JP4318235B2 - Steel wire manufacturing method - Google Patents

Steel wire manufacturing method Download PDF

Info

Publication number
JP4318235B2
JP4318235B2 JP37301598A JP37301598A JP4318235B2 JP 4318235 B2 JP4318235 B2 JP 4318235B2 JP 37301598 A JP37301598 A JP 37301598A JP 37301598 A JP37301598 A JP 37301598A JP 4318235 B2 JP4318235 B2 JP 4318235B2
Authority
JP
Japan
Prior art keywords
steel wire
bath
borax
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37301598A
Other languages
Japanese (ja)
Other versions
JP2000192149A (en
Inventor
浩和 橋本
利浩 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP37301598A priority Critical patent/JP4318235B2/en
Publication of JP2000192149A publication Critical patent/JP2000192149A/en
Application granted granted Critical
Publication of JP4318235B2 publication Critical patent/JP4318235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、強度および伸線性に優れた鋼線を製造する方法に関する。
【0002】
【従来の技術】
スチールコードは、高炭素鋼線材に伸線と熱処理とを繰り返し施すことにより製造される。かかる熱処理は伸線によって加工硬化した鋼線材を軟化させて、更に次の伸線工程で伸線するために行われる。すなわち、加工硬化した鋼線材を加熱炉にてA1点(炭素鋼の状態図においてその温度以上では溶体化状態であり、その温度以下では結晶構造になる温度)以上まで加熱してオーステナイト化し、続いて鉛浴等で500℃〜600℃に冷却保持して加工性に優れるパーライト組織にし、しかる後、次の伸線工程に供される。
【0003】
0.70〜0.90質量%程度の炭素を含む高炭素鋼線の熱処理においては、表面脱炭が起こりやすく、脱炭を抑制するために炉内の雰囲気を調整することが行われる。熱処理での鋼線表面の脱炭は、鋼線の強度を低下させると共に、その後の伸線性を低下させる要因でもあるため、熱処理において極力脱炭を抑制することが求められる。
【0004】
【発明が解決しようとする課題】
しかしながら、炉内の雰囲気の調整だけでは脱炭を十分に抑制することができず、トラブル的に脱炭が発生することから、安定して脱炭を抑制する方法がなお求められていた。
【0005】
そこで本発明の目的は、伸線された高炭素鋼線材に熱処理を施す際、極力脱炭を抑制し、強度および伸線性に優れた鋼線を製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は前記課題を解決すべく鋭意検討した結果、加熱炉内で生成する鋼線材表面スケールの性質と脱炭現象との間に関係があることを突き止め、さらに検討を重ねた結果、加熱炉内でのスケール厚を特定範囲内に制御することにより前記目的を達成し得ることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の鋼線の製造方法は、0.70〜0.90質量%の炭素を含む高炭素鋼線材に伸線加工と加熱炉内での熱処理を施して鋼線を製造する鋼線の製造方法において、
予め前記高炭素鋼線材の表面にボラックスを1mg/m〜25mg/m付着被覆して前記加熱炉内での熱処理を行い、
前記加熱炉内でのスケール厚を0.7μmから1.4μmの範囲内で制御することを特徴とするものである。
【0008】
本発明においては、予め前記高炭素鋼線材の表面にボラックスを1mg/m〜25mg/m付着被覆して前記加熱炉内での熱処理を行うことにより、前記加熱炉内でのスケール厚を所望範囲に制御することが可能となる。
【0009】
また、本発明においては、ボラックスによる皮膜処理の後、ステアリン酸カルシウムを主成分とする潤滑剤を用いて伸線し、伸線された鋼線材を加熱炉内で熱処理するにあたり、該加熱処理前に、鋼線材を多段向流式水洗浴で水洗し、最終水洗浴の溶液のボラックス濃度を1g/lから12g/lにすることが好ましく、また、前記最終水洗浴の溶液のボラックス濃度の代用特性として、該溶液の電気伝導度を1.0〜4.5mS/cmに制御して水洗を行うことが好ましい。これにより、ボラックスの被覆量を上記範囲内に容易に制御することができる。
【0010】
さらに、前記多段向流式水洗浴が、最終水洗浴で水を補給し、最終水洗浴の溶液の増加分をその前の水洗浴に送り、順次川上に向かって増加分を送り、最初の一段目の水洗浴の増加分の溶液を廃液処理する水洗方式であり、最終水洗浴の溶液のボラックス濃度の制御を、最初の水洗浴の廃液量と最終水洗浴での水の補給量とを最終水洗浴の溶液の電気伝導度に基づいて制御することにより行うことが好ましい。
【0011】
本発明の完成に至るまでの経緯を以下に詳述する。
伸線された鋼線はその表面にボラックスおよびステアリン酸カルシウム等の潤滑剤が残留しており、そのまま加熱すると加熱炉で生成する酸化皮膜が厚くなり、スケールを曲げたときにひびが入りやすくなる。その結果、炉内を通過させて行う熱処理時に、鋼線材がガイド等に接触したときに酸化皮膜が剥離離脱し、鋼線の金属表面が直接雰囲気に曝され、酸化皮膜の保護機能が失われ脱炭を起こすことが先ず解明された。
【0012】
一方、鋼線材表面に潤滑剤等が残留したままでは、所望の酸化皮膜が生成されないため、加熱処理前に潤滑剤を除去することで脱炭を低減させることができるが、残留潤滑剤および残留ボラックス等を全部除去しても、依然として脱炭現象が発生する。この点につき、本発明者らはさらに鋭意検討を重ねた結果、鋼線材の表面に所定量範囲のボラックスが残存すると、目的の酸化皮膜が生成され、脱炭を極力低下させることができることを見出した。これらの知見に基づき本発明が完成するに至り、スケールの機械的性質が改善されて脱炭の抑制実現が可能となった。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について具体的に説明する。
本発明の鋼線の製造方法においては、加熱炉内でのスケール厚を0.7μmから1.4μmの範囲内に制御する。線径が1.3mmで炭素含有量が0.8重量%の鋼線材に熱処理を施してスケール厚と脱炭との関係を検討した結果を示す図1のグラフから明らかなように、スケール厚が0.7μmから1.4μmの範囲内のときに脱炭を良好に抑制することができる。即ち、スケール厚が0.7μm未満では酸化皮膜が鋼線の表面全部を覆い尽くす程度にまでは生成されず、一方1.4μmを超えるとスケール厚が厚くなり過ぎ、ひび割れが生じやすくなるからである。尚、図1中、縦軸は鋼線の断面を観察して、脱炭深さ(mm)を測定したものである。
【0014】
加熱炉内でのスケール厚を上記範囲内にするための一好適手段として、熱処理前に予め鋼線材表面にボラックスを1mg/m〜25mg/m付着被覆しておけばよいことが見出された。即ち、所望のスケール厚範囲への制御において、スケール厚を決める要因としてスケール中のボラックス濃度があることが分かった。図2は、熱処理条件を一定にしたときのスケール中のボラックス濃度とスケール厚との関係を示すグラフであり、スケール中のボラックス濃度に指数関数的に比例してスケール厚は増加していき、この結果、熱処理前の鋼線材表面のボラックス付着量を1mg/m〜25mg/mに設定しておけば加熱炉において目的のスケール厚を得ることができることが分かった。
【0015】
所定の量のボラックスを鋼線に被覆するには、洗浄した鋼線材を所定の濃度のボラックス水溶液に浸漬することにより行うこともできるが、鋼線材は伸線でボラックス皮膜処理がされ、さらにステアリン酸カルシウムを主成分とする潤滑剤が残留しているので、伸線された鋼線材を水洗することで所望のボラックス付着量を得ることができる。すなわち、鋼線材を水洗するとまず最初に潤滑剤が溶解除去され、続いてボラックスが溶解除去されるが、水洗度合いを調整することで、すなわち多段向流式の水洗浴で水洗し、最終水洗浴の水洗度合いの程度を調整することで、水洗後の鋼線材の表面に所定量のボラックスを残存付着させることができる。
【0016】
さらに水洗浴の溶液でボラックスはイオン化し、潤滑剤はイオン化しないので、溶液中のボラックス濃度は電気伝導度を測定することで簡便に分析することができる。図3はボラックス付着量と溶液の電気伝導度との関係を調べたもので、非常に高い相関関係を示すことが分かる。
【0017】
最終水洗浴の溶液のボラックス濃度の制御は、多段向流式水洗浴における最初の水洗浴の廃液量と最終水洗浴での水の補給量とを制御することで行われる。かかる多段向流式水洗浴の好適例を図4に模式的に示す。この多段向流式水洗浴にて、鋼線材を水洗して所定の量のボラックスを付着させる。図示する例においては、3段式の水洗浴2〜4を有し、各浴ともオーバーフロータイプの水洗浴で、これら浴の下に設けられた貯液槽5〜7の溶液をポンプPにより循環させながら、各水洗浴を通過する鋼線材1を水洗する。
【0018】
最終水洗浴4には、ボラックスの濃度分析の代用特性である電気伝導度を測定する電気伝導度計9を設け、電気伝導度を測定する。この最終水洗浴4のボラックス濃度が所定以上に高くなったら、最初の水洗浴2の溶液を抜き取り、最初の水洗浴2に設けた液レベル検出器8により元の液レベルに戻るまで最終水洗浴4における貯液槽7に水供給管10から水を供給して濃度調整を行う。この多段向流式の水洗浴の貯液槽5〜7には、液戻し孔11、12が設けられ、最終水洗浴4の液の濃度調整で水を補充して増加した溶液を前の水洗浴3に戻して該水洗浴3の水洗溶液に追加し、順次川上に戻して最初の水洗浴2における貯液槽5から抜き取って減少した液を補充する。かかる液戻し孔11、12を設けることで、貯液槽5〜7の液レベルを一定に保つことができる。
【0019】
最終水洗浴4の溶液のボラックス濃度を所定の範囲内に安定して維持するためには、電気伝導度の計測と液の補充とを連続して行い、また最初の水洗浴で1回に抜き取る液の量を少なくし、電気伝導度の測定回数を多くすることで目的のボラックス濃度範囲内に良好に維持することができる。
【0020】
また、最終水洗浴の溶液濃度を一定にする他の方法として、最初の水洗浴に最終の水洗浴においてオーバーフロータイプの液戻し孔を設け、最終水洗浴で溶液の電気伝導度を測定して、それに基づいて最終水洗浴に水を補充し、増加した水を川上に向って液戻し孔を通して戻し、最初の水洗浴でオーバーフローする水を廃液処理することによっても行うことができる。
【0021】
【実施例】
本発明を実施例に基づき説明する。図4に示す多段向流式水洗浴を用いて、炭素含有量が0.8質量%で線径が1.3mmの伸線された鋼線に対し、以下の処理を行った。先ず、予め洗浄処理をし、続いてアルゴン、窒素ガス等の不活性ガス雰囲気中で鋼線を900℃で3秒間加熱した後、560℃まで急冷して3秒間保持してパーライト組織とした。
【0022】
本実施例においては、最終水洗浴4の電気伝導度が1.0〜4.5ms/cmの範囲内になるように最初の水洗浴2の液の抜き取りおよび最終水洗浴4への水の補充を行った。実際の処理においては、最終水洗浴4の液の電気伝導度を3.0±0.5ms/cmの範囲内で制御した。かかる処理で鋼線に付着したボラックスの量は12〜18mg/mで、スケール厚は0.9〜1.2μmの範囲であり、脱炭の深さは2μm以下であった。
【0023】
一方、上述の本実施例のように最終水洗浴4の電気伝導度を管理せず水洗過多となった場合は、脱炭の深さが5〜25μmであった。また、逆に水洗不十分の場合は5〜15μmの脱炭が認められた。
ここで、脱炭の深さは、熱処理された鋼線の断面をエッチングして光学顕微鏡で観察して測定した。
【0024】
【発明の効果】
以上説明してきたように、本発明の鋼線材の製造方法においては、加熱炉内でのスケール厚を特定範囲内に制御することにより、脱炭が良好に抑制され、強度および伸線性に優れた鋼線が得られる。また、本発明においては、かかるスケール厚を、予め鋼線材の表面にボラックスを所定量付着被覆して加熱炉内での熱処理を行うことにより所望範囲に制御することができる。さらに、加熱処理前に、鋼線材を多段向流式水洗浴で水洗し、最終水洗浴の溶液のボラックス濃度を制御するにあたり、ボラックス濃度の代用特性として、該溶液の電気伝導度を特定範囲内に調整することにより、ボラックスの被覆量を所望範囲内に容易に制御することができる。
【図面の簡単な説明】
【図1】スケール厚と脱炭との関係を示すグラフである。
【図2】熱処理条件を一定にしたときのスケール中のボラックス濃度とスケール厚との関係を示すグラフである。
【図3】ボラックス付着量と溶液の電気伝導度との関係を示すグラフである。
【図4】多段向流式水洗浴の好適例を示す模式図である。
【符号の説明】
1 鋼線材
2 最初の水洗浴
3 中間の水洗浴
4 最終の水洗浴
5 最初の貯液槽
6 中間の貯液槽
7 最終の貯液槽
8 液レベル検出器
9 電気伝導度計
10 水供給管
11,12 液戻し孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel wire excellent in strength and drawability.
[0002]
[Prior art]
Steel cords are manufactured by repeatedly drawing and heat-treating high carbon steel wires. Such heat treatment is performed in order to soften the steel wire that has been work-hardened by wire drawing, and to perform wire drawing in the next wire drawing step. That is, the work-hardened steel wire is heated to a point A1 (temperature above the temperature in the phase diagram of the carbon steel is a solution state and becomes a crystal structure below the temperature) in a heating furnace to become austenite, followed by Then, it is cooled and held at 500 ° C. to 600 ° C. in a lead bath or the like to obtain a pearlite structure excellent in workability, and then subjected to the next wire drawing step.
[0003]
In the heat treatment of a high carbon steel wire containing about 0.70 to 0.90 mass% of carbon, surface decarburization is likely to occur, and the atmosphere in the furnace is adjusted to suppress decarburization. Since the decarburization of the surface of the steel wire in the heat treatment is a factor for reducing the strength of the steel wire and the subsequent wire drawing, it is required to suppress the decarburization as much as possible in the heat treatment.
[0004]
[Problems to be solved by the invention]
However, since the decarburization cannot be sufficiently suppressed only by adjusting the atmosphere in the furnace and the decarburization occurs in trouble, a method for stably suppressing the decarburization has been still demanded.
[0005]
Accordingly, an object of the present invention is to provide a method for producing a steel wire that suppresses decarburization as much as possible and is excellent in strength and drawability when heat-treated to a drawn high carbon steel wire.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has found that there is a relationship between the properties of the steel wire surface scale generated in the heating furnace and the decarburization phenomenon. It has been found that the object can be achieved by controlling the scale thickness in the furnace within a specific range, and the present invention has been completed.
[0007]
That is, the steel wire manufacturing method of the present invention is a steel wire for manufacturing a steel wire by subjecting a high carbon steel wire containing 0.70 to 0.90 mass% of carbon to wire drawing and heat treatment in a heating furnace. In the manufacturing method of
A heat treatment in the heating furnace in advance borax on the surface of the high carbon steel wire rod to 1mg / m 2 ~25mg / m 2 adhesion coating,
The scale thickness in the heating furnace is controlled within a range of 0.7 μm to 1.4 μm.
[0008]
In the present invention, by performing the heat treatment in the heating furnace in advance borax on the surface of the high carbon steel wire rod to 1mg / m 2 ~25mg / m 2 adhesion coating, the scale thickness in said heating furnace It becomes possible to control to a desired range.
[0009]
In the present invention, after the coating treatment with borax, the steel wire is drawn using a lubricant mainly composed of calcium stearate, and before the heat treatment, the heat-treated steel wire is heat-treated in a heating furnace. It is preferable that the steel wire is washed with a multi-stage countercurrent washing bath so that the borax concentration of the solution in the final washing bath is from 1 g / l to 12 g / l. As a result, it is preferable to perform water washing while controlling the electrical conductivity of the solution at 1.0 to 4.5 mS / cm. Thereby, the coating amount of borax can be easily controlled within the above range.
[0010]
Further, the multi-stage counter-current type water washing bath replenishes the water in the final water washing bath, sends the increased amount of the solution in the final water washing bath to the previous water washing bath, sequentially sends the increased amount toward the river, This is a water-washing method that treats the increased amount of solution in the eye wash bath, and controls the borax concentration of the solution in the final wash bath, and finally determines the amount of waste liquid in the first wash bath and the amount of water supplied in the final wash bath. It is preferable to carry out by controlling based on the electric conductivity of the solution in the washing bath.
[0011]
The process leading to the completion of the present invention will be described in detail below.
The drawn steel wire has a lubricant such as borax and calcium stearate remaining on the surface thereof, and when heated as it is, the oxide film generated in the heating furnace becomes thick, and cracks are easily formed when the scale is bent. As a result, during the heat treatment performed through the furnace, the oxide film peels off when the steel wire comes into contact with the guide, etc., and the metal surface of the steel wire is directly exposed to the atmosphere, and the protective function of the oxide film is lost. It was first elucidated that decarburization occurred.
[0012]
On the other hand, if the lubricant or the like remains on the surface of the steel wire, a desired oxide film is not generated. Therefore, decarburization can be reduced by removing the lubricant before the heat treatment. Even if all the borax is removed, the decarburization phenomenon still occurs. In this regard, as a result of further intensive investigations, the present inventors have found that when a predetermined amount of borax remains on the surface of the steel wire rod, a target oxide film is generated and decarburization can be reduced as much as possible. It was. Based on these findings, the present invention has been completed, the mechanical properties of the scale have been improved, and it has become possible to suppress decarburization.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
In the steel wire manufacturing method of the present invention, the scale thickness in the heating furnace is controlled within the range of 0.7 μm to 1.4 μm. As is apparent from the graph of FIG. 1 showing the result of examining the relationship between scale thickness and decarburization after heat treatment of a steel wire having a wire diameter of 1.3 mm and a carbon content of 0.8% by weight, the scale thickness Decarburization can be satisfactorily suppressed when is in the range of 0.7 μm to 1.4 μm. That is, when the scale thickness is less than 0.7 μm, the oxide film is not generated to the extent that it covers the entire surface of the steel wire, whereas when it exceeds 1.4 μm, the scale thickness becomes too thick and cracks are likely to occur. is there. In FIG. 1, the vertical axis indicates the decarburization depth (mm) measured by observing the cross section of the steel wire.
[0014]
The scale thickness of the heating furnace as a preferred means to within the above range, Heading that the borax to advance the steel wire material surface before the heat treatment it is sufficient to 1mg / m 2 ~25mg / m 2 adhesion coating It was done. That is, it was found that the borax concentration in the scale is a factor that determines the scale thickness in the control to the desired scale thickness range. FIG. 2 is a graph showing the relationship between the borax concentration in the scale and the scale thickness when the heat treatment conditions are made constant, and the scale thickness increases in an exponential manner proportional to the borax concentration in the scale. As a result, it was found that it is possible to obtain the scale thickness of the object of borax adhesion amount in a heating furnace by setting a 1mg / m 2 ~25mg / m 2 of the steel wire material surface before the heat treatment.
[0015]
A predetermined amount of borax can be coated on a steel wire by immersing the washed steel wire in a borax aqueous solution having a predetermined concentration. However, the steel wire is subjected to a borax film treatment by wire drawing, and further steered. Since the lubricant mainly composed of calcium phosphate remains, a desired borax adhesion amount can be obtained by washing the drawn steel wire with water. That is, when the steel wire is washed with water, the lubricant is first dissolved and removed, and then the borax is dissolved and removed, but by adjusting the degree of washing, that is, washing with a multistage countercurrent washing bath, the final washing bath By adjusting the degree of the degree of water washing, a predetermined amount of borax can be adhered to the surface of the steel wire after washing.
[0016]
Furthermore, since the borax is ionized and the lubricant is not ionized in the washing bath solution, the borax concentration in the solution can be easily analyzed by measuring the electric conductivity. FIG. 3 shows the relationship between the amount of borax adhesion and the electrical conductivity of the solution. It can be seen that the correlation is very high.
[0017]
The control of the borax concentration of the solution in the final water bath is performed by controlling the amount of waste liquid in the first water bath and the amount of water replenished in the final water bath in the multi-stage countercurrent water bath. FIG. 4 schematically shows a suitable example of such a multi-stage countercurrent water washing bath. In this multi-stage counter-current water washing bath, the steel wire is washed with water and a predetermined amount of borax is adhered. In the example shown in the figure, there are three-stage washing baths 2 to 4, and each bath is an overflow type washing bath, and the solution in the storage tanks 5 to 7 provided under these baths is circulated by a pump P. Then, the steel wire 1 passing through each washing bath is washed with water.
[0018]
The final rinsing bath 4 is provided with an electrical conductivity meter 9 for measuring electrical conductivity, which is a substitute characteristic for concentration analysis of Borax, and the electrical conductivity is measured. If the borax concentration in the final water washing bath 4 becomes higher than a predetermined level, the solution in the first water washing bath 2 is extracted, and the final water washing bath is returned to the original liquid level by the liquid level detector 8 provided in the first water washing bath 2. Water is supplied from the water supply pipe 10 to the liquid storage tank 7 in 4 to adjust the concentration. Liquid storage holes 11 and 12 are provided in the storage tanks 5 to 7 of the multistage counter-current type washing bath, and the solution increased by replenishing the water by adjusting the concentration of the liquid in the final washing bath 4 is used as the previous water. It returns to the washing bath 3 and is added to the washing solution of the washing bath 3, and then it is returned to the river in order to withdraw the liquid from the storage tank 5 in the first washing bath 2 and replenish the reduced liquid. By providing the liquid return holes 11 and 12, the liquid level in the liquid storage tanks 5 to 7 can be kept constant.
[0019]
In order to stably maintain the borax concentration of the solution in the final washing bath 4 within a predetermined range, the electrical conductivity is measured and the solution is replenished continuously, and is extracted once in the first washing bath. By reducing the amount of liquid and increasing the number of times of measurement of electrical conductivity, it can be well maintained within the target borax concentration range.
[0020]
In addition, as another method of making the solution concentration of the final water bath constant, an overflow type liquid return hole is provided in the first water bath in the final water bath, and the electric conductivity of the solution is measured in the final water bath, On the basis of this, water can be replenished to the final washing bath, the increased water can be returned to the river through the liquid return hole, and the overflowed water in the first washing bath can be treated as a waste liquid.
[0021]
【Example】
The present invention will be described based on examples. The following treatment was performed on the drawn steel wire having a carbon content of 0.8% by mass and a wire diameter of 1.3 mm using the multistage countercurrent washing bath shown in FIG. First, a cleaning treatment was performed in advance, and then the steel wire was heated at 900 ° C. for 3 seconds in an inert gas atmosphere such as argon or nitrogen gas, then rapidly cooled to 560 ° C. and held for 3 seconds to obtain a pearlite structure.
[0022]
In the present embodiment, the liquid of the first rinsing bath 2 is extracted and the water is replenished to the final rinsing bath 4 so that the electric conductivity of the final rinsing bath 4 is in the range of 1.0 to 4.5 ms / cm. Went. In the actual treatment, the electric conductivity of the liquid in the final washing bath 4 was controlled within a range of 3.0 ± 0.5 ms / cm. The amount of borax adhered to the steel wire by this treatment was 12 to 18 mg / m 2 , the scale thickness was in the range of 0.9 to 1.2 μm, and the decarburization depth was 2 μm or less.
[0023]
On the other hand, when the electrical conductivity of the final rinsing bath 4 was not controlled as in the above-described embodiment and the water was excessively washed, the decarburization depth was 5 to 25 μm. On the other hand, 5-15 μm decarburization was observed when the water washing was insufficient.
Here, the depth of decarburization was measured by etching a cross section of the heat treated steel wire and observing it with an optical microscope.
[0024]
【The invention's effect】
As described above, in the method for manufacturing a steel wire according to the present invention, by controlling the scale thickness in the heating furnace within a specific range, decarburization is suppressed well, and the strength and the wire drawing property are excellent. A steel wire is obtained. In the present invention, the scale thickness can be controlled within a desired range by preliminarily depositing and coating a predetermined amount of borax on the surface of the steel wire and performing heat treatment in a heating furnace. Further, before the heat treatment, the steel wire is washed with a multi-stage countercurrent washing bath, and when controlling the borax concentration of the solution in the final washing bath, the electrical conductivity of the solution falls within a specific range as a substitute characteristic of the borax concentration. By adjusting to, the coating amount of borax can be easily controlled within a desired range.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between scale thickness and decarburization.
FIG. 2 is a graph showing the relationship between the borax concentration in the scale and the scale thickness when the heat treatment conditions are made constant.
FIG. 3 is a graph showing the relationship between the amount of borax adhesion and the electrical conductivity of a solution.
FIG. 4 is a schematic view showing a suitable example of a multi-stage countercurrent water washing bath.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel wire material 2 Initial water-washing bath 3 Intermediate water-washing bath 4 Final water-washing bath 5 Initial liquid storage tank 6 Intermediate liquid storage tank 7 Final liquid storage tank 8 Liquid level detector 9 Electrical conductivity meter 10 Water supply pipe 11,12 Liquid return hole

Claims (4)

0.70〜0.90質量%の炭素を含む高炭素鋼線材に伸線加工と加熱炉内での熱処理を施して鋼線を製造する鋼線の製造方法において、
予め前記高炭素鋼線材の表面にボラックスを1mg/m〜25mg/m付着被覆して前記加熱炉内での熱処理を行い、
前記加熱炉内でのスケール厚を0.7μmから1.4μmの範囲内で制御することを特徴とする鋼線の製造方法。
In the method of manufacturing a steel wire, the steel wire is manufactured by subjecting a high carbon steel wire containing 0.70 to 0.90 mass% of carbon to wire drawing and heat treatment in a heating furnace .
A heat treatment in the heating furnace in advance borax on the surface of the high carbon steel wire rod to 1mg / m 2 ~25mg / m 2 adhesion coating,
A method of manufacturing a steel wire, wherein the scale thickness in the heating furnace is controlled within a range of 0.7 μm to 1.4 μm.
ラックスによる皮膜形成処理の後、ステアリン酸カルシウムを主成分とする潤滑剤を用いて伸線し、伸線された鋼線材を加熱炉内で熱処理するにあたり、該加熱処理前に、鋼線材を多段向流式水洗浴で水洗し、この際、最終水洗浴の溶液のボラックス濃度を1g/lから12g/lとし、前記最終水洗浴から取り出した後の、前記高炭素鋼線材の表面のボラックス付着量が1mg/m〜25mg/mである請求項1記載の鋼線の製造方法。After the film forming process by borax, multistage Upon wire drawing using a lubricant mainly composed of calcium stearate, heat treating the drawn steel wire in a heating furnace, prior to the heat treatment, the steel wires Washing with a counter-current washing bath, the borax concentration of the solution in the final washing bath is 1 g / l to 12 g / l, and the borax adheres to the surface of the high carbon steel wire rod after being removed from the final washing bath the process according to claim 1 steel wire wherein the amount is 1mg / m 2 ~25mg / m 2 . 前記最終水洗浴の溶液のボラックス濃度の代用特性として、該溶液の電気伝導度を1.0〜4.5mS/cmに制御して水洗を行う請求項2記載の鋼線の製造方法。  The method for producing a steel wire according to claim 2, wherein the washing is carried out by controlling the electrical conductivity of the solution to 1.0 to 4.5 mS / cm as a substitute characteristic of the borax concentration of the solution in the final washing bath. 前記多段向流式水洗浴が、最終水洗浴で水を補給し、最終水洗浴の溶液の増加分をその前の水洗浴に送り、順次川上に向かって増加分を送り、最初の一段目の水洗浴の増加分の溶液を廃液処理する水洗方式であり、最終水洗浴の溶液のボラックス濃度の制御を、最初の水洗浴の廃液量と最終水洗浴での水の補給量とを最終水洗浴の溶液の電気伝導度に基づいて制御することにより行う請求項3記載の鋼線の製造方法。  The multi-stage counter-current flush bath replenishes the water in the final flush bath, sends the increment of the solution in the final flush bath to the previous flush bath, sequentially sends the increment toward the river, and the first first stage This is a water-washing system that treats the increased amount of water in the water-washing bath, and controls the borax concentration of the solution in the final water-washing bath. The manufacturing method of the steel wire of Claim 3 performed by controlling based on the electrical conductivity of the solution of this.
JP37301598A 1998-12-28 1998-12-28 Steel wire manufacturing method Expired - Fee Related JP4318235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37301598A JP4318235B2 (en) 1998-12-28 1998-12-28 Steel wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37301598A JP4318235B2 (en) 1998-12-28 1998-12-28 Steel wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2000192149A JP2000192149A (en) 2000-07-11
JP4318235B2 true JP4318235B2 (en) 2009-08-19

Family

ID=18501432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37301598A Expired - Fee Related JP4318235B2 (en) 1998-12-28 1998-12-28 Steel wire manufacturing method

Country Status (1)

Country Link
JP (1) JP4318235B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954648B (en) * 2019-12-06 2022-07-05 镇江耐丝新型材料有限公司 Method for judging drawing state of boron-coated steel wire
CN114892232B (en) * 2022-04-27 2024-02-13 张家港市苏闽金属制品有限公司 Low-loss electroplating process applied to rubber tube steel wire

Also Published As

Publication number Publication date
JP2000192149A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP4607951B2 (en) Manufacturing method of austenitic stainless steel strip with matte finish
JP4318235B2 (en) Steel wire manufacturing method
US2618578A (en) Blackening stainless steel
US4142919A (en) Manufacture of elongated bodies of high strength carbon steel
JPS58151463A (en) Method for galvanizing malleable cast iron product without acid treatment
US3472742A (en) Plating nickel on aluminum castings
JP3672374B2 (en) Lead frame manufacturing method
JPS6223977A (en) Manufacture of brass plates steel wire
KR20070009153A (en) Zinc-plating method of wire
JPH02185958A (en) Production of wire plated with metal by hot dipping
US3526529A (en) Method of producing high tensile strength aluminum coated ferrous strands
JP2645837B2 (en) Surface treatment method of wire rope
US2830881A (en) Treatment of material
JP3828388B2 (en) Surface treatment method of aluminum material and surface-treated aluminum material
JPS6247497A (en) Method for plating steel wire for tire cord
KR960000595B1 (en) Methdo for making a hot-rolled galvanized steel sheet
US1528245A (en) Process of treating iron or steel rods or wire
JP2793848B2 (en) Manufacturing method of low sag overhead transmission line
JP3542676B2 (en) Apparatus for removing scale generated on the surface of wire and method for removing scale using this apparatus
CN112781964A (en) Etching solution and method for displaying grain size of 0Cr17Ni4Cu4Nb precipitation-hardened stainless steel
CN115631891A (en) Copper wire tinning method for tinning copper stranded wire production
JPH0578803A (en) Production of galvanized steel sheet
CN1031261A (en) Zinc immersing process for metals of large length
JP2798717B2 (en) Low sag overhead transmission line
JPH0360598B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees