JP4318058B2 - Method and apparatus for producing aromatic fluorine compound - Google Patents

Method and apparatus for producing aromatic fluorine compound Download PDF

Info

Publication number
JP4318058B2
JP4318058B2 JP21928298A JP21928298A JP4318058B2 JP 4318058 B2 JP4318058 B2 JP 4318058B2 JP 21928298 A JP21928298 A JP 21928298A JP 21928298 A JP21928298 A JP 21928298A JP 4318058 B2 JP4318058 B2 JP 4318058B2
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
reaction
photoreaction
tube
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21928298A
Other languages
Japanese (ja)
Other versions
JP2000044501A (en
Inventor
光夫 車屋
常俊 本田
博史 腰山
利昭 煙山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc filed Critical Jemco Inc
Priority to JP21928298A priority Critical patent/JP4318058B2/en
Publication of JP2000044501A publication Critical patent/JP2000044501A/en
Application granted granted Critical
Publication of JP4318058B2 publication Critical patent/JP4318058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は芳香族フッ素化合物の製造方法と製造装置に関する。より詳しくは芳香族ジアゾニウム塩の光分解により芳香族フッ素化物を製造する方法において、収率が高く、装置の保守管理上有利な製造方法とその製造装置に関する。
【0002】
【従来の技術】
芳香族フッ素化合物は医薬品、農薬、液晶などの中間体として有用である。芳香族フッ素化合物を製造する代表的な方法としては、求電子的フッ素置換、脱ハロフッ素化反応(Halex法)、ジアゾ化−脱ジアゾフッ素化反応(Balz-Schiemann法)などが知られている。求電子的フッ素置換はフッ素ガスなどを用いて行われるが、反応の制御および位置選択性に問題がある。脱ハロフッ素化反応はo-位またはp-位に強い電子吸引基が必要であり基質が限定される。
【0003】
ジアゾ化−脱ジアゾフッ素化反応は上記方法の中では最も汎用性が高いが、化学的に不安定で毒性のあるジアゾニウム塩を単離する工程が必要である。また、熱分解の制御が困難で反応の再現性が良くない。さらに、基質により収率が大きく異なり、特に極性置換基を有する複雑な化合物では収率が低いという問題があった。
【0004】
ジアゾ化の後、脱ジアゾフッ素化をピリジンなどの塩基の存在下に光照射により行なう改良法も提案されている(特開昭63-188631号)。この方法では、反応の制御が比較的容易であり、ジアゾニウム塩の単離が不要となる。また、高選択的に反応が進行するという利点がある。しかし、反応を長時間継続させたり、反応装置を繰り返し使用した場合には、反応溶液に接する光透過材にカップリング体やタール状物質が付着して反応効率が低下すると云う問題があった。
【0005】
そこで、ジアゾ化反応溶液にフッ酸を加え、あるいはジアゾ化反応溶液の塩基濃度よりも少ない塩基濃度のフッ酸を加えて反応溶液を希釈した後に光照射を行うことによって光照射時間を短縮し、また光透過材の汚れを減じて長時間の連続使用を図る製造方法が本発明者等により提案されている(特開平9-20697号)。
【0006】
【発明の解決課題】
本発明は、このような従来の問題を解決し、フッ酸ないしフッ酸塩基混合溶液を用いたジアゾニウム塩の光分解反応による脱ジアゾフッ素化反応を効率よく、工業的に実施できる方法を提供するものである。
具体的には、本発明の製造方法は、反応溶液を光反応器に循環し、反応の進行状況に応じて光分解反応を繰り返すことにより、反応効率を高めると共に光透過材の汚れの原因となる副生物の生成を抑えて長時間の実施を可能にし、さらにフッ酸ないしフッ酸と塩基を回収して繰り返し使用することにより工業的製造方法として実用性を高めたものである。
【0007】
【課題解決の手段】
すなわち本発明は以下の製造方法に関する。
〔1〕 フッ酸単独またはフッ酸と塩基の混合溶液を反応溶液として用い、該反応溶液中で芳香族アミノ化合物をジアゾ化し、生成したジアゾニウム塩を光分解して脱ジアゾフッ素化することにより芳香族フッ素化合物を製造する方法において、(イ)波長280nm〜340nmの紫外線を用いて光分解反応による脱ジアゾフッ素化を行なわせ、(ロ)光分解によって生じる窒素ガス量によって光分解の進行を検出し、これに基づいて反応溶液を貯槽と光反応容器の間で循環させて光分解反応を進め、(ハ)光分解反応後、反応溶液を加熱してフッ酸を蒸留回収する一方、(ニ)フッ酸濃度が低下した反応溶液から目的の芳香族フッ素化合物を回収し、(ホ)その残渣からフッ酸またはフッ酸と塩基を回収すると共に、回収したフッ酸またはフッ酸と塩基を反応溶液の一部に再利用することを特徴とする芳香族フッ素化合物の製造方法。
【0008】
本発明の上記製造方法は以下の態様を含む。
〔2〕塩基濃度0〜50wt%のフッ酸塩基混合溶液を反応溶液として用いる上記[1]の製造方法。
〔3〕溶媒に対する芳香族アミノ化合物の濃度が0.01〜5mmol/gである上記[1]または上記[2]に記載の製造方法。
【0009】
さらに本発明は、上記製造方法の実施に好適な以下の製造装置に関する。
〔4〕 フッ酸単独またはフッ酸と塩基の混合溶液を反応溶液として用い、該反応溶液中で芳香族アミノ化合物をジアゾ化し、生成したジアゾニウム塩を光分解して脱ジアゾフッ素化することにより芳香族フッ素化合物を製造する装置であって、縦長に立設された光電管と、該光電管を囲むように立設された縦長の光反応管とを有し、上記光電管ないし光反応管には照射光の波長域を限定するフィルターが装着されており、一方、光反応管は光透過性材料によって形成されており、かつ発生したガスを外部に導く排気管とガス計量手段が設けられており、さらに反応溶液を光反応管に循環する貯槽が設けられており、光反応管において波長280nm〜340nmの紫外線を用いて光分解反応による脱ジアゾフッ素化を行なわせ、光分解によって生じる窒素ガス量をガス計量手段によって検出して光分解の進行を検出し、これに基づいて反応溶液を貯槽と光反応容器の間で循環させて光分解反応を進めることを特徴とする光反応装置。
〔5〕 照射光の波長を限定するフィルターを設けることに代えて、光反応管が照射光の波長を限定する光透過性材料によって形成されている上記[4]に記載の光反応装置。
〔6〕 芳香族フッ素化合物の製造に用いられる装置であって、光反応管がフルオロオレフィン重合体製チューブによって形成されている上記[4]または上記[5]に記載の光反応装置。
【0010】
【発明の実施の態様】
以下、本発明を具体的な態様に基づいて詳細に説明する。図1に本発明の製造工程例の概略を示し、図2にその装置構成例を示す。
図示するように、本発明の製造方法は、(I)フッ酸単独または、フッ酸と塩基の反応溶液中で原料の芳香族をジアゾ化する工程、(II)生成したジアゾニウム塩を光分解して脱ジアゾフッ素化することにより芳香族フッ素化合物を製造する工程、(III)生成物を含む反応溶液を加熱してフッ酸を回収する工程、(IV)フッ酸濃度を下げた反応溶液から目的の芳香族フッ素化合物を回収する工程、(V)回収残渣からフッ酸または、フッ酸と塩基を回収する工程、(VI)回収したフッ酸および塩基をジアゾ化工程に循環して再利用する工程を有する。
【0011】
調整槽1において調製された反応溶液は反応槽2に導かれ、ここでジアゾ化反応が進み、反応槽2から貯槽16に送られ、該貯槽16から光反応装置10に供給される。反応溶液は光分解反応の程度に応じて貯槽16と光反応装置10とを循環され、反応終了後に貯槽16を経て外部に抜き出される。
以下、各工程を説明する。
【0012】
( ) ジアゾ化工程
フッ酸単独または、フッ酸と塩基の混合溶液を反応溶液として用い、該反応溶液に原料の芳香族アミノ化合物と亜硝酸付与剤を加えることによりジアゾ化反応を行わせる。原料の芳香族アミノ化合物は芳香環に直接アミノ基が結合している化合物であればよく、芳香族炭化水素およびヘテロ原子を含む芳香族化合物が含まれる。芳香族炭化水素の例としては、ベンゼン、ナフタレン、アントラセン等が挙げられ、ヘテロ環の例としてはピリジン、ピリミジン、ピラゾリン、トリアジン、キノリン、フラン、ベンゾフランピロール、チオフェン、オキサゾール、イソオキサゾール、チアゾール、イミダゾール、ベンゾイミダゾール、オキサジアゾール、チアジアゾール、トリゾール、インドール、ナフチジン等が挙げられる。
【0013】
原料の芳香族アミノ化合物は、アミノ基のほかに置換基を有してもよい。置換基の種類は限定されない。本発明は、特に極性置換基を有する芳香族化合物を原料とする場合に有用である。すなわち、極性置換基を有する芳香族化合物のジアゾ化−光分解では、タール状化合物などの副生物が生じやすいが、本発明の方法ではこのような化合物を原料とする場合においても、タール状化合物の副生を最低限に抑えて目的化合物を得ることができる。極性置換基の例としてはフッ素、塩素、臭素、ヨウ素などのハロゲン、トリフルオロメチル等のハロアルキル、アルコキシカルボニル、アルコキシ等が挙げられる。1分子中に極性置換基を複数有していてもよいし、ここに挙げた以外の置換基を有していてもよい。
【0014】
ジアゾ化のために用いられる亜硝酸付与剤はジアゾ化剤として通称されるものであり、無水亜硝酸、亜硝酸ソーダ、亜硝酸カリウム等が好適である。亜硝酸付与剤の添加量は、亜硝酸として少なくとも芳香族アミンに対する当量以上必要である。
【0015】
反応溶液は、フッ酸単独またはフッ酸と塩基の混合溶液が用いられる。フッ酸塩基混合溶液を用いることにより光分解反応を効率よく進め、目的化合物の収率を高めることができる。塩基はフッ酸と錯体を形成する塩基、すなわち、酸素、窒素、リン、硫黄を含む化合物を用いることができる。具体的には、例えば、ピリジン、トリエチルアミンなどのアミン化合物、エテルエーテル等のエーテル化合物、ケトン化合物、アルデヒド化合物、エステル化合物、およびアルコ−ル、カルボン酸、水、スルホキシド、スルホンアミド化合物、アミド化合物、ニトリル、イソニトリル、ホスフィン、ホスファイト、ホスフェイト化合物等が使用でき、特にアミン化合物およびエーテル化合物が好適である。
【0016】
反応溶液としてフッ酸のみを使用する場合は、原料のアミンに対し10〜50倍モル、好ましくは15〜40倍モルの使用が適当である。塩基を共存させる場合は、塩基濃度が50wt%までが適当である。塩基の濃度がこれ以上になれば目的の芳香族フッ素化合物の収率が低下する。
また、反応溶液に対する芳香族アミノ化合物の濃度は0.01〜5mmol/gが適当である。0.01mol/g未満では生産性が悪く、5mmol/gより高いと未溶解のアミノ化合物が発生し、反応量の低下、副生成物の増加が起こるので好ましくない。
なお、反応温度は−150〜150℃が適当であり、−100〜100℃が好ましい。反応時間は芳香族アミノ化合物の種類にもよるが0.1〜10時間程度である。
【0017】
(II) 光反応工程
上記ジアゾ化工程で得た反応生成物に光を照射してそのジアゾニウム塩を光分解し、脱ジアゾフッ素化反応により目的の芳香族フッ素化合物を生成させる。この光反応は、波長280nm〜340nm、好ましくは、280nm〜320nmの紫外線を用いるのが良い。280nm未満の紫外線を含むとタール状物質の生成が増大し目的化合物の収率が低下する。また340nmを超える波長では反応速度が大幅に低下する。照射光の波長を上記範囲に制限することにより、目的化合物の収率と反応速度を高めることができる。特に、ハロゲンを置換基として有する化合物の光分解反応では、その置換数が増えるほど波長による影響が著しい。
【0018】
上記波長域は、紫外線光源とフィルターとによって制御することができる。一般に、光源には高圧水銀ランプ等が用いられるが、これに透過限界波長が280nm以上の紫外透過フィルタ−を組み合わせれば良い。また、フィルター効果を有するガラス材料によって光反応容器を形成することによって波長を制御しても良い。例えば、低膨張ホウケイ酸ガラス(パイレックス)などを用いて反応容器を形成すれば良い。
【0019】
なお、光分解反応の段階でタール状の副生物が生じ、これが光反応器の壁を汚し、光の照射を妨げて反応効率を低下する問題がある。このタール状物質は使用するアミノ化合物や塩基濃度によって生成量が異なるが、フッ酸濃度を高めれば低減することができる。この場合、フッ酸濃度を高めると相対的に塩基濃度が低下するため、目的化合物の収率が低下する懸念があるが、先に述べたように、溶液中の塩基濃度が10〜50wt%であればタール状物質の量も少なく、目的化合物の収率も高い。
【0020】
光分解の反応温度は−100〜200℃が適当であり、−50〜100℃が好ましい。反応時間は、原料化合物にもよるが1〜30時間が適当である。
光分解反応により脱ジアゾ化が進むのにつれて窒素ガスが発生する。この発生した窒素ガス量を測定することによって、光分解反応の進行状況が把握でき、原料からの窒素ガス発生計算量または、ガスの発生が無くなるまで、貯槽から光反応容器に反応溶液を循環して光分解反応を繰り返し行う。
【0021】
図3、図4に光分解装置の構成例を示す。図3は本発明に用いる光反応装置の概略を示す縦断面図であり、図4はその概略横断面図である。図示するように、光分解装置10の中央部には縦長の光源11(光電管:例えば蛍光管状のもの)が立設されており、該光電管11を囲むように複数の光反応管13が立設されている。光電管11はその側方全周に光を照射するランプ11aと該ランプ11aを気密に収納した透明な筒状のケース11bによって形成されている。ランプ11aの種類ないし波長、出力は反応系に応じて適宜選択される。透明ケース11bは反応溶液には直に接触しないので、その材質は反応溶液に対する防蝕性を有するものに限定されず透明性の高い石英ガラスや有機ガラスなどの光透過材を用いることができる。該透明ケース11bには照射光の波長域を上記範囲に限定するフィルター(図示省略)が装着されている。あるいは、照射光の波長域を上記範囲に限定するフィルター機能を有したガラス材によって透明ケース11bを形成しても良い。
【0022】
光反応管13は光電管11の光が均等かつ効率的に照射されるように上記光電管11を囲むように配列されている。図示する装置例では光反応管13が8本づつ2重に光電管11を中心として同心円状に配列されており、外側の光反応管13は内側の隣接する光反応管13の間から光電管11を臨む位置に設置されている。光反応管13は内部に反応溶液を供給し光反応を行わせるものであるので、反応溶液およびその生成物に対して耐蝕性がある光透過性の材料が用いられる。
【0023】
光反応管13は縦長の管状部材によって形成されており、その下端には内部に反応溶液を供給し、また反応溶液を抜き出すための管路15が接続しており、該管路15は外部の貯槽16に接続している。複数の光反応管13は管路15を通じて貯槽16に連通しており、光反応管13と貯槽16の間に循環路が形成されている。さらに、光反応管13の上端には管内で発生した窒素ガスを外部に導く排気管17が設けられており、該排気管17には窒素ガスの計量手段19が設けられている。
【0024】
上記光源11および光反応管13は冷却槽21に収納されており、支持台23によって該冷却槽21に固定される。該冷却槽21には冷却媒体24が貯溜されている。冷却媒体としては蒸留水またはイオン交換水が好適であるが、透明であり光照射を著しく妨げないものであれば他の冷却媒体を用いることもできる。光電管11および複数の上記光反応管13はこの冷却水24に浸漬されており、図示する装置例では、光電管11および光反応管13の上端部は電気的接続ないしガス抜きのために冷却水24の水面から突出して設けられている。さらに、冷却槽21には冷却水24の温度を調節する冷却管25が設けられている
【0025】
上記光反応装置10は光反応管13が冷却水中に個々に立設した構造であるので、各々の光反応管13の外周が冷却水によって包み込まれた状態となり、冷却効率が良く、また縦型構造であるので光反応管13の内部で発生した反応ガスが上部管端に抜け易く、発生したガスによって光反応が妨げられず、かつ発生ガス(窒素ガス)量を検出することにより光分解反応の進行状況を把握することができる。なお、反応温度を高める必要がある場合には冷却水に代えて目的温度の温水を用いることにより、容易に反応系を適切な温度に保つことができる。
【0026】
本発明の製造方法においては、フッ酸ないしフッ酸塩基混合溶液を反応溶液として用いるので、通常の石英ガラスなどによって形成した光反応管では耐久性が乏しく短時間で腐食される。一方、テフロンに代表されるフルオロオレフィン重合体によって形成されたものは、透明性が高くフッ酸に対する耐久性に優れるので好ましい。また、円筒形で縦型に支持して配置しているので、強度的にも充分であり、ガラスその他の他の材質による補強の必要も無い。さらに、フッ酸濃度が高い反応溶液を循環させるため、フルオロオレフィン重合体では避けられないフッ酸の浸透による、ガラス類の直接の腐食の心配がない。このフルオロオレフィン重合体によって形成した反応管を着脱自在に設け、繰り返し使用により透明度が低下した光反応管を取り外して、フッ素系不活性溶媒中で煮沸して、透明度を回復させて再使用する方法が本発明者等により提案されている(特開平8-259727号)。
【0027】
光反応管の好適な材料としては、テトラフルオロエチレン−エチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン重合体(PVDF)、フッ化ビニル重合体(PVF)などが挙げられる。
【0028】
(III) フッ酸回収工程
光反応終了時にフッ酸濃度が85wt%以上の場合は、50℃以下での蒸留温度でフッ酸の回収ができる。例えば、90wt%のフッ酸、10wt%のピリジン反応溶液の場合、使用量の50〜60wt%のフッ酸が水分200〜1000ppmの範囲で回収できる。蒸留温度がこの範囲より高すぎると、回収したフッ酸中の水分が多くなるので好ましくない。なお、蒸留槽にはテフロンライニングした耐酸性容器を用いると良い。目的化合物の回収に先だってフッ酸を蒸留回収すると共に反応溶液中のフッ酸濃度が低下するので、次工程において目的化合物を効率良く回収することができる。
【0029】
(IV) 目的化合物の回収
反応溶液から目的の芳香族フッ素化合物を回収する。回収方法としては溶媒抽出を利用することができる。具体的には、例えば、フッ酸ピリジン混合溶液中で光反応によって生成させた2,4-ジブロモ-5-フルオロ-6-メチル安息香酸メチル(BFTAM)を回収するには、溶媒としてジクロロメタン(CH2Cl2)を用いて回収することができる。この反応溶液にジクロロメタンを加えると、BFTAMはジクロロメタンに吸収され、比重差によって、上側のフッ酸ピリジン混合反応溶液と下側のジクロロメタン溶媒相とに分離する。この溶媒相を回収し、水、及びアルカリによって洗浄し、抽出操作によって混入したフッ酸分を取り除いた後、蒸留によって濃縮して目的化合物のBFTAMを得ることができる。また、回収したジクロロメタンは再利用することができる。
【0030】
( ) フッ酸・塩基の回収
目的の芳香族フッ素化合物を回収した反応残液を加熱して、フッ酸、及び塩基を使用した場合、塩基の蒸留回収が可能である。この蒸留の際、フッ酸濃度に応じ、減圧蒸留すると良い。具体的には、常圧下で留出分がなくなるまで加熱蒸留し、その後に留出分がでるまで徐々に減圧して蒸留を行う。このような常圧下あるいは減圧下の蒸留によって反応残液からフッ酸およびフッ酸と塩基の化合物を回収することができる。
【0031】
(VI) 回収フッ酸の循環再利用
フッ酸の蒸留工程において、蒸留温度を制御することにより、水分量が少ない高品位のフッ酸を回収することができるので、これを光反応より前の各工程に回送して再利用することができる。また、フッ酸と塩基の混合溶媒、例えば、フッ酸・ピリジン溶液を用いた場合には、ピリジンはピリジンのフッ酸塩として得られるが、これも水分量が少いので、ジアゾ化反応の溶媒の一部として再利用することができる。
【0032】
本発明の製造方法および製造装置によれば各種の芳香族フッ素化合物を効率よく製造することができる。その製造例を図5〜図11に示す。
図5は3,4,5−トリフロロブロモベンゼンの合成例、図6は2−フロロ−4−クロロ安息香酸メチルの合成例、図7は2,4,5−トリフロロ安息香酸メチルの合成例、図8は2,4−ジクロロ−5−フロロ安息香酸メチルの合成例、図9は2,4,5−トリフロロベンゾトリフロリドの合成例、図10は4−フロロイソキノリンの合成例、図11は2,4-ジブロム-5-フロロ-6-メチル安息香酸メチルの合成例である。
これらは何れも本発明の光分解反応によって目的化合物を高収率で得ることができる。
【0033】
【実施例】
本発明を実施例によって具体的に示す。
〔実施例1〕
マグネット回転子を入れたフッ素樹脂容器に、予め調製したフッ酸ピリジン溶液(フッ酸70wt%)33.6gを仕込み、2,4-ジクロロ-5-アミノ安息香酸メチル4.38g(純度約100%,約19.9mmol)を投入し、室温で溶解させた。次いで−15℃に冷却し、亜硝酸ソーダ1.52g(22mmol)を6分かけて加えた(最高温度-9℃)。次いで徐々に昇温し、10℃で1時間熟成した。この反応溶液を−20℃に冷却し、攪拌しながらフッ酸67gを5分かけて加えた。この容器に窒素ガス排出管を取り付け、20℃に保った水浴中で、パイレックス製冷却管を付けた1kw水冷式高圧水銀灯(理工科学産業製 UVL-1000HC)により、波長280nm以上の紫外線を22時間照射した。光照射の間、窒素ガスの発生を監視し、反応の進行をみた。窒素ガスの発生が停止したことを確認し、光の照射を終了した。次いで、フッ素樹脂製の連結管、冷却器および、受け器を容器に接続し、50℃の油浴上で留出が無くなるまでフッ酸を回収した。次に、残った反応溶液を氷水で冷却し、塩化メチレン60mlを3回に分けて抽出した。これらの抽出液を合わせて水100mlで洗浄し、次いで水100mlに10%の炭酸カリウムを加えて中和した(pH=7)。更に水100mlで洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を留去し濃縮し、粗製物4.29gを得た。この主成分はGC−MS、NMR分析により、2,4-ジクロロ-5-フルオロ-安息香酸メチルであることを確認した(略収率93%)。ガスクロマトグラフによる純度は96.41%であった。一方、抽出後の反応溶液を耐圧フッ素樹脂容器に移して蒸留することにより、更にフッ酸、溶媒、ピリジンを回収した。それぞれの回収量および組成を表1に示す。
【0034】
【表1】

Figure 0004318058
【0035】
実施例2
原料として2,4-ジフロロ-5-アミノ安息香酸メチルを3.75gを用いた他は実施例1と同様にして反応させたところ、2,4,5-トリフルオロ安息香酸メチルを収率96%で得た。
【0036】
実施例3
原料として2,4-ジクロロ-5-アミノベンゾトリフロリド4.44gを用い、フッ酸ピリジン溶液(ピリジン20wt%)を101.8gを用いたほかは実施例1と同様にして反応させたところ、3,4,5−トリフルオロブロモベンゼンを収率96%で得た。
【0037】
実施例4
原料として2,4-ジフロロ-5-アミノベンゾトリフロリド4.01gを用いたほかは実施例1と同様にして反応させたところ、2,4,5-トリフルオロブロモベンゼンを収率89%で得た。
【0038】
実施例5
原料として2-アミノ-4-クロロ安息香酸メチル3.76gを用いたほかは実施例3と同様にして反応させたところ、2-フルオロ-4-クロロ安息香酸メチルを収率75%で得た。
【0039】
比較例1
実施例1と同様の実験において、高圧水銀灯の冷却管を石英製に変えて用いた他は同様な操作を行ったところ、光照射において照射時間が長くなるにつれて、容器の汚れの増加が観察され、窒素ガスの発生が停止した時点で反応を終了した場合の2,4-ジクロロ-5-フルオロ安息香酸メチルの収率は42%であり、収率の低下のみならず、副生成物の増加が確認された。
【0040】
【発明の効果】
本発明の製造方法は、光分解反応の進行状況を窒素ガスの発生量によって検出し、その程度に応じて光分解を繰り返すので、従来のジアゾ化−光分解法よりも効率的に目的化合物を得ることができる。さらに、反応溶媒として用いるフッ酸塩基混合溶液を回収して再利用するので経済性にも優れる。しかも、高選択的に反応が進行し、目的物との分離が困難な脱ジアゾ水素化体が殆ど副生せず、極性置換基を有する化合物でも収率が高く、反応の制御も容易であるなどの利点を有する。また、本発明の好適な態様においては、光分解反応に特定波長の紫外線を用いるのでタール状物質が殆ど発生せず、反応応容器の汚染を防止できるので、光分解反応が高収率で達成され、かつ装置の保守管理が容易である。
【図面の簡単な説明】
【図1】本発明の製造方法の概略を示すフロー図。
【図2】本発明を実施する製造装置の構成例を示す説明図。
【図3】本発明の方法で用いる光分解装置を模式的に示した縦断面図。
【図4】図3の光分解装置を模式的に示した横断面図。
【図5】3,4,5−トリフロロブロモベンゼンの合成例を示す反応式
【図6】2−フロロ−4−クロロ安息香酸メチルの合成例を示す反応式
【図7】2,4,5−トリフロロ安息香酸メチルの合成例を示す反応式
【図8】2,4-ジクロロ-5-フロロ安息香酸メチルの合成例を示す反応式
【図9】2,4,5−トリフロロベンゾトリフロリドの合成例を示す反応式
【図10】4−フロロイソキノリンの合成例を示す反応式。
【図11】2,4-ジブロム-5-フロロ-6-メチル安息香酸メチルの合成例を示す反応式
【符号の説明】
1−調製槽、2−反応槽、10−光反応装置、 11−光電管、
13−光反応管、15−管路、 16−貯槽、19−ガス計量手段、
21−冷却槽、23−支持台、 24−冷却水、 25−冷却管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for producing an aromatic fluorine compound. More specifically, the present invention relates to a method for producing an aromatic fluorinated product by photolysis of an aromatic diazonium salt, which has a high yield and is advantageous for maintenance and management of the device, and a production apparatus therefor.
[0002]
[Prior art]
Aromatic fluorine compounds are useful as intermediates for pharmaceuticals, agricultural chemicals, liquid crystals and the like. As typical methods for producing aromatic fluorine compounds, electrophilic fluorine substitution, dehalofluorination reaction (Halex method), diazotization-dediazofluorination reaction (Balz-Schiemann method) and the like are known. . Electrophilic fluorine substitution is performed using fluorine gas or the like, but there are problems in reaction control and regioselectivity. The dehalofluorination reaction requires a strong electron-withdrawing group at the o-position or p-position, and the substrate is limited.
[0003]
The diazotization-dediazofluorination reaction is the most versatile of the above methods, but requires a step of isolating a chemically unstable and toxic diazonium salt. Moreover, the control of thermal decomposition is difficult and the reproducibility of the reaction is not good. Further, the yield varies greatly depending on the substrate, and there is a problem that the yield is low particularly in a complex compound having a polar substituent.
[0004]
An improved method has also been proposed in which dediazofluorination is carried out by light irradiation in the presence of a base such as pyridine after diazotization (Japanese Patent Laid-Open No. 63-188631). In this method, the control of the reaction is relatively easy, and it is not necessary to isolate the diazonium salt. Further, there is an advantage that the reaction proceeds with high selectivity. However, when the reaction is continued for a long time or when the reaction apparatus is used repeatedly, there is a problem that the coupling efficiency or tar-like substance adheres to the light transmitting material in contact with the reaction solution and the reaction efficiency is lowered.
[0005]
Therefore, light irradiation time is shortened by adding light to the diazotization reaction solution or diluting the reaction solution by adding hydrofluoric acid having a base concentration lower than the base concentration of the diazotization reaction solution, In addition, the present inventors have proposed a manufacturing method for reducing the contamination of the light-transmitting material for continuous use for a long time (Japanese Patent Laid-Open No. 9-20697).
[0006]
[Problem to be Solved by the Invention]
The present invention solves such a conventional problem and provides a method capable of efficiently and industrially carrying out a dediazofluorination reaction by photolysis of a diazonium salt using a hydrofluoric acid or hydrofluoric acid base mixed solution. Is.
Specifically, in the production method of the present invention, the reaction solution is circulated to the photoreactor, and the photodecomposition reaction is repeated according to the progress of the reaction, thereby increasing the reaction efficiency and causing the contamination of the light transmitting material. The production of this by-product is suppressed, and it is possible to carry out for a long time. Furthermore, by recovering and repeatedly using hydrofluoric acid or hydrofluoric acid and a base, the practical use is improved as an industrial production method.
[0007]
[Means for solving problems]
That is, this invention relates to the following manufacturing methods.
[1] Using hydrofluoric acid alone or a mixed solution of hydrofluoric acid and base as a reaction solution, the aromatic amino compound is diazotized in the reaction solution, and the resulting diazonium salt is photolyzed and dediazofluorinated to deodorize it. In the method for producing group fluorine compounds, (a) deazofluorination is performed by photolysis reaction using ultraviolet rays having a wavelength of 280 nm to 340 nm, and (b) the progress of photolysis is detected by the amount of nitrogen gas generated by photolysis. Based on this, the reaction solution is circulated between the storage tank and the photoreaction vessel to advance the photodecomposition reaction. (C) After the photodecomposition reaction, the reaction solution is heated and hydrofluoric acid is distilled and recovered. ) The target aromatic fluorine compound is recovered from the reaction solution having a reduced hydrofluoric acid concentration, and (e) hydrofluoric acid or hydrofluoric acid and base are recovered from the residue, and the recovered hydrofluoric acid or hydrofluoric acid and base are recovered. The process for producing an aromatic fluorine compound, characterized by recycling a part of 応溶 solution.
[0008]
The manufacturing method of the present invention includes the following aspects.
[2] The production method of the above [1], wherein a hydrofluoric acid base mixed solution having a base concentration of 0 to 50 wt% is used as a reaction solution.
[3] The production method according to [1] or [2] above, wherein the concentration of the aromatic amino compound with respect to the solvent is 0.01 to 5 mmol / g.
[0009]
Furthermore, this invention relates to the following manufacturing apparatuses suitable for implementation of the said manufacturing method.
[4] Using hydrofluoric acid alone or a mixed solution of hydrofluoric acid and base as a reaction solution, the aromatic amino compound is diazotized in the reaction solution, and the resulting diazonium salt is photolyzed and dediazofluorinated to deodorize it. An apparatus for producing a group fluorine compound, which has a vertically long photoelectric tube and a vertically long photoreaction tube that surrounds the photoelectric tube, and the photoelectric tube or photoreaction tube has irradiation light. A filter that limits the wavelength range of the light reaction tube is mounted, while the photoreaction tube is formed of a light transmissive material, and an exhaust pipe that guides the generated gas to the outside and a gas metering means are provided, and A storage tank that circulates the reaction solution to the photoreaction tube is provided. In the photoreaction tube, ultraviolet light having a wavelength of 280 nm to 340 nm is used to carry out dediazofluorination by photolysis reaction, which is caused by photolysis. The amount of nitrogen gas detected is detected by gas metering means to detect the progress of photolysis, and based on this, the reaction solution is circulated between the storage tank and the photoreaction vessel to advance the photolysis reaction. apparatus.
[5] The photoreaction apparatus according to the above [4], wherein the photoreaction tube is formed of a light transmissive material that limits the wavelength of irradiation light, instead of providing a filter that limits the wavelength of irradiation light.
[6] The photoreaction apparatus according to the above [4] or [5], which is an apparatus used for producing an aromatic fluorine compound, wherein the photoreaction tube is formed of a fluoroolefin polymer tube.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on specific embodiments. FIG. 1 shows an outline of a manufacturing process example of the present invention, and FIG.
As shown in the figure, the production method of the present invention comprises (I) hydrofluoric acid alone or a step of diazotizing an aromatic material in a reaction solution of hydrofluoric acid and a base, and (II) photolysis of the produced diazonium salt. A process for producing an aromatic fluorine compound by deazofluorination, (III) a process for recovering hydrofluoric acid by heating the reaction solution containing the product, and (IV) a purpose from the reaction solution having a reduced hydrofluoric acid concentration. A step of recovering the aromatic fluorine compound, (V) a step of recovering hydrofluoric acid or hydrofluoric acid and a base from the recovered residue, and (VI) a step of recycling and recycling the recovered hydrofluoric acid and base to the diazotization step. Have
[0011]
The reaction solution prepared in the adjustment tank 1 is guided to the reaction tank 2, where the diazotization reaction proceeds, is sent from the reaction tank 2 to the storage tank 16, and is supplied from the storage tank 16 to the photoreaction apparatus 10. The reaction solution is circulated between the storage tank 16 and the photoreaction apparatus 10 according to the degree of the photodecomposition reaction, and is extracted outside through the storage tank 16 after the reaction is completed.
Hereinafter, each process will be described.
[0012]
( I ) Diazotization step Diazotization reaction using hydrofluoric acid alone or a mixed solution of hydrofluoric acid and base as a reaction solution, and adding an aromatic amino compound and a nitrous acid imparting agent as raw materials to the reaction solution To do. The raw material aromatic amino compound may be a compound in which an amino group is directly bonded to the aromatic ring, and includes aromatic hydrocarbons and aromatic compounds containing heteroatoms. Examples of aromatic hydrocarbons include benzene, naphthalene, anthracene, etc., and examples of heterocycles include pyridine, pyrimidine, pyrazoline, triazine, quinoline, furan, benzofuranpyrrole, thiophene, oxazole, isoxazole, thiazole, imidazole. , Benzimidazole, oxadiazole, thiadiazole, trizole, indole, naphthidine and the like.
[0013]
The starting aromatic amino compound may have a substituent in addition to the amino group. The kind of substituent is not limited. The present invention is particularly useful when an aromatic compound having a polar substituent is used as a raw material. That is, in the diazotization-photolysis of an aromatic compound having a polar substituent, a by-product such as a tar-like compound is likely to be generated, but in the method of the present invention, even when such a compound is used as a raw material, the tar-like compound The desired compound can be obtained while minimizing by-product formation. Examples of the polar substituent include halogen such as fluorine, chlorine, bromine and iodine, haloalkyl such as trifluoromethyl, alkoxycarbonyl, alkoxy and the like. One molecule may have a plurality of polar substituents, or may have substituents other than those listed here.
[0014]
The nitrous acid imparting agent used for diazotization is commonly called a diazotizing agent, and anhydrous nitrous acid, sodium nitrite, potassium nitrite and the like are suitable. The addition amount of the nitrous acid imparting agent must be at least equivalent to the aromatic amine as nitrous acid.
[0015]
As the reaction solution, hydrofluoric acid alone or a mixed solution of hydrofluoric acid and a base is used. By using a hydrofluoric acid base mixed solution, it is possible to efficiently advance the photodecomposition reaction and increase the yield of the target compound. As the base, a base that forms a complex with hydrofluoric acid, that is, a compound containing oxygen, nitrogen, phosphorus, or sulfur can be used. Specifically, for example, amine compounds such as pyridine and triethylamine, ether compounds such as ether ether, ketone compounds, aldehyde compounds, ester compounds, and alcohols, carboxylic acids, water, sulfoxides, sulfonamide compounds, amide compounds, Nitriles, isonitriles, phosphines, phosphites, phosphate compounds and the like can be used, and amine compounds and ether compounds are particularly preferred.
[0016]
When only hydrofluoric acid is used as the reaction solution, it is appropriate to use 10 to 50 times mol, preferably 15 to 40 times mol of the raw material amine. When a base is allowed to coexist, a base concentration of up to 50 wt% is appropriate. If the concentration of the base is higher than this, the yield of the target aromatic fluorine compound is lowered.
The concentration of the aromatic amino compound relative to the reaction solution is suitably from 0.01 to 5 mmol / g. If it is less than 0.01 mol / g, the productivity is poor, and if it is higher than 5 mmol / g, an undissolved amino compound is generated, which causes a decrease in the reaction amount and an increase in by-products.
In addition, -150-150 degreeC is suitable for reaction temperature, and -100-100 degreeC is preferable. Although reaction time is based on the kind of aromatic amino compound, it is about 0.1 to 10 hours.
[0017]
(II) Photoreaction step The reaction product obtained in the diazotization step is irradiated with light to photolyze the diazonium salt, and the desired aromatic fluorine compound is produced by dediazofluorination reaction. In this photoreaction, ultraviolet rays having a wavelength of 280 nm to 340 nm, preferably 280 nm to 320 nm may be used. When ultraviolet rays of less than 280 nm are contained, the production of tar-like substances increases and the yield of the target compound decreases. In addition, at a wavelength exceeding 340 nm, the reaction rate is greatly reduced. By limiting the wavelength of irradiation light to the above range, the yield and reaction rate of the target compound can be increased. In particular, in the photodecomposition reaction of a compound having halogen as a substituent, the influence of wavelength is more remarkable as the number of substitutions increases.
[0018]
The wavelength range can be controlled by an ultraviolet light source and a filter. In general, a high-pressure mercury lamp or the like is used as a light source, and an ultraviolet transmission filter having a transmission limit wavelength of 280 nm or more may be combined therewith. Moreover, you may control a wavelength by forming a photoreaction container with the glass material which has a filter effect. For example, the reaction vessel may be formed using low expansion borosilicate glass (Pyrex) or the like.
[0019]
In addition, there is a problem that tar-like by-products are generated at the stage of the photodecomposition reaction, which contaminates the walls of the photoreactor, impedes light irradiation, and reduces the reaction efficiency. The amount of this tar-like substance produced varies depending on the amino compound and base concentration used, but can be reduced by increasing the concentration of hydrofluoric acid. In this case, if the concentration of hydrofluoric acid is increased, the concentration of the base is relatively lowered, so that there is a concern that the yield of the target compound is reduced. As described above, the base concentration in the solution is 10 to 50 wt%. If present, the amount of the tar-like substance is small, and the yield of the target compound is high.
[0020]
The photolysis reaction temperature is suitably -100 to 200 ° C, preferably -50 to 100 ° C. The reaction time is appropriately 1 to 30 hours although it depends on the raw material compounds.
Nitrogen gas is generated as dediazotization proceeds by the photolysis reaction. By measuring the amount of generated nitrogen gas, the progress of the photolysis reaction can be grasped, and the reaction solution is circulated from the storage tank to the photoreaction vessel until the calculated amount of nitrogen gas from the raw material or the generation of gas disappears. Repeat the photolysis reaction.
[0021]
3 and 4 show examples of the configuration of the photolysis apparatus. FIG. 3 is a longitudinal sectional view schematically showing a photoreaction apparatus used in the present invention, and FIG. 4 is a schematic transverse sectional view thereof. As shown in the figure, a vertically long light source 11 (photoelectric tube: for example, a fluorescent tube) is erected at the center of the photolysis apparatus 10, and a plurality of photoreaction tubes 13 are erected so as to surround the photoelectric tube 11. Has been. The phototube 11 is formed by a lamp 11a that irradiates light to the entire circumference of the side and a transparent cylindrical case 11b that hermetically stores the lamp 11a. The type, wavelength, and output of the lamp 11a are appropriately selected according to the reaction system. Since the transparent case 11b does not come into direct contact with the reaction solution, the material thereof is not limited to the one having corrosion resistance to the reaction solution, and a highly transparent light transmitting material such as quartz glass or organic glass can be used. The transparent case 11b is equipped with a filter (not shown) that limits the wavelength range of irradiation light to the above range. Or you may form the transparent case 11b with the glass material which has the filter function which limits the wavelength range of irradiation light to the said range.
[0022]
The photoreaction tubes 13 are arranged so as to surround the phototube 11 so that the light from the phototube 11 is evenly and efficiently irradiated. In the example of the apparatus shown in the figure, eight photoreaction tubes 13 are arranged in a concentric circle with eight phototubes at the center, and the outer photoreaction tube 13 is connected between the adjacent photoreaction tubes 13 on the inner side. It is installed at the position to face. Since the photoreaction tube 13 supplies a reaction solution therein to cause a photoreaction to occur, a light-transmitting material that is corrosion resistant to the reaction solution and its product is used.
[0023]
The photoreaction tube 13 is formed of a vertically long tubular member, and a lower end of the photoreaction tube 13 is connected to a conduit 15 for supplying the reaction solution to the inside and for extracting the reaction solution. It is connected to the storage tank 16. The plurality of photoreaction tubes 13 communicate with the storage tank 16 through a conduit 15, and a circulation path is formed between the photoreaction tube 13 and the storage tank 16. Further, an exhaust pipe 17 for guiding the nitrogen gas generated in the pipe to the outside is provided at the upper end of the photoreaction tube 13, and a measuring means 19 for nitrogen gas is provided in the exhaust pipe 17.
[0024]
The light source 11 and the photoreaction tube 13 are accommodated in a cooling bath 21 and are fixed to the cooling bath 21 by a support base 23. A cooling medium 24 is stored in the cooling tank 21. Distilled water or ion-exchanged water is suitable as the cooling medium, but other cooling media can be used as long as they are transparent and do not significantly interfere with light irradiation. The phototube 11 and the plurality of photoreaction tubes 13 are immersed in the cooling water 24. In the illustrated example of the apparatus, the upper ends of the phototube 11 and the photoreaction tube 13 are connected to the cooling water 24 for electrical connection or degassing. It protrudes from the water surface. Furthermore, the cooling tank 21 is provided with a cooling pipe 25 that adjusts the temperature of the cooling water 24.
Since the photoreaction apparatus 10 has a structure in which the photoreaction tubes 13 are individually provided in the cooling water, the outer periphery of each photoreaction tube 13 is encased in the cooling water, the cooling efficiency is good, and the vertical type Because of the structure, the reaction gas generated inside the photoreaction tube 13 is easy to escape to the end of the upper tube, the photoreaction is not hindered by the generated gas, and the photodecomposition reaction is detected by detecting the amount of generated gas (nitrogen gas). You can grasp the progress of In addition, when it is necessary to raise reaction temperature, it can maintain a reaction system at appropriate temperature easily by using hot water of target temperature instead of cooling water.
[0026]
In the production method of the present invention, a hydrofluoric acid or hydrofluoric acid base mixed solution is used as a reaction solution. Therefore, a photoreaction tube formed of ordinary quartz glass has poor durability and is corroded in a short time. On the other hand, those formed of a fluoroolefin polymer typified by Teflon are preferable because of their high transparency and excellent durability against hydrofluoric acid. Further, since it is arranged in a cylindrical shape and supported vertically, it is sufficient in strength and does not need to be reinforced with glass or other materials. Furthermore, since a reaction solution having a high hydrofluoric acid concentration is circulated, there is no concern about direct corrosion of glass due to permeation of hydrofluoric acid, which is unavoidable with fluoroolefin polymers. A method in which a reaction tube formed of this fluoroolefin polymer is detachably provided, a photoreaction tube whose transparency has been lowered by repeated use is removed, boiled in a fluorine-based inert solvent, and the transparency is recovered and reused. Has been proposed by the present inventors (Japanese Patent Laid-Open No. 8-259727).
[0027]
Suitable materials for the photoreaction tube include tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). Chlorotrifluoroethylene-ethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride polymer (PVDF), and vinyl fluoride polymer (PVF).
[0028]
(III) Hydrofluoric acid recovery step When the hydrofluoric acid concentration is 85 wt% or more at the end of the photoreaction, hydrofluoric acid can be recovered at a distillation temperature of 50C or lower. For example, in the case of 90 wt% hydrofluoric acid and 10 wt% pyridine reaction solution, 50 to 60 wt% hydrofluoric acid in the amount used can be recovered in the range of 200 to 1000 ppm moisture. If the distillation temperature is higher than this range, the water content in the recovered hydrofluoric acid is increased, which is not preferable. In addition, it is good to use the acid-resistant container lined with Teflon for the distillation tank. Prior to the recovery of the target compound, hydrofluoric acid is recovered by distillation and the concentration of hydrofluoric acid in the reaction solution decreases, so that the target compound can be recovered efficiently in the next step.
[0029]
(IV) Recovery of target compound The target aromatic fluorine compound is recovered from the reaction solution. Solvent extraction can be used as the recovery method. Specifically, for example, in order to recover methyl 2,4-dibromo-5-fluoro-6-methylbenzoate (BFTAM) produced by a photoreaction in a pyridine hydrofluoric acid mixed solution, dichloromethane (CH 2 Cl 2 ) can be recovered. When dichloromethane is added to the reaction solution, BFTAM is absorbed by dichloromethane and separated into an upper pyridine hydrofluoric acid mixed reaction solution and a lower dichloromethane solvent phase due to the difference in specific gravity. The solvent phase is recovered, washed with water and alkali, and after removing the hydrofluoric acid content mixed by the extraction operation, it can be concentrated by distillation to obtain the target compound BFTAM. The recovered dichloromethane can be reused.
[0030]
( V ) Recovery of hydrofluoric acid / base When the reaction residual liquid from which the target aromatic fluorine compound is recovered is heated to use hydrofluoric acid and a base, the base can be recovered by distillation. In this distillation, it is good to carry out vacuum distillation according to the hydrofluoric acid concentration. Specifically, the distillation is carried out under normal pressure until there is no distillate, and then the pressure is gradually reduced until the distillate is distilled. By such distillation under normal pressure or reduced pressure, hydrofluoric acid and a hydrofluoric acid-base compound can be recovered from the reaction residue.
[0031]
(VI) Recycling of recovered hydrofluoric acid In the hydrofluoric acid distillation process, high-quality hydrofluoric acid with a low water content can be recovered by controlling the distillation temperature. It can be reused by being forwarded to each previous process. In addition, when a mixed solvent of hydrofluoric acid and a base, for example, a hydrofluoric acid / pyridine solution is used, pyridine is obtained as a hydrofluoric acid salt of pyridine. Can be reused as part of
[0032]
According to the production method and production apparatus of the present invention, various aromatic fluorine compounds can be produced efficiently. The manufacture example is shown in FIGS.
5 shows a synthesis example of 3,4,5-trifluorobromobenzene, FIG. 6 shows a synthesis example of methyl 2-fluoro-4-chlorobenzoate, and FIG. 7 shows a synthesis example of methyl 2,4,5-trifluorobenzoate. 8 is a synthesis example of methyl 2,4-dichloro-5-fluorobenzoate, FIG. 9 is a synthesis example of 2,4,5-trifluorobenzotrifluoride, FIG. 10 is a synthesis example of 4-fluoroisoquinoline, FIG. 11 is a synthesis example of methyl 2,4-dibromo-5-fluoro-6-methylbenzoate.
Any of these compounds can obtain the target compound in high yield by the photolysis reaction of the present invention.
[0033]
【Example】
The present invention is specifically illustrated by examples.
[Example 1]
A fluororesin container containing a magnet rotor is charged with 33.6 g of a pyridine hydrofluoric acid solution (70 wt% hydrofluoric acid) prepared in advance, and 4.38 g of methyl 2,4-dichloro-5-aminobenzoate (purity of about 100%). , About 19.9 mmol) was added and dissolved at room temperature. The mixture was then cooled to -15 ° C, and 1.52 g (22 mmol) of sodium nitrite was added over 6 minutes (maximum temperature -9 ° C). The temperature was then gradually raised and aged at 10 ° C. for 1 hour. The reaction solution was cooled to −20 ° C., and 67 g of hydrofluoric acid was added over 5 minutes while stirring. A nitrogen gas discharge pipe is attached to this container, and ultraviolet light with a wavelength of 280 nm or more is irradiated for 22 hours in a water bath maintained at 20 ° C using a 1 kw water-cooled high-pressure mercury lamp (UVL-1000HC, manufactured by Riko Kagaku Sangyo) with a Pyrex cooling pipe. Irradiated. During light irradiation, the generation of nitrogen gas was monitored and the progress of the reaction was observed. After confirming that the generation of nitrogen gas was stopped, the light irradiation was terminated. Next, a connecting pipe made of a fluororesin, a cooler, and a receiver were connected to the container, and hydrofluoric acid was collected on a 50 ° C. oil bath until no distillation occurred. Next, the remaining reaction solution was cooled with ice water, and 60 ml of methylene chloride was extracted in three portions. These extracts were combined and washed with 100 ml of water, and then neutralized by adding 10% potassium carbonate to 100 ml of water (pH = 7). The extract was further washed with 100 ml of water, dried over anhydrous sodium sulfate, evaporated and concentrated to obtain 4.29 g of a crude product. This main component was confirmed to be methyl 2,4-dichloro-5-fluoro-benzoate by GC-MS and NMR analysis (approximately 93% yield). The purity by gas chromatograph was 96.41%. On the other hand, the reaction solution after extraction was transferred to a pressure-resistant fluororesin container and distilled to further collect hydrofluoric acid, solvent and pyridine. The amount and composition of each recovered are shown in Table 1.
[0034]
[Table 1]
Figure 0004318058
[0035]
Example 2
The reaction was conducted in the same manner as in Example 1 except that 3.75 g of methyl 2,4-difluoro-5-aminobenzoate was used as a raw material. As a result, methyl 2,4,5-trifluorobenzoate was obtained in a yield of 96. %.
[0036]
Example 3
The reaction was conducted in the same manner as in Example 1 except that 4.44 g of 2,4-dichloro-5-aminobenzotrifluoride was used as a raw material and 101.8 g of a pyridine hydrofluoric acid solution (pyridine 20 wt%) was used. 3,4,5-trifluorobromobenzene was obtained with a yield of 96%.
[0037]
Example 4
The reaction was conducted in the same manner as in Example 1 except that 4.01 g of 2,4-difluoro-5-aminobenzotrifluoride was used as a raw material, and the yield of 2,4,5-trifluorobromobenzene was 89%. Got in.
[0038]
Example 5
The reaction was conducted in the same manner as in Example 3 except that 3.76 g of methyl 2-amino-4-chlorobenzoate was used as a raw material, and methyl 2-fluoro-4-chlorobenzoate was obtained in a yield of 75%. .
[0039]
Comparative Example 1
In the same experiment as in Example 1, when the same operation was performed except that the cooling tube of the high-pressure mercury lamp was changed to quartz, an increase in the contamination of the container was observed as the irradiation time became longer in the light irradiation. The yield of methyl 2,4-dichloro-5-fluorobenzoate was 42% when the reaction was terminated when the generation of nitrogen gas stopped, and not only the yield decreased but also the by-products increased. Was confirmed.
[0040]
【The invention's effect】
In the production method of the present invention, the progress of the photodecomposition reaction is detected by the amount of nitrogen gas generated, and the photodecomposition is repeated according to the degree of generation. Obtainable. Furthermore, since the hydrofluoric acid base mixed solution used as the reaction solvent is recovered and reused, it is excellent in economic efficiency. Moreover, the reaction proceeds with high selectivity, hardly produces a dediazo hydride that is difficult to separate from the target product, and even with a compound having a polar substituent, the yield is high and the control of the reaction is easy. Have advantages such as. In the preferred embodiment of the present invention, since ultraviolet light having a specific wavelength is used for the photodecomposition reaction, tar-like substances are hardly generated, and contamination of the reaction vessel can be prevented, so that the photodecomposition reaction can be achieved in a high yield. And maintenance of the apparatus is easy.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an outline of a production method of the present invention.
FIG. 2 is an explanatory view showing a configuration example of a manufacturing apparatus for carrying out the present invention.
FIG. 3 is a longitudinal sectional view schematically showing a photolysis apparatus used in the method of the present invention.
4 is a cross-sectional view schematically showing the photolysis apparatus of FIG. 3. FIG.
FIG. 5 is a reaction formula showing a synthesis example of 3,4,5-trifluorobromobenzene. FIG. 6 is a reaction formula showing a synthesis example of methyl 2-fluoro-4-chlorobenzoate. Reaction formula showing synthesis example of methyl 5-trifluorobenzoate [FIG. 8] Reaction formula showing synthesis example of methyl 2,4-dichloro-5-fluorobenzoate [FIG. 9] Reaction formula showing synthesis example of methyl 2,4-dichloro-5-benzoate Reaction formula showing synthesis example of lolide [FIG. 10] Reaction formula showing synthesis example of 4-fluoroisoquinoline.
FIG. 11 is a reaction formula showing a synthesis example of methyl 2,4-dibromo-5-fluoro-6-methylbenzoate.
1-preparation tank, 2-reaction tank, 10-photoreactor, 11-photoelectric tube,
13-Photoreaction tube, 15-Pipe line, 16-Storage tank, 19-Gas metering means,
21-cooling tank, 23-support, 24-cooling water, 25-cooling pipe

Claims (6)

フッ酸単独またはフッ酸と塩基の混合溶液を反応溶液として用い、該反応溶液中で芳香族アミノ化合物をジアゾ化し、生成したジアゾニウム塩を光分解して脱ジアゾフッ素化することにより芳香族フッ素化合物を製造する方法において、(イ)波長280nm〜340nmの紫外線を用いて光分解反応による脱ジアゾフッ素化を行なわせ、(ロ)光分解によって生じる窒素ガス量によって光分解の進行を検出し、これに基づいて反応溶液を貯槽と光反応容器の間で循環させて光分解反応を進め、(ハ)光分解反応後、反応溶液を加熱してフッ酸を蒸留回収する一方、(ニ)フッ酸濃度が低下した反応溶液から目的の芳香族フッ素化合物を回収し、(ホ)その残渣からフッ酸またはフッ酸と塩基を回収すると共に、回収したフッ酸またはフッ酸と塩基を反応溶液の一部に再利用することを特徴とする芳香族フッ素化合物の製造方法。Aromatic fluorine compound by diazotizing an aromatic amino compound in the reaction solution using hydrofluoric acid alone or a mixed solution of hydrofluoric acid and a base, and photodialysis and dediazofluorination of the resulting diazonium salt (Ii) Deazofluorination by photolysis reaction using ultraviolet light having a wavelength of 280 nm to 340 nm, (b) The progress of photolysis is detected by the amount of nitrogen gas generated by photolysis, The reaction solution is circulated between the storage tank and the photoreaction vessel based on the above, and the photolysis reaction proceeds. (C) After the photolysis reaction, the reaction solution is heated to distill and collect hydrofluoric acid, while (d) hydrofluoric acid. The target aromatic fluorine compound is recovered from the reduced concentration reaction solution, and (e) hydrofluoric acid or hydrofluoric acid and base are recovered from the residue, and the recovered hydrofluoric acid or hydrofluoric acid and base are reacted and dissolved. The process for producing an aromatic fluorine compound, characterized by recycling a part of. 塩基濃度0〜50wt%のフッ酸塩基混合溶液を反応溶液として用いる請求項1の製造方法。  The process according to claim 1, wherein a hydrofluoric acid base mixed solution having a base concentration of 0 to 50 wt% is used as a reaction solution. 溶媒に対する芳香族アミノ化合物の濃度が0.01〜5mmol/gである請求項1または2に記載の製造方法。  The production method according to claim 1 or 2, wherein the concentration of the aromatic amino compound with respect to the solvent is 0.01 to 5 mmol / g. フッ酸単独またはフッ酸と塩基の混合溶液を反応溶液として用い、該反応溶液中で芳香族アミノ化合物をジアゾ化し、生成したジアゾニウム塩を光分解して脱ジアゾフッ素化することにより芳香族フッ素化合物を製造する装置であって、縦長に立設された光電管と、該光電管を囲むように立設された縦長の光反応管とを有し、上記光電管ないし光反応管には照射光の波長域を限定するフィルターが装着されており、一方、光反応管は光透過性材料によって形成されており、かつ発生したガスを外部に導く排気管とガス計量手段が設けられており、さらに反応溶液を光反応管に循環する貯槽が設けられており、光反応管において波長280nm〜340nmの紫外線を用いて光分解反応による脱ジアゾフッ素化を行なわせ、光分解によって生じる窒素ガス量をガス計量手段によって検出して光分解の進行を検出し、これに基づいて反応溶液を貯槽と光反応容器の間で循環させて光分解反応を進めることを特徴とする光反応装置。 Aromatic fluorine compound by diazotizing an aromatic amino compound in the reaction solution using hydrofluoric acid alone or a mixed solution of hydrofluoric acid and a base, and photodialysis and dediazofluorination of the resulting diazonium salt The phototube has a vertically long photoelectric tube and a vertically long photoreaction tube so as to surround the phototube, and the phototube or photoreaction tube has a wavelength range of irradiation light. On the other hand, the photoreaction tube is made of a light-transmitting material, and an exhaust pipe for guiding the generated gas to the outside and a gas metering means are provided. A storage tank that circulates in the photoreaction tube is provided. In the photoreaction tube, dediazofluorination is performed by photolysis reaction using ultraviolet light having a wavelength of 280 nm to 340 nm, and nitrogen generated by photolysis is generated. A photoreaction apparatus characterized in that the amount of gas is detected by a gas metering means to detect the progress of photodecomposition, and based on this, a reaction solution is circulated between a storage tank and a photoreaction vessel to advance a photodecomposition reaction . 照射光の波長を限定するフィルターを設けることに代えて、光反応管が照射光の波長を限定する光透過性材料によって形成されている請求項4に記載の光反応装置。  The photoreaction apparatus according to claim 4, wherein the photoreaction tube is formed of a light-transmitting material that limits the wavelength of the irradiation light, instead of providing a filter that limits the wavelength of the irradiation light. 芳香族フッ素化合物の製造に用いられる装置であって、光反応管がフルオロオレフィン重合体製チューブによって形成されている請求項4または5に記載の光反応装置。  6. The photoreaction apparatus according to claim 4 or 5, wherein the photoreaction tube is an apparatus used for producing an aromatic fluorine compound, and the photoreaction tube is formed of a tube made of a fluoroolefin polymer.
JP21928298A 1998-08-03 1998-08-03 Method and apparatus for producing aromatic fluorine compound Expired - Fee Related JP4318058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21928298A JP4318058B2 (en) 1998-08-03 1998-08-03 Method and apparatus for producing aromatic fluorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928298A JP4318058B2 (en) 1998-08-03 1998-08-03 Method and apparatus for producing aromatic fluorine compound

Publications (2)

Publication Number Publication Date
JP2000044501A JP2000044501A (en) 2000-02-15
JP4318058B2 true JP4318058B2 (en) 2009-08-19

Family

ID=16733077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928298A Expired - Fee Related JP4318058B2 (en) 1998-08-03 1998-08-03 Method and apparatus for producing aromatic fluorine compound

Country Status (1)

Country Link
JP (1) JP4318058B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100546970C (en) * 2006-05-18 2009-10-07 中国科学院广州化学研究所 A kind of synthetic method of bromo benzoic ether
CN107793289A (en) * 2016-08-30 2018-03-13 上海伟和生物科技有限公司 A kind of preparation method of 2,3,5 trifluorobromobenzene
CN112174770A (en) * 2020-10-30 2021-01-05 德兴市德邦化工有限公司 Production process of 3,4, 5-trifluorobromobenzene
CN117486670B (en) * 2023-12-29 2024-03-12 山东国邦药业有限公司 Synthesis method of 3,4, 5-trifluoro-bromobenzene

Also Published As

Publication number Publication date
JP2000044501A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP5871633B2 (en) Bis (1,1-dichloro-3,3,3-trifluoropropyl) ether and method for producing the same
JP4611984B2 (en) Process for producing polyhalogenated diamantane and its derivatives
KR101357455B1 (en) Manufacturing method and refining method for 1,2,3,4-tetrachlorohexafluorobutane
CN108473397A (en) The manufacturing method of the chloro- 2,3,3,3- tetrafluoropropenes of 1-
EP1032557B1 (en) Method for preparing bromomethyl-biphenyl derivatives
JP4318058B2 (en) Method and apparatus for producing aromatic fluorine compound
CN107188778A (en) The preparation method of octafluoro cyclopentene
JP5574509B2 (en) Method for conversion of aromatic aldehyde to aromatic acyl halide
JPH024719A (en) Bromination of an alkyl arene
JP2006257042A (en) Method for producing 2-fluoro-6-(trifluoromethyl)benzyl bromide and 2-fluoro-6-(trifluoromethyl)benzylamine
TWI634101B (en) System and method for preparing aromatic derivative
JPS5953887B2 (en) Continuous production method for mono- or di-(trichloromethyl)-benzene
KR100904485B1 (en) A method for preparation of mono-halogenated ethylene carbonate
US5736012A (en) Process for the preparation of a fluorinated acid
JP4255446B2 (en) Process for producing 2-trifluoromethyl-6-fluorobenzaldehyde and derivatives thereof
CN1132733A (en) Process for introduction fluoro substituents
WO1994000407A1 (en) Process for the oxidation of aromatic methyl groups
JP4605015B2 (en) Fluorine-containing ether compound
JP3831801B2 (en) Method for producing aromatic fluorine compound
WO1994012453A1 (en) Process for producing perfluoroalkyl bromide
JP4155986B2 (en) Halogen-containing aromatic compounds
JP2005126330A (en) Method for producing biphenyl derivative
CN111655676A (en) Method for producing 1, 3-dioxolane compound and perfluoro (2, 2-dimethyl-1, 3-dioxole)
JP3813040B2 (en) Method for producing halogen-containing aromatic compound
JPH024731A (en) Method for oxidation of a diphenylmethane compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees