JP4319205B2 - Battery management apparatus and battery management method - Google Patents

Battery management apparatus and battery management method Download PDF

Info

Publication number
JP4319205B2
JP4319205B2 JP2006164617A JP2006164617A JP4319205B2 JP 4319205 B2 JP4319205 B2 JP 4319205B2 JP 2006164617 A JP2006164617 A JP 2006164617A JP 2006164617 A JP2006164617 A JP 2006164617A JP 4319205 B2 JP4319205 B2 JP 4319205B2
Authority
JP
Japan
Prior art keywords
current
bypass
charging
battery
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006164617A
Other languages
Japanese (ja)
Other versions
JP2007336667A (en
Inventor
敏雄 松島
伸彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2006164617A priority Critical patent/JP4319205B2/en
Publication of JP2007336667A publication Critical patent/JP2007336667A/en
Application granted granted Critical
Publication of JP4319205B2 publication Critical patent/JP4319205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池管理装置及び電池管理方法、特に複数の二次電池が直列に接続された組電池を管理するための電池管理装置及び電池管理方法に関する。   The present invention relates to a battery management device and a battery management method, and more particularly to a battery management device and a battery management method for managing an assembled battery in which a plurality of secondary batteries are connected in series.

繰り返して充電や放電を行うことができる二次電池を直列に接続して使用する場合、全ての二次電池の電池容量あるいは内部抵抗が常に同じであれば、各二次電池をバランス良く充電することができる。しかしながら、実際には、各二次電池の電池容量あるいは内部抵抗には若干のバラツキが存在する。また、初期において同じ内部抵抗であったとしてもトリクル充電又はフロート充電により、時間が経過していくと二次電池の内部特性が変化し、二次電池の電池容量も変化する。その結果、各二次電池間の充電特性のバランスが崩れ、充電時の二次電池の電圧にバラツキが生じ、二次電池の寿命や性能が低下するという問題がある。この問題を解決するための技術として図11に示す電池管理システムが知られている。   When secondary batteries that can be charged and discharged repeatedly are connected in series and used, if all secondary batteries have the same battery capacity or internal resistance, each secondary battery is charged in a balanced manner. be able to. However, in practice, there is some variation in the battery capacity or internal resistance of each secondary battery. Even if the internal resistance is the same in the initial stage, the internal characteristics of the secondary battery change as the time elapses due to trickle charge or float charge, and the battery capacity of the secondary battery also changes. As a result, there is a problem that the balance of the charging characteristics between the secondary batteries is lost, the voltage of the secondary battery at the time of charging varies, and the life and performance of the secondary battery are reduced. As a technique for solving this problem, a battery management system shown in FIG. 11 is known.

図11は、従来から知られている電池管理システム100の概略構成図である。この電池管理システム100では、組電池1を構成する二次電池1a〜1n間の電圧のバラツキを抑制するために、シャントレギュレータを用いた電圧調整部50a〜50nを各二次電池1a〜1nにそれぞれ取付けている。この電圧調整部50a〜50nは、充電時の二次電池1a〜1nの電圧を計測し、二次電池1a〜1nの端子電圧が充電完了電圧になった場合に、制御部51の制御に基づいて、直流電源部2から組電池1に供給される充電電流を、二次電池1a〜1nと並列に接続されたバイパス回路でバイパスすることにより、二次電池1a〜1nの端子電圧の上昇を抑えている。直流電源部2から組電池1に供給される充電電流は、二次電池1a〜1nに蓄電される。二次電池1a〜1nに蓄電された電力は、直流電源部2の停電時などに負荷4に供給される。   FIG. 11 is a schematic configuration diagram of a conventionally known battery management system 100. In this battery management system 100, in order to suppress the voltage variation between the secondary batteries 1a to 1n constituting the assembled battery 1, the voltage regulators 50a to 50n using shunt regulators are provided to the secondary batteries 1a to 1n. Each is installed. The voltage adjusting units 50a to 50n measure the voltages of the secondary batteries 1a to 1n at the time of charging, and based on the control of the control unit 51 when the terminal voltages of the secondary batteries 1a to 1n become the charging completion voltage. By increasing the terminal voltage of the secondary batteries 1a to 1n by bypassing the charging current supplied from the DC power source 2 to the assembled battery 1 with a bypass circuit connected in parallel with the secondary batteries 1a to 1n. It is suppressed. The charging current supplied from the DC power supply unit 2 to the assembled battery 1 is stored in the secondary batteries 1a to 1n. The electric power stored in the secondary batteries 1a to 1n is supplied to the load 4 at the time of a power failure of the DC power supply unit 2.

図12は、電池管理システム100(図11)における充電時の二次電池の特性変化を示すグラフである。図12では、横軸に時間をとり、縦軸に電圧(V)及び電流(CA)をとっている。図12は、放電後の組電池1を定電流・定電圧充電方式で充電した際の充電特性を示している。曲線g1a、g1b、g1nは、それぞれ二次電池1a、1b、1nの端子電圧の変化を示している。なお、ここでは、二次電池1a、1b、1nの端子電圧の変化を表す曲線g1a、g1b、g1nのみを図示している。時刻t11、t12、t1nは、それぞれ二次電池1a、1b、1nのバイパス回路において充電電流のバイパスを開始する時刻である。
曲線g21は、曲線g1a〜g1nの端子電圧を加算したものであり、組電池1の端子電圧の変化を示している。組電池1の端子電圧が曲線g21で示したように変化すると、組電池1に流れる充電電流は曲線g22のように変化する。
FIG. 12 is a graph showing changes in characteristics of the secondary battery during charging in the battery management system 100 (FIG. 11). In FIG. 12, the horizontal axis represents time, and the vertical axis represents voltage (V) and current (CA). FIG. 12 shows the charging characteristics when the assembled battery 1 after discharging is charged by a constant current / constant voltage charging method. Curves g 1a , g 1b , and g 1n indicate changes in the terminal voltages of the secondary batteries 1a, 1b, and 1n, respectively. Here, only curves g 1a , g 1b , and g 1n representing changes in terminal voltages of the secondary batteries 1a, 1b, and 1n are illustrated. Times t 11 , t 12 , and t 1n are times when charging current bypass is started in the bypass circuits of the secondary batteries 1a, 1b, and 1n, respectively.
A curve g 21 is obtained by adding the terminal voltages of the curves g 1a to g 1n and shows a change in the terminal voltage of the assembled battery 1. When the terminal voltage of the assembled battery 1 is changed as shown by a curve g 21, charging current flowing through the assembled battery 1 changes as curve g 22.

制御部51は、直流電源部2が組電池1に供給する充電電流によって、二次電池1a〜1nのいずれかの二次電池の電圧が充電完了電圧(ここでは、4.1(V))に到達すると、その二次電池に並列に接続されている電圧調整部50a〜50nを動作させ、バイパス回路に充電電流をバイパスさせる。そしてその後、その他の二次電池が充電完了電圧に到達するとそれらの二次電池の電圧調整部を動作させて充電電流をバイパスさせて二次電池の端子電圧の上昇を抑え、二次電池1a〜1nの各端子電圧にバラツキが生じるのを防いでいる。   The control unit 51 uses the charging current supplied from the DC power supply unit 2 to the assembled battery 1 to change the voltage of any of the secondary batteries 1a to 1n to the charging completion voltage (here, 4.1 (V)). Is reached, the voltage adjusting units 50a to 50n connected in parallel to the secondary battery are operated, and the bypass circuit bypasses the charging current. After that, when the other secondary batteries reach the charging completion voltage, the voltage adjustment unit of those secondary batteries is operated to bypass the charging current to suppress the increase in the terminal voltage of the secondary batteries, and the secondary batteries 1a to It is possible to prevent variations in the 1n terminal voltages.

しかしながら、図11及び図12で説明した電池管理システム100では、各二次電池1a〜1nに電圧調整部50a〜50nを接続し、二次電池1a〜1nの端子電圧を検出し、その検出結果に基づいて、充電電流をバイパスさせている。このシステムでは、定電流・定電圧方式の充電において組電池1の全体の電圧が、予め設定された定電圧充電モードに切り替わる所定の電圧(充電器の充電モードが、定電流から定電圧モードに切り換わる電圧)に到達する時刻(図12の時刻t14)の近辺から、充電電流のバイパス動作が開始される。この結果、二次電池1a〜1nの状態によっては、充電モードが切り換わる時刻t14近辺に流れる大きな電流が電圧調整部50a〜50n側に流れることになる。そのため、電圧調整部50a〜50nの製造にあたって、このような大きなバイパス電流に備えてバイパス回路の素子を選択する必要があり、さらに、電流のバイパス時における発熱の防止のために大きな放熱器が必要となるため、電圧調整部50a〜50nが大型化するという問題があった。この問題を解決するために、図13に示す電池管理システム200が知られている。 However, in the battery management system 100 described with reference to FIGS. 11 and 12, the voltage adjusting units 50a to 50n are connected to the secondary batteries 1a to 1n, the terminal voltages of the secondary batteries 1a to 1n are detected, and the detection results thereof. The charging current is bypassed based on the above. In this system, in the constant current / constant voltage charging, the entire voltage of the assembled battery 1 is switched to a predetermined constant voltage charging mode (the charging mode of the charger is changed from constant current to constant voltage mode). The charging current bypass operation is started in the vicinity of the time at which the switching voltage is reached (time t 14 in FIG. 12). As a result, depending on the state of the secondary battery 1 a to 1 n, a large current flowing in the vicinity time t 14 which switches the charging mode it will flow to the voltage adjustment unit 50a~50n side. Therefore, it is necessary to select an element of the bypass circuit in preparation for such a large bypass current when manufacturing the voltage adjusting units 50a to 50n, and a large radiator is necessary to prevent heat generation during current bypass. Therefore, there is a problem that the voltage adjusting units 50a to 50n are increased in size. In order to solve this problem, a battery management system 200 shown in FIG. 13 is known.

図13は、従来から知られている電池管理システム200の概略構成図である。この電池管理システム200では、直流電源部2から二次電池60a〜60nに供給される充電電流が、予め設定された電流値以下となるように調整する充電電流調整部60a〜60nを設けている(特許文献1参照)。また、この電池管理システム200では、直流電源部2から組電池1に供給される充電電流を電流センサ62により計測し、充電電流が予め設定された電流値まで低下してから、制御部61の制御に基づいて、各二次電池1a〜1nに並列に接続されているバイパス回路への充電電流のバイパスを開始している(特許文献2参照)。   FIG. 13 is a schematic configuration diagram of a conventionally known battery management system 200. In the battery management system 200, charging current adjusting units 60a to 60n that adjust the charging current supplied from the DC power supply unit 2 to the secondary batteries 60a to 60n to be equal to or less than a preset current value are provided. (See Patent Document 1). Further, in this battery management system 200, the charging current supplied from the DC power supply unit 2 to the assembled battery 1 is measured by the current sensor 62, and after the charging current is reduced to a preset current value, the control unit 61 Based on the control, bypass of charging current to the bypass circuit connected in parallel to each of the secondary batteries 1a to 1n is started (see Patent Document 2).

図14は、電池管理システム200(図13)における充電時の二次電池の特性変化を示すグラフである。図14では、横軸に時間をとり、縦軸に電圧(V)及び電流(CA)をとっている。図14は、放電後の組電池1を定電流・定電圧充電方式で充電した際の充電特性を示しており、時刻t22において定電流モードから定電圧モードに切り替わっている。
曲線g3a、3b、3nは、それぞれ二次電池1a、1b、1nの端子電圧の変化を示している。なお、ここでは、二次電池1c〜1mの端子電圧の変化を表す曲線については図示を省略している。曲線g41は、曲線g3a〜g3nの端子電圧を加算したものであり、組電池1の端子電圧の変化を示している。組電池1の端子電圧が曲線g41で示したように変化すると、組電池1に流れる充電電流は曲線g42のように変化する。
特開2005−160251号公報 特許第3766076号公報
FIG. 14 is a graph showing changes in characteristics of the secondary battery during charging in the battery management system 200 (FIG. 13). In FIG. 14, time is taken on the horizontal axis, and voltage (V) and current (CA) are taken on the vertical axis. 14, the assembled battery 1 after discharging shows the charging characteristics at the time of charging at a constant current-constant voltage charging method is switched from the constant current mode to constant voltage mode at time t 22.
Curves g 3a, g 3b, and g 3n indicate changes in terminal voltages of the secondary batteries 1a, 1b, and 1n, respectively. In addition, illustration is abbreviate | omitted here about the curve showing the change of the terminal voltage of the secondary batteries 1c-1m. A curve g 41 is obtained by adding the terminal voltages of the curves g 3a to g 3n and shows a change in the terminal voltage of the assembled battery 1. When the terminal voltage of the assembled battery 1 is changed as shown by a curve g 41, charging current flowing through the assembled battery 1 changes as curve g 42.
JP-A-2005-160251 Japanese Patent No. 3766076

しかしながら、特許文献1に記載されている技術では、二次電池1a〜1nに供給される充電電流の大きさが予め設定された電流値以下となるように充電電流調整部60a〜60nにより調整しているため、充電電流が必ずしも十分に大きい値とはならず、組電池1の充電に長時間を要するという問題があった。
また、特許文献2に記載されている技術では、充電電流が予め設定された所定値(図14では、0.1(CA))まで低下する時刻であるバイパス開始時刻t21(図14)になるまでの間、二次電池の端子電圧が本来バイパスを開始する充電完了電圧を超える恐れがあり、二次電池の性能が劣化する恐れがあるという問題があった。なお、図14では、二次電池1nの端子電圧の変化を表わす曲線g3nが、二次電池の充電完了電圧である4.1(V)を超えており、二次電池1nの性能が劣化する恐れがある。
However, in the technique described in Patent Document 1, the charging current adjusting units 60a to 60n adjust the charging current supplied to the secondary batteries 1a to 1n so that the magnitude of the charging current is equal to or less than a preset current value. Therefore, the charging current does not necessarily have a sufficiently large value, and there is a problem that it takes a long time to charge the assembled battery 1.
Further, in the technique described in Patent Document 2, at the bypass start time t 21 (FIG. 14), which is the time when the charging current decreases to a predetermined value (0.1 (CA) in FIG. 14) set in advance. Until then, there has been a problem that the terminal voltage of the secondary battery may exceed the charge completion voltage that originally starts bypassing, and the performance of the secondary battery may be deteriorated. In FIG. 14, the curve g 3n representing the change in the terminal voltage of the secondary battery 1n exceeds the charging completion voltage of the secondary battery 4.1 (V), and the performance of the secondary battery 1n is deteriorated. There is a fear.

本発明は、上記事情に鑑みてなされたものであり、その目的は、バイパス電流によって組電池の性能を劣化させることなく組電池を充電することができる電池管理装置及び電池管理方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a battery management device and a battery management method capable of charging an assembled battery without degrading the performance of the assembled battery by a bypass current. It is in.

本発明は、上記課題を解決するためになされたもので、請求項1に記載の発明は、複数の二次電池が直列に接続された組電池と、外部に接続される電源部から充電電流の供給を受ける端子と、前記組電池に直列に接続され前記組電池に対して前記端子に供給される充電電流を調整して供給する充電電流調整手段と、前記各二次電池ごとに設けられ前記二次電池の端子電圧が前記二次電池の充電完了電圧を超えないように前記充電電流のうち前記二次電池の充電に使用しない電流をバイパス電流としてバイパスするバイパス手段と、前記充電電流調整手段が前記組電池に供給する充電電流の電流値を前記各バイパス電流の電流値に基づいて制御する制御手段とを有し、前記制御手段は、前記バイパス手段がバイパスする各バイパス電流の電流値が、前記バイパス手段がバイパス可能な電流の最大値である許容バイパス電流値を越えないように、前記充電電流調整手段が前記組電池に供給する充電電流の電流値を制御し、前記バイパス手段がバイパスする各バイパス電流のいずれかが、前記許容バイパス電流値に達した場合に、前記充電電流調整手段が前記組電池に供給する充電電流から前記許容バイパス電流値を減少させることを特徴とする電池管理装置である。 The present invention has been made to solve the above-described problems. The invention according to claim 1 is a battery pack in which a plurality of secondary batteries are connected in series, and a charging current from a power supply unit connected to the outside. Provided for each of the secondary batteries, a terminal connected to the assembled battery in series, charging current adjusting means for adjusting and supplying the charging current supplied to the terminal with respect to the assembled battery. Bypass means for bypassing, as a bypass current, a current that is not used for charging the secondary battery among the charging current so that a terminal voltage of the secondary battery does not exceed a charging completion voltage of the secondary battery, and the charging current adjustment means have a control means for controlling on the basis of the current value of the charging current supplied to the battery pack to the current value of each bypass current, the control means, the current value of each bypass current said bypass means to bypass The charging current adjustment means controls the current value of the charging current supplied to the assembled battery so that the bypass means does not exceed the allowable bypass current value that is the maximum value of the bypassable current, and the bypass means bypasses Battery management , wherein when any one of the bypass currents reaches the allowable bypass current value, the charge current adjusting means decreases the allowable bypass current value from the charge current supplied to the assembled battery. Device.

また、請求項に記載の発明の前記制御手段は、前記バイパス手段がバイパスする各バイパス電流の電流値のうち最小の電流値を、前記充電電流調整手段が前記組電池に供給する充電電流から減少させることを特徴とする請求項1に記載の電池管理装置である。 Further, the control means of the invention according to claim 2 is configured such that a minimum current value among current values of each bypass current bypassed by the bypass means is calculated from a charging current supplied to the assembled battery by the charging current adjusting means. The battery management device according to claim 1, wherein the battery management device is reduced.

また、請求項に記載の発明は、外部に接続される電源部から端子を介して充電電流の供給を受ける第1のステップと、複数の二次電池が直列に接続された組電池に直列に接続され前記組電池に対して前記端子に供給される充電電流を充電電流調整手段により調整して供給する第2のステップと、前記各二次電池ごとに設けられるバイパス手段により前記各二次電池の端子電圧が前記二次電池の充電完了電圧を超えないように前記充電電流のうち前記二次電池の充電に使用しない電流をバイパス電流としてバイパスする第3のステップと、前記充電電流調整手段が前記組電池に供給する充電電流の電流値を前記各バイパス電流の電流値に基づいて制御部により制御する第4のステップとを実行し、前記第4のステップにおいて、前記制御部により、前記バイパス手段がバイパスする各バイパス電流の電流値が、前記バイパス手段がバイパス可能な電流の最大値である許容バイパス電流値を越えないように、前記充電電流調整手段が前記組電池に供給する充電電流の電流値を制御し、前記バイパス手段がバイパスする各バイパス電流のいずれかが、前記許容バイパス電流値に達した場合に、前記充電電流調整手段が前記組電池に供給する充電電流から前記許容バイパス電流値を減少させることを特徴とする電池管理方法。 According to a third aspect of the present invention, a first step of receiving a charging current from a power supply unit connected to the outside via a terminal and a battery pack in which a plurality of secondary batteries are connected in series are connected in series. A second step of supplying a charge current supplied to the terminal to the assembled battery after being adjusted by a charge current adjusting means and a bypass means provided for each of the secondary batteries. A third step of bypassing, as a bypass current, a current that is not used for charging the secondary battery in the charging current so that a terminal voltage of the battery does not exceed a charging completion voltage of the secondary battery; and the charging current adjusting means There executes a fourth step of controlling by the control unit based on the current value of the charging current supplied to the battery pack to the current value of each bypass current, in the fourth step, the control unit Thus, the charging current adjusting means supplies the assembled battery so that the current value of each bypass current bypassed by the bypass means does not exceed the allowable bypass current value that is the maximum current that can be bypassed by the bypass means. A current value of the charging current to be controlled, and when any one of the bypass currents bypassed by the bypass means reaches the allowable bypass current value, the charging current adjusting means starts from the charging current supplied to the assembled battery. A battery management method for reducing the allowable bypass current value .

本発明では、複数の二次電池が直列に接続された組電池に直列に接続され組電池に充電電流を充電電流供給手段により供給し、各二次電池ごとに設けられるバイパス手段により各二次電池の端子電圧が二次電池の充電完了電圧を超えないように充電電流のうち二次電池の充電に使用しない電流をバイパス電流としてバイパスし、充電電流供給手段が組電池に供給する充電電流の電流値を各バイパス電流の電流値に基づいて制御部により制御するようにした。
これにより、二次電池の充電に使用しないバイパス電流の電流値が、バイパス可能な最大の電流値以下となるように、制御手段により制御することができるので、バイパス電流によって組電池の性能を劣化させることなく組電池を充電することができる。
In the present invention, a plurality of secondary batteries are connected in series to an assembled battery connected in series, a charging current is supplied to the assembled battery by charging current supply means, and each secondary battery is provided by a bypass means provided for each secondary battery. In order to prevent the battery terminal voltage from exceeding the charging completion voltage of the secondary battery, the charging current that is not used for charging the secondary battery is bypassed as a bypass current, and the charging current supply means supplies the assembled battery with a bypass current. The current value is controlled by the control unit based on the current value of each bypass current.
As a result, the control means can control the current value of the bypass current that is not used for charging the secondary battery to be equal to or less than the maximum current value that can be bypassed. The assembled battery can be charged without causing it to occur.

以下、図面を参照し、本発明の実施形態について説明する。
図1は、本発明の実施形態による電池管理装置10の概略構成図である。この電池管理装置10は、組電池1、制御部3(制御手段)、電圧調整部5a〜5n、電池切離しスイッチ7、充電電流調整部8(充電電流供給手段)を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a battery management device 10 according to an embodiment of the present invention. The battery management apparatus 10 includes an assembled battery 1, a control unit 3 (control unit), voltage adjustment units 5a to 5n, a battery disconnection switch 7, and a charging current adjustment unit 8 (charging current supply unit).

図2は、本発明の実施形態による電池管理システム11の概略構成図である。この電池管理システム11では、電池管理装置10(図1)の端子p1に、直流電源部2の一方の端子と負荷4の一方の端子とを接続している。また、電池管理装置10の端子p2に、直流電源部2の他方の端子と負荷4の他方の端子とを接続している。
直流電源部2は、電池管理装置10や負荷4に対して、直流電流を供給する。
FIG. 2 is a schematic configuration diagram of the battery management system 11 according to the embodiment of the present invention. In this battery management system 11, one terminal of the DC power supply unit 2 and one terminal of the load 4 are connected to the terminal p1 of the battery management apparatus 10 (FIG. 1). Further, the other terminal of the DC power supply unit 2 and the other terminal of the load 4 are connected to the terminal p <b> 2 of the battery management device 10.
The DC power supply unit 2 supplies a DC current to the battery management device 10 and the load 4.

組電池1は直流電源部2の停電時に無瞬断で負荷4に電力を供給する。組電池1は直列に接続された複数個の二次電池1a〜1nにより構成されている。ここでは、組電池1が二次電池1a〜1nにより構成されている場合について説明しているが、組電池1を構成する二次電池の個数はこれに限定されるものではない。
組電池1を構成する二次電池1a〜1nには、直流電源部2から充電電流調整部8を介して、充電電流が供給される。
各二次電池1a〜1nには、それぞれシャントレギュレータを用いた電圧調整部5a〜5nが並列に接続されている。電圧調整部5a〜5nは、二次電池1a〜1nの端子電圧や、二次電池1a〜1nに並列に接続されているバイパス回路を流れるバイパス電流を測定し、それらの端子電圧やバイパス電流の情報を制御部3へ出力する。
The assembled battery 1 supplies power to the load 4 without interruption in the event of a power failure of the DC power supply unit 2. The assembled battery 1 includes a plurality of secondary batteries 1a to 1n connected in series. Here, although the case where the assembled battery 1 is comprised by the secondary batteries 1a-1n is demonstrated, the number of the secondary batteries which comprise the assembled battery 1 is not limited to this.
Charging current is supplied to the secondary batteries 1 a to 1 n constituting the assembled battery 1 from the DC power supply unit 2 via the charging current adjusting unit 8.
Voltage adjusting units 5a to 5n using shunt regulators are connected in parallel to the respective secondary batteries 1a to 1n. The voltage adjustment units 5a to 5n measure the terminal voltages of the secondary batteries 1a to 1n and the bypass currents flowing through the bypass circuits connected in parallel to the secondary batteries 1a to 1n, and the terminal voltages and bypass currents are measured. Information is output to the control unit 3.

図3は、本発明の実施形態による電圧調整部5aの構成を示す回路図である。なお、電圧調整部5b〜5nの構成は、電圧調整部5aと同様であるので、それらの説明を省略する。電圧調整部5aは、バイパス電流制御素子31、バイパス電流制限素子32、バイパス電流測定素子33、電池電圧誤差増幅器34、電池電圧測定用誤差増幅器35を備えている。バイパス電流制御素子31、バイパス電流制限素子32、バイパス電流測定素子33は、直列接続されており、バイパス回路(バイパス手段)を構成している。このバイパス回路は、二次電池1aと並列接続されている。   FIG. 3 is a circuit diagram showing a configuration of the voltage adjusting unit 5a according to the embodiment of the present invention. In addition, since the structure of the voltage adjustment parts 5b-5n is the same as that of the voltage adjustment part 5a, those description is abbreviate | omitted. The voltage adjustment unit 5a includes a bypass current control element 31, a bypass current limiting element 32, a bypass current measuring element 33, a battery voltage error amplifier 34, and a battery voltage measuring error amplifier 35. The bypass current control element 31, the bypass current limiting element 32, and the bypass current measuring element 33 are connected in series and constitute a bypass circuit (bypass means). This bypass circuit is connected in parallel with the secondary battery 1a.

バイパス電流制御素子31は、トランジスタなどの素子であり、電池電圧誤差増幅器34から制御信号を受信した場合に、充電電流のうち二次電池1aの充電に使用しない電流であるバイパス電流をバイパス回路に流れるように制御する。
バイパス電流制限素子32は、ヒューズなどの素子であり、バイパス回路にバイパス可能な電流の最大値である許容バイパス電流値よりも大きな電流が流れた場合に、バイパス電流制御素子31とバイパス電流測定素子33との間を流れる電流を遮断する。
バイパス電流測定素子33は、充電電流調整部8(図2)から組電池1に供給される充電電流のうち、二次電池1aの充電に使用されないバイパス電流の電流値を測定し、バイパス電流測定値として制御部3に出力する。
The bypass current control element 31 is an element such as a transistor, and when a control signal is received from the battery voltage error amplifier 34, a bypass current that is a current that is not used for charging the secondary battery 1a among the charging current is supplied to the bypass circuit. Control to flow.
The bypass current limiting element 32 is an element such as a fuse, and when a current larger than an allowable bypass current value that is a maximum value of the bypassable current flows in the bypass circuit, the bypass current control element 31 and the bypass current measuring element The electric current which flows between 33 is interrupted.
The bypass current measuring element 33 measures the current value of the bypass current that is not used for charging the secondary battery 1a among the charging currents supplied to the assembled battery 1 from the charging current adjusting unit 8 (FIG. 2), and measures the bypass current. It outputs to the control part 3 as a value.

電池電圧誤差増幅器34は、制御部3から出力される基準電圧値(例えば、4.1(V))と、電池電圧測定用誤差増幅器35から出力される二次電池1aの端子電圧とを比較し、端子電圧が基準電圧値よりも大きい場合には、バイパス電流制御素子31にバイパス電流を流すことを指示する制御信号を、バイパス電流制御素子31に出力する。
電池電圧測定用誤差増幅器35は、二次電池1aの正極及び負極の電圧値の差から、二次電池1aの端子電圧を算出し、その端子電圧を制御部3と電池電圧誤差増幅器34とに出力する。
The battery voltage error amplifier 34 compares the reference voltage value (for example, 4.1 (V)) output from the control unit 3 with the terminal voltage of the secondary battery 1a output from the battery voltage measurement error amplifier 35. When the terminal voltage is larger than the reference voltage value, a control signal that instructs the bypass current control element 31 to pass the bypass current is output to the bypass current control element 31.
The battery voltage measurement error amplifier 35 calculates the terminal voltage of the secondary battery 1a from the difference between the positive and negative voltage values of the secondary battery 1a, and sends the terminal voltage to the control unit 3 and the battery voltage error amplifier 34. Output.

図4は、本発明の実施形態による充電電流調整部8の構成を示す回路図である。この充電電流調整部8は、充電電流制御素子41、充電電流検出素子42、充電電流制御用誤差増幅器43、充電電流測定用誤差増幅器44を備えている。
充電電流制御素子41は、トランジスタなどの素子であり、充電電流制御用誤差増幅器43から出力される信号に基づいて、直流電源部2から供給される充電電流の電流値を増減させ、組電池1へと出力する。
FIG. 4 is a circuit diagram showing a configuration of the charging current adjusting unit 8 according to the embodiment of the present invention. The charging current adjustment unit 8 includes a charging current control element 41, a charging current detection element 42, a charging current control error amplifier 43, and a charging current measurement error amplifier 44.
The charging current control element 41 is an element such as a transistor, and increases or decreases the current value of the charging current supplied from the DC power supply unit 2 based on a signal output from the charging current control error amplifier 43, and the assembled battery 1. To output.

充電電流検出素子42は、抵抗などの素子であり、充電電流調整部8から組電池1へ出力する充電電流の電流値を計測し、その電流値を充電電流測定用誤差増幅器44に出力する。充電電流制御用誤差増幅器43は、制御部3から出力される電流値と、充電電流測定用誤差増幅器44から出力される電流値との差を計算し、その結果を充電電流制御素子41に出力する。充電電流測定用誤差増幅器44は、充電電流検出素子42に流れる電流値を測定し、その電流値を充電電流制御用誤差増幅器43に出力する。   The charging current detection element 42 is an element such as a resistor, and measures the current value of the charging current output from the charging current adjusting unit 8 to the assembled battery 1 and outputs the current value to the charging current measuring error amplifier 44. The charge current control error amplifier 43 calculates the difference between the current value output from the control unit 3 and the current value output from the charge current measurement error amplifier 44 and outputs the result to the charge current control element 41. To do. The charging current measuring error amplifier 44 measures the current value flowing through the charging current detection element 42 and outputs the current value to the charging current control error amplifier 43.

図2に戻り、制御部3は、電圧調整部5a〜5nが出力する各二次電池1a〜1nの端子電圧やバイパス電流に基づいて低減電流値を決定し、充電電流から低減電流値を低減させる制御信号を、充電電流調整部8に出力する。また、制御部3は、電圧調整部5a〜5nが出力する各二次電池1a〜1nの端子電圧が、各二次電池1a〜1nの過充電電圧よりも大きい場合又は過放電電圧よりも小さい場合に、電池切離しスイッチ7を開放させる。なお、電池管理装置10に電池切離しスイッチ7は設けなくてもよい。
図2に示したように、電池管理装置10をモジュール構成とすることにより、負荷4が必要とする電流や、組電池1の電池容量に応じて、電池管理装置10を増設することが可能である。
Returning to FIG. 2, the control unit 3 determines a reduced current value based on the terminal voltage and bypass current of each of the secondary batteries 1a to 1n output from the voltage adjusting units 5a to 5n, and reduces the reduced current value from the charging current. The control signal to be output is output to the charging current adjusting unit 8. Moreover, the control part 3 is smaller than the overcharge voltage when the terminal voltage of each secondary battery 1a-1n which the voltage adjustment parts 5a-5n output is larger than the overcharge voltage of each secondary battery 1a-1n. In this case, the battery disconnect switch 7 is opened. The battery management device 10 may not be provided with the battery disconnect switch 7.
As shown in FIG. 2, by configuring the battery management device 10 as a module, it is possible to add the battery management device 10 according to the current required by the load 4 and the battery capacity of the assembled battery 1. is there.

図5は、本発明の実施形態による制御部3の処理を示すフローチャートである。始めに、制御部3は、電圧調整部5a〜5nのいずれかからバイパス電流の電流値が出力されたか否かについて判定する(ステップS11)。バイパス電流の電流値が出力されていない場合には、ステップS11で「NO」と判定し、再度、ステップS11へ進む。一方、バイパス電流の電流値が出力された場合には、ステップS11で「YES」と判定し、バイパス電流の電流値が、バイパス回路がバイパス可能な電流の最大値である許容バイパス電流値を超えているか否かについて判定する(ステップS12)。バイパス電流の電流値が、許容バイパス電流値を超えていない場合には、ステップS12で「NO」と判定し、ステップS11へ進む。一方、バイパス電流の電流値が許容バイパス電流値を越えている場合には、ステップS12で「YES」と判定し、直流電源部2から電池管理装置10に供給されている充電電流の電流値が、許容バイパス電流値以下であるか否かについて判定する(ステップS13)。充電電流の電流値が許容バイパス電流値以下である場合には、ステップS13で「YES」と判定し、ステップS11へ進む。一方、充電電流の電流値が許容バイパス電流値よりも大きい場合には、ステップS13で「NO」と判定し、充電電流から許容バイパス電流値を低減させる制御信号を充電電流調整部8へ出力する(ステップS14)。   FIG. 5 is a flowchart showing processing of the control unit 3 according to the embodiment of the present invention. First, the control unit 3 determines whether or not the current value of the bypass current is output from any of the voltage adjustment units 5a to 5n (step S11). If the current value of the bypass current is not output, “NO” is determined in the step S11, and the process proceeds to the step S11 again. On the other hand, when the current value of the bypass current is output, “YES” is determined in step S11, and the current value of the bypass current exceeds the allowable bypass current value that is the maximum current that can be bypassed by the bypass circuit. It is determined whether or not (step S12). If the current value of the bypass current does not exceed the allowable bypass current value, “NO” is determined in step S12, and the process proceeds to step S11. On the other hand, if the current value of the bypass current exceeds the allowable bypass current value, “YES” is determined in step S12, and the current value of the charging current supplied from the DC power supply unit 2 to the battery management device 10 is determined. Then, it is determined whether or not it is equal to or smaller than the allowable bypass current value (step S13). When the current value of the charging current is equal to or smaller than the allowable bypass current value, “YES” is determined in the step S13, and the process proceeds to the step S11. On the other hand, when the current value of the charging current is larger than the allowable bypass current value, “NO” is determined in step S13, and a control signal for reducing the allowable bypass current value from the charging current is output to the charging current adjusting unit 8. (Step S14).

次に、本発明の実施形態による電池管理システム11の動作の一例について説明する。
図6は、電池管理システム11(図2)における充電時の二次電池の特性変化を示すグラフである。図6では、横軸に時間をとり、縦軸に電圧(V)及び電流(CA)をとっている。ここでは、二次電池としてリチウムイオン二次電池を用い、このリチウムイオン電池を放電した後、充電する場合について説明する。曲線g5a、g5b、g5nは、それぞれ二次電池1a、1b、1nの端子電圧の特性を表わしている。なお、ここでは、二次電池1c〜1mの端子電圧の特性については図示を省略している。曲線g61は、各二次電池1a〜1nの端子電圧を合計したものであり、組電池1の端子電圧の特性を表わしている。組電池1の端子電圧の特性が曲線g61のように変化すると、組電池1を流れる充電電流の特性は曲線g62のように変化する。
Next, an example of the operation of the battery management system 11 according to the embodiment of the present invention will be described.
FIG. 6 is a graph showing changes in characteristics of the secondary battery during charging in the battery management system 11 (FIG. 2). In FIG. 6, time is taken on the horizontal axis, and voltage (V) and current (CA) are taken on the vertical axis. Here, a case where a lithium ion secondary battery is used as the secondary battery and the lithium ion battery is discharged and then charged will be described. Curves g 5a , g 5b and g 5n represent the terminal voltage characteristics of the secondary batteries 1a, 1b and 1n, respectively. Here, the terminal voltage characteristics of the secondary batteries 1c to 1m are not shown. A curve g 61 is the sum of the terminal voltages of the secondary batteries 1a to 1n, and represents the terminal voltage characteristics of the assembled battery 1. When the terminal voltage characteristic of the assembled battery 1 changes as shown by a curve g 61 , the characteristic of the charging current flowing through the assembled battery 1 changes as shown by a curve g 62 .

本発明の電池管理システム11では、組電池1の充電は定電流・定電圧方式により行われる。二次電池一個当たりの充電完了電圧を4.1(V)とすると、最初、二次電池をn個直列接続した組電池1の充電完了電圧はn×4.1(V)に設定されて定電流充電が行われる(定電流充電モード)。定電流・定電圧方式による充電であるので、組電池1の電圧がn×4.1(V)に達すると直流電源部2の出力電流は低減されていく。この充電の進行過程で、次第に組電池1の総電圧(曲線g61)がn×4.1(V)に接近していくと二次電池の特性のバラツキによって、早めに充電完了電圧に到達する二次電池1bが出てくる(図6の時刻t)。この時の各二次電池の電圧のバラツキを模式的に図7に示す。 In the battery management system 11 of the present invention, the assembled battery 1 is charged by a constant current / constant voltage method. Assuming that the charging completion voltage per secondary battery is 4.1 (V), the charging completion voltage of the assembled battery 1 in which n secondary batteries are connected in series is first set to n × 4.1 (V). Constant current charging is performed (constant current charging mode). Since charging is performed by a constant current / constant voltage method, when the voltage of the assembled battery 1 reaches n × 4.1 (V), the output current of the DC power supply unit 2 is reduced. As the total voltage (curve g 61 ) of the assembled battery 1 gradually approaches n × 4.1 (V) in the course of this charging, the charging completion voltage is reached earlier due to variations in the characteristics of the secondary battery. The secondary battery 1b to come out comes (time t 1 in FIG. 6). FIG. 7 schematically shows the voltage variation of each secondary battery at this time.

図7、図8(a)は、組電池を構成する各二次電池の端子電圧の関係を示す図であり、図8(b)は、バイパス電流の挙動を示す図である。図7の横軸は二次電池1a〜1nを示しており、縦軸は各二次電池1a〜1nの端子電圧を示している。図7では、二次電池1bの端子電圧が充電完了電圧(4.1(V))に達した状態を示しており、さらに充電が進行すると、図8(a)に示すように各二次電池の電圧が上昇し、図8(b)に示すように、各二次電池に接続されているバイパス回路にバイパス電流が流れ始める(図6の時刻t)。図6の時刻tでは、二次電池1bのバイパス回路にのみ、許容バイパス電流値Iのバイパス電流が流れている。この許容バイパス電流値Iは、制御部3が充電電流調製部8に削減電流値として送信する。 FIG. 7 and FIG. 8A are diagrams showing the relationship between the terminal voltages of the secondary batteries constituting the assembled battery, and FIG. 8B is a diagram showing the behavior of the bypass current. The horizontal axis of FIG. 7 shows the secondary batteries 1a to 1n, and the vertical axis shows the terminal voltages of the secondary batteries 1a to 1n. FIG. 7 shows a state in which the terminal voltage of the secondary battery 1b has reached the charge completion voltage (4.1 (V)), and when the charging further proceeds, as shown in FIG. The voltage of the battery rises, and as shown in FIG. 8B, a bypass current starts to flow through the bypass circuit connected to each secondary battery (time t 3 in FIG. 6). At time t 2 in FIG. 6, only the bypass circuit of the secondary battery 1b, which bypass current allowable bypass current I b flows. The allowable bypass current I b is the control unit 3 transmits a reduced current value to the charging current preparation portion 8.

制御信号を受信した充電電流調製部8は、図8(b)における許容バイパス電流値Iに相当する電流値を、充電電流調整部8から組電池1に供給される充電電流から低減する。これにより、組電池1に流入する充電電流から許容バイパス電流値I相当分が低減される(図6のA点)。この後、組電池1の充電は低電圧充電モードで行われ、組電池1の充電の進行に伴って充電電流は次第に減少する。充電電流から許容バイパス電流値を低減させる処理は、各二次電池のバイパス回路を流れるバイパス電流が許容バイパス電流に達するたびに行われる。(図6のB点、C点、D点)。例えば、図6において電池1aの端子電圧がB点において4.1(V)に達し、充電電流から許容バイパス電流が低減されている。充電電流が低減された状態で充電が進行すると他の二次電池のバイパス回路を流れるバイパス電流が、許容バイパス電流に達するので、そのたびに充電電流調整部8で充電電流から許容バイパス電流値が低減され組電池1に出力される。 Charging current preparation portion 8 which receives the control signal, a current value corresponding to the allowable bypass current I b in FIG. 8 (b), reduced from the charging current supplied to the battery pack 1 from the charging current adjustment unit 8. Thus, the allowable bypass current value I b equivalent is reduced from the charging current flowing into the battery pack 1 (A point in FIG. 6). Thereafter, charging of the assembled battery 1 is performed in the low voltage charging mode, and the charging current gradually decreases as the charging of the assembled battery 1 proceeds. The process of reducing the allowable bypass current value from the charging current is performed every time the bypass current flowing through the bypass circuit of each secondary battery reaches the allowable bypass current. (Points B, C and D in FIG. 6). For example, in FIG. 6, the terminal voltage of the battery 1a reaches 4.1 (V) at the point B, and the allowable bypass current is reduced from the charging current. When charging proceeds in a state where the charging current is reduced, the bypass current flowing through the bypass circuit of another secondary battery reaches the allowable bypass current. Therefore, the charging current adjustment unit 8 determines the allowable bypass current value from the charging current each time. Reduced and output to the assembled battery 1.

このような動作の繰り返しにより、充電完了電圧(4.1(V))に達した二次電池は、充電完了電圧に保たれ、その他の充電完了電圧に到達していない二次電池については、充電に必要な電流をそのまま供給することができ、組電池1全体の充電の進行に影響を与えることなく、各二次電池1a〜1nの端子電圧を充電完了電圧4.1(V)に到達させることができる。   By repeating such an operation, the secondary battery that has reached the charging completion voltage (4.1 (V)) is maintained at the charging completion voltage, and other secondary batteries that have not reached the charging completion voltage are: The current necessary for charging can be supplied as it is, and the terminal voltages of the secondary batteries 1a to 1n reach the charging completion voltage 4.1 (V) without affecting the progress of charging of the entire assembled battery 1. Can be made.

なお、具体的な電流値等を示すと、以下のとおりになる。電池容量100(Ah)、充電電流100(A)、バイパス回路が破損する電流値10(A)の場合、上記の許容バイパス電流値は、バイパス回路が破損する電流値の80〜90(%)である8(A)〜9(A)となる。従って、充電電流は、開始直後100(A)流れ、当初はバイパス電流も流れず全て二次電池1a〜1nの充電に使われる。
この後、定電圧充電モードに近くなるとバイパス電流が流れ始めるが、バイパス回路を流れる最大のバイパス電流が9(A)以下(例えば8(A)の場合)であれば、そのままの電流による充電が進行する。この状態で充電電流が80(A)とすると、ある二次電池では、バイパス電流が8(A)流れ電池本体の充電に72(A)使用されていることになる。他の二次電池では、バイパス電流が2(A)であれば、二次電池の充電に78(A)使用されている。そして、バイパス電流が9(A)を越えると、充電電流調整部8によって、充電電流は71(A)に低減される。
Specific current values and the like are as follows. When the battery capacity is 100 (Ah), the charging current is 100 (A), and the current value is 10 (A) at which the bypass circuit is broken, the allowable bypass current value is 80 to 90 (%) of the current value at which the bypass circuit is broken. 8 (A) to 9 (A). Therefore, the charging current flows 100 (A) immediately after the start, and no bypass current flows at the beginning, and is all used for charging the secondary batteries 1a to 1n.
After that, when the constant voltage charging mode is approached, the bypass current starts to flow. However, if the maximum bypass current flowing through the bypass circuit is 9 (A) or less (for example, 8 (A)), charging with the current is not performed. proceed. If the charging current is 80 (A) in this state, in a certain secondary battery, the bypass current flows 8 (A) and 72 (A) is used for charging the battery body. In other secondary batteries, if the bypass current is 2 (A), 78 (A) is used to charge the secondary battery. When the bypass current exceeds 9 (A), the charging current adjusting unit 8 reduces the charging current to 71 (A).

なお、上記の説明では、充電電流から許容バイパス電流値I相当分の削減を行う場合について述べているが、この電流値Iを低めに設定し、この電流値Iを超えた分を削減するように制御するようにしてもよい。この場合、充電電流の削減量が少なくなるので組電池1に流れる充電電流の低減量が少なく充電の効率が高い。 In the above description, although described for the case of performing the reduction of the allowable bypass current value I b equivalent from the charging current, and set the current value I b to be lower, the amount that exceeds the current value I b You may make it control so that it may reduce. In this case, since the reduction amount of the charging current is reduced, the reduction amount of the charging current flowing through the assembled battery 1 is small and the charging efficiency is high.

図9は、本発明の実施形態による制御部3の他の処理を示すフローチャートである。始めに、制御部3は、各電圧調整部5a〜5nの全てからバイパス電流の電流値が出力されたか否かについて判定する(ステップS21)。各バイパス電流の電流値が出力されていない場合には、ステップS21で「NO」と判定し、再度、ステップS21へ進む。一方、各バイパス電流の電流値が出力されている場合には、ステップS21で「YES」と判定し、各バイパス電流の電流値における最小の電流値を決定する(ステップS22)。
そして、直流電源部2から電池管理装置10に供給されている充電電流の電流値が、許容バイパス電流値以下であるか否かについて判定する(ステップS23)。充電電流の電流値が許容バイパス電流値よりも大きい場合には、ステップS23で「NO」と判定し、充電電流から許容バイパス電流値を低減させる制御信号を充電電流調整部8に出力する(ステップS25)。
一方、充電電流の電流値が許容バイパス電流値以下である場合には、ステップS23で「YES」と判定し、充電電流からステップS22で決定した最小の電流値を低減させる制御信号を充電電流調整部8へ出力する(ステップS24)。
FIG. 9 is a flowchart showing another process of the control unit 3 according to the embodiment of the present invention. First, the control unit 3 determines whether or not the current value of the bypass current has been output from all the voltage adjustment units 5a to 5n (step S21). If the current value of each bypass current is not output, “NO” is determined in the step S21, and the process proceeds to the step S21 again. On the other hand, when the current value of each bypass current is output, “YES” is determined in step S21, and the minimum current value in the current value of each bypass current is determined (step S22).
Then, it is determined whether or not the current value of the charging current supplied from the DC power supply unit 2 to the battery management device 10 is equal to or less than the allowable bypass current value (step S23). If the current value of the charging current is larger than the allowable bypass current value, “NO” is determined in step S23, and a control signal for reducing the allowable bypass current value from the charging current is output to the charging current adjustment unit 8 (step S23). S25).
On the other hand, if the current value of the charging current is equal to or smaller than the allowable bypass current value, “YES” is determined in step S23, and a control signal for reducing the minimum current value determined in step S22 from the charging current is set as the charging current adjustment. The data is output to the unit 8 (step S24).

図9で説明した制御部3の処理は、組電池1の端子電圧が規定の充電完了電圧に到達して組電池1に流れる電流が十分低減し、フロート充電モードになった状態で行われる。
バイパス電流は、図10(a)のように全ての二次電池1a〜1nのバイパス回路に流れる場合がある。これは、各二次電池1a〜1nの充電が完了し、流入する電流が過剰であるためであるので、各二次電池1a〜1nに流れるバイパス電流のうち共通する最小電流値相当分(図10(a)では、電流値I)を充電電流から低減させる。この結果、バイパス電流の電流値は、図10(a)のI、I〜I、I、I、I、I、Iから、図10(b)のI’、I’〜I’、I’、I’、I’、I’、I’のように変化する。
The processing of the control unit 3 described with reference to FIG. 9 is performed in a state in which the terminal voltage of the assembled battery 1 reaches a specified charging completion voltage and the current flowing through the assembled battery 1 is sufficiently reduced and the float charging mode is set.
The bypass current may flow through the bypass circuits of all the secondary batteries 1a to 1n as shown in FIG. This is because the charging of the secondary batteries 1a to 1n is completed and the inflowing current is excessive. Therefore, the amount corresponding to the common minimum current value among the bypass currents flowing through the secondary batteries 1a to 1n (see FIG. 10 (a), the current value I k ) is reduced from the charging current. As a result, the current value of the bypass current, I a in FIG. 10 (a), I b ~I i, I j, I k, I l, I m, the I n, FIG. 10 (b) of I a ' , I b ′ to I i ′, I j ′, I k ′, I l ′, I m ′, I n ′.

なお、いずれの二次電池1a〜1nにおいてもバイパス電流が流れなければ、充電電流は二次電池の充電に使用されていることになるが、充電電流が不足していることも想定される。そこで、この様な場合、制御部3が充電電流調整部8に出力する充電電流を増加させるようにしてもよい。いずれかの二次電池のバイパス回路にバイパス電流が流れれば充電電流を維持し、流れなければ更に充電電流を増加しバイパス電流の電流値の制御を行う。なお、組電池1の放電が行われ、直流電源部2からの回復充電が行われた場合には、上記のフロート充電モードにおける充電電流の制御は停止され、上述した図5のフローチャートの処理を行う。 Note that if no bypass current flows in any of the secondary batteries 1a to 1n, the charging current is used for charging the secondary battery, but it is also assumed that the charging current is insufficient. Therefore, in such a case, the charging current output from the control unit 3 to the charging current adjustment unit 8 may be increased. If a bypass current flows through the bypass circuit of any secondary battery, the charging current is maintained, and if not, the charging current is further increased to control the current value of the bypass current. In addition, when the assembled battery 1 is discharged and the recovery charging from the DC power supply unit 2 is performed, the control of the charging current in the float charging mode is stopped, and the processing of the flowchart of FIG. 5 described above is performed. Do.

バイパス可能な電流値にはバイパス回路を構成する素子等の特性上から上限があるが、本実施形態では、各二次電池1a〜1nのバイパス回路を流れるバイパス電流の測定を行い、測定したバイパス電流の電流値が許容バイパス電流値となったら、制御部3が充電電流調製部8に電流減少を指示する制御信号を送信し、充電電流調整部8が組電池1に供給する電流を低減することができる。したがって、バイパス回路には許容バイパス電流値以上のバイパス電流が流れることがないため、バイパス回路に放熱器等を設ける必要がなくなり、電池管理装置10を小型化することができる。
なお、二次電池1a〜1nの種類や許容バイパス電流値については、本実施形態で説明したものに限定されるものではなく、その他の二次電池や許容バイパス電流値を用いることもできる。
The current value that can be bypassed has an upper limit in terms of the characteristics of the elements that constitute the bypass circuit, but in this embodiment, the bypass current that flows through the bypass circuit of each of the secondary batteries 1a to 1n is measured, and the measured bypass When the current value of the current becomes the allowable bypass current value, the control unit 3 transmits a control signal instructing the charge current adjusting unit 8 to reduce the current, and the charge current adjusting unit 8 reduces the current supplied to the assembled battery 1. be able to. Therefore, a bypass current greater than the allowable bypass current value does not flow in the bypass circuit, so that it is not necessary to provide a radiator or the like in the bypass circuit, and the battery management device 10 can be downsized.
Note that the types and allowable bypass current values of the secondary batteries 1a to 1n are not limited to those described in this embodiment, and other secondary batteries and allowable bypass current values may be used.

なお、以上説明した実施形態において、制御部3の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより電池管理装置10の制御を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。   In the embodiment described above, a program for realizing the function of the control unit 3 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Thus, the battery management device 10 may be controlled. Here, the “computer system” includes an OS and hardware such as peripheral devices.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

本発明の実施形態による電池管理装置10の概略構成図である。1 is a schematic configuration diagram of a battery management device 10 according to an embodiment of the present invention. 本発明の実施形態による電池管理システム11の概略構成図である。1 is a schematic configuration diagram of a battery management system 11 according to an embodiment of the present invention. 本発明の実施形態による電圧調整部5aの構成を示す回路図である。It is a circuit diagram which shows the structure of the voltage adjustment part 5a by embodiment of this invention. 本発明の実施形態による充電電流調整部8の構成を示す回路図である。It is a circuit diagram which shows the structure of the charging current adjustment part 8 by embodiment of this invention. 本発明の実施形態による制御部3の処理を示すフローチャートである。It is a flowchart which shows the process of the control part 3 by embodiment of this invention. 電池管理システム11(図2)における充電時の二次電池の特性変化を示すグラフである。It is a graph which shows the characteristic change of the secondary battery at the time of charge in the battery management system 11 (FIG. 2). 組電池を構成する各二次電池の端子電圧の関係を示す図である。It is a figure which shows the relationship of the terminal voltage of each secondary battery which comprises an assembled battery. 組電池を構成する各二次電池の端子電圧の関係を示す図である。It is a figure which shows the relationship of the terminal voltage of each secondary battery which comprises an assembled battery. 本発明の実施形態による制御部3の他の処理を示すフローチャートである。It is a flowchart which shows the other process of the control part 3 by embodiment of this invention. 各バイパス回路を流れるバイパス電流の関係を示す図である。It is a figure which shows the relationship of the bypass current which flows through each bypass circuit. 従来から知られている電池管理システム100の概略構成図である。It is a schematic block diagram of the battery management system 100 conventionally known. 電池管理システム100(図11)における充電時の二次電池の特性変化を示すグラフである。It is a graph which shows the characteristic change of the secondary battery at the time of charge in battery management system 100 (Drawing 11). 従来から知られている電池管理システム200の概略構成図である。It is a schematic block diagram of the battery management system 200 known conventionally. 電池管理システム200(図13)における充電時の二次電池の特性変化を示すグラフである。It is a graph which shows the characteristic change of the secondary battery at the time of charge in battery management system 200 (Drawing 13).

符号の説明Explanation of symbols

1・・・組電池、1a〜1n・・・二次電池、2・・・直流電源部、3・・・制御部、4・・・負荷、5a〜5n・・・電圧調整部、7・・・電池切離しスイッチ、8・・・充電電流調整部、10・・・電池管理装置、31・・・バイパス電流制御素子、32・・・バイパス電流制限素子、33・・・バイパス電流測定素子、34・・・電池電圧誤差増幅器、35・・・電池電圧測定用誤差増幅器、41・・・充電電流制御素子、42・・・充電電流検出素子、43・・・充電電流制御用誤差増幅器、44・・・充電電流測定用誤差増幅器、50a〜50n・・・電圧調整部、51・・・制御部、60a〜60n・・・充電電流調整部、61・・・制御部、62・・・電流センサ、100・・・電池管理システム、200・・・電池管理システム
DESCRIPTION OF SYMBOLS 1 ... Assembly battery, 1a-1n ... Secondary battery, 2 ... DC power supply part, 3 ... Control part, 4 ... Load, 5a-5n ... Voltage adjustment part, 7. ..Battery disconnect switch, 8... Charging current adjustment unit, 10... Battery management device, 31... Bypass current control element, 32 .. bypass current limiting element, 33. 34 ... Battery voltage error amplifier, 35 ... Battery voltage measurement error amplifier, 41 ... Charging current control element, 42 ... Charging current detection element, 43 ... Charging current control error amplifier, 44 ... Charging current measurement error amplifier, 50a to 50n ... Voltage adjustment unit, 51 ... Control unit, 60a-60n ... Charging current adjustment unit, 61 ... Control unit, 62 ... Current Sensor, 100 ... Battery management system, 200 ... Battery management system Beam

Claims (3)

複数の二次電池が直列に接続された組電池と、
外部に接続される電源部から充電電流の供給を受ける端子と、
前記組電池に直列に接続され前記組電池に対して前記端子に供給される充電電流を調整して供給する充電電流調整手段と、
前記各二次電池ごとに設けられ前記二次電池の端子電圧が前記二次電池の充電完了電圧を超えないように前記充電電流のうち前記二次電池の充電に使用しない電流をバイパス電流としてバイパスするバイパス手段と、
前記充電電流調整手段が前記組電池に供給する充電電流の電流値を前記各バイパス電流の電流値に基づいて制御する制御手段と、
を有し、
前記制御手段は、前記バイパス手段がバイパスする各バイパス電流の電流値が、前記バイパス手段がバイパス可能な電流の最大値である許容バイパス電流値を越えないように、前記充電電流調整手段が前記組電池に供給する充電電流の電流値を制御し、前記バイパス手段がバイパスする各バイパス電流のいずれかが、前記許容バイパス電流値に達した場合に、前記充電電流調整手段が前記組電池に供給する充電電流から前記許容バイパス電流値を減少させることを特徴とする電池管理装置。
An assembled battery in which a plurality of secondary batteries are connected in series;
A terminal for receiving charging current from a power supply connected to the outside;
Charging current adjusting means connected in series to the assembled battery and adjusting and supplying the charging current supplied to the terminal with respect to the assembled battery;
A bypass current that is not used for charging the secondary battery in the charging current is bypassed so that a terminal voltage of the secondary battery provided for each secondary battery does not exceed a charging completion voltage of the secondary battery. Bypass means to
Control means for controlling the current value of the charging current supplied to the assembled battery by the charging current adjusting means based on the current value of each bypass current;
I have a,
The control means is configured so that the charging current adjusting means does not exceed an allowable bypass current value that is a maximum value of a current that can be bypassed by the bypass means. The current value of the charging current supplied to the battery is controlled, and the charging current adjusting means supplies the assembled battery when any of the bypass currents bypassed by the bypass means reaches the allowable bypass current value. A battery management apparatus that reduces the allowable bypass current value from a charging current .
前記制御手段は、前記バイパス手段がバイパスする各バイパス電流の電流値のうち最小の電流値を、前記充電電流調整手段が前記組電池に供給する充電電流から減少させることを特徴とする請求項1に記載の電池管理装置。 The control means according to claim 1 wherein the bypass means to the minimum current value among the current values of the respective bypass current which bypasses the charging current adjusting means and wherein the reducing the charging current supplied to the battery pack the battery management system according to. 外部に接続される電源部から端子を介して充電電流の供給を受ける第1のステップと、
複数の二次電池が直列に接続された組電池に直列に接続され前記組電池に対して前記端子に供給される充電電流を充電電流調整手段により調整して供給する第2のステップと、
前記各二次電池ごとに設けられるバイパス手段により前記各二次電池の端子電圧が前記二次電池の充電完了電圧を超えないように前記充電電流のうち前記二次電池の充電に使用しない電流をバイパス電流としてバイパスする第3のステップと、
前記充電電流調整手段が前記組電池に供給する充電電流の電流値を前記各バイパス電流の電流値に基づいて制御部により制御する第4のステップと、
を実行し、
前記第4のステップにおいて、前記制御部により、前記バイパス手段がバイパスする各バイパス電流の電流値が、前記バイパス手段がバイパス可能な電流の最大値である許容バイパス電流値を越えないように、前記充電電流調整手段が前記組電池に供給する充電電流の電流値を制御し、前記バイパス手段がバイパスする各バイパス電流のいずれかが、前記許容バイパス電流値に達した場合に、前記充電電流調整手段が前記組電池に供給する充電電流から前記許容バイパス電流値を減少させることを特徴とする電池管理方法。
A first step of receiving a charging current from a power supply unit connected to the outside via a terminal;
A second step in which a plurality of secondary batteries are connected in series to a battery pack connected in series, and a charging current supplied to the terminal is adjusted and supplied to the battery pack by charging current adjusting means;
Current that is not used for charging the secondary battery among the charging current so that the terminal voltage of each secondary battery does not exceed the charging completion voltage of the secondary battery by bypass means provided for each secondary battery. A third step of bypassing as a bypass current;
A fourth step of controlling the current value of the charging current supplied to the assembled battery by the charging current adjusting means by the control unit based on the current value of each bypass current;
The execution,
In the fourth step, the control unit prevents the current value of each bypass current bypassed by the bypass means from exceeding an allowable bypass current value that is a maximum value of current that can be bypassed by the bypass means. The charging current adjusting means controls the current value of the charging current supplied to the assembled battery, and when any of the bypass currents bypassed by the bypass means reaches the allowable bypass current value, the charging current adjusting means Reduces the allowable bypass current value from the charging current supplied to the assembled battery.
JP2006164617A 2006-06-14 2006-06-14 Battery management apparatus and battery management method Expired - Fee Related JP4319205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164617A JP4319205B2 (en) 2006-06-14 2006-06-14 Battery management apparatus and battery management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164617A JP4319205B2 (en) 2006-06-14 2006-06-14 Battery management apparatus and battery management method

Publications (2)

Publication Number Publication Date
JP2007336667A JP2007336667A (en) 2007-12-27
JP4319205B2 true JP4319205B2 (en) 2009-08-26

Family

ID=38935596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164617A Expired - Fee Related JP4319205B2 (en) 2006-06-14 2006-06-14 Battery management apparatus and battery management method

Country Status (1)

Country Link
JP (1) JP4319205B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602353B2 (en) * 2008-09-24 2014-10-08 三洋電機株式会社 Power supply for vehicle
JP5387703B2 (en) 2012-01-25 2014-01-15 株式会社豊田自動織機 Battery cell voltage equalization circuit
CN103792491B (en) * 2014-01-22 2017-02-01 浙江精雷电器股份有限公司 Storage battery state display device

Also Published As

Publication number Publication date
JP2007336667A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5174421B2 (en) Battery pack and battery system
JP4966998B2 (en) Charge control circuit, battery pack, and charging system
JP4398432B2 (en) Charge / discharge control circuit and rechargeable power supply
US8680814B2 (en) Battery charger and battery charging method
JP4783759B2 (en) Battery management system and battery management method
JP4841402B2 (en) Power supply device with overcharge / overdischarge detection circuit
US20060097700A1 (en) Method and system for cell equalization with charging sources and shunt regulators
JP2011004509A5 (en)
JP2005278395A (en) Circuit capable of trickle preliminary charge and/or discharge
KR20090003323A (en) Charging method, battery pack, and its charger
JP2008043009A (en) Battery pack and control method
JP6824295B2 (en) Electrical equipment
JP2009225632A (en) Charging control circuit, battery pack, and charging system
JP2015050842A (en) Power storage system, power storage controller and power storage control method
US20150048795A1 (en) Charge control apparatus and charge control method
JP2008079364A (en) Charging/discharging device
JP4319205B2 (en) Battery management apparatus and battery management method
JP4015126B2 (en) DC power supply system
JP5306582B2 (en) Battery management apparatus and battery management method
JP5489779B2 (en) Lithium-ion battery charging system and charging method
KR102082382B1 (en) Multi battery pack apparatus and control method for charging the same
JP2013146159A (en) Charge control system and charge control method of battery pack
US11462927B2 (en) Method, rated voltage adjusting device, and electric storage device
JP4633690B2 (en) Voltage compensation device, voltage compensation system, and voltage compensation method
JP2005020866A (en) Battery charger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees