up while passing through the water purification filter 41, passes through the water supply pipe 36, falls into the water supply path 30, and then supplied to the ice tray 26.

給水タンク受49の給水ポンプ40とは反対側の面(ここでは垂直面)には穴があいており、そこには窓部材44aが取付けられている。窓部材44aは材料が透明であり、例えば透明ポリスチレンである。もちろん、メタクリルやポリカーボネイトやガラスでもよい。そして、窓部材44aには赤外線発光手段42(発光手段の一例である)が内蔵できるようになっている。赤外線発光手段42は、例えば発光ダイオード(LED)やランプである。   The surface of the water supply tank receiver 49 opposite to the water supply pump 40 (here, the vertical surface) has a hole, and a window member 44a is attached thereto. The window member 44a is made of a transparent material, for example, transparent polystyrene. Of course, methacryl, polycarbonate and glass may be used. The window member 44a can incorporate an infrared light emitting means 42 (which is an example of a light emitting means). The infrared light emitting means 42 is, for example, a light emitting diode (LED) or a lamp.

ヒータ45(加熱手段の一例である)は、給水タンク20内の水が製氷室12の冷却により冷却されて凍結することを防止する役割を有している。また、窓部材44aと同一面には窓部材44bが取付けられている(図3も参照)。窓部材44bは材料が透明であり、例えば透明ポリスチレンである。もちろん、メタクリルやポリカーボネイトやガラスでもよい。窓部材44bは給水タンク受49に設けられた穴に取り付けられている。また、窓部材44bの内部には受光手段72が設けられている。受光手段72は、例えば受光ダイオードや受光トランジスタである。   The heater 45 (which is an example of a heating unit) has a role of preventing water in the water supply tank 20 from being cooled by the cooling of the ice making chamber 12 and freezing. A window member 44b is attached to the same surface as the window member 44a (see also FIG. 3). The window member 44b is made of a transparent material, for example, transparent polystyrene. Of course, methacryl, polycarbonate and glass may be used. The window member 44 b is attached to a hole provided in the water supply tank receiver 49. A light receiving means 72 is provided inside the window member 44b. The light receiving means 72 is, for example, a light receiving diode or a light receiving transistor.

赤外線発光手段42より発せられる光は赤外線である。赤外線は水に吸収されやすい特性を有しているため、給水タンク20内に水があるときは赤外線が水に吸収されて受光手段72は赤外線を受光しない。逆に水がない場合は、赤外線は蓋部材62で反射されて受光手段72へ到達し、受光手段72が赤外線を受光する。もちろん給水タンク20表面でも赤外線は反射されるが、大部分は給水タンク20を通過するため、受光手段72が受光する光量は少ない。   The light emitted from the infrared light emitting means 42 is infrared light. Since infrared rays have a characteristic that they are easily absorbed by water, when there is water in the water supply tank 20, the infrared rays are absorbed by water and the light receiving means 72 does not receive the infrared rays. Conversely, when there is no water, the infrared light is reflected by the lid member 62 and reaches the light receiving means 72, and the light receiving means 72 receives the infrared light. Of course, infrared rays are also reflected on the surface of the water supply tank 20, but most of the light passes through the water supply tank 20, so that the amount of light received by the light receiving means 72 is small.

つまり受光手段72が赤外線を所定量以上受光したときには水が少ないもしくは無いと判定される。所定量以下の場合は、水があると判定される。水が少ないもしくは無いと判定された場合はユーザーにその旨を報知するために表示パネル32にて水がない旨を表示する。もちろん、報知手段としてはブザーやランプ等を用いてもよい。
給水タンク20、給水ポンプ40(マグネットポンプモーター43を含む)、給水経路30、製氷皿26、製氷皿26をひねる駆動装置27、検氷レバー29、赤外線発光手段42、受光手段72により自動製氷装置を構成する。
That is, when the light receiving means 72 receives infrared rays over a predetermined amount, it is determined that there is little or no water. If it is less than the predetermined amount, it is determined that there is water. When it is determined that there is little or no water, the display panel 32 displays that there is no water in order to notify the user of that fact. Of course, a buzzer or a lamp may be used as the notification means.
Automatic ice making device by water supply tank 20, water supply pump 40 (including magnet pump motor 43), water supply path 30, ice tray 26, drive device 27 for twisting ice tray 26, ice detecting lever 29, infrared light emitting means 42 and light receiving means 72 Configure.

図4に示すように、製氷室12内に配置される製氷皿26には、その底面外側に製氷サーミスタ70が取り付けられている。後述するように、製氷サーミスタ70より製氷皿26の温度を検知して、製氷の判定を行う。   As shown in FIG. 4, an ice making thermistor 70 is attached to the outside of the bottom surface of the ice making tray 26 disposed in the ice making chamber 12. As will be described later, the ice making thermistor 70 detects the temperature of the ice tray 26 to determine ice making.

図5に示すように、冷蔵庫1の冷凍サイクルの一部を構成する圧縮機73が、冷蔵庫1の背面下部に配置されている。鋼板製の外箱2と樹脂製の内箱3とこれらの間に充填された発泡断熱材4とで形成された断熱箱体5の外部に、圧縮機73は位置する。圧縮機73により、冷媒が圧縮されて高温・高圧のガス冷媒となり、図示しない凝縮器で凝縮して高圧の液冷媒となり、その後図示しない減圧手段(通常はキャピラリーチューブ)により減圧されて低圧二相冷媒となり、冷却器21で蒸発して空気と熱交換して冷気を生成し、低圧ガス冷媒となり圧縮機73に戻る。   As shown in FIG. 5, a compressor 73 that constitutes a part of the refrigeration cycle of the refrigerator 1 is disposed at the lower back of the refrigerator 1. The compressor 73 is located outside the heat insulating box 5 formed by the outer box 2 made of steel plate, the inner box 3 made of resin, and the foam heat insulating material 4 filled therebetween. The refrigerant is compressed by the compressor 73 to become a high-temperature and high-pressure gas refrigerant, condensed by a condenser (not shown) to become a high-pressure liquid refrigerant, and then decompressed by a decompression means (usually a capillary tube) (not shown) to be low-pressure two-phase. It becomes a refrigerant, evaporates in the cooler 21, exchanges heat with air to generate cold air, becomes a low-pressure gas refrigerant, and returns to the compressor 73.

図6のフローチャートにおいて、先ずS1にて圧縮機73が運転中か否かを判定する。圧縮機73が停止中であれば、S11にて給水中止となる。S1において圧縮機73が運転中と判定した場合、S2で製氷室12が満氷であるか否かを判定する。製氷室12が満氷であると判定した場合は、S11にて給水中止となる。製氷室12が満氷でないと判定した場合、S12でヒータ45の通電率を所定時間上昇させた後、S3で赤外線発光手段42を所定時間オンする。ヒータ45は給水タンク20内の水の凍結防止のみならず、給水タンク20内の水が少なく給水タンク20の内側に水滴やくもりがついた場合、その水滴やくもりを除去することができる。   In the flowchart of FIG. 6, it is first determined in S1 whether or not the compressor 73 is operating. If the compressor 73 is stopped, water supply is stopped in S11. If it is determined in S1 that the compressor 73 is in operation, it is determined in S2 whether or not the ice making chamber 12 is full. When it is determined that the ice making chamber 12 is full of ice, water supply is stopped in S11. If it is determined that the ice making chamber 12 is not full, the energization rate of the heater 45 is increased for a predetermined time in S12, and then the infrared light emitting means 42 is turned on for a predetermined time in S3. The heater 45 not only prevents the water in the water supply tank 20 from freezing, but also removes water drops and cloudiness when there is little water in the water supply tank 20 and water drops and cloudiness are inside the water supply tank 20.

ヒータ45を連続ではなく、所定時間通電率を上昇させることにより、給水タンク20内の水の過度の温度上昇と、消費電力の浪費とを抑制することができる。   Increasing the energization rate for a predetermined time instead of continuously heating the heater 45 can suppress an excessive temperature rise of water in the water supply tank 20 and waste of power consumption.

S3ののち、S4で受光手段72が受光する光量が所定量以上であるか否かを判定する。受光手段72の受光した光量が所定量以上であると判定した場合、S6で表示パネル32に給水タンク20内に水が少ない旨を表示する。受光手段72が受光する光量が所定量以下であると判定した場合、S5でマグネットポンプモーター43がオンされる。マグネットポンプモーター43がオンされると、給水タンク20内の給水ポンプ40内の羽根車が回転する。その作用により給水タンク20内の水が給水パイプ36の内部を通過し、給水経路30に落ちたのち製氷皿26へ供給される。   After S3, it is determined in S4 whether or not the amount of light received by the light receiving means 72 is a predetermined amount or more. If it is determined that the amount of light received by the light receiving means 72 is greater than or equal to the predetermined amount, the display panel 32 displays that the water is low in the water supply tank 20 in S6. If it is determined that the amount of light received by the light receiving means 72 is not more than the predetermined amount, the magnet pump motor 43 is turned on in S5. When the magnet pump motor 43 is turned on, the impeller in the water supply pump 40 in the water supply tank 20 rotates. As a result, the water in the water supply tank 20 passes through the water supply pipe 36 and falls into the water supply path 30 before being supplied to the ice tray 26.

製氷皿26へ水が供給されると、製氷皿26に取付けられた製氷サーミスタ70の検出温度が上昇する(S7)。S8では製氷サーミスタ70の温度が所定温度以下となったかを判定する。S8において製氷サーミスタ70の温度が所定温度以下となっていないと判定した場合はS8に戻る。S8において製氷サーミスタ70の温度が所定温度以上となったと判定した場合、S9へと進む。S9では駆動装置27がオンされる。駆動装置27が製氷皿26を捻る作用により製氷皿26上に生成された氷が貯氷箱31に落下する。この動作により1回の製氷サイクルが完了する(S10)。   When water is supplied to the ice tray 26, the temperature detected by the ice thermistor 70 attached to the ice tray 26 rises (S7). In S8, it is determined whether the temperature of the ice making thermistor 70 has become a predetermined temperature or less. If it is determined in S8 that the temperature of the ice making thermistor 70 is not lower than the predetermined temperature, the process returns to S8. If it is determined in S8 that the temperature of the ice making thermistor 70 is equal to or higher than the predetermined temperature, the process proceeds to S9. In S9, the driving device 27 is turned on. Ice generated on the ice tray 26 by the action of the drive device 27 twisting the ice tray 26 falls into the ice storage box 31. This operation completes one ice making cycle (S10).

図7の自動製氷制御の概略ブロック回路図において、赤外線発光手段42から発せられた赤外線は、給水タンク20内に水がないもしくは少ない場合、吸収される赤外線量は少ないため受光手段72に到達する光量は所定量以上となる。給水タンク20内の水が所定量よりも少ない場合、受光手段72の受光する光量が所定量以上となり、マイコン(マイクロコンピュータ)71が給水タンク20内の水が少ないと判断する。マイコン71はマグネットポンプモーター43にオフの指令をだす。   In the schematic block circuit diagram of the automatic ice making control of FIG. 7, the infrared rays emitted from the infrared light emitting means 42 reach the light receiving means 72 because the amount of infrared rays absorbed is small when there is no or little water in the water supply tank 20. The amount of light is a predetermined amount or more. When the amount of water in the water supply tank 20 is less than a predetermined amount, the amount of light received by the light receiving means 72 becomes a predetermined amount or more, and the microcomputer 71 determines that the amount of water in the water supply tank 20 is small. The microcomputer 71 gives an off command to the magnet pump motor 43.

一方、給水タンク20内の水が所定量以上ある場合、赤外線が水に吸収される量が多くなるので、受光手段72が受光する光量は所定量以下となる。この場合、圧縮機73がオンしている場合、図6に示すフローチャートの如く自動製氷制御を開始する指令を各アクチュエーターにだす。   On the other hand, when the amount of water in the water supply tank 20 is equal to or greater than a predetermined amount, the amount of infrared rays absorbed by the water increases, so that the amount of light received by the light receiving means 72 is equal to or less than the predetermined amount. In this case, when the compressor 73 is on, a command to start automatic ice making control is issued to each actuator as shown in the flowchart of FIG.

上記のように構成された実施の形態1の冷蔵庫によれば、給水ポンプ40の空運転防止による騒音防止、消費電力浪費抑制、長寿命化をなすことができる。   According to the refrigerator of Embodiment 1 configured as described above, it is possible to prevent noise by preventing idling of the water supply pump 40, reduce power consumption, and extend the service life.

また、給水タンク20内の水滴やくもりによる水位誤検知を起こしにくい高品質な冷蔵庫を提供することができる。   In addition, it is possible to provide a high-quality refrigerator that is unlikely to cause erroneous detection of water level due to water droplets or clouding in the water supply tank 20.

また、給水タンク20の傷つきのよる水位誤検知を起こしにくい高品質な冷蔵庫を提供することができる。   In addition, it is possible to provide a high-quality refrigerator that is unlikely to cause erroneous detection of the water level due to the water supply tank 20 being damaged.

実施の形態2.
図8は実施の形態2を示す図で、水位検知部の斜視図である。上記実施の形態1では、赤外線発光手段42と受光手段72を同一面に設けたものを示したが、図8に示すように、赤外線発光手段42と受光手段72を相対向して配置して、赤外線発光手段42からの入射光を利用してもよい。実施の形態1と同様、給水ポンプ40の空運転防止による騒音防止、消費電力浪費抑制、長寿命化をなすことができる。
Embodiment 2. FIG.
FIG. 8 shows the second embodiment and is a perspective view of a water level detection unit. In the first embodiment, the infrared light emitting means 42 and the light receiving means 72 are provided on the same surface. However, as shown in FIG. 8, the infrared light emitting means 42 and the light receiving means 72 are arranged to face each other. The incident light from the infrared light emitting means 42 may be used. As in the first embodiment, it is possible to prevent noise by preventing idling of the water supply pump 40, reduce power consumption, and extend the life.

実施の形態3.
図9〜13は実施の形態3を示す図で、図9は浄水フィルターの概略断面図、図10は給水ポンプ40に対して浄水フィルター41の取付ける構造を示す概略斜視図、図11は給水タンク周辺の概略側断面図、図12は冷蔵庫の水位検知制御のフローチャート、図13は自動製氷制御の概略ブロック回路図である。冷蔵庫の全体構成は実施の形態1と同様である。
Embodiment 3 FIG.
FIGS. 9 to 13 are diagrams showing Embodiment 3, FIG. 9 is a schematic sectional view of a water purification filter, FIG. 10 is a schematic perspective view showing a structure in which a water purification filter 41 is attached to a water supply pump 40, and FIG. FIG. 12 is a schematic side sectional view of the periphery, FIG. 12 is a flowchart of refrigerator water level detection control, and FIG. 13 is a schematic block circuit diagram of automatic ice making control. The overall configuration of the refrigerator is the same as that of the first embodiment.

図9の浄水フィルターの概略断面図に示すように、浄水フィルター41は活性炭シート51を2枚の酸化チタンシート50で挟むように配設し、全体を不織布52で包み込むように加工されたものである。   As shown in the schematic cross-sectional view of the water purification filter of FIG. 9, the water purification filter 41 is disposed so that the activated carbon sheet 51 is sandwiched between two titanium oxide sheets 50 and the whole is wrapped with a nonwoven fabric 52. is there.

活性炭シート51は活性炭繊維をシート状に加工したものである。水道水中に含まれる臭いの元である塩素やトリハロメタンや一般雑菌などを強力に吸着する機能を有している。   The activated carbon sheet 51 is obtained by processing activated carbon fibers into a sheet shape. It has a function of strongly adsorbing chlorine, trihalomethane, general bacteria, etc., which are the source of odor contained in tap water.

酸化チタンシート50は活性炭繊維に酸化チタンを胆持したものである。酸化チタンは光触媒の一種である。光触媒は特定の波長を有する光を照射されると励起状態になり表面が強い酸化力を持つ。酸化チタンの場合、約380nmの波長を有する紫外線を照射されることにより励起状態になり表面が強い酸化力を持つ。この酸化力により、水や酸素からラジカルが発生し、このラジカルが菌などを含む有機物を酸化還元反応で分解することで脱臭及び抗菌作用を発揮するので、給水タンク20内の水に脱臭、抗菌作用が働き、いやな臭いがせず、雑菌などもいない衛生的な氷を製氷することができる。また、光触媒の寿命は半永久的であるため、破損のない限り、浄水フィルター41のメンテナンスの必要は生じにくい。   The titanium oxide sheet 50 is obtained by holding activated carbon fiber with titanium oxide. Titanium oxide is a kind of photocatalyst. When the photocatalyst is irradiated with light having a specific wavelength, the photocatalyst becomes excited and has a strong oxidizing power on the surface. In the case of titanium oxide, when irradiated with ultraviolet rays having a wavelength of about 380 nm, the surface is excited and the surface has a strong oxidizing power. Due to this oxidizing power, radicals are generated from water and oxygen, and these radicals exhibit deodorizing and antibacterial action by decomposing organic substances including bacteria by oxidation-reduction reaction. Hygienic ice that does not have a bad smell and has no germs can be made. In addition, since the life of the photocatalyst is semi-permanent, the maintenance of the water purification filter 41 is unlikely to occur unless it is damaged.

図10の給水ポンプ40に対して浄水フィルター41の取付ける構造を示す概略斜視図において、給水ポンプ40はポンプケース47にマグネットインペラ46をポンプカバー61で被せることにより内蔵した構造である。上述のように構成された給水ポンプ40のポンプカバー61の片面側は、浄水フィルター41を収納できる箱形形状を有している。その箱形形状に浄水フィルター41を収納したのち、蓋部材62を被せる。   In the schematic perspective view showing the structure in which the water purification filter 41 is attached to the water supply pump 40 in FIG. 10, the water supply pump 40 has a structure in which a magnet impeller 46 is covered with a pump cover 61 on a pump case 47. One side of the pump cover 61 of the water supply pump 40 configured as described above has a box shape that can accommodate the water purification filter 41. After the water purification filter 41 is stored in the box shape, the lid member 62 is covered.

蓋部材62(蛍光増白材を添加した部材の一例である)の材料はポリプロピレンであり、蛍光増白材を添加している。なお、この蛍光増白材を添加したポリプロピレンはもちろん食品衛生法に合格するものである。蓋部材62は蛍光増白剤を添加したことにより紫外線を照射すると蛍光する。このような構造により水は浄水フィルター41を通過してから給水パイプ36へと導かれることになる。   The material of the lid member 62 (an example of a member to which a fluorescent whitening material is added) is polypropylene, and a fluorescent whitening material is added thereto. Of course, polypropylene added with this fluorescent whitening material passes the food hygiene law. The lid member 62 fluoresces when irradiated with ultraviolet rays by adding a fluorescent brightening agent. With such a structure, water is guided to the water supply pipe 36 after passing through the water purification filter 41.

このように構成された冷蔵庫1において、給水タンク20に水道水が供給されて収納され自動製氷が開始されると、マグネットポンプモーター43に通電されてマグネットポンプモーター43が回転し、同期してマグネットインペラ46が回転し、その作用により給水タンク20内の水が浄水フィルター41を通過してから給水パイプ36の中を汲み上げられ給水経路30を通過したのち、製氷皿26にて供給され冷却室34からの冷気により冷却され製氷される。前述のように水が浄水フィルター41を通過するときに浄水フィルター41内の活性炭シート51も通過するので塩素も除去されて、おいしい氷になる。   In the refrigerator 1 configured as described above, when tap water is supplied and stored in the water supply tank 20 and automatic ice making is started, the magnet pump motor 43 is energized, the magnet pump motor 43 rotates, and the magnet is synchronized. The impeller 46 rotates, so that the water in the water supply tank 20 passes through the water purification filter 41 and is then pumped up in the water supply pipe 36 and passes through the water supply path 30. Then, the impeller 46 is supplied in the ice tray 26 and is supplied to the cooling chamber 34. The ice is cooled and made into ice. As described above, when the water passes through the water purification filter 41, the activated carbon sheet 51 in the water purification filter 41 also passes through, so that chlorine is also removed and the ice becomes delicious.

また、このように構成された冷蔵庫において、給水タンク20内に鉛除去機能つき浄水器をとおした水が供給され自動製氷が開始されると、マグネットポンプモーター43に通電されマグネットポンプモーター43が回転し、同期してマグネットインペラ46が回転し、その作用により給水タンク20内の水が浄水フィルター41を通過してから給水パイプ36の中を汲み上げられ給水経路30を通過したのち、製氷皿26にて供給され冷却室34からの冷気により冷却され製氷される。   In the refrigerator configured as described above, when water is supplied through the water purifier with a lead removal function into the water supply tank 20 and automatic ice making is started, the magnet pump motor 43 is energized and the magnet pump motor 43 rotates. Then, the magnet impeller 46 rotates in synchronism, and the water in the water supply tank 20 passes through the water purification filter 41 and is pumped up in the water supply pipe 36 through the water supply path 30 by the action. And cooled by cold air from the cooling chamber 34 to produce ice.

この水は鉛除去機能つき浄水器を通過しているので鉛は既に除去されているが、浄水器であるため塩素も除去されており水自体には抗菌作用は働かない。しかし、前述のように浄水フィルター41には活性炭シート51と酸化チタンシート50を含有しており、水の中の一般雑菌は活性炭シート51にて吸着される。その後、酸化チタンシート50に紫外線発光手段42a(発光手段の一例である)より紫外線を照射することにより、活性炭シート51に吸着された一般雑菌は分解される。そのため、浄水フィルター41を通過した水は常に衛生的であり、結果として製氷された氷も衛生的な氷となる。   Since this water passes through a water purifier with a lead removal function, lead has already been removed, but since it is a water purifier, chlorine has also been removed and the water itself has no antibacterial action. However, as described above, the water purification filter 41 includes the activated carbon sheet 51 and the titanium oxide sheet 50, and general bacteria in the water are adsorbed by the activated carbon sheet 51. Thereafter, general germs adsorbed on the activated carbon sheet 51 are decomposed by irradiating the titanium oxide sheet 50 with ultraviolet rays from the ultraviolet light emitting means 42a (which is an example of the light emitting means). Therefore, the water that has passed through the water purification filter 41 is always hygienic, and as a result, the ice that has been made into ice becomes hygienic ice.

また、近年需要の増えているミネラルウォーターで自動製氷を行う場合は、鉛を含んでいた場合は鉛を除去することができる。また、塩素等の殺菌成分を含まない場合でも前述した光触媒である酸化チタンシートの効果により給水タンク20内のミネラルウォーター内での一般雑菌の繁殖を抑制することができる。   In addition, when automatic ice making is performed with mineral water, which has been in increasing demand in recent years, lead can be removed if it contains lead. Moreover, even when it does not contain sterilizing components such as chlorine, it is possible to suppress the propagation of general germs in the mineral water in the water supply tank 20 by the effect of the titanium oxide sheet that is the photocatalyst described above.

図11の給水タンク周辺の概略側断面図に示すように、給水タンク20は給水タンク受49に給水タンク20の大部分が埋まるように設置されている。給水タンク受49は冷蔵室と製氷室及び切替室との仕切部材14に設置されている。給水タンク受49にはマグネットポンプモーター43が取付けられている。給水タンク20内には給水ポンプ40が、マグネットポンプモーター43と給水タンク受49及び給水タンク20を挟んで対面するように配置されている。   As shown in the schematic side sectional view of the periphery of the water supply tank in FIG. 11, the water supply tank 20 is installed so that most of the water supply tank 20 is buried in the water supply tank receiver 49. The water tank receiver 49 is installed in the partition member 14 between the refrigerator compartment, the ice making chamber, and the switching chamber. A magnet pump motor 43 is attached to the water tank receiver 49. In the water supply tank 20, a water supply pump 40 is disposed so as to face each other with the magnet pump motor 43, the water supply tank receiver 49, and the water supply tank 20 interposed therebetween.

給水ポンプ40にはポンプカバー61が被せられるように設置されている。ポンプカバー61は浄水フィルター41を収納できる形状をしており、蓋部材62にてポンプカバー61を閉塞する。   The feed water pump 40 is installed so as to cover the pump cover 61. The pump cover 61 has a shape that can store the water purification filter 41, and the pump cover 61 is closed with a lid member 62.

給水ポンプ40には給水パイプ36が取付けられている。マグネットポンプモーター43に通電することにより、給水ポンプ40に内蔵されているマグネットインペラ46が磁気力で回転し、その作用により給水タンク20内の水が浄水フィルター41を通過しながら吸い上げられ給水パイプ36の内部を通過し、給水経路30に落ちたのち製氷皿26へ供給される構造となっている。   A water supply pipe 36 is attached to the water supply pump 40. When the magnet pump motor 43 is energized, the magnet impeller 46 built in the water supply pump 40 is rotated by the magnetic force, and the water in the water supply tank 20 is sucked up while passing through the water purification filter 41 by the action of the magnet impeller 46. After being dropped into the water supply path 30, it is supplied to the ice tray 26.

給水タンク受49の給水ポンプ40とは反対側の面(ここでは垂直面)には穴があいており、そこには窓部材44aが取付けられている。窓部材44aは材料が透明であり、例えば透明ポリスチレンである。もちろん、メタクリルやポリカーボネイトやガラスでもよい。そして、窓部材44aには紫外線発光手段42a(発光手段の一例である)が内蔵できるようになっている。紫外線発光手段42aは、例えば紫外線発光ダイオードである。   The surface of the water supply tank receiver 49 opposite to the water supply pump 40 (here, the vertical surface) has a hole, and a window member 44a is attached thereto. The window member 44a is made of a transparent material, for example, transparent polystyrene. Of course, methacryl, polycarbonate and glass may be used. The window member 44a can incorporate an ultraviolet light emitting means 42a (which is an example of a light emitting means). The ultraviolet light emitting means 42a is, for example, an ultraviolet light emitting diode.

ヒータ45は、給水タンク20内の水が製氷室12の冷却により冷却されて凍結することを防止する役割を有している。また、窓部材44aと同一面には窓部材44bが取付けられている。窓部材44bは材料が透明であり、例えば透明ポリスチレンである。もちろん、メタクリルやポリカーボネイトやガラスでもよい。窓部材44bは給水タンク受49に設けられた穴に取り付けられている。また、窓部材44bの内部には紫外線を受光する受光手段72が設けられている。受光手段72は、例えば受光ダイオードや受光トランジスタである。   The heater 45 has a role of preventing water in the water supply tank 20 from being cooled and cooled by cooling the ice making chamber 12. A window member 44b is attached to the same surface as the window member 44a. The window member 44b is made of a transparent material, for example, transparent polystyrene. Of course, methacryl, polycarbonate and glass may be used. The window member 44 b is attached to a hole provided in the water supply tank receiver 49. A light receiving means 72 for receiving ultraviolet rays is provided inside the window member 44b. The light receiving means 72 is, for example, a light receiving diode or a light receiving transistor.

水位検知に関しては紫外線発光手段42aから発せられた紫外線は蓋部材62に照射される。蓋部材62の給水タンク20内の水面下より潜った部分は紫外線が照射されて蛍光する。一方、蓋部材62の給水タンク20内の水面上にでた部分は紫外線が届かず蛍光しない。これは紫外線が水面で全反射されてしまうことによる。蓋部材62で蛍光した光は受光手段72へと到達する。水位が高いほど蓋部材62の蛍光する面積は大きくなるので、受光手段72が受光する光量は多くなる。   Regarding the water level detection, the ultraviolet light emitted from the ultraviolet light emitting means 42 a is applied to the lid member 62. The portion of the lid member 62 that is hidden below the surface of the water in the water supply tank 20 is irradiated with ultraviolet rays and becomes fluorescent. On the other hand, the portion of the lid member 62 that appears on the water surface in the water supply tank 20 does not reach the ultraviolet rays and does not fluoresce. This is because ultraviolet rays are totally reflected on the water surface. The light fluorescent by the lid member 62 reaches the light receiving means 72. The higher the water level, the larger the area of the cover member 62 that fluoresces, so the amount of light received by the light receiving means 72 increases.

一方、水位が低いほど蓋部材62の蛍光する面積は小さくなるので、受光手段72の受光する光量は少なくなる。水がない場合は紫外線発光手段42aからの入射光が蓋部材62に到達するが、水がある場合は紫外線発光手段42aからの入射光と水面下での反射光も蓋部材62に照射されるので、水がある場合のほうが強く蛍光する。   On the other hand, the lower the water level, the smaller the area of the lid member 62 that fluoresces, so the amount of light received by the light receiving means 72 decreases. When there is no water, the incident light from the ultraviolet light emitting means 42a reaches the lid member 62. When there is water, the incident light from the ultraviolet light emitting means 42a and reflected light below the water surface are also irradiated to the lid member 62. So, when there is water, it fluoresces more strongly.

従って、水がない場合とある場合を判定することができる。前述したように水位によって受光手段72が受光する光量が異なるので、水位を判断することができ、この水位情報を表示パネル32で水位を表示することができる。ブザーやランプでもよいが、ユーザーにとって解りにくいものになるので好ましくない。   Therefore, it can be determined whether there is no water or not. As described above, since the amount of light received by the light receiving means 72 varies depending on the water level, the water level can be determined, and the water level can be displayed on the display panel 32 using this water level information. A buzzer or lamp may be used, but it is not preferable because it is difficult for the user to understand.

図12のフローチャートにおいて、先ずS1にて圧縮機73が運転中か否かを判定する。圧縮機73が停止中であれば、S11にて給水中止となる。S1において圧縮機73が運転中と判定した場合、S2で製氷室12が満氷であるか否かを判定する。製氷室12が満氷であると判定した場合は、S11にて給水中止となる。製氷室12が満氷でないと判定した場合、S12でヒータ45の通電率を所定時間上昇させた後、S13で紫外線発光手段42aを所定時間オンする。ヒータ45は給水タンク20内の水の凍結防止のみならず、給水タンク20内の水が少なく給水タンク20の内側に水滴やくもりがついた場合、その水滴やくもりを除去することができる。   In the flowchart of FIG. 12, it is first determined in S1 whether or not the compressor 73 is operating. If the compressor 73 is stopped, water supply is stopped in S11. If it is determined in S1 that the compressor 73 is in operation, it is determined in S2 whether or not the ice making chamber 12 is full. When it is determined that the ice making chamber 12 is full of ice, water supply is stopped in S11. If it is determined that the ice making chamber 12 is not full, the energization rate of the heater 45 is increased for a predetermined time in S12, and then the ultraviolet light emitting means 42a is turned on for a predetermined time in S13. The heater 45 not only prevents the water in the water supply tank 20 from freezing, but also removes water drops and cloudiness when there is little water in the water supply tank 20 and water drops and cloudiness are inside the water supply tank 20.

ヒータ45を連続ではなく、所定時間通電率を上昇させることにより、給水タンク20内の水の過度の温度上昇と、消費電力の浪費とを抑制することができる。   Increasing the energization rate for a predetermined time instead of continuously heating the heater 45 can suppress an excessive temperature rise of water in the water supply tank 20 and waste of power consumption.

S13ののち、S14で受光手段72が受光する紫外線光量が所定量以上であるか否かを判定する。受光手段72の受光した紫外線光量が所定量以下であると判定した場合、S6で表示パネル32に給水タンク20内に水が少ない旨を表示する。受光手段72が受光する光量が所定量以上であると判定した場合、S5でマグネットポンプモーター43がオンされる。マグネットポンプモーター43がオンされると、給水タンク20内の給水ポンプ40内の羽根車が回転する。その作用により給水タンク20内の水が給水パイプ36の内部を通過し、給水経路30に落ちたのち製氷皿26へ供給される。   After S13, it is determined whether or not the amount of ultraviolet light received by the light receiving means 72 is greater than or equal to a predetermined amount in S14. If it is determined that the amount of ultraviolet light received by the light receiving means 72 is equal to or less than the predetermined amount, the display panel 32 displays that the water is low in the water supply tank 20 in S6. If it is determined that the amount of light received by the light receiving means 72 is greater than or equal to the predetermined amount, the magnet pump motor 43 is turned on in S5. When the magnet pump motor 43 is turned on, the impeller in the water supply pump 40 in the water supply tank 20 rotates. As a result, the water in the water supply tank 20 passes through the water supply pipe 36 and falls into the water supply path 30 before being supplied to the ice tray 26.

製氷皿26へ水が供給されると、製氷皿26に取付けられた製氷サーミスタ70の検出温度が上昇する(S7)。S8では製氷サーミスタ70の温度が所定温度以下となったかを判定する。S8において製氷サーミスタ70の温度が所定温度以下となっていないと判定した場合はS8に戻る。S8において製氷サーミスタ70の温度が所定温度以上となったと判定した場合、S9へと進む。S9では駆動装置27がオンされる。駆動装置27が製氷皿26を捻る作用により製氷皿26上に生成された氷が貯氷箱31に落下する。この動作により1回の製氷サイクルが完了する(S10)。   When water is supplied to the ice tray 26, the temperature detected by the ice thermistor 70 attached to the ice tray 26 rises (S7). In S8, it is determined whether the temperature of the ice making thermistor 70 has become a predetermined temperature or less. If it is determined in S8 that the temperature of the ice making thermistor 70 is not lower than the predetermined temperature, the process returns to S8. If it is determined in S8 that the temperature of the ice making thermistor 70 is equal to or higher than the predetermined temperature, the process proceeds to S9. In S9, the driving device 27 is turned on. Ice generated on the ice tray 26 by the action of the drive device 27 twisting the ice tray 26 falls into the ice storage box 31. This operation completes one ice making cycle (S10).

図13の自動製氷制御の概略ブロック回路図において、給水タンク20内に水がないもしくは少ない場合、紫外線発光手段42aから発せられた紫外線による蓋部材62の蛍光する面積が小さくなり受光手段72の受光する光量は少なくなる。給水タンク20内の水が所定量よりも少ない場合、受光手段72の受光する光量が所定量以下となり、マイコン71が給水タンク20内の水が少ないと判断する。マイコン71はマグネットポンプモーター43にオフの指令をだす。   In the schematic block circuit diagram of the automatic ice making control of FIG. 13, when there is no or little water in the water supply tank 20, the area of the cover member 62 that is fluorescent by the ultraviolet light emitted from the ultraviolet light emitting means 42 a becomes small, and the light receiving means 72 receives light. The amount of light to be reduced is reduced. When the amount of water in the water supply tank 20 is less than a predetermined amount, the amount of light received by the light receiving means 72 is less than the predetermined amount, and the microcomputer 71 determines that the amount of water in the water supply tank 20 is small. The microcomputer 71 gives an off command to the magnet pump motor 43.

一方、給水タンク20内の水が所定量以上ある場合、紫外線発光手段42aから発せられた紫外線による蓋部材62の蛍光する面積が大きくなり受光手段72の受光する光量は多くなるので、受光手段72が受光する光量は所定量以上となる。この場合、圧縮機73がオンしている場合、図12に示すフローチャートの如く自動製氷制御を開始する指令を各アクチュエーターにだす。   On the other hand, when there is a predetermined amount or more of water in the water supply tank 20, the area where the lid member 62 fluoresces by the ultraviolet light emitted from the ultraviolet light emitting means 42a increases and the amount of light received by the light receiving means 72 increases. The amount of light received by is greater than or equal to a predetermined amount. In this case, when the compressor 73 is on, a command to start automatic ice making control is issued to each actuator as shown in the flowchart of FIG.

上記のように構成された実施の形態3の冷蔵庫によれば、水位の多少を含む水位情報をユーザーに知らせることができる。   According to the refrigerator of Embodiment 3 configured as described above, it is possible to notify the user of water level information including the level of water level.

また、給水ポンプ40の空運転防止による騒音防止、消費電力浪費抑制、長寿命化をなすことができる。   In addition, noise prevention by preventing idling of the water supply pump 40, power consumption waste suppression, and longer life can be achieved.

また、給水タンク20内の水滴やくもりによる水位誤検知を起こしにくい高品質な冷蔵庫を提供することができる。   In addition, it is possible to provide a high-quality refrigerator that is unlikely to cause erroneous detection of water level due to water droplets or clouding in the water supply tank 20.

また、給水タンク20の傷つきのよる水位誤検知を起こしにくい高品質な冷蔵庫を提供することができる。   In addition, it is possible to provide a high-quality refrigerator that is unlikely to cause erroneous detection of the water level due to the water supply tank 20 being damaged.

また、給水タンク内の除菌もできる安価な水位検知機能及び自動製氷搭載冷蔵庫を提供することができる。   In addition, it is possible to provide an inexpensive water level detection function capable of sterilizing the water supply tank and an automatic ice making refrigerator.

実施の形態1、3を示す図で、冷蔵庫の概略図である。It is a figure which shows Embodiment 1, 3, and is the schematic of a refrigerator. 実施の形態1を示す図で、給水タンク周辺の概略側断面図である。It is a figure which shows Embodiment 1, and is a schematic sectional side view around a water supply tank. 実施の形態1を示す図で、水位検知部の斜視図である。It is a figure which shows Embodiment 1, and is a perspective view of a water level detection part. 実施の形態1を示す図で、製氷室の概略側断面図である。FIG. 3 is a diagram showing the first embodiment and is a schematic side sectional view of the ice making chamber. 実施の形態1を示す図で、冷蔵庫の側断面図である。It is a figure which shows Embodiment 1 and is a sectional side view of a refrigerator. 実施の形態1を示す図で、冷蔵庫の水位検知制御のフローチャート図である。It is a figure which shows Embodiment 1, and is a flowchart figure of the water level detection control of a refrigerator. 実施の形態1を示す図で、自動製氷制御の概略ブロック回路図である。FIG. 5 is a diagram showing the first embodiment and is a schematic block circuit diagram of automatic ice making control. 実施の形態2を示す図で、水位検知部の斜視図である。It is a figure which shows Embodiment 2, and is a perspective view of a water level detection part. 実施の形態3を示す図で、浄水フィルターの概略断面図である。It is a figure which shows Embodiment 3, and is a schematic sectional drawing of a water purification filter. 実施の形態3を示す図で、給水ポンプに対して浄水フィルターの取付ける構造を示す概略斜視図である。It is a figure which shows Embodiment 3, and is a schematic perspective view which shows the structure which attaches a water purification filter with respect to a water supply pump. 実施の形態3を示す図で、給水タンク周辺の概略側断面図である。It is a figure which shows Embodiment 3, and is a schematic sectional side view around a water supply tank. 実施の形態3を示す図で、冷蔵庫の水位検知制御のフローチャート図である。It is a figure which shows Embodiment 3, and is a flowchart figure of the water level detection control of a refrigerator. 実施の形態3を示す図で、自動製氷制御の概略ブロック回路図である。FIG. 6 is a diagram showing a third embodiment and is a schematic block circuit diagram of automatic ice making control.

符号の説明Explanation of symbols

1 冷蔵庫、2 外箱、3 内箱、4 発泡断熱材、5 断熱箱体、6 冷蔵室扉体、7 製氷室扉体、8 切替室扉体、9 野菜室扉体、10 冷凍室扉体、11 冷蔵室、12 製氷室、13 切替室、14 冷蔵室と製氷室及び切替室との仕切部材、15 製氷室と切替室との仕切部材、16 野菜室、17 製氷室及び切替室と野菜室との仕切部材、18 冷凍室、19 野菜室と冷凍室との仕切部材、20 給水タンク、21 冷却器、22 庫内ファン、23 冷蔵室用ダンパ装置、24 切替室用ダンパ装置、25 製氷コーナー、26 製氷皿、27 駆動装置、28 製氷コーナー外壁部材、29 検氷レバー、30 給水経路、31 貯氷箱、32 表示パネル、33 製氷オンオフスイッチ、34 冷却室、35 発光手段オンオフスイッチ、36 給水パイプ、39 給水タンクの蓋、40 給水ポンプ、41 浄水フィルター、42 赤外線発光手段、42a 紫外線発光手段、43 マグネットポンプモーター、44a,44b 窓部材、45 ヒータ、46 マグネットインペラ、47 ポンプケース、49 給水タンク受、50 酸化チタンシート、51 活性炭シート、52 不織布、61 ポンプカバー、62 蓋部材、70 製氷サーミスタ、71 マイコン、72 受光手段、73 圧縮機。   DESCRIPTION OF SYMBOLS 1 Refrigerator, 2 Outer box, 3 Inner box, 4 Foam insulation material, 5 Heat insulation box body, 6 Cold room door body, 7 Ice making room door body, 8 Switching room door body, 9 Vegetable room door body, 10 Freezer compartment door body 11 Refrigeration room, 12 Ice making room, 13 Switching room, 14 Partition member between refrigeration room and ice making room and switching room, 15 Partition member between ice making room and switching room, 16 Vegetable room, 17 Ice making room, switching room and vegetable Partitioning member for room, 18 Freezing room, 19 Partitioning member for vegetable room and freezing room, 20 Water supply tank, 21 Cooler, 22 Fan in refrigerator, 23 Damper device for refrigerator compartment, 24 Damper device for switching room, 25 Ice making Corner, 26 Ice making tray, 27 Drive device, 28 Ice making corner outer wall member, 29 Ice detection lever, 30 Water supply path, 31 Ice storage box, 32 Display panel, 33 Ice making on / off switch, 34 Cooling chamber, 35 Light emitting means on / off switch, 36 Water supply pipe, 39 Water supply tank lid, 40 Water supply pump, 41 Water purification filter, 42 Infrared light emission means, 42a Ultraviolet light emission means, 43 Magnet pump motor, 44a, 44b Window member, 45 Heater, 46 Magnet impeller, 47 Pump case, 49 Water supply tank receiver, 50 Titanium oxide sheet, 51 Activated carbon sheet, 52 Non-woven fabric, 61 Pump cover, 62 Lid member, 70 Ice making thermistor, 71 Microcomputer, 72 Light receiving means, 73 Compressor.

Claims (7)

製氷用の水を貯留する給水タンクと、
この給水タンク内に設けられ、該給水タンクの水を外部に送出する給水ポンプと、
この給水ポンプにより前記給水タンクから水が供給される製氷皿と、
この製氷皿をひねり離氷を行う駆動装置と、
前記給水タンク近傍の面に設けられ、光を発する発光手段と、
この発光手段と同一面に設けられ、前記給水タンクの内部で反射された反射光を受光する受光手段と、
前記給水タンク近傍に設けられる加熱手段と、
を備え、前記発光手段動作前の所定時間、前記加熱手段の通電率を上昇させることを特徴とする自動製氷装置。
A water supply tank for storing ice-making water;
A water supply pump that is provided in the water supply tank and sends out the water in the water supply tank to the outside;
An ice tray in which water is supplied from the water supply tank by the water supply pump;
A drive device that twists the ice tray to remove ice,
A light emitting means for emitting light provided on a surface near the water supply tank;
A light receiving means that is provided on the same surface as the light emitting means and receives the reflected light reflected inside the water supply tank;
Heating means provided in the vicinity of the water supply tank;
An automatic ice making device , wherein the energization rate of the heating means is increased for a predetermined time before the operation of the light emitting means .
前記発光手段の発する光が赤外線であることを特徴とする請求項1に記載の自動製氷装置。   2. The automatic ice making device according to claim 1, wherein the light emitted from the light emitting means is infrared rays. 前記発光手段が赤外線発光ダイオードであることを特徴とする請求項2に記載の自動製氷装置。   The automatic ice making device according to claim 2, wherein the light emitting means is an infrared light emitting diode. 前記発光手段の発する光が紫外線であり、前記給水タンク内に蛍光増白材を添加した部材を設けたことを特徴とする請求項1に記載の自動製氷装置。   The automatic ice making device according to claim 1, wherein the light emitted from the light emitting means is ultraviolet light, and a member to which a fluorescent whitening material is added is provided in the water supply tank. 前記発光手段が紫外線発光ダイオードであることを特徴とする請求項4に記載の自動製氷装置。   5. The automatic ice making device according to claim 4, wherein the light emitting means is an ultraviolet light emitting diode. 前記給水タンク内に酸化チタンを設け、前記発光手段から380nm近傍の波長を有する紫外線を発光することを特徴とする請求項4又は請求項5に記載の自動製氷装置。   The automatic ice making device according to claim 4 or 5, wherein titanium oxide is provided in the water supply tank, and ultraviolet light having a wavelength near 380 nm is emitted from the light emitting means. 前記給水タンクの一部または全体を耐磨耗性の強い材料で構成することを特徴とする請求項1至乃6の何れかに記載の自動製氷装置。   The automatic ice making device according to any one of claims 1 to 6, wherein a part or the whole of the water supply tank is made of a highly wear-resistant material.
JP2004132094A 2004-04-27 2004-04-27 Automatic ice making machine Expired - Fee Related JP4319576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132094A JP4319576B2 (en) 2004-04-27 2004-04-27 Automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132094A JP4319576B2 (en) 2004-04-27 2004-04-27 Automatic ice making machine

Publications (2)

Publication Number Publication Date
JP2005315472A JP2005315472A (en) 2005-11-10
JP4319576B2 true JP4319576B2 (en) 2009-08-26

Family

ID=35443087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132094A Expired - Fee Related JP4319576B2 (en) 2004-04-27 2004-04-27 Automatic ice making machine

Country Status (1)

Country Link
JP (1) JP4319576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506530A (en) * 2011-10-10 2012-06-20 合肥美的荣事达电冰箱有限公司 Ice maker and refrigeration plant with same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735001B (en) 2011-03-29 2015-08-19 日本电产三协株式会社 Ice maker and control method thereof
JP5707625B2 (en) * 2011-06-16 2015-04-30 有限会社北沢技術事務所 Light spot discrimination water level meter
JP2016095085A (en) * 2014-11-14 2016-05-26 象印マホービン株式会社 Liquid supply device
CN106766459A (en) * 2016-11-25 2017-05-31 珠海格力电器股份有限公司 Ice-making system, refrigerator and its sterilizing control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506530A (en) * 2011-10-10 2012-06-20 合肥美的荣事达电冰箱有限公司 Ice maker and refrigeration plant with same

Also Published As

Publication number Publication date
JP2005315472A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US8651331B2 (en) Refrigeration appliance with chilled water dispenser
US20130104586A1 (en) Refrigeration appliance with hot water dispenser and related control system
KR20140108058A (en) Cooling apparatus and controlling method thereof
JP2010096410A (en) Refrigerator
WO2013105185A1 (en) Refrigerator
JP4319576B2 (en) Automatic ice making machine
JP2006046813A (en) Refrigerator
JP4670689B2 (en) refrigerator
JP2007198732A (en) Refrigerator
JP2007071414A (en) Refrigerator
KR101700194B1 (en) Refrigerator and controlling method thereof
JP2007003173A (en) Refrigerator
JP4353000B2 (en) Freezer refrigerator
JP4172247B2 (en) refrigerator
KR20100094871A (en) Refrigerator and control method thereof
KR20140108057A (en) Cooling apparatus and controlling method thereof
KR101999272B1 (en) Cooling apparatus and controlling method thereof
JP2005300039A (en) Refrigerator
JP3907176B2 (en) refrigerator
JP2007003061A (en) Refrigerator
KR100562284B1 (en) Multi-home electronic apparatus and method of the same
JP7424110B2 (en) Ice making equipment and refrigerator/freezer
JP5277760B2 (en) refrigerator
KR101659010B1 (en) Water dispenser and control method thereof, refrigerator with water dispenser
JP2006242499A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees